JP2009068758A - Ice making method - Google Patents

Ice making method Download PDF

Info

Publication number
JP2009068758A
JP2009068758A JP2007236825A JP2007236825A JP2009068758A JP 2009068758 A JP2009068758 A JP 2009068758A JP 2007236825 A JP2007236825 A JP 2007236825A JP 2007236825 A JP2007236825 A JP 2007236825A JP 2009068758 A JP2009068758 A JP 2009068758A
Authority
JP
Japan
Prior art keywords
water
brine
pressure
heat exchanger
supercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007236825A
Other languages
Japanese (ja)
Other versions
JP5022155B2 (en
Inventor
Daisuke Mito
大介 三戸
Masayuki Yano
正幸 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2007236825A priority Critical patent/JP5022155B2/en
Publication of JP2009068758A publication Critical patent/JP2009068758A/en
Application granted granted Critical
Publication of JP5022155B2 publication Critical patent/JP5022155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To keep the amount of water of 0°C or more supplied to an inner wall surface of a connection pipe functioned as a diffusion preventer, constant even when brine pressure is fluctuated by pulsation of a pump and the like when a gasket-type plate heat exchanger is applied as a supercooler. <P>SOLUTION: The gasket-type plate heat exchanger is operated in a state of adjusting differential pressure between plates of brine and water in advance in the supercooler 4. The differential pressure is the differential pressure between plates for making a resistance coefficient of a water flow channel in the supercooler 4 constant regardless of pressure fluctuation and flow rate fluctuation of the water or brine by adjusting a pressure of the brine flowing into the supercooler 4 in a state of circulating the water while setting the water and the brine to the flow rates necessary for making the supercooled water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスケットタイプのプレート式熱交換器を過冷却器として用いてブラインと水とを向流で熱交換させて過冷却水を製造し、当該過冷却水を、連結管を通じて大気に触れることなく密閉系の過冷却解除器に送って氷を製造する方法に関するものである。   In the present invention, a gasket type plate heat exchanger is used as a supercooler, brine and water are exchanged countercurrently to produce supercooled water, and the supercooled water is exposed to the atmosphere through a connecting pipe. The present invention relates to a method for producing ice without being sent to a closed supercooler.

出願人は先に、密閉型の解除器で過冷却状態が解除される際の相変化が、上流側の連結管に伝播するのを防止するために、伝播防止装置として機能する連結管の内壁面に0℃以上の水の液膜を形成する氷製造方法を提案した(特許文献1)。
これによっていわゆる密閉系による過冷却解除による氷の製造において、格別の加熱エネルギーや連結管端部表面への特殊な加工を必要とせず、長期間に渡って安定して解除器から連結管への相変化の伝播を防止することができるものであった。
In order to prevent the phase change when the supercooled state is released by the closed type releaser from propagating to the upstream side connection pipe, the applicant firstly connects the connection pipe that functions as a propagation preventing device. An ice production method was proposed in which a liquid film of water of 0 ° C. or higher was formed on the wall surface (Patent Document 1).
As a result, in the production of ice by releasing the supercooling by the so-called closed system, no special heating energy or special processing on the end surface of the connecting pipe is required, and the releaser can be stably connected to the connecting pipe for a long period of time. The propagation of the phase change could be prevented.

そしてかかる場合、前記過冷却器の入口側に接続される導入管から分岐して過冷却器をバイパスして、前記外部容器との間に接続されているものとすることで、別途水源を確保する必要がなく、また注水する水の温度も適したものか、あるいは加熱するにしても僅かな熱量で済むという効果が得られるものであった。   In such a case, a separate water source is secured by branching from the introduction pipe connected to the inlet side of the supercooler, bypassing the supercooler, and being connected to the external container. In addition, the temperature of the water to be poured is suitable, or even if it is heated, an effect that only a small amount of heat is required can be obtained.

特開2003−106716号公報JP 2003-106716 A

ところで過冷却器にガスケットタイプのプレート熱交換器を採用して、注水管を過冷却器の入口側に接続される導入管から分岐して過冷却器をバイパスして連結管壁面に0℃以上の水の液膜を形成する場合、たとえばブラインの圧力が変動すると、ブラインと水との圧力差(プレート間差圧)の変化に応じてプレートの変位が生じることがある。   By the way, a gasket-type plate heat exchanger is used for the subcooler, and the water injection pipe is branched from the introduction pipe connected to the inlet side of the subcooler, bypassing the supercooler, and 0 ° C or more on the connecting pipe wall surface. When the water liquid film is formed, for example, when the pressure of the brine fluctuates, the plate may be displaced in accordance with the change in the pressure difference between the brine and the water (differential pressure between the plates).

ガスケットタイプのプレート式熱交換器では、二流体(水とブライン)間の混合と外部への漏洩を防止するために、プレートの外周部と二流体間の仕切りにガスケットが使用されており、両端に位置するエンドプレートを締め付けることによってガスケットを潰し、所定のシール能を得ている。そしてガスケットは通常、プレート面同士が完全に接触する圧着力よりも小さい圧着力において所定のシール能を発揮できるように設計されているため、プレート間(プレート面上の山−谷間)には隙間が生じている。一方プレート式熱交換器に使用するプレートは、伝熱性を向上させる目的で、非常に薄い金属を波板状に加工したものが使用されている。   In the gasket type plate heat exchanger, in order to prevent mixing between two fluids (water and brine) and leakage to the outside, a gasket is used for the partition between the outer periphery of the plate and the two fluids. The gasket is crushed by tightening the end plate located at a position to obtain a predetermined sealing ability. Gaskets are usually designed so that a predetermined sealing ability can be exerted with a pressing force smaller than the pressing force with which the plate surfaces completely come into contact with each other, so that there is a gap between the plates (between peaks and valleys on the plate surface). ing. On the other hand, the plate used for a plate-type heat exchanger uses a very thin metal processed into a corrugated plate for the purpose of improving heat transfer.

このように、プレート間に隙間があり、しかも薄い金属を波板状に加工したプレートを採用しているプレート式熱交換器においては、例えばポンプの脈動や自動バルブの開閉等によりブライン圧力や水の圧力に変動が生ずると、当該変動に応じてプレート面が膨出するなどして移動、変形して前記変位が生ずると考えられる。   As described above, in a plate heat exchanger that employs a plate in which there is a gap between the plates and a thin metal is processed into a corrugated plate shape, for example, brine pressure or water is generated by pump pulsation or automatic valve opening / closing. When the pressure of the plate fluctuates, it is considered that the displacement occurs due to movement and deformation of the plate surface in response to the variation.

そしてそのようにプレートの変位が生じると、前記したプレート式熱交換器をバイパスして連結管に供給される水の流量(バイパス流量)やバイパス流量比(バイパス流量と過冷却器を流れる水の流量の割合)が変化する。   And when the displacement of the plate occurs in this way, the flow rate of water (bypass flow rate) or bypass flow rate ratio (bypass flow rate and water flowing through the subcooler) that bypasses the plate heat exchanger and is supplied to the connecting pipe. The flow rate) changes.

このようなバイパス流量の変化は、連結管の内壁面に形成する0℃以上の水の液膜を不安定にするおそれがある。すなわち、パイパス管に流入する水の流量が上記プレート間差圧の変動によって増加する場合には、運転上実害は無いが、減少した場合には、下流の配管内壁に形成されるべき0℃以上の液膜が不安定になり、上流伝播抑止効果が一時的に消滅することになってしまうからである。またプレートの変位が生じる範囲内での任意のプレート間差圧の状態において、バイパス流量が所定の設計流量で運転されているとき、プレート間差圧が小さくなると、過冷却器に水が流れやすくなることで、バイパス流量は減少して所定の設計流量が維持できなくなる。   Such a change in the bypass flow rate may make the liquid film of water of 0 ° C. or higher formed on the inner wall surface of the connecting pipe unstable. That is, when the flow rate of the water flowing into the bypass pipe increases due to the fluctuation of the differential pressure between the plates, there is no actual damage to the operation, but when it decreases, 0 ° C. or higher should be formed on the downstream pipe inner wall. This is because the liquid film becomes unstable, and the upstream propagation suppression effect temporarily disappears. In addition, in the state of any differential pressure between plates within the range where displacement of the plate occurs, when the bypass flow rate is operated at a predetermined design flow rate, if the differential pressure between the plates becomes small, water easily flows into the subcooler. As a result, the bypass flow rate decreases and the predetermined design flow rate cannot be maintained.

本発明はかかる点に鑑みてなされたものであり、過冷却器としてガスケットタイプのプレート熱交換器を採用した場合でも、前記連結管の内壁面に対して供給する0℃以上の水の量を一定に維持して、凍結伝播防止器としての機能が安定して発揮できるようにことを目的としている。   The present invention has been made in view of such points, and even when a gasket-type plate heat exchanger is employed as a subcooler, the amount of water of 0 ° C. or more supplied to the inner wall surface of the connecting pipe is reduced. The purpose is to maintain it constant so that the function as an anti-freezing propagation device can be stably exhibited.

前記目的を達成するため、本発明によれば、ガスケットタイプのプレート式熱交換器を過冷却器として用いてブラインと水とを向流で熱交換させて過冷却水を製造し、当該過冷却水を、連結管を通じて大気に触れることなく密閉系の過冷却解除器に送って氷を製造する際に、前記過冷却器に導入される0℃以上の水、すなわちブラインと熱交換されて過冷却水を製造するための0℃以上の水を、一部分岐させて、当該過冷却器をバイパスして前記連結管の内壁面に対して供給する氷製造方法において、前記プレート式熱交換器におけるブラインと水のプレート間差圧を予め調整することで、前記連結管の内壁面に対して供給される0℃以上の水の量を一定に維持することを特徴とする、氷製造方法が提供される。   In order to achieve the above object, according to the present invention, a supercooling water is produced by exchanging heat between brine and water countercurrently using a gasket-type plate heat exchanger as a supercooler, and the supercooling is performed. When ice is produced by sending water through a connecting pipe to a closed supercooler without touching the atmosphere, the water is introduced into the supercooler at 0 ° C. or higher, that is, brine, and superheated. In the ice manufacturing method in which water at 0 ° C. or higher for manufacturing cooling water is partially branched and supplied to the inner wall surface of the connecting pipe by bypassing the supercooler, the plate heat exchanger An ice manufacturing method is provided, characterized in that the amount of water of 0 ° C. or higher supplied to the inner wall surface of the connecting pipe is kept constant by adjusting the differential pressure between the brine and water plates in advance. Is done.

過冷却水を製造する場合、水及びブラインの流量は調節器によって常に一定値に保持されているため、プレートの移動が無ければプレート式熱交換器の抵抗係数および圧力損失は一定になる。しかし実際には既述したように、プレート間には隙間が存在するため、水側の圧力がブライン側の圧力よりも高いときには水側流路が広がってブライン側流路を狭め、逆にブライン側の圧力が水側の圧力よりも高いときにはブライン側流路が広がって水側流路を狭める。発明者らの知見では、プレート間差圧の絶対値が十分大きくなければプレート式熱交換器の抵抗係数はプレート間差圧によって変化し、その結果圧力損失も変化する。しかしながら、プレート間差圧がある程度十分に大きいところでは、抵抗係数が一定になるところがあることが判明した。したがって、冷却ブラインまたは水の圧力を調整して、そのような差圧の下で運転するようにすれば、圧力損失を一定にして、ポンプの脈動等によって運転中に圧力変動が変動しても、プレートの変形を抑えることができる。したがって、前記したプレート式熱交換器をバイパスして連結管に供給される水の流量(バイパス流量)やバイパス流量比(バイパス流量と過冷却器を流れる水の流量の割合)を一定に維持することが可能である。   When producing supercooled water, the flow rate of water and brine is always maintained at a constant value by the regulator, so that the resistance coefficient and pressure loss of the plate heat exchanger are constant if there is no movement of the plate. However, as described above, since there is a gap between the plates, when the water side pressure is higher than the brine side pressure, the water side channel is widened and the brine side channel is narrowed. When the pressure on the side is higher than the pressure on the water side, the brine-side flow path is expanded to narrow the water-side flow path. According to the inventors' knowledge, if the absolute value of the differential pressure between the plates is not sufficiently large, the resistance coefficient of the plate heat exchanger changes depending on the differential pressure between the plates, and as a result, the pressure loss also changes. However, it has been found that there are places where the resistance coefficient is constant where the pressure difference between the plates is sufficiently large. Therefore, if the cooling brine or water pressure is adjusted to operate under such a differential pressure, the pressure loss can be kept constant, and even if the pressure fluctuation fluctuates during operation due to pump pulsation, etc. The deformation of the plate can be suppressed. Accordingly, the flow rate of water (bypass flow rate) and the bypass flow rate ratio (bypass flow rate to the flow rate of water flowing through the subcooler) supplied to the connecting pipe by bypassing the plate heat exchanger described above are maintained constant. It is possible.

前記したような差圧を調整する場合、たとえば、水とブラインを過冷却水の製造に必要な流量に設定して水を循環させた状態で、プレート式熱交換器に流入するブラインの圧力調整を行ない、プレート式熱交換器内の水流路の抵抗係数が水又はブラインの圧力変動や流量変動によらず一定となるプレート間差圧に調整すればよい。   When adjusting the differential pressure as described above, for example, adjusting the pressure of the brine flowing into the plate heat exchanger in a state where water and brine are set to the flow rates necessary for the production of supercooled water and the water is circulated. And the resistance coefficient of the water flow path in the plate heat exchanger may be adjusted to the inter-plate differential pressure that is constant regardless of the pressure fluctuation or flow rate fluctuation of water or brine.

そして前記プレート式熱交換器におけるブラインと水のプレート間差圧を予め調整するにあたっては、プレート式熱交換器に対する水の入口圧力よりもブラインの出口圧力を大きくするか、又はプレート式熱交換器に対する水の出口圧力をブラインの入口圧力よりも大きくすることが提案できる。   And in adjusting the pressure difference between the brine and water plates in the plate heat exchanger in advance, the brine outlet pressure is made larger than the water inlet pressure to the plate heat exchanger, or the plate heat exchanger It can be proposed that the outlet pressure of water to be greater than the inlet pressure of the brine.

発明者らが検証したところでは、向流で水とブラインと熱交換する場合には、そのようにプレート式熱交換器に対する水の入口圧力よりもブラインの出口圧力を大きくするか、又はプレート式熱交換器に対する水の出口圧力をブラインの入口圧力よりも大きくすることで、プレート間差圧をプレート式熱交換器内の水流路の抵抗係数が水又はブラインの圧力変動や流量変動によらず一定となるプレート間差圧に調整することがわかった。   The inventors have verified that, when heat is exchanged between water and brine in countercurrent, the outlet pressure of the brine is thus made larger than the inlet pressure of the water to the plate heat exchanger, or the plate type By making the outlet pressure of water to the heat exchanger larger than the inlet pressure of brine, the resistance coefficient of the water flow path in the plate heat exchanger can be changed regardless of pressure fluctuation or flow fluctuation of water or brine. It was found that the pressure difference between the plates was adjusted to be constant.

このような調整を具体的に実施するには、たとえば、ブラインの配管に密閉式膨張タンクを取り付け、当該密閉式膨張タンク内のガス圧を調整することでブラインの静圧を調整して、過冷却器に対する水の入口圧力よりもブラインの出口圧力を大きくして向流で熱交換させることや、あるいはブラインポンプの揚程を、定格流量及び配管システムの抵抗に対して大きく選定し、過冷却器のブライン出口に設置した弁を絞ることで定格流量に調整して、過冷却器に対する水の入口圧力よりもブラインの出口圧力を大きくして向流で熱交換させることや、さらには過冷却器に対する水の出口圧力が、当該過冷却器の水側損失圧力とブライン側損失圧力の和よりも高くなるように、当該過冷却器の設置位置を、過冷却器からの過冷却水によって製造された氷を蓄える氷蓄熱槽の水面よりも低い位置に設置し、過冷却器に対する水の出口圧力をブラインの入口圧力よりも大きくして向流で熱交換させることを例として挙げることができる。   In order to carry out such adjustment specifically, for example, a closed expansion tank is attached to the piping of the brine, and the static pressure of the brine is adjusted by adjusting the gas pressure in the closed expansion tank. Make the outlet pressure of the brine larger than the inlet pressure of the water to the cooler to exchange heat by countercurrent, or select the head of the brine pump to be larger than the rated flow and the resistance of the piping system. Adjusting the rated flow rate by restricting the valve installed at the brine outlet, the brine outlet pressure is made larger than the water inlet pressure to the supercooler, and heat is exchanged in countercurrent, or even the supercooler The supercooler installation position is manufactured by the supercooling water from the supercooler so that the outlet pressure of water is higher than the sum of the waterside pressure loss and the brine side loss pressure of the supercooler. As an example, it can be installed at a position lower than the water surface of the ice heat storage tank that stores the collected ice, and the water outlet pressure to the supercooler is made larger than the inlet pressure of the brine to exchange heat in countercurrent. .

本発明によれば、プレート式熱交換器を用いて過冷却水を製造する際、ブラインや水に何らかの理由で圧力変動が生じても、プレートの変形を抑えて、連結管の内壁面に対して供給する0℃以上の水の量を一定に維持し、凍結伝播防止器としての機能を安定して発揮させることが可能である。   According to the present invention, when producing supercooled water using a plate heat exchanger, even if pressure fluctuation occurs for some reason in brine or water, the deformation of the plate is suppressed and the inner wall surface of the connecting pipe is suppressed. The amount of water supplied at 0 ° C. or higher can be maintained constant, and the function as a freeze propagation preventer can be stably exhibited.

以下、本発明の好ましい実施の形態について説明する。図1は、実施の形態にかかる氷製造方法が実施される氷蓄熱システムの全体の概要を示しており、氷蓄熱槽1から取水した水から、予熱装置2によって氷核を完全に無くした後に、ポンプ3によってプレート式熱交換器で構成された過冷却器4に水が送られる。そして当該水が、冷凍機5からポンプ6によって送られた低温のブラインと熱交換されることで、氷蓄熱槽1から取水された水は0℃以下の過冷却水となる。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows an overview of an entire ice heat storage system in which an ice manufacturing method according to an embodiment is carried out, and after ice cores are completely removed by a preheating device 2 from water taken from an ice heat storage tank 1. The water is sent by the pump 3 to the supercooler 4 constituted by a plate heat exchanger. And the said water is heat-exchanged with the low temperature brine sent with the pump 6 from the refrigerator 5, and the water taken from the ice thermal storage tank 1 turns into 0 degreeC or less supercooled water.

過冷却水は、伝播防止装置7を経て、例えば密閉系の過冷却解除装置8によってスラリー状の氷水に変換され、再び氷蓄熱槽1に戻される。氷水は氷蓄熱槽1内で氷と水の比重差から分離する。このサイクルを繰り返すことで、氷蓄熱槽1内の水が氷に変換されて、冷熱が蓄熱される。過冷却器4は、図2に示すようなプレート式熱交換器が用いられている。   The supercooled water is converted into slurry-like ice water through the propagation preventing device 7, for example, by a closed supercooling release device 8, and returned to the ice heat storage tank 1 again. Ice water is separated from the specific gravity difference between ice and water in the ice heat storage tank 1. By repeating this cycle, the water in the ice heat storage tank 1 is converted to ice, and cold heat is stored. As the subcooler 4, a plate heat exchanger as shown in FIG. 2 is used.

すなわちこの過冷却器4は、多数のプレート11を、ガスケット12を挟んで両端のエンドプレート13、14間に積層した構造を有し、プレート11、ガスケット12を貫通したシャフト15の端部をエンドプレート14の外側からナット16で締め付けることによって一体化されている。そして各プレート11の上端近傍を貫通する水流路17からの水と、各プレート11の下端近傍を貫通するブライン流路18からのブラインは、各プレート11とガスケット12とによって形成された空間内に交互に流れており、プレート11を介して両者が熱交換されるようになっている。   That is, the supercooler 4 has a structure in which a large number of plates 11 are laminated between end plates 13 and 14 at both ends with a gasket 12 in between, and the end portion of the shaft 15 penetrating the plate 11 and the gasket 12 is the end. They are integrated by tightening with nuts 16 from the outside of the plate 14. And the water from the water flow path 17 which penetrates the upper end vicinity of each plate 11 and the brine from the brine flow path 18 which penetrates the lower end vicinity of each plate 11 are in the space formed by each plate 11 and the gasket 12. The two flow alternately, and both are heat-exchanged via the plate 11.

次に過冷却器4周りの系統について図1に戻って説明する。この過冷却器4に対しては、氷蓄熱槽1と過冷却器4との間で循環する水配管系20と、冷凍機5と過冷却器4との間で循環するブライン配管系30とが配管されている。この例では、向流でブラインと水とを熱交換する構成となっている。   Next, the system around the subcooler 4 will be described with reference to FIG. For this supercooler 4, a water piping system 20 that circulates between the ice heat storage tank 1 and the supercooler 4, a brine piping system 30 that circulates between the refrigerator 5 and the supercooler 4, Is piped. In this example, heat is exchanged between brine and water by countercurrent.

水配管系20は、水往管を構成する、過冷却器4から伝播防止装置7を経て過冷却解除装置8に向かう連結管21と、過冷却解除装置8で過冷却状態が解除された氷・水スラリーを、氷蓄熱槽1に搬送する氷搬送管22とを有している。またこの水配管系20は、前記した予熱装置2、ポンプ3を介して過冷却器4に向かう水還管と23を有している。   The water piping system 20 includes a connecting pipe 21 that forms a water outgoing pipe from the supercooler 4 through the propagation preventing device 7 to the supercooling release device 8, and ice that has been released from the supercooling state by the supercooling release device 8. -It has the ice conveyance pipe | tube 22 which conveys water slurry to the ice thermal storage tank 1. FIG. Further, the water piping system 20 has a water return pipe 23 and 23 which are directed to the supercooler 4 via the preheating device 2 and the pump 3 described above.

連結管21には、過冷却器4から出るか冷却水の出口側の圧力を計測する第1の圧力計24と前記した過冷却解除装置8が設けられている。水還管22には、前記した予熱装置2、ポンプ3の他に、バルブ25、水の流量を計測する流量計26が設けられている。そして流量計26によって計測された水の流量は、制御装置29へと出力され、制御装置29は、これに基づいて所定の流量値となるように、バルブ25を制御するようになっている。   The connecting pipe 21 is provided with a first pressure gauge 24 that measures the pressure at the outlet side of the cooling water from the supercooler 4 and the supercooling release device 8 described above. In addition to the preheating device 2 and the pump 3 described above, the water return pipe 22 is provided with a valve 25 and a flow meter 26 for measuring the flow rate of water. The flow rate of water measured by the flow meter 26 is output to the control device 29, and the control device 29 controls the valve 25 so that a predetermined flow rate value is obtained based on this.

水配管系20における伝播防止装置7と水還管23との間にはバイパス管41が設けられ、このバイパス管41には、バイパス管41を流れる水の流量を計測するバイパス流量計42と、バルブ43とが設けられている。バイパス管41は、鋼管、硬質塩ビ管、ステンレス鋼管、銅管などの剛性の高い材料で構成されている。   A bypass pipe 41 is provided between the propagation preventing device 7 and the water return pipe 23 in the water piping system 20, and the bypass pipe 41 includes a bypass flow meter 42 that measures the flow rate of water flowing through the bypass pipe 41, A valve 43 is provided. The bypass pipe 41 is made of a highly rigid material such as a steel pipe, a hard PVC pipe, a stainless steel pipe, or a copper pipe.

連結管21は、図3に示したように、連結管21の外周を環状に覆っている外部容器45内において空隙dを創出するように、軸方向に対して直角に分断され、上流側連結管21aと下流側連結管21bとに分けられている。したがってバイパス管41から外部容器45内に注水されると、前記空隙dから連結管21内に侵入した水は、連結管21内の流れに沿って下流側連結管21bの内壁面に沿って下流側に流れていき、下流側連結管21bの内周壁には、注入された水の液膜が均一に形成されるようになっている。   As shown in FIG. 3, the connecting pipe 21 is divided at a right angle with respect to the axial direction so as to create a gap d in the outer container 45 covering the outer periphery of the connecting pipe 21 in an annular shape. It is divided into a pipe 21a and a downstream connecting pipe 21b. Therefore, when water is poured from the bypass pipe 41 into the outer container 45, the water that has entered the connecting pipe 21 from the gap d flows along the inner wall surface of the downstream connecting pipe 21b along the flow in the connecting pipe 21. The liquid film of the injected water is uniformly formed on the inner peripheral wall of the downstream connecting pipe 21b.

ブライン配管系30は、過冷却器4から冷凍機5に向かうブライン往管31と、冷凍機5から過冷却器4に向かうブライン還管32とを有している。ブライン往管31には、バルブ33、前記したポンプ6が設けられている。またブライン還管32には、過冷却器4に流入するブラインの流量を計測する流量計35、過冷却器4に流入するブラインの入口側の圧力を計測する圧力計36が設けられている。そしてブライン往管31におけるポンプ6と過冷却器4との間の配管には(すなわちポンプ6のサクション側には)、膨張タンク37が設けられている。流量計35によって計測されたブライン流量は、制御装置38へと出力され、制御装置38は、これに基づいて所定の流量値となるように、バルブ33を制御するようになっている。   The brine piping system 30 includes a brine forward pipe 31 from the subcooler 4 toward the refrigerator 5 and a brine return pipe 32 from the refrigerator 5 toward the supercooler 4. The brine outgoing pipe 31 is provided with a valve 33 and the pump 6 described above. The brine return pipe 32 is provided with a flow meter 35 for measuring the flow rate of the brine flowing into the subcooler 4 and a pressure gauge 36 for measuring the pressure on the inlet side of the brine flowing into the subcooler 4. An expansion tank 37 is provided in the piping between the pump 6 and the subcooler 4 in the brine outgoing pipe 31 (that is, on the suction side of the pump 6). The brine flow rate measured by the flow meter 35 is output to the control device 38, and the control device 38 controls the valve 33 so as to obtain a predetermined flow rate value based on the brine flow rate.

図1に示した氷蓄熱システムは以上の構成を有しており、次にこのシステムにおいて、圧力変動によってプレートが変形、移動しないレベルの差圧の求め方について説明する。   The ice heat storage system shown in FIG. 1 has the above-described configuration. Next, how to obtain a differential pressure at a level at which the plate does not deform or move due to pressure fluctuation in this system will be described.

まず水とブラインの制御装置29、38の設定値を水とブラインを過冷却水の製造に必要な流量に設定して水を循環させ、バルブ25を操作して水の流量を徐々に増加させ、差圧ΔP(すなわち各プレート11の両面におけるブライン圧力−水の圧力の差)を徐々に下げた時の、ΔP(圧力計36の計測値−圧力計23の計測値)と、バイパス流量計42の計測値(G)と流量計26の計測値(G)の関係を記録する。計測結果は図4のグラフに、小さい○でプロット表示し、それに基づいた曲線を同図に示した。 First, set the set values of the water and brine control devices 29 and 38 to the flow rates necessary for the production of supercooled water and brine, circulate the water, and operate the valve 25 to gradually increase the water flow rate. , ΔP (measured value of the pressure gauge 36−measured value of the pressure gauge 23) and the bypass flow meter when the differential pressure ΔP (that is, the difference between the brine pressure and the water pressure on both surfaces of each plate 11) is gradually reduced. 42 measurements (G 1) and the flow meter 26 of the measuring values the relationship (G 2) is recorded. The measurement results are plotted in a small circle on the graph of FIG. 4, and the curve based on the results is shown in FIG.

図4の左縦軸は、図の右側のΔPでG/Gを定格流量(G10/G)に調整した後(G10はGの定格流量)、ΔPを下げていった場合の、G/Gの減少割合{(G/G)/(G10/G)}を示している。ここでは、G(水の流量)は700L/minに制御しているので、G/Gの減少割合は「G/G10」の表現になる。 Left vertical axis of FIG. 4, after adjusting the G 1 / G 2 to the rated flow rate (G 10 / G 2) in the right [Delta] P in FIG. (G 10 is rated flow of G 1) went lowered, [Delta] P for shows a decrease ratio of G 1 / G 2 {(G 1 / G 2) / (G 10 / G 2)}. Here, since G 2 (flow rate of water) is controlled to 700 L / min, the decreasing rate of G 1 / G 2 is expressed as “G 1 / G 10 ”.

これによれば、領域(1)と領域(3)ではG/G10は変化しないが、領域(2)では差圧の変化と共にG/G10が変化することがわかる。これは、領域(2)では差圧の変動と共にプレート式熱交換器である過冷却器4内のプレートが移動、変形することを意味する。このことから、プレート間の差圧変動が起きてもプレートの移動、変形が起こらないようにするには、領域(1)と(3)内で運転圧力を選定すれば良いことがわかる。 According to this, the G 1 / G 10 In region (1) and the region (3) does not change, it can be seen that area (2) where G 1 / G 10 in conjunction with a change in the differential pressure is changed. This means that in the region (2), the plate in the subcooler 4 which is a plate heat exchanger moves and deforms as the differential pressure varies. From this, it can be seen that the operating pressure should be selected in the regions (1) and (3) in order to prevent the movement and deformation of the plate even if the pressure difference between the plates occurs.

すなわち、図4における領域(2)の範囲(ΔPmin 〜ΔPmax)ではプレート間差圧ΔPの変化に応じて、プレートの変位(水の流路幅)が変化し、図4におけるバイパス流量比G1/G2(過冷却器4をバイパスして連結管21に供給される水の流量G1と、過冷却器4を流れる水の流量G2の割合)が変化する。このようなG1の変化は、連結管21の内壁面に形成する0℃以上の水の液膜を不安定にする。また今、図4における領域(2)の範囲内での任意のΔPの状態において、所定の流量(前述のようにG2の2〜3%程度の流量)のG1で運転されているとき、ΔPが小さくなると、水の流路幅が大きくなって過冷却器4に水が流れやすくなることで、G1は減少して所定の流量が維持できなくなる。   That is, in the range (ΔPmin to ΔPmax) of the region (2) in FIG. 4, the displacement of the plate (water channel width) changes according to the change in the inter-plate differential pressure ΔP, and the bypass flow rate ratio G1 / in FIG. G2 (the ratio of the flow rate G1 of water supplied to the connecting pipe 21 bypassing the supercooler 4 and the flow rate G2 of water flowing through the supercooler 4) changes. Such a change in G1 makes the liquid film of water at 0 ° C. or more formed on the inner wall surface of the connecting pipe 21 unstable. Now, when operating at a predetermined flow rate (a flow rate of about 2 to 3% of G2 as described above) in an arbitrary ΔP state within the range of region (2) in FIG. When becomes smaller, the flow path width of the water becomes larger and water easily flows into the subcooler 4, so that G1 decreases and the predetermined flow rate cannot be maintained.

このような、G1の変化が起こらないようにするためには、図4においてΔPが変化しても、ΔPw(過冷却器4に流入する水の圧力)が変化しない領域(1)または領域(3)の範囲内、すなわちΔPmin以下またはΔPmax以上に運転状態を限定できるように、ブラインと水の圧力を設定すれば良い。   In order to prevent such a change in G1, even if ΔP changes in FIG. 4, ΔPw (pressure of water flowing into the subcooler 4) does not change (1) or region ( What is necessary is just to set the pressure of a brine and water so that a driving | running state can be limited within the range of 3), ie, below (DELTA) Pmin, or (DELTA) Pmax.

以上説明した他のプレート間差圧の決定手法は、プレート式熱交換器である過冷却器4とバイパス管41との流量比の変化からプレートの移動、変形を観測するものである。このような測定系では、水の流路は過冷却器4とバイパス管41並列に接続されているが、過冷却器4を構成するプレート熱交換器と、バイパス流路とを複数の絞りによって構成された一種のラビリンス流路と考えた場合、それぞれの抵抗係数ξ及び損失水頭hは一般に式(1)で表される。   The other method for determining the differential pressure between the plates described above is to observe the movement and deformation of the plate from the change in the flow rate ratio between the subcooler 4 and the bypass pipe 41 which are plate heat exchangers. In such a measurement system, the water flow path is connected in parallel with the subcooler 4 and the bypass pipe 41, but the plate heat exchanger constituting the subcooler 4 and the bypass flow path are separated by a plurality of throttles. When considered as a kind of constructed labyrinth flow path, each resistance coefficient ξ and loss head h is generally expressed by the following equation (1).

すなわち、h = a・ξ・v /2g・・・(1)
i=1(バイパス管41の流路)又は2(過冷却器4の水側流路)(a:無次元定数(流路の形状に応じた定数)、v:流速、g:重力加速度)である。
したがってバイパス管41の損失水頭hは、
= a・ξ・v /2g、
そして過冷却器4の水側流路の損失水頭hは、
= a・ξ・v /2g、
となる。
That is, h i = a i · ξ i · v i 2 / 2g (1)
i = 1 (flow path of bypass pipe 41) or 2 (water side flow path of subcooler 4) (a: dimensionless constant (constant according to the shape of the flow path), v: flow velocity, g: gravitational acceleration) It is.
Therefore, the loss head h 1 of the bypass pipe 41 is
h 1 = a 1 · ξ 1 · v 1 2 / 2g,
The head loss h 2 water side flow passage of the subcooler 4,
h 2 = a 2 · ξ 2 · v 2 2 / 2g,
It becomes.

またプレート式熱交換器の過冷却器4の入口とバイパス管41の入口の断面積と流速をそれぞれv、Aとすると、それぞれの流量Gは式(2)で表される。
= v・A ・・・(2)
i=1(バイパス管41の流路)又は2(過冷却器4の水側流路)である。
すなわち、
バイパス管41の流量Gは、
= v・A
過冷却器4の水側流路の流量Gは、
= v・A
となる。
Further, assuming that the cross-sectional area and flow velocity of the inlet of the subcooler 4 and the bypass pipe 41 of the plate heat exchanger are v and A, respectively, the respective flow rates G are expressed by Expression (2).
G i = v i · A i (2)
i = 1 (flow path of the bypass pipe 41) or 2 (water side flow path of the subcooler 4).
That is,
Flow rate G 1 of the bypass pipe 41,
G 1 = v 1 · A 1
Flow rate G 2 water side flow passage of the subcooler 4,
G 2 = v 2 · A 2
It becomes.

この測定系では、プレート式熱交換器である過冷却器4とバイパス管41の損失水頭は常に同じ(h=h)であるため、式(1)、(2)より、式(3)が得られる。 In this measurement system, the loss heads of the subcooler 4 and the bypass pipe 41, which are plate heat exchangers, are always the same (h 1 = h 2 ). Therefore, from the equations (1) and (2), the equation (3 ) Is obtained.

Figure 2009068758
Figure 2009068758

なおプレート熱交換器の過冷却器4の入口とバイパス管41の入口の断面積は一定であるため、式(4)に示したように、bは定数となる。   In addition, since the cross-sectional area of the inlet of the subcooler 4 of the plate heat exchanger and the inlet of the bypass pipe 41 is constant, b is a constant as shown in Expression (4).

Figure 2009068758
Figure 2009068758

ここでバイパス管41は剛性の高い材料で作られているので抵抗係数ξは変化しない。このため、G、Gを計測すれば、プレート式熱交換器内のプレートの移動、変形に伴う抵抗係数ξの変化を検出することができる。
すなわちG、Gを計測の変動は抵抗係数ξの変化に起因するものであり、かかる抵抗係数ξの変化はプレートの変形、移動が起きていることを示すものに他ならない。したがって、抵抗係数ξが一定の値を示すようなプレート間差圧を、過冷却器4の運転条件とし、後はその差圧運転条件にしたがって、当該氷蓄熱システムを本運転させればよい。
Here, since the bypass pipe 41 is made of a highly rigid material, the resistance coefficient ξ 1 does not change. For this reason, if G 1 and G 2 are measured, it is possible to detect a change in the resistance coefficient ξ 2 accompanying the movement and deformation of the plate in the plate heat exchanger.
That is, the variation in the measurement of G 1 and G 2 is caused by the change in the resistance coefficient ξ 2 , and the change in the resistance coefficient ξ 2 is nothing but an indication that the plate is deformed or moved. Therefore, the differential pressure between the plates such that the resistance coefficient ξ 2 shows a constant value is used as the operating condition of the subcooler 4, and then the ice storage system is operated in accordance with the differential operating condition. .

なお前記したプレート間差圧を設定するに当たっては、たとえば密閉式膨張タンク37のガス圧を調整してブラインの静圧を調整して、過冷却器4に対する水の入口圧力よりもブラインの出口圧力を大きくしたり、ポンプ6の揚程を、定格流量及び配管システムの抵抗に対して大きく選定し、過冷却器4のブライン出口に設置した弁を絞ることで定格流量に調整して、過冷却器に対する水の入口圧力よりもブラインの出口圧力を大きくして熱交換させることが提案できる。またその他、過冷却器4に対する水の出口圧力が、当該過冷却器4の水側損失圧力とブライン側損失圧力の和よりも高くなるように、当該過冷却器4の設置位置を、氷蓄熱槽1の水面よりも低い位置に設置し、過冷却器4に対する水の出口圧力をブラインの入口圧力よりも大きくして向流で熱交換させることを例として挙げることができる。   In setting the above-described differential pressure between the plates, for example, by adjusting the gas pressure of the closed expansion tank 37 to adjust the static pressure of the brine, the outlet pressure of the brine is higher than the inlet pressure of the water to the subcooler 4. Or by selecting the head of the pump 6 larger than the rated flow rate and the resistance of the piping system, and adjusting the rated flow rate by restricting the valve installed at the brine outlet of the subcooler 4. It can be proposed that the brine outlet pressure be greater than the water inlet pressure for heat exchange. In addition, the installation position of the supercooler 4 is adjusted to store the ice temperature so that the outlet pressure of the water to the supercooler 4 is higher than the sum of the water-side loss pressure and the brine-side loss pressure of the supercooler 4. As an example, it can be installed at a position lower than the water surface of the tank 1 and the outlet pressure of the water with respect to the supercooler 4 is made larger than the inlet pressure of the brine to exchange heat by countercurrent.

本発明は、ガスケットタイプのプレート式熱交換器によって過冷却水を製造し、当該過冷却水を、連結管を通じて大気に触れることなく密閉系の過冷却解除器に送って氷を製造する際に有用である。   The present invention produces supercooled water using a gasket-type plate heat exchanger, and sends the supercooled water to a closed supercooler without touching the atmosphere through a connecting pipe to produce ice. Useful.

本発明が実施するための氷蓄熱システムの概要を模式的に示した説明図である。It is explanatory drawing which showed typically the outline | summary of the ice thermal storage system for implementing this invention. 図1の氷蓄熱システムに使用したガスケットタイプのプレート式熱交換器の構成を模式的に示した説明図であり、左側の図は正面、右側の図は右側面を示している。It is explanatory drawing which showed typically the structure of the gasket type plate-type heat exchanger used for the ice thermal storage system of FIG. 1, the figure of the left side shows the front, and the figure of the right side has shown the right side. 図1の氷蓄熱システムに使用した連結管の内部の様子を示す一部断面側面図である。It is a partial cross section side view which shows the mode of the inside of the connecting pipe used for the ice thermal storage system of FIG. 図1の氷蓄熱システムの過冷却器におけるブライン出口圧−水入口圧と、水側圧力損失およびバイパス流量/過冷却器の水流量との関係を示すグラフである。It is a graph which shows the relationship between the brine outlet pressure-water inlet pressure in the supercooler of the ice thermal storage system of FIG. 1, water side pressure loss, and bypass flow rate / water flow rate of the subcooler.

符号の説明Explanation of symbols

1 氷蓄熱槽
2、6 ポンプ
4 過冷却器
5 冷凍機
7 伝播防止装置7
8 過冷却解除装置
11 プレート
12 ガスケット
15 エンドプレート
21 連結管
20 水配管系
22 水還管
24、36 圧力計
25、33、43 バルブ
26、35、42 流量計
30 ブライン配管系
31 ブライン往管
32 ブライン還管
37 膨張タンク
41 バイパス管
42 バイパス流量計
45 外部容器
1 Ice storage tank 2, 6 Pump 4 Subcooler 5 Refrigerator 7 Propagation prevention device 7
8 Supercooling release device 11 Plate 12 Gasket 15 End plate 21 Connecting pipe 20 Water piping system 22 Water return pipe 24, 36 Pressure gauge 25, 33, 43 Valve 26, 35, 42 Flow meter 30 Brine piping system 31 Brine outgoing pipe 32 Brine return pipe 37 Expansion tank 41 Bypass pipe 42 Bypass flow meter 45 External container

Claims (3)

ガスケットタイプのプレート式熱交換器を過冷却器として用いてブラインと水とを向流で熱交換させて過冷却水を製造し、当該過冷却水を、連結管を通じて大気に触れることなく密閉系の過冷却解除器に送って氷を製造する際に、前記過冷却器に導入される0℃以上の水を一部分岐させて、当該過冷却器をバイパスして前記連結管の内壁面に対して供給する氷製造方法において、
前記プレート式熱交換器におけるブラインと水のプレート間差圧を予め調整することで、前記連結管の内壁面に対して供給される0℃以上の水の量を一定に維持することを特徴とする、氷製造方法。
Using a gasket-type plate heat exchanger as the supercooler, brine and water are exchanged in countercurrent to produce supercooled water, and the supercooled water is sealed through the connecting pipe without being exposed to the atmosphere. When producing ice by sending it to the subcooler, the water at 0 ° C. or higher introduced into the supercooler is partially branched to bypass the supercooler and against the inner wall surface of the connecting pipe. In the ice manufacturing method to supply
The amount of water of 0 ° C. or higher supplied to the inner wall surface of the connecting pipe is kept constant by adjusting in advance the differential pressure between the brine and water plates in the plate heat exchanger. The ice manufacturing method.
前記プレート式熱交換器におけるブラインと水のプレート間差圧を予め調整するにあたっては、水とブラインを過冷却水の製造に必要な流量に設定して水を循環させた状態で、プレート式熱交換器に流入するブラインの圧力調整を行ない、プレート式熱交換器内の水流路の抵抗係数が水又はブラインの圧力変動や流量変動によらず一定となるプレート間差圧に調整することを特徴とする、請求項1に記載の氷製造方法。 In pre-adjusting the differential pressure between the brine and water plates in the plate heat exchanger, the plate heat and water are circulated with the water and brine set to the flow rates required for the production of supercooled water. The pressure of the brine flowing into the exchanger is adjusted, and the resistance coefficient of the water flow path in the plate heat exchanger is adjusted to the inter-plate differential pressure that is constant regardless of the pressure fluctuation or flow rate fluctuation of water or brine. The method for producing ice according to claim 1. 前記プレート式熱交換器におけるブラインと水のプレート間差圧を予め調整するにあたっては、プレート式熱交換器に対する水の入口圧力よりもブラインの出口圧力を大きくするか、又はプレート式熱交換器に対する水の出口圧力をブラインの入口圧力よりも大きくすることを特徴とする、請求項1に記載の氷製造方法。 In pre-adjusting the differential pressure between the brine and water plates in the plate heat exchanger, the brine outlet pressure is made larger than the water inlet pressure to the plate heat exchanger, or the plate heat exchanger 2. The ice production method according to claim 1, wherein the water outlet pressure is larger than the brine inlet pressure.
JP2007236825A 2007-09-12 2007-09-12 Ice production method Active JP5022155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236825A JP5022155B2 (en) 2007-09-12 2007-09-12 Ice production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236825A JP5022155B2 (en) 2007-09-12 2007-09-12 Ice production method

Publications (2)

Publication Number Publication Date
JP2009068758A true JP2009068758A (en) 2009-04-02
JP5022155B2 JP5022155B2 (en) 2012-09-12

Family

ID=40605207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236825A Active JP5022155B2 (en) 2007-09-12 2007-09-12 Ice production method

Country Status (1)

Country Link
JP (1) JP5022155B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208888A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011208890A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011208889A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011214747A (en) * 2010-03-31 2011-10-27 Takasago Thermal Eng Co Ltd Method of stabilizing ice making and ice-making machine
JP2013079786A (en) * 2011-10-05 2013-05-02 Takasago Thermal Eng Co Ltd Method of stabilizing ice-making and ice making device
JP2013092356A (en) * 2011-10-05 2013-05-16 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755209A (en) * 1993-08-13 1995-03-03 Nkk Corp Ice water slurry-supply apparatus
JP2005009805A (en) * 2003-06-20 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Ice storage device
JP2006071228A (en) * 2004-09-03 2006-03-16 Shinryo Corp Supercooled water dynamic type ice heat storage tank device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755209A (en) * 1993-08-13 1995-03-03 Nkk Corp Ice water slurry-supply apparatus
JP2005009805A (en) * 2003-06-20 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Ice storage device
JP2006071228A (en) * 2004-09-03 2006-03-16 Shinryo Corp Supercooled water dynamic type ice heat storage tank device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208888A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011208890A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011208889A (en) * 2010-03-30 2011-10-20 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2011214747A (en) * 2010-03-31 2011-10-27 Takasago Thermal Eng Co Ltd Method of stabilizing ice making and ice-making machine
JP2013079786A (en) * 2011-10-05 2013-05-02 Takasago Thermal Eng Co Ltd Method of stabilizing ice-making and ice making device
JP2013092356A (en) * 2011-10-05 2013-05-16 Takasago Thermal Eng Co Ltd Ice making stabilizing method and ice making device
JP2017026307A (en) * 2011-10-05 2017-02-02 高砂熱学工業株式会社 Process of manufacture of ice and sherbet-like ice

Also Published As

Publication number Publication date
JP5022155B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5022155B2 (en) Ice production method
JP5492523B2 (en) Air conditioner
JP5350166B2 (en) Heat medium piping system
US10412857B2 (en) Liquid cooling station
EP3593054B1 (en) A local thermal energy consumer assembly and a local thermal energy generator assembly for a district thermal energy distribution system
JP2985070B2 (en) Ice making equipment
JP4864587B2 (en) Heat medium piping system
US20210131677A1 (en) Thermal heating system and a controller for the same
JP5422913B2 (en) Blast furnace furnace cooling system
JP5149558B2 (en) Method for producing supercooled water
JP5831237B2 (en) Cold water / hot water or steam generator
JP2005009833A (en) Double pipe type heat exchanger
Prabhu et al. Pressure drop characteristics in a rotating smooth square channel with a sharp 180 bend
Kubo et al. Pressure drop and flow patterns of boiling flows in Mini-Channels with Semi-Circular Cross-Section
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
JP5128267B2 (en) Heat pump type water heater
JP2008096064A (en) Heat pump system for hot water supply
JP2015045478A (en) Heat conveyance system
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
JP2010091178A (en) Refrigerating device
EP3699498A1 (en) A method and an apparatus for determining a deviation in a thermal energy circuit
JPH03152365A (en) Refrigerator
CN105650450A (en) Oil cooler
JP2007024192A (en) Fuel supply device
JP2001021272A (en) Cooling water circulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5022155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3