JP2009072770A - Manufacturing method for laminated body - Google Patents

Manufacturing method for laminated body Download PDF

Info

Publication number
JP2009072770A
JP2009072770A JP2008217830A JP2008217830A JP2009072770A JP 2009072770 A JP2009072770 A JP 2009072770A JP 2008217830 A JP2008217830 A JP 2008217830A JP 2008217830 A JP2008217830 A JP 2008217830A JP 2009072770 A JP2009072770 A JP 2009072770A
Authority
JP
Japan
Prior art keywords
inorganic fine
particle layer
fine particle
fine particles
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008217830A
Other languages
Japanese (ja)
Other versions
JP5422941B2 (en
Inventor
Takumi Shibuta
匠 渋田
Makiko Hara
万紀子 原
Taiichi Sakatani
泰一 阪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008217830A priority Critical patent/JP5422941B2/en
Publication of JP2009072770A publication Critical patent/JP2009072770A/en
Application granted granted Critical
Publication of JP5422941B2 publication Critical patent/JP5422941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a laminated body formed by laminating inorganic particle layers with superior strength on a base material. <P>SOLUTION: The manufacturing method for a laminated body with an average particle size of the inorganic particles of 1 nm-10 μm, comprises consecutive processes 1, 2 of: (1) applying dispersion formed by dispersing inorganic particles in a liquid medium, and drying to form the inorganic particle layers; and (2) bringing the inorganic particle layers into contact with a chemical having capacity of dissolving the inorganic particle layers, and drying. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate.

熱可塑性樹脂で構成される成形品は、一般に帯電防止性に劣り汚れが付着しやすい。熱可塑性樹脂からなり、汚れの付着を防止した成形品として、熱可塑性樹脂層上に無機コロイドを含む液を塗布し、次いで媒体を除去して前記無機コロイド由来の無機微粒子層を形成させて製造される汚れ防止性フィルムが特許文献1に開示されている。   Molded products made of thermoplastic resins are generally inferior in antistatic properties and easily adhere to dirt. Manufactured by applying a liquid containing an inorganic colloid on a thermoplastic resin layer, and then removing the medium to form an inorganic fine particle layer derived from the inorganic colloid, as a molded article made of a thermoplastic resin and preventing adhesion of dirt. An antifouling film is disclosed in Patent Document 1.

特開2004−307856号公報JP 2004-307856 A

しかしながら前記の汚れ防止性フィルムは、無機微粒子同士の接着力が不十分であり、フィルムの変形や摩擦力などの外的力の作用などによって無機微粒子層が欠落することがあった。   However, the antifouling film has insufficient adhesion between inorganic fine particles, and the inorganic fine particle layer may be lost due to the action of external force such as film deformation or frictional force.

上記のような従来技術の問題に鑑みて本発明は、基材上に強度に優れる無機微粒子層が積層されてなる積層体の製造方法を提供するものである。   In view of the above-described problems of the prior art, the present invention provides a method for producing a laminate in which inorganic fine particle layers having excellent strength are laminated on a substrate.

すなわち本発明は、下記の工程(1)および(2)を順に行うことを特徴とする積層体の製造方法である。
(1)無機微粒子が液体媒体に分散されてなる分散液を基材上に塗布した後、乾燥して無機微粒子層を形成する工程
(2)前記無機微粒子層を、該無機微粒子層を溶解する能力を有する薬剤に接触させた後、乾燥させる工程
That is, this invention is a manufacturing method of the laminated body characterized by performing the following process (1) and (2) in order.
(1) A step of applying a dispersion liquid in which inorganic fine particles are dispersed in a liquid medium onto a substrate and then drying to form an inorganic fine particle layer. (2) Dissolving the inorganic fine particle layer in the inorganic fine particle layer. A process of drying after contacting with a drug having ability

本発明によれば、基材上に強度に優れる無機微粒子層が積層されてなる積層体を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated body formed by laminating | stacking the inorganic fine particle layer excellent in intensity | strength on a base material can be manufactured.

本発明における工程(1)は、無機微粒子が液体媒体に分散されてなる分散液を基材上に塗布した後、乾燥して無機微粒子層を形成する工程である。   Step (1) in the present invention is a step of forming an inorganic fine particle layer by applying a dispersion liquid in which inorganic fine particles are dispersed in a liquid medium on a substrate and then drying.

本発明で用いる基材の素材はガラスや金属部材等の硬質材料でもよいが、加工性、取扱の容易さから熱可塑性樹脂が好ましい。基材を構成する熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレンおよび/またはα−オレフィンと他の重合性単量体との共重合体などのオレフィン系樹脂;ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの塩素含有樹脂;テトラフルオロエチレンの単独重合体、テトラフルオロエチレンと他の重合性単量体(例えばエチレンやα−オレフィンなど)との共重合体などのフッ素含有樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリメタクリル酸メチルやメタクリル酸メチルと他の重合性単量体との共重合体などのアクリル系樹脂;ポリスチレンやスチレンと他の重合性単量体との共重合体などのスチレン系樹脂;トリアセチルセルロースやジアセチルセルロースなどのセルロース系樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ウレタン系樹脂;これらの混合物などが挙げられる。 The base material used in the present invention may be a hard material such as glass or a metal member, but a thermoplastic resin is preferred from the viewpoint of processability and ease of handling. Examples of the thermoplastic resin constituting the substrate include polyethylene resins, polypropylene resins, ethylene and / or olefin resins such as copolymers of α-olefins and other polymerizable monomers; polyvinyl chloride resins, polychlorinated resins Chlorine-containing resins such as vinylidene; Fluorine-containing resins such as tetrafluoroethylene homopolymers, copolymers of tetrafluoroethylene and other polymerizable monomers (for example, ethylene and α-olefins); polyethylene terephthalate, polyethylene Polyester resins such as naphthalate; Acrylic resins such as polymethyl methacrylate and copolymers of methyl methacrylate and other polymerizable monomers; Copolymerization of polystyrene and styrene with other polymerizable monomers Styrenic resins such as coalesce; Cellulose such as triacetyl cellulose and diacetyl cellulose Examples thereof include: a roulose resin; a polycarbonate resin; a polyamide resin; a urethane resin; and a mixture thereof.

本発明の方法により透明性に優れる積層体を製造する場合には、オレフィン系樹脂、塩素含有樹脂、フッ素含有樹脂、ポリエステル系樹脂、アクリル系樹脂、スチレン系樹脂、セルロース系樹脂、ポリカーボネート樹脂等からなる基材を使用することが好ましい。
基材は、単一の層からなる単層基材であってもよく、また、2層以上の層からなる多層基材であってもよい。多層基材の例としては、各々が熱可塑性樹脂からなる2以上の層からなる多層基材や、熱可塑性樹脂からなる一層以上の層と、熱可塑性樹脂以外の材料(例えば金属)からなる一層以上の層とからなる複合多層基材が挙げられる。
基材の形状、大きさ、厚さは特に限定されるものではないが、熱可塑性樹脂製フィルムであることが好ましい。
When producing a laminate having excellent transparency by the method of the present invention, from an olefin resin, a chlorine-containing resin, a fluorine-containing resin, a polyester resin, an acrylic resin, a styrene resin, a cellulose resin, a polycarbonate resin, etc. It is preferable to use a substrate.
The base material may be a single layer base material composed of a single layer, or may be a multilayer base material composed of two or more layers. Examples of the multilayer substrate include a multilayer substrate composed of two or more layers, each composed of a thermoplastic resin, one or more layers composed of a thermoplastic resin, and a layer composed of a material (for example, metal) other than the thermoplastic resin. A composite multilayer substrate composed of the above layers can be mentioned.
The shape, size, and thickness of the substrate are not particularly limited, but are preferably thermoplastic resin films.

本発明における無機微粒子層とは、無機微粒子が積み重なって形成されている層である。無機微粒子層には、本発明の効果を損なわない程度の低融点ガラスや有機珪素化合物等の無機バインダー、紫外線硬化性樹脂等の樹脂バインダーを添加してもよい。   The inorganic fine particle layer in the present invention is a layer formed by stacking inorganic fine particles. To the inorganic fine particle layer, an inorganic binder such as a low-melting glass or an organic silicon compound that does not impair the effects of the present invention, and a resin binder such as an ultraviolet curable resin may be added.

本発明における無機微粒子層の厚さは、無機微粒子層の強度の観点から、0.05〜10μmであることが好ましく、0.2〜10μmであることがより好ましい。   The thickness of the inorganic fine particle layer in the present invention is preferably 0.05 to 10 μm, and more preferably 0.2 to 10 μm, from the viewpoint of the strength of the inorganic fine particle layer.

本発明では、無機微粒子が液体媒体に分散されてなる分散液を用いる。   In the present invention, a dispersion liquid in which inorganic fine particles are dispersed in a liquid medium is used.

前記無機微粒子は特に限定されるものではないが、液体媒体中で均一に分散しやすいものが好ましい。均一な膜を形成しやすいことから、アスペクト比が2未満の無機微粒子を用いることが好ましく、真球状の無機微粒子を用いることがより好ましい。
本発明で用いられる無機微粒子としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸バリウム等が挙げられる。液体媒体中での分散性が良好であること、粒子が真球状であり粒径が均一であることから、無機微粒子としてシリカを用いることが好ましい。なおシリカとは、二酸化ケイ素粒子である。分散性の観点から、分散液としてコロイダルシリカを用いることがより好ましい。
The inorganic fine particles are not particularly limited, but those that are easily dispersed uniformly in a liquid medium are preferable. In view of easy formation of a uniform film, it is preferable to use inorganic fine particles having an aspect ratio of less than 2, and it is more preferable to use true spherical inorganic fine particles.
Examples of the inorganic fine particles used in the present invention include silicon oxide, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, and barium sulfate. It is preferable to use silica as the inorganic fine particles because of good dispersibility in the liquid medium and because the particles are spherical and have a uniform particle size. Silica is silicon dioxide particles. From the viewpoint of dispersibility, it is more preferable to use colloidal silica as the dispersion.

液体媒体は、揮発性の有機溶媒であってもよいが、乾燥設備の防爆型構造が不要となりコスト低減が可能であるため、水であることが好ましい。分散液中の無機微粒子の量は、形成する無機微粒子層の膜厚に応じて適宜選択することができるが、1〜20重量%の範囲が好ましい。
本発明で用いられる無機微粒子は1種類に限定されるものではなく、必要に応じて複数の無機微粒子が液体媒体に分散されてなる分散液を用いて無機微粒子層を形成してもよい。
Although the volatile organic solvent may be sufficient as a liquid medium, since the explosion-proof structure of a drying equipment is unnecessary and cost reduction is possible, it is preferable that it is water. The amount of the inorganic fine particles in the dispersion can be appropriately selected according to the thickness of the inorganic fine particle layer to be formed, but is preferably in the range of 1 to 20% by weight.
The inorganic fine particles used in the present invention are not limited to one type, and the inorganic fine particle layer may be formed using a dispersion liquid in which a plurality of inorganic fine particles are dispersed in a liquid medium as necessary.

分散液中での無機微粒子の分散性や、基材に積層した無機微粒子層の強度の観点から、平均粒径が1nm〜10μmである無機微粒子を用いることが好ましく、平均粒径が1〜300nmである無機微粒子を用いることがより好ましい。透明性を求められる用途では、平均粒径が1〜100nmである無機微粒子を用いることが特に好ましい。また無機微粒子層の強度の観点から、平均粒径が1〜30nmの無機微粒子と、平均粒径が40〜100nmの無機微粒子とを混合して用いることが好ましい。無機微粒子の平均粒径とは、光学顕微鏡、レーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡、原子間力顕微鏡等を用いて画像で観察された粒径や、レーザー回折散乱法、動的光散乱法、BET法の平均粒径、シアーズ法などにより求められる平均粒径である。   From the viewpoint of the dispersibility of the inorganic fine particles in the dispersion and the strength of the inorganic fine particle layer laminated on the substrate, it is preferable to use inorganic fine particles having an average particle size of 1 nm to 10 μm, and the average particle size of 1 to 300 nm. It is more preferable to use inorganic fine particles. In applications where transparency is required, it is particularly preferable to use inorganic fine particles having an average particle diameter of 1 to 100 nm. From the viewpoint of the strength of the inorganic fine particle layer, it is preferable to mix and use inorganic fine particles having an average particle diameter of 1 to 30 nm and inorganic fine particles having an average particle diameter of 40 to 100 nm. The average particle size of inorganic fine particles refers to the particle size observed in images using an optical microscope, laser microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, etc., laser diffraction scattering method, dynamic light It is an average particle size determined by a scattering method, an average particle size of a BET method, a Sears method, or the like.

使用する分散液は、スターラーによる攪拌、超音波分散、超高圧分散(超高圧ホモジナイザー)等の手法により、分散液中の無機微粒子の分散性を向上させてもよい。また、分散液のpH調整を行い、無機微粒子の分散性を向上させてもよい。分散液にイオン性分散剤や非イオン性分散剤、界面活性剤等を添加することにより、分散液中の無機微粒子の分散性を向上させてもよい。   The dispersion used may improve the dispersibility of the inorganic fine particles in the dispersion by a method such as stirring with a stirrer, ultrasonic dispersion, or ultra-high pressure dispersion (ultra-high pressure homogenizer). Further, the pH of the dispersion may be adjusted to improve the dispersibility of the inorganic fine particles. The dispersibility of the inorganic fine particles in the dispersion may be improved by adding an ionic dispersant, a nonionic dispersant, a surfactant or the like to the dispersion.

無機微粒子が液体媒体に分散されてなる分散液を基材上に塗工する方法としては、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター等を用いて塗工する方法が挙げられる。分散液を塗工する前に、基材表面に予めコロナ処理、オゾン処理、プラズマ処理、フレーム処理、電子線処理、アンカーコート処理、洗浄処理等の前処理を施しておいてもよい。
分散液の塗布厚みは、形成する無機微粒子層の厚みに応じて適宜設定することができるが、通常1〜20g/m2の範囲である。
Examples of the method of coating the base material with a dispersion liquid in which inorganic fine particles are dispersed in a liquid medium include a method of coating using a roll coater, a reverse roll coater, a gravure coater, a knife coater, a bar coater, or the like. . Before coating the dispersion, the substrate surface may be subjected to pretreatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, electron beam treatment, anchor coating treatment, and washing treatment.
Although the application | coating thickness of a dispersion liquid can be suitably set according to the thickness of the inorganic fine particle layer to form, it is the range of 1-20 g / m < 2 > normally.

また、本発明で用いる分散液とは異なる無機物含有液をベース材に塗布し、乾燥することにより、該ベース材上に無機物被膜を形成して調製した積層物を基材として使用してもよい。ベース材としては、先に基材として例示したものを使用することができる。無機物含有液としては、コロイダルアルミナ、コロイダルシリカおよび液体媒体に膨潤及びへき開する性質を有する粘土系鉱物を含有する液が好適に用いられる。   In addition, a laminate prepared by applying an inorganic-containing liquid different from the dispersion used in the present invention to a base material and drying it to form an inorganic film on the base material may be used as a base material. . As the base material, those exemplified above as the base material can be used. As the inorganic substance-containing liquid, a liquid containing colloidal alumina, colloidal silica, and a clay mineral having a property of swelling and cleaving into a liquid medium is preferably used.

前記した分散液を基材上に塗布した後、乾燥することにより、基材上に無機微粒子層を形成する。乾燥方法としては、常圧下、または減圧下に加熱する方法が挙げられる。乾燥時の圧力や温度は、使用する無機微粒子および液体媒体に応じて適宜選択することができる。例えば、液体媒体が水であるときは、一般的には常圧下、50〜80℃で、好ましくは約60℃で乾燥することができる。   An inorganic fine particle layer is formed on a substrate by applying the above-described dispersion on the substrate and then drying. Examples of the drying method include a method of heating under normal pressure or reduced pressure. The pressure and temperature at the time of drying can be suitably selected according to the inorganic fine particles and the liquid medium to be used. For example, when the liquid medium is water, it can be generally dried at 50 to 80 ° C., preferably about 60 ° C. under normal pressure.

本発明では、基材の種類や、無機微粒子層の形成に使用する無機微粒子の種類を適宜選択することにより、様々な用途に適した積層体を製造することができる。例えば無機微粒子として、一般に光半導体と称されるような酸化チタンを用いた場合には、得られる積層体は特定の光線吸収バンドを有する膜となり、光線透過制御性に優れる材料として好適である。   In this invention, the laminated body suitable for various uses can be manufactured by selecting suitably the kind of base material and the kind of inorganic fine particle used for formation of an inorganic fine particle layer. For example, when titanium oxide, which is generally called an optical semiconductor, is used as the inorganic fine particles, the resulting laminate is a film having a specific light absorption band and is suitable as a material having excellent light transmission controllability.

本発明の工程(2)は、前記無機微粒子層を、該無機微粒子層を溶解する能力を有する薬剤に接触させた後、乾燥させる工程である。
本発明で用いる、無機微粒子層を溶解する能力を有する薬剤とは、無機微粒子層を化学的に溶解する能力を有する薬剤であり、例えば酸性水溶液、アルカリ性水溶液などが挙げられる。
The step (2) of the present invention is a step of bringing the inorganic fine particle layer into contact with a drug having the ability to dissolve the inorganic fine particle layer and then drying it.
The chemical | medical agent which has the capability to melt | dissolve an inorganic fine particle layer used by this invention is a chemical | medical agent which has the capability to melt | dissolve an inorganic fine particle layer chemically, for example, acidic aqueous solution, alkaline aqueous solution, etc. are mentioned.

酸性水溶液とは、例えば塩酸、硫酸、硝酸、蓚酸、酢酸、蟻酸である。   Examples of the acidic aqueous solution include hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, acetic acid, and formic acid.

アルカリ性水溶液とは、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、アンモニア水である。   Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a calcium hydroxide aqueous solution, and aqueous ammonia.

使用する酸性水溶液やアルカリ性水溶液の濃度は、無機微粒子を化学的に溶解することができる濃度であればよいが、通常0.01mol/l〜10mol/lであり、好ましくは0.1mol/l〜5mol/lである。   The concentration of the acidic aqueous solution or alkaline aqueous solution to be used may be any concentration that can chemically dissolve inorganic fine particles, but is usually 0.01 mol / l to 10 mol / l, preferably 0.1 mol / l to 5 mol / l.

特に無機微粒子としてシリカを用いる場合には、該シリカを溶解する能力を有する薬剤として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液等のアルカリ性水溶液が好ましく、最も好ましくは0.1mol/l〜5mol/lの水酸化ナトリウム水溶液である。   In particular, when silica is used as the inorganic fine particles, an alkaline aqueous solution such as a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or a calcium hydroxide aqueous solution is preferable as the agent having the ability to dissolve the silica, and most preferably 0.1 mol / It is 1-5 mol / l sodium hydroxide aqueous solution.

無機微粒子層を、該無機微粒子層を溶解する能力を有する薬剤に接触させる方法としては、薬剤に無機微粒子層を浸漬する方法や、無機微粒子層上に薬剤を塗布する方法が挙げられる。前者の場合には、工程(1)で得られる基材上に無機微粒子層が積層された積層体ごと薬剤に浸漬してもよい。   Examples of the method of bringing the inorganic fine particle layer into contact with the drug having the ability to dissolve the inorganic fine particle layer include a method of immersing the inorganic fine particle layer in the drug and a method of applying the drug on the inorganic fine particle layer. In the former case, the laminate in which the inorganic fine particle layer is laminated on the substrate obtained in the step (1) may be immersed in the drug.

無機微粒子層を溶解する能力を有する薬剤を無機微粒子層上に塗布する方法としては、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター等を用いて塗工する方法が挙げられる。薬剤を塗布する前に、無機微粒子層表面に予めコロナ処理、オゾン処理、プラズマ処理、フレーム処理、電子線処理、アンカーコート処理、洗浄処理等の前処理を施しておいてもよい。 Examples of a method of applying a drug having the ability to dissolve the inorganic fine particle layer on the inorganic fine particle layer include a method of coating using a roll coater, a reverse roll coater, a gravure coater, a knife coater, a bar coater and the like. Prior to applying the chemical, the surface of the inorganic fine particle layer may be subjected to pretreatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, electron beam treatment, anchor coat treatment, and washing treatment.

無機微粒子層を溶解する能力を有する薬剤に無機微粒子層を接触させる時間は、使用する薬剤により最適な条件が異なるが、通常、0.1秒〜24時間である。たとえば無機微粒子としてシリカを用い、薬剤として水酸化ナトリウム水溶液を用いる場合、接触方法が浸漬の場合は1分〜60分、塗布の場合は0.1秒〜600秒接触させることが好ましい。   The time for which the inorganic fine particle layer is brought into contact with the drug having the ability to dissolve the inorganic fine particle layer varies depending on the drug used, but is usually 0.1 second to 24 hours. For example, when silica is used as the inorganic fine particles and a sodium hydroxide aqueous solution is used as the drug, it is preferable that the contact is performed for 1 minute to 60 minutes when dipping, and for application, 0.1 second to 600 seconds.

無機微粒子層を溶解する能力を有する薬剤に無機微粒子層を接触させた後、乾燥させる。乾燥の圧力や温度は、薬剤が蒸発する条件であればよく、通常は常圧下、0℃〜200℃である。薬剤として水酸化ナトリウム水溶液を用いる場合には、常圧下、10℃〜150℃で0.1秒〜24時間乾燥することが好ましい。本発明では、薬剤に無機微粒子層を接触させた後、洗浄工程を経ることなく乾燥させることにより、膜強度に優れる積層体を得ることができる。乾燥した後得られる積層体は、洗浄してもよい。   The inorganic fine particle layer is brought into contact with a drug having the ability to dissolve the inorganic fine particle layer and then dried. The drying pressure and temperature may be any conditions that allow the chemical to evaporate, and are usually 0 ° C. to 200 ° C. under normal pressure. When using a sodium hydroxide aqueous solution as a chemical, it is preferable to dry at 10 ° C. to 150 ° C. for 0.1 seconds to 24 hours under normal pressure. In this invention, after making an inorganic fine particle layer contact a chemical | medical agent, the laminated body which is excellent in film | membrane intensity | strength can be obtained by making it dry without passing through a washing | cleaning process. The laminate obtained after drying may be washed.

以下に、本発明を実施例を挙げて説明するが、本発明はこれらの例に限定されない。なお、実施例中の試験方法は次の通りである。
<鉛筆硬度評価>
JIS K5400に準拠し、荷重500gfにて測定を行った。
<スチールウール評価>
#0000のスチールウールを用いて荷重200gf/cm2にて10往復行ない、傷の有無を目視観察して行った。傷が10本以下のものを○、傷が10本より多いものを×と判定した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the test method in an Example is as follows.
<Pencil hardness evaluation>
The measurement was performed at a load of 500 gf in accordance with JIS K5400.
<Evaluation of steel wool>
Using # 0000 steel wool, 10 reciprocations were performed at a load of 200 gf / cm 2 , and the presence or absence of scratches was visually observed. A sample having 10 or fewer scratches was evaluated as ◯, and a sample having more than 10 scratches was evaluated as ×.

[比較例1]
日産化学社製コロイダルシリカ(スノーテックスST−XS(シアーズ法による平均粒径4〜6nm、固形分濃度20重量%)を200g、日産化学社製コロイダルシリカ(スノーテックスST−ZL(BET法による平均粒径78nm、固形分濃度40wt%)を400g秤量し、1400gの水と混合、攪拌し、分散液を調製した。該分散液を、富士フィルム社製トリアセチルセルロースフィルム上にマイクログラビアロール(株式会社康井精機社製、120メッシュ)を用いて塗布し、60℃で1分間乾燥した。該積層体上に、さらに前記分散液を塗布および乾燥の操作をそれぞれ9回行い、基材上に無機微粒子層が積層されてなる積層体(1)を得た。鉛筆硬度を測定したところ3Hであった。
[Comparative Example 1]
Colloidal silica manufactured by Nissan Chemical Co., Ltd. (Snowtex ST-XS (average particle size 4-6 nm by Sears method, solid content concentration 20% by weight) 200 g, colloidal silica manufactured by Nissan Chemical Co., Ltd. (Snowtex ST-ZL (average by BET method 400 g of a particle size of 78 nm and a solid content concentration of 40 wt% were weighed, mixed with 1400 g of water and stirred to prepare a dispersion, which was then placed on a triacetylcellulose film manufactured by Fuji Film Co., Ltd. (120 mesh manufactured by Yasui Seiki Co., Ltd.) and dried for 1 minute at 60 ° C. The dispersion was further applied and dried nine times on the laminate, A layered product (1) obtained by laminating inorganic fine particle layers was obtained, and the pencil hardness was measured to be 3H.

[比較例2]
スノーテックスST−XSを175g秤量し、325gの水を混合、攪拌し分散液Aを調製した。またスノーテックスST−XSを175g秤量し、200.0gのイソプロピルアルコールと125gの水を混合、攪拌し、分散液Bを調製した。比較例1で得た積層体(1)にマイクログラビアロール(株式会社康井精機社製、230メッシュ)を用いて分散液Aを塗布し、60℃で1分間乾燥した後、分散液Bを230メッシュのグラビアロールで塗布し、60℃で1分間乾燥を行い、基材上に無機微粒子層が積層されてなる積層体(2)を得た。スチールウール強度を測定したところ、結果は×であった
[Comparative Example 2]
175 g of Snowtex ST-XS was weighed and 325 g of water was mixed and stirred to prepare dispersion A. Further, 175 g of Snowtex ST-XS was weighed, and 200.0 g of isopropyl alcohol and 125 g of water were mixed and stirred to prepare dispersion B. The dispersion liquid A was applied to the laminate (1) obtained in Comparative Example 1 using a micro gravure roll (manufactured by Yasui Seiki Co., Ltd., 230 mesh) and dried at 60 ° C. for 1 minute. It apply | coated with the 230 mesh gravure roll, it dried at 60 degreeC for 1 minute, and obtained the laminated body (2) by which an inorganic fine particle layer was laminated | stacked on the base material. When the steel wool strength was measured, the result was x.

[実施例1]
前記比較例1で得られた積層体(1)の無機微粒子層上に、550W/m2/minでコロナ処理を行った後、1.5mol/lの水酸化ナトリウム水溶液をバーコーターを用いて塗布し、水酸化ナトリウム水溶液を積層体(1)と3分間接触させた後、60℃で10分間乾燥させた。乾燥終了後5分間水洗し、60℃で1時間乾燥させ、積層体(3)を得た。得られた積層体(3)の鉛筆硬度を測定したところ4Hであり、積層体(1)に比べて膜強度が向上していた。
[Example 1]
After performing a corona treatment at 550 W / m 2 / min on the inorganic fine particle layer of the laminate (1) obtained in Comparative Example 1, a 1.5 mol / l sodium hydroxide aqueous solution was used using a bar coater. After applying and bringing the aqueous sodium hydroxide solution into contact with the laminate (1) for 3 minutes, it was dried at 60 ° C. for 10 minutes. After completion of drying, it was washed with water for 5 minutes and dried at 60 ° C. for 1 hour to obtain a laminate (3). It was 4H when the pencil hardness of the obtained laminated body (3) was measured, and the film strength was improved as compared with the laminated body (1).

[実施例2]
前記比較例2で得られた積層体(2)を、2.0mol/lの水酸化ナトリウム水溶液に10分間浸漬し、23℃で10分間乾燥させた。乾燥終了後5分間水洗し、60℃で1時間乾燥させ、積層体(4)を得た。得られた積層体(4)のスチールウール評価の結果は○であり、積層体(2)に比べて膜強度が向上していた。
[Example 2]
The laminate (2) obtained in Comparative Example 2 was immersed in a 2.0 mol / l sodium hydroxide aqueous solution for 10 minutes and dried at 23 ° C. for 10 minutes. After completion of drying, it was washed with water for 5 minutes and dried at 60 ° C. for 1 hour to obtain a laminate (4). The result of steel wool evaluation of the obtained laminate (4) was ○, and the film strength was improved as compared with the laminate (2).

Claims (6)

下記の工程(1)および(2)を順に行うことを特徴とする積層体の製造方法。
(1)無機微粒子が液体媒体に分散されてなる分散液を基材上に塗布した後、乾燥して無機微粒子層を形成する工程
(2)前記無機微粒子層を、該無機微粒子層を溶解する能力を有する薬剤に接触させた後、乾燥させる工程
The manufacturing method of the laminated body characterized by performing the following process (1) and (2) in order.
(1) A step of applying a dispersion liquid in which inorganic fine particles are dispersed in a liquid medium onto a substrate and then drying to form an inorganic fine particle layer. (2) Dissolving the inorganic fine particle layer in the inorganic fine particle layer. A process of drying after contacting with a drug having ability
前記無機微粒子の平均粒径が1nm〜10μmである請求項1に記載の積層体の製造方法。   The method for producing a laminate according to claim 1, wherein the inorganic fine particles have an average particle size of 1 nm to 10 μm. 前記無機微粒子層を溶解する能力を有する薬剤が、酸性水溶液またはアルカリ性水溶液である請求項1または2に記載の積層体の製造方法。   The method for producing a laminate according to claim 1 or 2, wherein the chemical agent capable of dissolving the inorganic fine particle layer is an acidic aqueous solution or an alkaline aqueous solution. 前記無機微粒子がシリカである請求項1〜3のいずれかに記載の積層体の製造方法。   The method for producing a laminate according to any one of claims 1 to 3, wherein the inorganic fine particles are silica. 前記アルカリ性水溶液が水酸化ナトリウム水溶液である請求項3記載の積層体の製造方法。   The manufacturing method of the laminated body of Claim 3 whose said alkaline aqueous solution is sodium hydroxide aqueous solution. 前記基材が熱可塑性樹脂製フィルムである請求項1〜5いずれかに記載の積層体の製造方法。   The said base material is a film made from a thermoplastic resin, The manufacturing method of the laminated body in any one of Claims 1-5.
JP2008217830A 2007-08-30 2008-08-27 Manufacturing method of laminate Expired - Fee Related JP5422941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217830A JP5422941B2 (en) 2007-08-30 2008-08-27 Manufacturing method of laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007223699 2007-08-30
JP2007223699 2007-08-30
JP2008217830A JP5422941B2 (en) 2007-08-30 2008-08-27 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JP2009072770A true JP2009072770A (en) 2009-04-09
JP5422941B2 JP5422941B2 (en) 2014-02-19

Family

ID=40608308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217830A Expired - Fee Related JP5422941B2 (en) 2007-08-30 2008-08-27 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP5422941B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2004307556A (en) * 2003-04-02 2004-11-04 Auto Kagaku Kogyo Kk Curable composition and sealing material composition
JP2005187576A (en) * 2003-12-25 2005-07-14 Seed Co Ltd Hydrophilic hardcoat composition, hardcoat material and method for forming hardcoat film
JP2006015754A (en) * 2005-07-29 2006-01-19 Sumitomo Osaka Cement Co Ltd Inorganic molding, metal molding, and resin molding having high antifouling and easy cleaning properties and method for producing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2004307556A (en) * 2003-04-02 2004-11-04 Auto Kagaku Kogyo Kk Curable composition and sealing material composition
JP2005187576A (en) * 2003-12-25 2005-07-14 Seed Co Ltd Hydrophilic hardcoat composition, hardcoat material and method for forming hardcoat film
JP2006015754A (en) * 2005-07-29 2006-01-19 Sumitomo Osaka Cement Co Ltd Inorganic molding, metal molding, and resin molding having high antifouling and easy cleaning properties and method for producing them

Also Published As

Publication number Publication date
JP5422941B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP7312607B2 (en) Optical element with porous low refractive index layer with protective layer
JP4956467B2 (en) Superhydrophobic self-cleaning powder and method for producing the same
JP5994849B2 (en) Laminated glass
US20110073003A1 (en) Superhydrophilic coatings
US20070166513A1 (en) Patterned Coatings Having Extreme Wetting Properties and Methods of Making
WO2001079894A1 (en) Antireflection film and method for manufacturing the same
JP5509571B2 (en) Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same
TW201241469A (en) Low refractive index diffuser element
TW201700283A (en) Layer-by-layer assembled multilayer lamination transfer films
JPH11281802A (en) Antireflection film, antireflection member and production of antireflection member
TWI461727B (en) Method for manufacturing laminated body
JP2006341475A (en) Porous film and its production method
JP2006301126A (en) Low refractive index film
JP2006327187A (en) Production process of reflection preventive laminate
JP5422941B2 (en) Manufacturing method of laminate
KR101142719B1 (en) Process for producing a layered article
JP5151109B2 (en) LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD
JP2012171171A (en) Hard coat film
JP2005212446A (en) Manufacturing process for metal resin composite board having photocatalytic function
JP4894298B2 (en) Manufacturing method of laminate
TWI730612B (en) Optical laminate
TWI414811B (en) Method for producing a layered material containing a layer of inorganic particles
JP2002172722A (en) Transparent material and its manufacturing method
JP5050602B2 (en) Laminated body
JP4867211B2 (en) Method for suppressing thermal deformation of resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

LAPS Cancellation because of no payment of annual fees