JP2009069079A - Estimation method of temperature in material, method and device for estimating heat flux and computer program - Google Patents

Estimation method of temperature in material, method and device for estimating heat flux and computer program Download PDF

Info

Publication number
JP2009069079A
JP2009069079A JP2007240052A JP2007240052A JP2009069079A JP 2009069079 A JP2009069079 A JP 2009069079A JP 2007240052 A JP2007240052 A JP 2007240052A JP 2007240052 A JP2007240052 A JP 2007240052A JP 2009069079 A JP2009069079 A JP 2009069079A
Authority
JP
Japan
Prior art keywords
calculating
heat transfer
characteristic value
transfer characteristic
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007240052A
Other languages
Japanese (ja)
Other versions
JP4850803B2 (en
Inventor
Tadayuki Ito
忠幸 伊藤
Junichi Nakagawa
淳一 中川
Masahiro Yamamoto
昌宏 山本
Kazufumi Ito
一文 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
University of Tokyo NUC
Original Assignee
Nippon Steel Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, University of Tokyo NUC filed Critical Nippon Steel Corp
Priority to JP2007240052A priority Critical patent/JP4850803B2/en
Publication of JP2009069079A publication Critical patent/JP2009069079A/en
Application granted granted Critical
Publication of JP4850803B2 publication Critical patent/JP4850803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the temperature in a material without supposing the initial temperature in a container wall. <P>SOLUTION: An accurate solution is calculated by one operation by executing the following processes: the process for measuring the outer wall temperature of a material to be measured; the process for calculating the heat moving characteristic value of the material to be measured; the noise removing process for removing the noise components in the outer wall temperature measured value, which is calculated in the outer wall temperature measuring process, and in the heat moving characteristic value, which is calculated in the heat moving characteristic value calculation process, using a noise removing algorithm using a Legendre polynomials; the process for calculating the high-order differential coefficients of the outer wall temperature measured value and the heat moving characteristic value from which the noise component is removed in the noise removing process; and the calculation process for calculating an internal temperature using the high-order differential coefficient calculated in the differential coefficient calculation process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は材料内部の温度推定方法、熱流束の推定方法、装置、及びコンピュータプログラムに関し、特に、内表面と外表面に温度差を有する材料の内部の温度及び熱流束を推定するために用いて好適な技術に関する。   The present invention relates to a temperature estimation method inside a material, a heat flux estimation method, an apparatus, and a computer program, and in particular, used to estimate the temperature and heat flux inside a material having a temperature difference between an inner surface and an outer surface. It relates to a suitable technique.

材料の外壁表面で計測した温度及び熱流束を基に、材料内部の温度または熱流束を知ることは、下記の観点等から非常に重要なことである。
すなわち、(1)材料の加熱状態、及び冷却状態を判定するため。(2)装置材料の内表面温度及び内表面熱流束により、装置内部で起きている現象の状態を判定するため。(3)装置材料壁の残存厚みを判定するため、等である。
Knowing the temperature or heat flux inside the material based on the temperature and heat flux measured on the surface of the outer wall of the material is very important from the following viewpoints.
That is, (1) To determine the heating state and cooling state of the material. (2) In order to determine the state of a phenomenon occurring inside the apparatus based on the inner surface temperature and inner surface heat flux of the apparatus material. (3) To determine the remaining thickness of the device material wall.

前述した(1)〜(3)等の目的を達成するために、これまでは、容器壁内部の熱伝導現象を非定常熱伝導逆問題と考えて、容器壁に設置した温度計測手段によって計測された温度データを基に計算していた。   In order to achieve the above-mentioned objectives (1) to (3), etc., until now, the heat conduction phenomenon inside the container wall is considered as an unsteady heat conduction inverse problem and measured by the temperature measuring means installed on the container wall. The calculation was based on the measured temperature data.

具体的には、非定常熱伝導逆問題により容器壁内部の温度を計算し、容器壁の温度が溶鉄の凝固温度に一致する位置を検索することにより容器壁の厚みを推定する方法が提案されている(例えば、特許文献1を参照)。   Specifically, a method for estimating the thickness of the container wall by calculating the temperature inside the container wall using an unsteady heat conduction inverse problem and searching for a position where the temperature of the container wall matches the solidification temperature of the molten iron has been proposed. (For example, refer to Patent Document 1).

特開2001−234217号公報JP 2001-234217 A

しかしながら、前記特許文献1に開示されている逆問題解析は、容器壁の厚みを推定するにあたって、容器壁内部の初期温度を仮定して計算するものであった。そのため、初期温度の設定が適切でない場合は、温度計算結果に大きな誤差が入り、計算精度の著しい低下を招き、場合によっては、計算が発散し、計算の続行の中断を余儀なくされる場合もある問題点があった。   However, in the inverse problem analysis disclosed in Patent Document 1, the thickness of the container wall is estimated and the calculation is performed assuming the initial temperature inside the container wall. For this reason, if the initial temperature setting is not appropriate, a large error will occur in the temperature calculation result, causing a significant decrease in calculation accuracy. In some cases, the calculation may diverge and the calculation may be interrupted. There was a problem.

本発明は前記のような点に鑑みてなされたものであり、容器壁内部の初期温度を仮定することなく材料内部の温度推定を行うことができるようにすることを第1の目的とする。
また、材料の熱流束を推定できるようにすることを第2の目的とする。
The present invention has been made in view of the above points, and a first object of the present invention is to make it possible to estimate the temperature inside the material without assuming the initial temperature inside the container wall.
A second object is to make it possible to estimate the heat flux of the material.

本発明の材料内部の温度推定方法は、被測定材料の外壁温度を計測する外壁温度計測工程と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程とを有することを特徴とする。   The method for estimating the temperature inside the material of the present invention includes an outer wall temperature measuring step for measuring the outer wall temperature of the material to be measured, and a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material. Noise removal using the Legendre polynomial for the heat transfer characteristic value calculation step to be calculated, the outer wall temperature measurement value measured in the outer wall temperature measurement step, and the noise component in the heat transfer characteristic value calculated in the heat transfer characteristic value calculation step A noise removing step for removing using an algorithm; a derivative calculating step for calculating a higher order derivative of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step; and the derivative calculating And an internal temperature calculation step of calculating an internal temperature using a high-order derivative calculated in the step.

本発明の熱流束の推定方法は、被測定材料の外壁温度を計測する外壁温度計測工程と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程と、前記内部温度計算工程において内部温度を計算するための式を用いて熱流束を求める熱流束計算工程とを有することを特徴とする。   The heat flux estimation method of the present invention includes an outer wall temperature measurement step for measuring the outer wall temperature of the material to be measured, and a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material. A noise removal algorithm using a Legendre polynomial for the heat transfer characteristic value calculation step, the outer wall temperature measurement value measured in the outer wall temperature measurement step, and the noise component in the heat transfer characteristic value calculated in the heat transfer characteristic value calculation step A noise removing step for removing the noise using a noise, a derivative calculating step for calculating a higher-order derivative of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step, and the derivative calculating step. A heat flux is obtained using an internal temperature calculation step for calculating an internal temperature using a high-order differential coefficient calculated in step 1 and an equation for calculating the internal temperature in the internal temperature calculation step. And having a flux calculation process.

本発明の材料内部の温度推定装置は、被測定材料の外壁温度を計測する外壁温度計測手段と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算手段と、前記外壁温度計測手段で計測した外壁温度計測値、及び前記熱移動特性値計算手段で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去手段と、前記ノイズ除去手段によりノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出手段と、前記微係数算出手段により算出された高次の微係数を用いて内部温度を計算する内部温度計算手段とを有することを特徴とする。   The temperature estimation device inside the material of the present invention comprises an outer wall temperature measuring means for measuring the outer wall temperature of the material to be measured, and a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material. Noise removal using a Legendre polynomial for the heat transfer characteristic value calculation means to calculate, the outer wall temperature measurement value measured by the outer wall temperature measurement means, and the noise component in the heat transfer characteristic value calculated by the heat transfer characteristic value calculation means Noise removing means for removing using an algorithm; differential coefficient calculating means for calculating higher-order derivatives of outer wall temperature measurement values and heat transfer characteristic values from which noise has been removed by the noise removing means; and the derivative calculation And an internal temperature calculating means for calculating the internal temperature using a high-order derivative calculated by the means.

本発明の熱流束の推定装置は、被測定材料の外壁温度を計測する外壁温度計測手段と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算手段と、前記外壁温度計測手段で計測した外壁温度計測値、及び前記熱移動特性値計算手段で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去手段と、前記ノイズ除去手段によりノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出手段と、前記微係数算出手段により算出された高次の微係数を用いて内部温度を計算する内部温度計算手段と、前記内部温度計算手段により内部温度を計算するための式を用いて熱流束を求める熱流束計算手段とを有することを特徴とする。   The heat flux estimation apparatus of the present invention calculates an outer wall temperature measuring means for measuring an outer wall temperature of a material to be measured and a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material. A noise removal algorithm using a Legendre polynomial for the heat transfer characteristic value calculating means, the outer wall temperature measurement value measured by the outer wall temperature measurement means, and the noise component in the heat transfer characteristic value calculated by the heat transfer characteristic value calculation means A noise removing unit that removes the noise using the noise removing unit, a derivative calculating unit that calculates a higher-order derivative of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed by the noise removing unit, and the derivative calculating unit An internal temperature calculation means for calculating an internal temperature using a high-order derivative calculated by the above, and a heat flux for obtaining a heat flux using an expression for calculating the internal temperature by the internal temperature calculation means And having a calculation unit.

本発明のコンピュータプログラムは、被測定材料の外壁温度を計測する外壁温度計測工程と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程とをコンピュータに実行させることを特徴とする。
また、本発明のコンピュータプログラムの他の特徴とするところは、被測定材料の外壁温度を計測する外壁温度計測工程と、前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程と、前記内部温度計算工程において内部温度を計算するための式を用いて熱流束を求める熱流束計算工程とをコンピュータに実行させることを特徴とする。
The computer program of the present invention includes an outer wall temperature measuring step for measuring an outer wall temperature of a material to be measured, and a heat transfer for calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material. The noise component in the characteristic value calculation process, the outer wall temperature measurement value measured in the outer wall temperature measurement process, and the heat transfer characteristic value calculated in the heat transfer characteristic value calculation process, using a noise removal algorithm using a Legendre polynomial. A noise removing step for removing the noise, a differential coefficient calculating step for calculating a higher-order derivative of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step, and a derivative coefficient calculating step. And an internal temperature calculation step of calculating an internal temperature using a higher order differential coefficient.
Another feature of the computer program of the present invention is that the outer wall temperature measuring step for measuring the outer wall temperature of the material to be measured, and the outer wall heat flux of the material to be measured are divided by the thermal conductivity of the material. A heat transfer characteristic value calculation step for calculating a heat transfer characteristic value, an outer wall temperature measurement value measured in the outer wall temperature measurement step, and a noise component in the heat transfer characteristic value calculated in the heat transfer characteristic value calculation step are represented by a Legendre polynomial. A noise removing step for removing using a noise removing algorithm using a noise, a derivative calculating step for calculating a higher-order derivative of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step, and An internal temperature calculation step of calculating an internal temperature using a higher-order differential coefficient calculated in the differential coefficient calculation step; and an internal temperature is calculated in the internal temperature calculation step Characterized in that to execute the heat flux calculation step of calculating the heat flux to the computer using the order of the formula.

本発明によれば、材料の外壁表面の温度測定点において測定された測温データと該測温データを基に算出した熱流束データまたは前記温度測定点において測定された熱流束データから、材料内部の温度を短時間に計算することができる。
また、本発明の他の特徴によれば、材料の熱流束を推定することができる。これらにより、材料の冷却状態または加熱状態、装置壁の残存厚みを精度良く推定することができる。
また、本発明の他の特徴によれば、材料の冷却状態または加熱状態、装置壁の残存厚みを高精度に推定する際に、1回の演算で解を求めることが可能になるため、特許文献1に
記載の方法と比較して計算時間を10分の1以下に短縮することができる。
According to the present invention, from the temperature measurement data measured at the temperature measurement point on the outer wall surface of the material and the heat flux data calculated based on the temperature measurement data or the heat flux data measured at the temperature measurement point, Temperature can be calculated in a short time.
Also, according to another feature of the present invention, the heat flux of the material can be estimated. As a result, it is possible to accurately estimate the cooling or heating state of the material and the remaining thickness of the apparatus wall.
Further, according to another feature of the present invention, it is possible to obtain a solution in one operation when estimating the cooling or heating state of the material and the remaining thickness of the apparatus wall with high accuracy. Compared with the method described in Document 1, the calculation time can be reduced to 1/10 or less.

(第1の実施の形態)
以下、図面を参照しながら本発明の実施形態を説明する。
本実施形態においては、被測定材料100(例えば、溶鋼鍋)の1次元伝熱を仮定し、材料外壁の温度(計測値:f(t))の時間変化を計測する。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, assuming a one-dimensional heat transfer of the material to be measured 100 (for example, a molten steel pan), the time change of the temperature (measured value: f (t)) of the material outer wall is measured.

本実施形態においては、被測定材料100の外壁に熱電対110を取り付け、前記熱電対110により被測定材料100の外壁温度を計測するようにした例を示している。そして、前記熱電対110により取得した計測値は測定器120を介して、容器壁状態の管理装置1300に入力される。   In the present embodiment, an example is shown in which a thermocouple 110 is attached to the outer wall of the material to be measured 100 and the outer wall temperature of the material to be measured 100 is measured by the thermocouple 110. And the measured value acquired by the said thermocouple 110 is input into the management apparatus 1300 of a container wall state via the measuring device 120. FIG.

本実施形態においては、容器壁状態の管理装置1300を図1に示したようなコンピュータシステムにより構成した例を示している。
すなわち、本実施形態の容器壁状態の管理装置1300は、CPU1301を備え、ROM1302またはハードディスク(HD)1311に記憶された、あるいはフレキシブルディスクドライブ(FD)1312より供給されるデバイス制御ソフトウェアを実行し、システムバス1304に接続される各デバイスを総括的に制御する。
In the present embodiment, an example is shown in which the container wall state management device 1300 is configured by a computer system as shown in FIG.
That is, the container wall state management apparatus 1300 of this embodiment includes a CPU 1301 and executes device control software stored in the ROM 1302 or the hard disk (HD) 1311 or supplied from the flexible disk drive (FD) 1312. Each device connected to the system bus 1304 is collectively controlled.

前記CPU1301,ROM1302またはハードディスク(HD)1311に記憶されたプログラムにより、本実施の形態の各機能手段が構成される。   Each function unit of the present embodiment is configured by a program stored in the CPU 1301, the ROM 1302, or the hard disk (HD) 1311.

1303はRAMで、CPU1301の主メモリ、ワークエリア等として機能する。1305はキーボードコントローラ(KBC)であり、キーボード(KB)1309から入力される信号をシステム本体内に入力する制御を行う。1306は表示コントローラ(CRTC)であり、表示装置(CRT)1310上の表示制御を行う。1307はディスクコントローラ(DKC)で、ブートプログラム(起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラム)、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1311、及びフレキシブルディスク(FD)1312とのアクセスを制御する。   Reference numeral 1303 denotes a RAM which functions as a main memory, work area, and the like for the CPU 1301. Reference numeral 1305 denotes a keyboard controller (KBC), which controls to input a signal input from the keyboard (KB) 1309 into the system main body. Reference numeral 1306 denotes a display controller (CRTC) which performs display control on the display device (CRT) 1310. A disk controller (DKC) 1307 is a hard disk (boot program (startup program: a program that starts execution (operation) of personal computer hardware and software)), a plurality of applications, editing files, user files, a network management program, and the like. HD) 1311 and flexible disk (FD) 1312 are controlled.

1308はネットワークインタフェースカード(NIC)で、LAN1320を介して、ネットワークプリンタ、他のネットワーク機器、あるいは他のPCと双方向のデータのやり取りを行う。   Reference numeral 1308 denotes a network interface card (NIC) that exchanges data bidirectionally with a network printer, another network device, or another PC via the LAN 1320.

次に、図2及び図3のフローチャートを参照しながら材料内部の温度推定方法及び熱流束の推定方法の処理手順の一例を説明する。本実施形態においては、「冪級数アルゴリズム」と呼ばれているアルゴリズムを使用して材料内部の温度推定方法及び熱流束の推定方法を実現している。   Next, an example of the processing procedure of the method for estimating the temperature inside the material and the method for estimating the heat flux will be described with reference to the flowcharts of FIGS. In the present embodiment, a temperature estimation method and a heat flux estimation method inside the material are realized using an algorithm called a “power series algorithm”.

図2のフローチャートに示したように、先ず、ステップS21において被測定材料100である溶鋼鍋60(図6を参照)の鉄皮外壁温度f(ti)を計測する。この計測により、「f(ti) i=1,2,3、・・・、M」が鉄皮外壁温度計測値として得られる。 As shown in the flowchart of FIG. 2, first, in step S <b> 21, the outer skin wall temperature f (t i ) of the molten steel pan 60 (see FIG. 6) that is the material to be measured 100 is measured. By this measurement, “f (t i ) i = 1, 2, 3,..., M” is obtained as the iron skin outer wall temperature measurement value.

次に、ステップS22において、被測定材料100の熱移動特性値g(ti)を計算する。この熱移動特性値g(ti)は、外壁熱流束を材料の熱伝導率で除して計算する。このときの外壁熱流束は放射伝熱と対流熱伝達の和として推定計算ができる。この推定式は条件によって異なってくるが,例えば垂直平板の場合,放射による熱流束q[W/m2K]は、
q=eσ(T4−Ta 4
但し、Tは外壁温度[K]、Taは雰囲気温度[K]、σはステファン・ボルツマン定数、eは放射率である。
また、対流による熱流束q[W/m2K]は、
q=1.42H-0.25・(T−Ta)1.25
但し、Tは外壁温度[K]、Taハ雰囲気温度[K]、Hは外壁の垂直長さ[m]とする。
といった推定式が知られている。ここで、放射伝熱の放射率は事前に実験で決定しておく必要がある。また、対流熱伝達の推定式も事前の実験で補正を加えておくことが望ましい。以上の計算により、熱移動特性値g(ti)として、「g(ti) i=1,2,3、・・・、M」が得られる。
Next, in step S22, the heat transfer characteristic value g (ti) of the material to be measured 100 is calculated. This heat transfer characteristic value g (ti) is calculated by dividing the outer wall heat flux by the thermal conductivity of the material. The outer wall heat flux at this time can be estimated and calculated as the sum of radiant heat transfer and convective heat transfer. This estimation formula varies depending on conditions. For example, in the case of a vertical flat plate, the heat flux q [W / m 2 K] due to radiation is
q = eσ (T 4 −T a 4 )
Where T is the outer wall temperature [K], Ta is the ambient temperature [K], σ is the Stefan-Boltzmann constant, and e is the emissivity.
The heat flux q [W / m 2 K] due to convection is
q = 1.42H -0.25 · (T-Ta) 1.25
However, T is the outer wall temperature [K], T a c ambient temperature [K], H is the vertical length of the outer wall [m].
The estimation formula is known. Here, the emissivity of radiant heat transfer needs to be determined in advance by experiments. It is also desirable to correct the estimation formula for convective heat transfer in advance by experiments. Through the above calculation, “g (t i ) i = 1, 2, 3,..., M” is obtained as the heat transfer characteristic value g (ti).

次に、ステップS23において、鉄皮外壁温度f(ti)及び熱移動特性値g(ti)のノイズ除去演算処理を行う。本実施形態においては、図3のフローチャートを用いて説明するように、ルジャンドル(Legendre)多項式と呼ばれるノイズ除去アルゴリズムを用いてノイズ除去演算を行うようにしている。このノイズ除去処理を行うことにより、本実施形態の材料内部の温度推定方法及び熱流束の推定方法は、N次の時間微分に対応できるようにしている。 Next, in step S23, noise removal calculation processing is performed on the outer skin wall temperature f (t i ) and the heat transfer characteristic value g (ti). In the present embodiment, as will be described with reference to the flowchart of FIG. 3, a noise removal operation is performed using a noise removal algorithm called a Legendre polynomial. By performing this noise removal processing, the temperature estimation method and the heat flux estimation method inside the material according to the present embodiment can cope with N-th order time differentiation.

次に、ステップS24において、ノイズが除去された鉄皮外壁温度f(ti)及び熱移動特性値g(ti)の高次の微係数を算出する。
次に、ステップS25において、被測定材料100の温度及び熱流束を決定する。ステップS24、ステップS25で行う演算処理の詳細は後述する。
Next, in step S24, a higher-order derivative of the outer wall temperature f (t i ) and the heat transfer characteristic value g (ti) from which noise has been removed is calculated.
Next, in step S25, the temperature and heat flux of the material to be measured 100 are determined. Details of the arithmetic processing performed in steps S24 and S25 will be described later.

次に、図3のフローチャートを参照しながらステップS23で行うノイズ除去処理の手順を説明する。
先ず、ステップS31において、計測値の入力を行う。これにより、「fi=(ti)、gi=g(ti)、 t0<t1<・・・<tM」が入力される。
Next, the noise removal processing procedure performed in step S23 will be described with reference to the flowchart of FIG.
First, in step S31, a measurement value is input. Accordingly, “f i = (t i ), g i = g (t i ), t 0 <t 1 <... <T M ” is input.

次に、ステップS32において、ステップS31で入力された計測値からルジャンドル多項式を用いてノイズ除去式を構成する。ノイズ除去式構成の詳細については後述する。
次に、ステップS33において、ステップS32のノイズ除去式で使用する係数akを決定する処理を行う。
次に、ステップS34に進み、ノイズ除去式を決定する処理を行う。
Next, in step S32, a noise removal equation is constructed using the Legendre polynomial from the measurement value input in step S31. Details of the noise elimination type configuration will be described later.
Next, in step S33, a process for determining the coefficient a k used in the noise removal formula in step S32 is performed.
Next, it progresses to step S34 and the process which determines a noise removal type | formula is performed.

次に、本実施形態で使用する「冪級数アルゴリズム」の詳細について説明する。
先ず、「x=0」における「Cauchyデータ」である
Next, the details of the “power series algorithm” used in the present embodiment will be described.
First, “Cauchy data” at “x = 0”

Figure 2009069079
Figure 2009069079

から、x>0、t>0における熱伝導方程式 From the equation of heat conduction at x> 0, t> 0

Figure 2009069079
Figure 2009069079

の解u(x,t)を求める。そして、uのxに関する「Taylor展開」により近似的に次式が成り立つ。 To find a solution u (x, t). Then, the following equation is approximately established by “Taylor expansion” with respect to x of u.

Figure 2009069079
Figure 2009069079

ここで、多項式の最大次数を決めるNは条件により異なるが、通常は5以下に精度面での最適値がある。次に、作用素Aを Here, N, which determines the maximum degree of the polynomial, varies depending on conditions, but usually there is an optimum value in terms of accuracy at 5 or less. Next, operator A is

Figure 2009069079
Figure 2009069079

と定義すると、uが熱伝導方程式を満たすことから、 Since u satisfies the heat conduction equation,

Figure 2009069079
Figure 2009069079

が成り立つ。これを「Taylor展開」の式に代入して、 Holds. Substituting this into the "Taylor expansion" formula,

Figure 2009069079
Figure 2009069079

が得られる。右辺は数値微分を用いて計算できる。また、この式より熱流束を求める次式が得られる。 Is obtained. The right side can be calculated using numerical differentiation. Further, the following equation for obtaining the heat flux is obtained from this equation.

Figure 2009069079
Figure 2009069079

次に、ルジャンドル多項式を用いたノイズ除去の手順を説明する。   Next, the noise removal procedure using the Legendre polynomial will be described.

Figure 2009069079
Figure 2009069079

Figure 2009069079
Figure 2009069079

前述したようにして、本実施形態においては、材料の外壁表面の温度測定点において測定された測温データと該測温データを基に算出した熱流束データまたは前記温度測定点において測定された熱流束データから、材料内部の温度及び熱流束を短時間に計算することができる。これにより、材料の冷却状態または加熱状態、装置壁の残存厚みを精度良く推定することができる。   As described above, in the present embodiment, the temperature measurement data measured at the temperature measurement point on the outer wall surface of the material, the heat flux data calculated based on the temperature measurement data, or the heat flow measured at the temperature measurement point. From the bundle data, the temperature and heat flux inside the material can be calculated in a short time. Thereby, the cooling state or heating state of the material, and the remaining thickness of the apparatus wall can be accurately estimated.

また、本実施形態によれば、材料の冷却状態または加熱状態、装置壁の残存厚みを高精度に推定する際に、1回の演算で解を求めることが可能になるため、特許文献1に記載の方法と比較して計算時間を10分の1以下に短縮することができる。   Further, according to the present embodiment, when estimating the cooling state or heating state of the material and the remaining thickness of the apparatus wall with high accuracy, it is possible to obtain a solution by a single calculation. Compared with the described method, the calculation time can be reduced to 1/10 or less.

(第1の実施例)
以下、図4及び図5を参照しながら本発明の第1の実施例を説明する。
この第1の実施形態においては、被測定材料100に冷却水101を流して冷却するようにした例を示している。図4(a)において、被測定材料100の表面側の温度を第1の熱電対41で計測し、裏面側の温度を第2の熱電対42で計測している。
(First embodiment)
The first embodiment of the present invention will be described below with reference to FIGS.
In the first embodiment, an example is shown in which cooling water 101 is allowed to flow through the material to be measured 100 for cooling. In FIG. 4A, the temperature on the front surface side of the material 100 to be measured is measured with the first thermocouple 41, and the temperature on the back surface side is measured with the second thermocouple 42.

図4(b)は、第2の熱電対42で計測した鉄皮外壁温度f(ti)の温度変化を示した特性図であり、計測開始してから10秒が経過した後で冷却水101を流した例を示している。すなわち、0秒〜10秒の期間は大気冷却(放冷)であり、10秒〜50秒がスプレー冷却である。図4(c)は、熱移動特性値g(ti)の温度変化を示した特性図である。   FIG. 4B is a characteristic diagram showing the temperature change of the iron skin outer wall temperature f (ti) measured by the second thermocouple 42, and after 10 seconds have elapsed from the start of measurement, the cooling water 101 The example which flowed is shown. That is, the period of 0 to 10 seconds is atmospheric cooling (cooling), and 10 to 50 seconds is spray cooling. FIG. 4C is a characteristic diagram showing a temperature change of the heat transfer characteristic value g (ti).

被測定材料100の表面温度を第2の熱電対42で計測して、図4の(b)及び(c)に示したような計測データを取得することにより、被測定材料100の内面の状態を推測することができる。   The surface temperature of the material to be measured 100 is measured by the second thermocouple 42, and the measurement data as shown in FIGS. Can be guessed.

図5は、第1の熱電対41で計測した結果と、前述した演算処理による結果とを検証した一例を示す特性図である。演算処理において、ノイズ除去時の正パラメータεは0.01、ルジャンドル多項式の最大次数Lは3、「Taylor展開」の最大次数を決めるNは2を使用した。
図5(a)は、スプレー冷却している面の被測定材料100の温度変化を示している。図5(a)において、符号51を付した第1の特性曲線が第1の熱電対41で実際に計測した被測定材料100の冷却面の温度を示している。また、符号52を付した第2の特性曲線が計算結果を示している。
FIG. 5 is a characteristic diagram showing an example in which a result measured by the first thermocouple 41 and a result obtained by the arithmetic processing described above are verified. In the arithmetic processing, the positive parameter ε at the time of noise removal was 0.01, the maximum degree L of the Legendre polynomial was 3, and 2 was used as N for determining the maximum degree of the “Taylor expansion”.
FIG. 5A shows a temperature change of the material 100 to be measured on the surface that is spray-cooled. In FIG. 5A, the first characteristic curve denoted by reference numeral 51 indicates the temperature of the cooling surface of the material 100 to be measured actually measured by the first thermocouple 41. A second characteristic curve denoted by reference numeral 52 indicates the calculation result.

図5(a)の特性図に示したように、符号51を付した第1の特性曲線と符号52を付した第2の特性曲線と殆ど一致しており、前述した計算結果が正確であることが分かった。図5(b)は、熱流束の時間変化を示している。この熱流束は計測することが困難であるので、計算結果のみを記載している。図5(c)は、被測定材料100をスプレー冷却する際に設定する値にするために、熱伝達係数(h)を変えて計算した結果を示している。   As shown in the characteristic diagram of FIG. 5A, the first characteristic curve denoted by reference numeral 51 almost coincides with the second characteristic curve denoted by reference numeral 52, and the above-described calculation result is accurate. I understood that. FIG. 5B shows the time change of the heat flux. Since this heat flux is difficult to measure, only the calculation results are shown. FIG. 5C shows the result of calculation by changing the heat transfer coefficient (h) in order to obtain a value that is set when the material to be measured 100 is spray cooled.

図5(c)に示したように、スプレー冷却を行って予測される特性曲線53と、計算結果から得られる特性曲線54とが一致していることが分かる。なお、この熱伝達係数(h)と熱流束qとは、「q=h(Ts−Tw)」の関係がある。ここで、Ts:被測定材料100の温度、Tw:冷却水の温度である。   As shown in FIG. 5C, it can be seen that the characteristic curve 53 predicted by spray cooling matches the characteristic curve 54 obtained from the calculation result. The heat transfer coefficient (h) and the heat flux q have a relationship of “q = h (Ts−Tw)”. Here, Ts is the temperature of the material 100 to be measured, and Tw is the temperature of the cooling water.

(第2の実施例)
次に、溶鋼鍋60の耐火物残存厚みを決定する方法の実施例を説明する。
この例の場合は、溶鋼鍋60の耐火物残存厚みを決定する場合について示している。すなわち、溶鋼鍋60の壁がこの実施例における被測定材料100となる。
(Second embodiment)
Next, an embodiment of a method for determining the refractory remaining thickness of the molten steel pan 60 will be described.
In the case of this example, it shows about the case where the refractory remaining thickness of the molten steel pan 60 is determined. That is, the wall of the molten steel pan 60 becomes the material to be measured 100 in this embodiment.

図6(a)に示したように、溶鋼鍋60の壁は、鉄皮60a、本パーマ煉瓦60b、準パーマ煉瓦60c、ウエア煉瓦60d等により構成されている。本実施例においては、鉄皮60aを計測して前述した鉄皮外壁温度f(ti)及び熱移動特性値g(ti)を取得している。計測時間は、溶鋼装入から90分が経過してから125分が経過するまでの35分間としている。   As shown in FIG. 6 (a), the wall of the molten steel pan 60 is composed of an iron skin 60a, a permanent perm brick 60b, a semi-perm brick 60c, a wear brick 60d, and the like. In the present embodiment, the iron skin 60a is measured to obtain the above-described iron skin outer wall temperature f (ti) and the heat transfer characteristic value g (ti). The measurement time is 35 minutes from when 90 minutes have elapsed since the molten steel was charged until 125 minutes have elapsed.

図6(b)に示すように、鉄皮外壁温度f(t)は、溶鋼装入から90分が経過した時点で略320℃であったのが、125分経過した時点では略368℃に上昇している。   As shown in FIG. 6 (b), the iron shell outer wall temperature f (t) was about 320 ° C. when 90 minutes passed after the molten steel was charged, but became about 368 ° C. when 125 minutes passed. It is rising.

また、図6(c)に示すように、熱移動特性値g(t)の場合は、溶鋼装入から90分が経過した時点で略150であったのが、125分経過した時点では略200に上昇していることを計算によって知ることができる。このような情報を取得すると、前述した実施形態で説明したアルゴリズムを用いて計算することにより、溶鋼鍋60の鉄皮からの距離と温度との関係を計算で知ることが可能となる。   Further, as shown in FIG. 6 (c), in the case of the heat transfer characteristic value g (t), it was about 150 when 90 minutes passed from the molten steel charging, but was about when 125 minutes passed. It can be known by calculation that it has risen to 200. When such information is acquired, it is possible to know the relationship between the distance from the iron shell of the molten steel pan 60 and the temperature by calculation using the algorithm described in the above-described embodiment.

図7に、溶鋼鍋60の鉄皮からの距離と温度との関係の一例を示す。推定の演算処理において、ノイズ除去時の正パラメータεは0.05、ルジャンドル多項式の最大次数Lは2、「Taylor展開」の最大次数を決めるNは2を使用した。この場合、温度は溶鋼温度1570℃に収斂している。
図7に示したように、前述したアルゴリズムを用いて計算することにより、鉄皮60aの厚み=32mm、本パーマ煉瓦60bの厚み=50mm、準パーマ煉瓦60cの厚み=30mm、ウエア煉瓦60dの厚み=110mmであることを計算で求めることができる。
In FIG. 7, an example of the relationship between the distance from the iron skin of the molten steel pan 60 and temperature is shown. In the estimation calculation process, the positive parameter ε at the time of noise removal was 0.05, the maximum order L of the Legendre polynomial was 2, and N was used to determine the maximum order of the “Taylor expansion”. In this case, the temperature is converged to a molten steel temperature of 1570 ° C.
As shown in FIG. 7, by calculating using the algorithm described above, the thickness of the iron skin 60a = 32 mm, the thickness of the permanent perm brick 60b = 50 mm, the thickness of the semi-perm brick 60c = 30 mm, and the thickness of the wear brick 60d. = 110 mm can be obtained by calculation.

前述したように、本実施形態においては、冪級数アルゴリズムを用いて計算を行うことにより、材料の冷却状態または加熱状態、装置壁の残存厚みを高精度に推定することが可能となる。また、これらの推定を行う際に、1回の演算で解を求めることが可能になるため、例えば、特許文献1に記載の方法と比較して計算時間を10分の1以下に短縮することができる。   As described above, in this embodiment, it is possible to estimate the cooling or heating state of the material and the remaining thickness of the apparatus wall with high accuracy by performing the calculation using the power series algorithm. In addition, when performing these estimations, it becomes possible to obtain a solution by a single calculation. For example, compared with the method described in Patent Document 1, the calculation time is reduced to 1/10 or less. Can do.

なお、本発明の材料内部の温度推定装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。   In addition, the temperature estimation apparatus inside the material of the present invention may be applied to a system composed of a plurality of devices or an apparatus composed of a single device.

また、本発明の目的は、前述した機能を実現するコンピュータプログラムをシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が実行することによっても達成され、この場合、コンピュータプログラム自体が本発明を構成することになる。   The object of the present invention can also be achieved by supplying a computer program for realizing the above-described functions to a system or apparatus and executing the computer (CPU or MPU) of the system or apparatus. In this case, the computer program itself Constitutes the present invention.

本発明の実施形態を示し、容器壁状態の管理装置により被測定材料の外壁温度を計測する様子を説明する図である。It is a figure which shows embodiment of this invention and demonstrates a mode that the outer wall temperature of a to-be-measured material is measured with the management apparatus of a container wall state. 冪級数アルゴリズムを用いて材料内部の温度推定方法及び熱流束の推定方法の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the estimation method of the temperature inside a material, and the estimation method of a heat flux using a power series algorithm. ルジェンド多項式を用いてノイズ除去演算を行う処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence which performs a noise removal calculation using a Legend polynomial. (a)は、スプレー冷却している被測定材料の温度を熱電対で計測している様子を説明する図であり、(b)はスプレー冷却している面と反対側の温度を熱電対で計測して鉄皮外壁温度f(ti)の温度変化を示した特性図であり、(c)は、熱移動特性値g(ti)の温度変化を示した特性図である。(A) is a figure explaining a mode that the temperature of the to-be-measured material which is spray-cooled is measured with a thermocouple, (b) is the temperature on the opposite side to the surface which is spray-cooled with a thermocouple. It is the characteristic view which showed the temperature change of the iron-skin outer wall temperature f (ti) by measuring, (c) is the characteristic view which showed the temperature change of the heat transfer characteristic value g (ti). (a)は、スプレー冷却している面の被測定材料の温度変化を示す特性図であり、(b)は熱流束の時間変化を示す特性図であり、(c)は被測定材料をスプレー冷却する際に設定する値にするために、熱伝達係数(h)を変えて計算した結果を示す特性図である。(A) is a characteristic diagram showing the temperature change of the material to be measured on the surface being spray-cooled, (b) is a characteristic diagram showing the time change of the heat flux, and (c) is a spray of the material to be measured. It is a characteristic view which shows the result calculated by changing a heat transfer coefficient (h) in order to make it the value set when cooling. 溶鋼鍋の耐火物残存厚みを決定する例を示し、(a)は溶鋼鍋の壁構造の一例を説明する図であり、(b)は鉄皮外壁温度f(t)の経過時間変化の一例を示す特性図であり、(c)は熱移動特性値g(t)の経過時間変化の一例を示す特性図である。The example which determines the refractory remaining thickness of a molten steel pan is shown, (a) is a figure explaining an example of the wall structure of a molten steel pan, (b) is an example of the elapsed time change of an iron-skin outer wall temperature f (t). (C) is a characteristic diagram showing an example of a change in elapsed time of the heat transfer characteristic value g (t). 溶鋼鍋の鉄皮からの距離と温度との関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the distance from the iron skin of a molten steel pan, and temperature.

符号の説明Explanation of symbols

100 被測定材料
110 熱電対
120 測定器
1300 容器壁状態の管理装置
1301 CPU
1302 ROM
1303 RAM
1304 システムバス
1305 キーボードコントローラ(KBC)
1306 表示コントローラ(CRTC)
1307 ディスクコントローラ(DKC)
1308 ネットワークインタフェースカード(NIC)
1309 キーボード(KB)
1310 表示装置(CRT)
1311 ハードディスク(HD)
1312 フレキシブルディスクドライブ(FD)
1320 LAN
100 Material to be measured 110 Thermocouple 120 Measuring instrument 1300 Container wall state management device 1301 CPU
1302 ROM
1303 RAM
1304 System Bus 1305 Keyboard Controller (KBC)
1306 Display Controller (CRTC)
1307 Disk controller (DKC)
1308 Network Interface Card (NIC)
1309 Keyboard (KB)
1310 Display (CRT)
1311 Hard Disk (HD)
1312 Flexible Disk Drive (FD)
1320 LAN

Claims (6)

被測定材料の外壁温度を計測する外壁温度計測工程と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、
前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、
前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、
前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程とを有することを特徴とする材料内部の温度推定方法。
An outer wall temperature measurement process for measuring the outer wall temperature of the material to be measured;
A heat transfer characteristic value calculating step of calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the heat conductivity of the material;
A noise removal step of removing noise components in the outer wall temperature measurement value measured in the outer wall temperature measurement step and the heat transfer characteristic value calculated in the heat transfer property value calculation step using a noise removal algorithm using a Legendre polynomial. When,
A differential coefficient calculating step of calculating a high-order differential coefficient of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step;
An internal temperature calculation step of calculating an internal temperature using a high-order differential coefficient calculated in the differential coefficient calculation step.
被測定材料の外壁温度を計測する外壁温度計測工程と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、
前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、
前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、
前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程と、
前記内部温度計算工程において内部温度を計算するための式を用いて熱流束を求める熱流束計算工程とを有することを特徴とする熱流束の推定方法。
An outer wall temperature measurement process for measuring the outer wall temperature of the material to be measured;
A heat transfer characteristic value calculating step of calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the heat conductivity of the material;
A noise removal step of removing noise components in the outer wall temperature measurement value measured in the outer wall temperature measurement step and the heat transfer characteristic value calculated in the heat transfer property value calculation step using a noise removal algorithm using a Legendre polynomial. When,
A differential coefficient calculating step of calculating a high-order differential coefficient of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step;
An internal temperature calculation step of calculating an internal temperature using a higher-order derivative calculated in the derivative calculation step;
And a heat flux calculation step of obtaining a heat flux using an equation for calculating the internal temperature in the internal temperature calculation step.
被測定材料の外壁温度を計測する外壁温度計測手段と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算手段と、
前記外壁温度計測手段で計測した外壁温度計測値、及び前記熱移動特性値計算手段で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去手段と、
前記ノイズ除去手段によりノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出手段と、
前記微係数算出手段により算出された高次の微係数を用いて内部温度を計算する内部温度計算手段とを有することを特徴とする材料内部の温度推定装置。
Outer wall temperature measuring means for measuring the outer wall temperature of the material to be measured;
Heat transfer characteristic value calculating means for calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material;
Noise removal means for removing a noise component in the outer wall temperature measurement value measured by the outer wall temperature measurement means and the heat transfer characteristic value calculated by the heat transfer characteristic value calculation means using a noise removal algorithm using a Legendre polynomial. When,
Differential coefficient calculating means for calculating higher order differential coefficients of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed by the noise removing means;
An internal temperature calculation means for calculating an internal temperature using a high-order differential coefficient calculated by the differential coefficient calculation means.
被測定材料の外壁温度を計測する外壁温度計測手段と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算手段と、
前記外壁温度計測手段で計測した外壁温度計測値、及び前記熱移動特性値計算手段で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去手段と、
前記ノイズ除去手段によりノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出手段と、
前記微係数算出手段により算出された高次の微係数を用いて内部温度を計算する内部温度計算手段と、
前記内部温度計算手段により内部温度を計算するための式を用いて熱流束を求める熱流束計算手段とを有することを特徴とする熱流束の推定装置。
Outer wall temperature measuring means for measuring the outer wall temperature of the material to be measured;
Heat transfer characteristic value calculating means for calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the thermal conductivity of the material;
Noise removal means for removing a noise component in the outer wall temperature measurement value measured by the outer wall temperature measurement means and the heat transfer characteristic value calculated by the heat transfer characteristic value calculation means using a noise removal algorithm using a Legendre polynomial. When,
Differential coefficient calculating means for calculating higher order differential coefficients of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed by the noise removing means;
An internal temperature calculation means for calculating an internal temperature using a high-order derivative calculated by the derivative calculation means;
An apparatus for estimating a heat flux, comprising: a heat flux calculating means for obtaining a heat flux using an equation for calculating an internal temperature by the internal temperature calculating means.
被測定材料の外壁温度を計測する外壁温度計測工程と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、
前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、
前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、
前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程とをコンピュータに実行させることを特徴とするコンピュータプログラム。
An outer wall temperature measurement process for measuring the outer wall temperature of the material to be measured;
A heat transfer characteristic value calculating step of calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the heat conductivity of the material;
A noise removal step of removing noise components in the outer wall temperature measurement value measured in the outer wall temperature measurement step and the heat transfer characteristic value calculated in the heat transfer property value calculation step using a noise removal algorithm using a Legendre polynomial. When,
A differential coefficient calculating step of calculating a high-order differential coefficient of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step;
A computer program for causing a computer to execute an internal temperature calculation step of calculating an internal temperature using a high-order differential coefficient calculated in the differential coefficient calculation step.
被測定材料の外壁温度を計測する外壁温度計測工程と、
前記被測定材料の外壁熱流束を材料の熱伝導度で除してなる熱移動特性値を計算する熱移動特性値計算工程と、
前記外壁温度計測工程で計測した外壁温度計測値、及び前記熱移動特性値計算工程で計算した熱移動特性値におけるノイズ成分を、ルジャンドル多項式を用いたノイズ除去アルゴリズムを使用して除去するノイズ除去工程と、
前記ノイズ除去工程においてノイズが除去された外壁温度計測値及び熱移動特性値の高次の微係数を算出する微係数算出工程と、
前記微係数算出工程において算出された高次の微係数を用いて内部温度を計算する内部温度計算工程と、
前記内部温度計算工程において内部温度を計算するための式を用いて熱流束を求める熱流束計算工程とをコンピュータに実行させることを特徴とするコンピュータプログラム。
An outer wall temperature measurement process for measuring the outer wall temperature of the material to be measured;
A heat transfer characteristic value calculating step of calculating a heat transfer characteristic value obtained by dividing the outer wall heat flux of the material to be measured by the heat conductivity of the material;
A noise removal step of removing noise components in the outer wall temperature measurement value measured in the outer wall temperature measurement step and the heat transfer characteristic value calculated in the heat transfer property value calculation step using a noise removal algorithm using a Legendre polynomial. When,
A differential coefficient calculating step of calculating a high-order differential coefficient of the outer wall temperature measurement value and the heat transfer characteristic value from which noise has been removed in the noise removing step;
An internal temperature calculation step of calculating an internal temperature using a higher-order derivative calculated in the derivative calculation step;
A computer program for causing a computer to execute a heat flux calculation step for obtaining a heat flux using an equation for calculating an internal temperature in the internal temperature calculation step.
JP2007240052A 2007-09-14 2007-09-14 Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program Active JP4850803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240052A JP4850803B2 (en) 2007-09-14 2007-09-14 Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240052A JP4850803B2 (en) 2007-09-14 2007-09-14 Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program

Publications (2)

Publication Number Publication Date
JP2009069079A true JP2009069079A (en) 2009-04-02
JP4850803B2 JP4850803B2 (en) 2012-01-11

Family

ID=40605481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240052A Active JP4850803B2 (en) 2007-09-14 2007-09-14 Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program

Country Status (1)

Country Link
JP (1) JP4850803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096522A (en) * 2015-11-19 2017-06-01 パナソニックIpマネジメント株式会社 Heat insulation performance estimation device and heat insulation performance estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037604A1 (en) 2009-08-14 2011-02-24 Dürr Systems GmbH Color nozzle for a bell cup of a rotary atomizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234217A (en) * 2000-02-28 2001-08-28 Nippon Steel Corp Estimation and prediction method for blast furnace bottom condition
JP2003248812A (en) * 2002-02-25 2003-09-05 Earth Weather:Kk Apparatus and method for water temperature chart creation
JP2004251843A (en) * 2003-02-21 2004-09-09 Nippon Steel Corp Method, apparatus, and computer program for analyzing inverse problem, and computer-readable recording medium
JP2007071686A (en) * 2005-09-07 2007-03-22 Nippon Steel Corp Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP2008064470A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Estimation method of temperature and heat flow flux of inner wall surface of container and computer program
JP2008063593A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Method and apparatus for estimating thickness of vessel wall, and computer program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234217A (en) * 2000-02-28 2001-08-28 Nippon Steel Corp Estimation and prediction method for blast furnace bottom condition
JP2003248812A (en) * 2002-02-25 2003-09-05 Earth Weather:Kk Apparatus and method for water temperature chart creation
JP2004251843A (en) * 2003-02-21 2004-09-09 Nippon Steel Corp Method, apparatus, and computer program for analyzing inverse problem, and computer-readable recording medium
JP2007071686A (en) * 2005-09-07 2007-03-22 Nippon Steel Corp Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP2008064470A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Estimation method of temperature and heat flow flux of inner wall surface of container and computer program
JP2008063593A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Method and apparatus for estimating thickness of vessel wall, and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096522A (en) * 2015-11-19 2017-06-01 パナソニックIpマネジメント株式会社 Heat insulation performance estimation device and heat insulation performance estimation method

Also Published As

Publication number Publication date
JP4850803B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
US6804622B2 (en) Method and apparatus for non-destructive thermal inspection
JP4658818B2 (en) Temperature estimation method and apparatus
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
WO2017185796A1 (en) Temperature prediction method and electronic thermometer
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP6443165B2 (en) State estimation method and state estimation device
JP5408185B2 (en) Method for estimating the temperature of a solid
JP4850803B2 (en) Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
JP4681127B2 (en) Hot water surface height detection apparatus, method, and computer-readable storage medium
JP2016221537A (en) Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP2004025202A (en) Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
KR101582675B1 (en) temperature control apparatus of heating and cooling mold using extended kalman filter
JP4695376B2 (en) Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium
JP2004251843A (en) Method, apparatus, and computer program for analyzing inverse problem, and computer-readable recording medium
JP7209270B2 (en) Thickness measuring method and thickness measuring device, and defect detecting method and defect detecting device
JP2008151739A (en) Temperature estimation method and device
JP2010230564A (en) Method, device and program for estimation of heat flux on container inner surface
JP2008064470A (en) Estimation method of temperature and heat flow flux of inner wall surface of container and computer program
JP7016706B2 (en) Equipment monitoring equipment, equipment monitoring methods, and programs
JP2005082862A (en) Method and device for estimating inner surface position in reaction vessel, and computer program
JP6702014B2 (en) Scrap burn-through determination method in electric furnace, furnace wall wear amount estimation method, program and system in electric furnace
JP2009069080A (en) Method and device for estimating future temperature of measuring target and computer program
JP6620610B2 (en) Method for estimating surface heat flux of heat-treated members
Liang et al. Conjugate gradient method with regularization in estimating mold surface heat flux during continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R151 Written notification of patent or utility model registration

Ref document number: 4850803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350