JP2006071228A - Supercooled water dynamic type ice heat storage tank device - Google Patents

Supercooled water dynamic type ice heat storage tank device Download PDF

Info

Publication number
JP2006071228A
JP2006071228A JP2004257489A JP2004257489A JP2006071228A JP 2006071228 A JP2006071228 A JP 2006071228A JP 2004257489 A JP2004257489 A JP 2004257489A JP 2004257489 A JP2004257489 A JP 2004257489A JP 2006071228 A JP2006071228 A JP 2006071228A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat storage
ice
storage tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004257489A
Other languages
Japanese (ja)
Other versions
JP4369331B2 (en
Inventor
Mitsuru Amamiya
満 雨宮
Kazuo Yamamoto
一夫 山本
Hideki Nagato
秀樹 長門
Fumiaki Sato
文秋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2004257489A priority Critical patent/JP4369331B2/en
Publication of JP2006071228A publication Critical patent/JP2006071228A/en
Application granted granted Critical
Publication of JP4369331B2 publication Critical patent/JP4369331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for stably preventing freezing in a return pipe and efficiently utilizing the cold in an ice heat storage tank device producing ice from the supercooled water in piping of a sealed system. <P>SOLUTION: A bypass circuit is formed on the way of the return pipe, a first heat exchanger and a second heat exchanger are arranged in series in the bypass circuit, a secondary side of the first heat exchanger is connected with an air conditioning system line for processing night cooling load, and a secondary side of the second heat exchanger is connected with a cooling water recooling circuit communicated with a refrigerating machine of an air conditioning system. A secondary side of the first heat exchanger is connected with a cooling device for building frame heat storage of a building. The first and second heat exchangers are formed as an internal circuit of an integrated heat exchanger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、過冷却水を利用した氷蓄熱槽装置に関し、特に静置型でなく流水を過冷却するタイプのダイナミック式氷蓄熱槽装置に関する。   The present invention relates to an ice heat storage tank apparatus using supercooled water, and more particularly to a dynamic ice heat storage tank apparatus of a type that supercools running water instead of a stationary type.

熱交換器(過冷却器)内で過冷却水を製造し、この過冷却水から密閉系の配管内で氷を生成して空調システム等に応用するダイナミック式氷蓄熱槽装置はすでに広く利用されているが、この製氷運転時において、蓄熱槽から取水した0℃の冷水には氷核が存在しているため、過冷却水生成時に凍結を起こす要因になる。そこで、この0℃の冷水を0℃を超える温度に加熱して、冷水中の氷核を完全に融解させてやる必要がある。これまで、氷蓄熱槽の底部付近から過冷却水製造用の熱交換器に至る戻り管を電気ヒーター等で加熱する方法や、加熱用熱交換器を挿入して他の系からの熱エネルギを吸収させる方法などが提案されてきた。   Dynamic ice heat storage tank devices that produce supercooled water in a heat exchanger (supercooler), generate ice from this supercooled water in closed piping, and apply it to air conditioning systems are already widely used. However, during this ice making operation, ice nuclei are present in the 0 ° C. cold water taken from the heat storage tank, which causes freezing when supercooled water is generated. Therefore, it is necessary to heat the cold water at 0 ° C. to a temperature exceeding 0 ° C. to completely melt the ice nuclei in the cold water. Until now, the return pipe from the vicinity of the bottom of the ice heat storage tank to the heat exchanger for producing supercooled water is heated with an electric heater or the like, or a heat exchanger for heating is inserted to obtain heat energy from other systems. A method of absorption has been proposed.

いくつかの従来技術では、氷蓄熱槽から取水した0℃の冷水を加熱するのに用いる熱交換器を介して、その冷熱を一般の冷房負荷、あるいは冷水蓄熱に利用している。   In some conventional techniques, the cold heat is used for general cooling load or cold water heat storage through a heat exchanger used to heat cold water at 0 ° C. taken from an ice heat storage tank.

この種の従来技術の問題点として下記の点が挙げられる。
(1)戻り管内部で0℃であった冷水を0℃を超える温度まで加熱した熱量の分は、冷凍機側として余分に冷却しなければならないから、冷凍機の製氷能力は例えば約20%低下することになる。その損失分を一般の冷房負荷で補おうとしても、製氷時は深夜の時間が多いので、夜間の冷房負荷として有効に利用できることが少ない
(2)冷水蓄熱に利用する場合は、氷蓄熱槽の他に水蓄熱槽が必要となり、スペースが増大して槽容積全体に対する蓄熱量が減少することになり、経済性を損なう
(3)一般の冷房負荷のみで冷水の加熱を行うと、冷房負荷の変動により、冷水の設定温度に対する制御が困難となる
(4)制御弁を用いて冷水温度を制御する場合、加熱用熱交換器の1次側負荷の状態により2次側冷水温度の制御が困難な場合がある。
The following points are cited as problems of this type of prior art.
(1) Since the amount of heat generated by heating the cold water that was 0 ° C. inside the return pipe to a temperature exceeding 0 ° C. must be cooled on the freezer side, the ice making capacity of the freezer is about 20%, for example. Will be reduced. Even when trying to make up for the loss with a general cooling load, there are many late-night hours during ice making, so it is rarely useful as a cooling load at night. (2) When using it for cold water heat storage, In addition, a water heat storage tank is required, the space increases, the heat storage amount for the entire tank volume decreases, and the economic efficiency is impaired. (3) If the cooling water is heated only with a general cooling load, the cooling load is reduced. Due to fluctuations, it becomes difficult to control the set temperature of the chilled water. (4) When the chilled water temperature is controlled using the control valve, it is difficult to control the chilled water temperature on the secondary side depending on the state of the primary load of the heat exchanger for heating. There are cases.

本発明と関連する氷蓄熱装置の従来例として次のようなものがある。
特開平8−219503「過冷却水を利用した氷蓄熱装置」では、戻り管を流れる水の予熱に供した加熱側流体の冷熱を、他の空調装置の冷熱源として活用することを提案している。しかしながら、前述したように、空調負荷がない場合や空調負荷が小さい場合には、目的とする加熱量が空調システムから得られず、目的の温度まで戻り管の温度を上昇させることができないから、凍結を生じて製氷運転が不安定となるおそれがある。 特開平5−322395「氷蓄熱装置」では、氷蓄熱槽と過冷却器とを結ぶ冷水回路に、氷蓄熱槽から抽出された冷水と冷熱負荷とを熱交換させることによって冷水中に含まれる氷核を融解する氷核融解手段を設けている。氷核融解手段には、熱交換器、冷水温度検出器、流量調整弁及び開度制御装置が含まれる。 特開昭63−14063「過冷却式氷蓄熱装置」には、過冷却水製造熱交換器からの過冷却水を蓄氷槽の上部から放出して氷結させ、蓄氷槽の底部付近から引き抜いた冷水を空調システムに利用する技術が記載されている。
Examples of conventional ice heat storage devices related to the present invention include the following.
In Japanese Patent Laid-Open No. 8-219503 “Ice Thermal Storage Device Using Supercooled Water”, it is proposed to use the cold heat of the heating side fluid used for preheating water flowing through the return pipe as a cold heat source for other air conditioners. Yes. However, as described above, when there is no air conditioning load or when the air conditioning load is small, the target heating amount cannot be obtained from the air conditioning system, and the return pipe temperature cannot be increased to the target temperature. The ice making operation may become unstable due to freezing. In Japanese Patent Laid-Open No. 5-322395, “ice heat storage device”, ice contained in cold water is obtained by exchanging heat between cold water extracted from the ice heat storage tank and a cold load in a cold water circuit connecting the ice heat storage tank and the supercooler. Ice melting means to melt the nucleus is provided. The ice nucleus melting means includes a heat exchanger, a cold water temperature detector, a flow rate adjustment valve, and an opening control device. JP-A-63-14063 “Supercooled ice heat storage device” releases supercooled water from the supercooling water production heat exchanger from the top of the ice storage tank, freezes it, and draws it from the bottom of the ice storage tank. A technology for using cold water in an air conditioning system is described.

本発明の主たる目的は、過冷却水から密閉系の配管内で氷を生成する氷蓄熱槽装置において、戻り管内での氷結を安定した状態で防止すると共にその冷熱を有効に活用する手段を提供することにある。
本発明の他の目的は、氷蓄熱槽装置を含むシステム全体の高効率化を図ることにある。
The main object of the present invention is to provide means for preventing ice formation in a return pipe in a stable state and effectively utilizing the cold heat in an ice heat storage tank device that generates ice from supercooled water in a closed pipe. There is to do.
Another object of the present invention is to increase the efficiency of the entire system including the ice heat storage tank device.

前述した課題を解決するため、本発明では、製氷運転時、氷蓄熱槽から取水した0℃の冷水中に存在する氷核を安定した状態で融解するため、戻り管の途中にバイパス回路を設けてこのバイパス回路中に第1の熱交換器と第2の熱交換器を直列に配置し、第1の熱交換器の2次側を夜間冷房負荷処理用空調システム系統(空調負荷・躯体蓄熱・水蓄熱など)に接続し、第2の熱交換器の2次側を空調システムの冷凍機へ通じる冷却水再冷却回路に接続する。   In order to solve the above-mentioned problems, in the present invention, a bypass circuit is provided in the middle of the return pipe in order to melt ice nuclei existing in 0 ° C. cold water taken from the ice heat storage tank in a stable state during ice making operation. A first heat exchanger and a second heat exchanger are arranged in series in the bypass circuit, and the secondary side of the first heat exchanger is connected to an air conditioning system for nighttime cooling load processing (air conditioning load / body heat storage). -Connect to water heat storage etc.) and connect the secondary side of the second heat exchanger to the cooling water re-cooling circuit leading to the refrigerator of the air conditioning system.

かかる構成に基づき、本発明によれば、
(1)製氷運転時には冷凍機と冷却塔の間で常時一定温度の冷却水が循環しているので、安定した凍結防止効果が得られる。すなわち、従来のように、空調負荷の大小によって加熱量不足を招き凍結を生じるようなことがない
(2)2つの熱交換器を用いることにより、空調負荷が変動しても戻り管の温度を安定した状態に制御することが可能になる
(3)冷房負荷が小さく全ての加熱分を利用できない場合でも、冷却水を用いているので、冷却水温度が低下し、冷凍機の効率が上昇する。すなわち、冷却水回路に蓄熱槽から取水した0℃の冷水の加熱を利用することで、通常の冷却水温度を低下させることができて、冷熱が有効に活用できると共に、冷凍機の運転効率を上げることができる
(4)安定した凍結防止、安定した制御、冷凍機の運転効率の上昇などにより、システム全体の効率を高めることができる。
Based on this configuration, according to the present invention,
(1) During ice making operation, cooling water having a constant temperature is constantly circulated between the refrigerator and the cooling tower, so that a stable antifreezing effect can be obtained. In other words, unlike the conventional case, the amount of heating does not cause a shortage of heat and does not cause freezing. (2) By using two heat exchangers, the temperature of the return pipe can be adjusted even if the air conditioning load fluctuates. It becomes possible to control to a stable state (3) Even when the cooling load is small and not all the heating component can be used, the cooling water temperature is lowered and the efficiency of the refrigerator is increased because the cooling water is used. . In other words, by using the 0 ° C. cooling water taken from the heat storage tank in the cooling water circuit, the normal cooling water temperature can be lowered and the cooling energy can be used effectively, and the operating efficiency of the refrigerator can be improved. (4) The efficiency of the entire system can be increased by stable freeze prevention, stable control, increase in operating efficiency of the refrigerator, and the like.

第1の熱交換器の2次側は、各種の夜間冷房負荷処理用空調システム系統(空調負荷・躯体蓄熱・水蓄熱など)に接続することができるが、戻り管の加熱のための熱量は極めて大きいため、水蓄熱槽ではその保有水量が大きくなり、極端に大きな設置スペースを必要とする。従って、建物の躯体蓄熱用冷却装置に接続することが好適である。   The secondary side of the first heat exchanger can be connected to various air conditioning systems for nighttime cooling load processing (air conditioning load, housing heat storage, water heat storage, etc.), but the amount of heat for heating the return pipe is Since it is extremely large, the amount of water held in the water heat storage tank increases, and an extremely large installation space is required. Therefore, it is preferable to connect to a building heat storage cooling device.

躯体蓄熱の利点としては、
(1)水蓄熱槽を併設する必要がないので、省スペース化を図ることができる
(2)空調負荷に接続してリアルタイムで冷熱を消費するのではなく、躯体蓄熱に利用すれば実質的な蓄熱量(氷蓄熱+躯体蓄熱)は大きくなり、昼間の空調電力量削減に大きく寄与できる
(3)躯体蓄熱負荷がなくても、冷却水で安定した凍結防止ができるので、躯体蓄熱を予備的な蓄熱として利用できることになる。
As an advantage of housing heat storage,
(1) Since there is no need to install a water heat storage tank, it is possible to save space. (2) Instead of consuming cold heat in real time by connecting to an air conditioning load, it is practical if it is used for housing heat storage. The amount of heat storage (ice heat storage + body heat storage) increases and can greatly contribute to reducing the amount of air conditioning power during the daytime. (3) Even if there is no body heat storage load, stable freezing prevention can be achieved with cooling water. It can be used as a reliable heat storage.

本発明による蓄熱槽装置の制御方法として、製氷運転時に躯体蓄熱を行なわない時は、冷凍機の冷却水回路を利用して、冷水を0℃を超える温度まで加熱し一定温度に制御する。
冷水を0℃を超える温度に一定に制御するのに、第1の加熱用熱交換器の2次側冷水量で先に制御し、設定温度に達しない時は、第2の加熱用熱交換器の2次側冷却水量で設定温度に制御することができる。
第1の加熱用熱交換器で先に0℃の冷水の加熱を行なうことで、優先的に躯体蓄熱へ冷熱を送ることができる。さらに0℃を超える一定温度まで達しない場合は、第2の加熱用熱交換器で冷却水回路を利用して冷水を加熱し、精度の高い温度制御を行なうことができる。
As a control method of the heat storage tank apparatus according to the present invention, when the housing heat storage is not performed during the ice making operation, the cooling water circuit of the refrigerator is used to heat the cold water to a temperature exceeding 0 ° C. and control it to a constant temperature.
In order to control the chilled water to a temperature exceeding 0 ° C., control the amount of chilled water on the secondary side of the first heating heat exchanger first, and if it does not reach the set temperature, the second heating heat exchange It can control to preset temperature with the amount of secondary side cooling water of a vessel.
By first heating the cold water at 0 ° C. with the first heat exchanger for heating, the cold heat can be preferentially sent to the housing heat storage. Further, when the temperature does not reach a certain temperature exceeding 0 ° C., the cooling water circuit is heated by the second heating heat exchanger, and the temperature can be controlled with high accuracy.

さらに好適には、上記の2台の熱交換器を一体型の熱交換器内に収納し、3回路型の熱交換器として1台にまとめることができる。
さらに好適には、躯体蓄熱に利用する第1の加熱用熱交換器の2次側冷水温度を制御するのに、冷水ポンプの回転数を制御して2次側冷水温度を制御することができる。
More preferably, the above-mentioned two heat exchangers can be housed in an integrated heat exchanger and combined into one unit as a three-circuit type heat exchanger.
More preferably, in order to control the secondary chilled water temperature of the first heating heat exchanger used for housing heat storage, it is possible to control the secondary chilled water temperature by controlling the number of revolutions of the chilled water pump. .

本発明による過冷却水ダイナミック式氷蓄熱槽装置は、その好適な態様として、次のようにして運転される。
(1)氷蓄熱運転時に、蓄熱槽から取水した冷水を0℃を超える温度に加熱する際に、その時得られる冷熱を建物構造体の躯体に蓄熱する
(2)躯体蓄熱を行なわない時は、冷凍機の冷却水を再冷し、冷凍機の運転効率を上げる
(3)0℃を超える任意の温度に一定に制御する手段として、2台の熱交換器のうち、先に躯体蓄熱用の熱交換器で2次側冷水を制御し、その後冷却水回路用の熱交換器で2次側冷却水を制御する
(4)躯体蓄熱用冷水ポンプの回転数を制御して、熱交換器の2次側冷水量を変化させ、2次側冷水の供給温度を制御する。
The supercooled water dynamic ice storage tank device according to the present invention is operated as follows as a preferred mode.
(1) During the ice heat storage operation, when the cold water taken from the heat storage tank is heated to a temperature exceeding 0 ° C., the cold heat obtained at that time is stored in the building structure (2) When the building heat storage is not performed, Recool the cooling water of the refrigerator and increase the operating efficiency of the refrigerator. (3) As a means of controlling the temperature to an arbitrary temperature exceeding 0 ° C., out of the two heat exchangers, the first one is used for housing heat storage. The secondary chilled water is controlled by the heat exchanger, and then the secondary chilled water is controlled by the heat exchanger for the cooling water circuit. (4) The rotational speed of the chilled water storage chilled water pump is controlled, and the heat exchanger The supply temperature of the secondary side cold water is controlled by changing the amount of the secondary side cold water.

かくして、戻り管内での氷結を防止すると共にその冷熱を有効に活用する手段が提供され、氷蓄熱装置を含むシステム全体の高効率化を図ることができるなどの利点が得られる。さらに、2台の熱交換器を1台とすることで、設置スペースが少なくて済む。冷水ポンプの回転数を変えて温度制御することにより、ポンプ動力の省エネルギ化を図ると共に、高精度で負荷側冷水温度を制御できることになる。以下、添付図面の実施態様を参照しながら、本発明についてさらに説明する。   Thus, a means for preventing freezing in the return pipe and effectively utilizing the cold energy is provided, and an advantage can be obtained that the efficiency of the entire system including the ice heat storage device can be increased. Furthermore, the installation space can be reduced by using two heat exchangers as one unit. By controlling the temperature by changing the number of rotations of the chilled water pump, energy saving of the pump power can be achieved and the load-side chilled water temperature can be controlled with high accuracy. Hereinafter, the present invention will be further described with reference to embodiments of the accompanying drawings.

図1は本発明による過冷却水利用ダイナミック式氷蓄熱槽装置の全体を表す回路図であって、従来技術と同様に、過冷却水製造用熱交換器10で作られた過冷却水が製氷機12で製氷されて氷蓄熱槽14へと供給される。氷蓄熱槽14の底部付近から製氷放熱ポンプ(冷水ポンプ)16で引き抜かれた冷水は、戻り管18を通過し、氷核除去フィルタ20を通過して過冷却水製造用熱交換器10へと戻される。   FIG. 1 is a circuit diagram showing the whole of a dynamic ice heat storage tank device using supercooled water according to the present invention. Like the prior art, the supercooled water produced by the heat exchanger 10 for producing supercooled water is made into ice. Ice is made by the machine 12 and supplied to the ice heat storage tank 14. The cold water drawn out from the vicinity of the bottom of the ice heat storage tank 14 by the ice-making heat radiation pump (cold water pump) 16 passes through the return pipe 18, passes through the ice core removal filter 20, and goes to the heat exchanger 10 for producing supercooled water. Returned.

過冷却水製造用熱交換器10の他側にはブライン低温回路26が配置されており、ブライン冷凍機22からブラインポンプ24により−3.3℃の低温液体が供給されている。ブライン冷凍機22の他側は空調システム用の冷却塔46へと接続されている。   A brine low-temperature circuit 26 is disposed on the other side of the heat exchanger 10 for producing supercooled water, and a cold liquid of −3.3 ° C. is supplied from the brine refrigerator 22 by the brine pump 24. The other side of the brine refrigerator 22 is connected to a cooling tower 46 for the air conditioning system.

戻り管18の途中から分岐した冷水管28は、放熱用の熱交換器30を通過して氷蓄熱槽14へと戻るが、この熱交換器30は冷房負荷(空調機など)から冷水ポンプ32によって運ばれてくる冷水と熱交換するために用いられる。   The cold water pipe 28 branched from the middle of the return pipe 18 passes through the heat exchanger 30 for heat dissipation and returns to the ice heat storage tank 14, and this heat exchanger 30 is supplied from the cooling load (air conditioner etc.) to the cold water pump 32. Used to exchange heat with cold water carried by the

図2は図1における従来部分の一部を省略し本発明の特徴部分を拡大して示した図であり、戻り管18の途中のバイパス回路50として、第1の加熱用熱交換器51と第2の加熱用熱交換器52の各1次側回路が直列に挿入配置され、第1の熱交換器51の2次側は建物の躯体蓄熱用冷却装置60に通じる躯体蓄熱用回路34に接続され、第2の熱交換器52の2次側は空調システムの冷凍機22に通じる冷却水再冷却回路38に接続されている。バイパス回路50の1次側は加熱ポンプ58で冷水が送られる。躯体蓄熱用回路34には冷水ポンプ36が配置され、冷却水再冷却回路38には冷水ポンプ40,42が配置されている。   FIG. 2 is an enlarged view of the characteristic part of the present invention, omitting a part of the conventional part in FIG. 1. As a bypass circuit 50 in the middle of the return pipe 18, a first heating heat exchanger 51 and Each primary side circuit of the second heating heat exchanger 52 is inserted and arranged in series, and the secondary side of the first heat exchanger 51 is connected to the building heat storage circuit 34 leading to the building heat storage cooling device 60 of the building. The secondary side of the second heat exchanger 52 is connected to a cooling water recooling circuit 38 that leads to the refrigerator 22 of the air conditioning system. Cold water is sent to the primary side of the bypass circuit 50 by a heating pump 58. A chilled water pump 36 is disposed in the housing heat storage circuit 34, and chilled water pumps 40, 42 are disposed in the cooling water recooling circuit 38.

建物の躯体蓄熱用冷却装置60は、壁面に隣接するスラブ(床版)付近に設置した放熱器(熱交換器)で構成され、冷気を放出してスラブに冷熱を蓄えるようになっている。   The building body heat storage cooling device 60 includes a radiator (heat exchanger) installed in the vicinity of a slab (floor slab) adjacent to a wall surface, and discharges cold air to store cold in the slab.

ところで、このように外部負荷を利用して加熱を行なう場合、外部負荷は大きく変動するので、2つの熱交換器の回路における温度を調節し、例えば2次側冷水温度を一定に保ちながら製氷運転を行う必要がある。かかる目的のため、第1及び第2の熱交換器51,52のそれぞれの2次側回路に電動弁53(MV1),54(MV2)が配置され、各電動弁には戻り管18の途中に配置された温度センサTE1,TE2からの情報に基づいて電動弁を開閉あるいは切り換えるための制御信号が送られるようになっている。電動弁53,54にはそれぞれ蓄熱と再冷を解除させるためのバイパス回路55,56(図2)が設けられている。   By the way, when heating is performed using an external load in this way, the external load fluctuates greatly, so the temperature in the circuit of the two heat exchangers is adjusted, for example, ice making operation while keeping the secondary cold water temperature constant Need to do. For this purpose, motor-operated valves 53 (MV1) and 54 (MV2) are arranged in the secondary circuits of the first and second heat exchangers 51 and 52, respectively, and each motor-operated valve is in the middle of the return pipe 18. A control signal for opening / closing or switching the motor-operated valve is sent based on information from the temperature sensors TE1 and TE2 arranged at. The motor operated valves 53 and 54 are provided with bypass circuits 55 and 56 (FIG. 2) for releasing heat storage and recooling, respectively.

さらに、本発明の他の特徴に基づき、躯体蓄熱用回路34の途中にも温度センサTE3が配置され、その情報に基づいて冷水ポンプ36にその回転数を変化させるための制御信号(アナログ制御)が送られるようになっている。すなわち、ここでは冷水ポンプ36の回転数を変えることにより第1の加熱用熱交換器51の2次側冷水温度を一定に保つように制御しており、ポンプ動力の省エネルギ化を図ると共に、負荷側冷水温度を高精度に制御できるようなっている。   Further, based on another feature of the present invention, a temperature sensor TE3 is also arranged in the middle of the housing heat storage circuit 34, and a control signal (analog control) for changing the number of revolutions of the chilled water pump 36 based on the information. Is to be sent. That is, here, the secondary side cold water temperature of the first heating heat exchanger 51 is controlled to be kept constant by changing the number of rotations of the cold water pump 36, and energy saving of the pump power is achieved. The load-side chilled water temperature can be controlled with high accuracy.

本発明では、第1と第2の加熱用熱交換器51,52を配置しているが、常に両方の熱交換器を作動させる必要はない。例えば、製氷運転時に第1の加熱用熱交換器51を用いた躯体蓄熱を行なわない時は、第2の加熱用熱交換器52だけを作動させるように、冷凍機の冷却水再冷却回路38を利用して、戻り管18の冷水を0℃を超える温度まで加熱し一定温度に制御する。
すなわち、冷水を0℃を超える温度に一定に制御するのに、第1の加熱用熱交換器51の2次側冷水量で先に制御し、設定温度に達しない時は、第2の加熱用熱交換器52の2次側冷却水量で設定温度に制御するようにする。
In the present invention, the first and second heat exchangers 51 and 52 for heating are arranged, but it is not always necessary to operate both heat exchangers. For example, when the housing heat storage using the first heating heat exchanger 51 is not performed during the ice making operation, the cooling water recooling circuit 38 of the refrigerator is operated so that only the second heating heat exchanger 52 is operated. , The cold water in the return pipe 18 is heated to a temperature exceeding 0 ° C. and controlled to a constant temperature.
That is, in order to control the chilled water to a temperature exceeding 0 ° C., the second chilled water amount of the first heating heat exchanger 51 is controlled first, and when the set temperature is not reached, the second heating is performed. The set temperature is controlled by the amount of secondary side cooling water of the heat exchanger 52 for use.

図1の実施態様では、さらに冷凍機の冷却水再冷却回路38とブライン低温回路26との間に、凍結解除用の熱交換器64とブラインポンプ66を含む凍結解除用回路68が挿入配置されている。この回路68は、ブライン冷凍機22の動作によって配管が凍結した場合にその凍結を解除させるために用いられる。   In the embodiment of FIG. 1, a freeze release circuit 68 including a freeze release heat exchanger 64 and a brine pump 66 is further inserted between the refrigerating machine coolant recooling circuit 38 and the brine low temperature circuit 26. ing. This circuit 68 is used to release the freezing when the piping is frozen by the operation of the brine refrigerator 22.

さらに好適な実施態様として、2台の加熱用熱交換器51,52を一体型の熱交換器70内に収納し、3回路型の熱交換器として1台にまとめることができる。これにより、スペースが節約され、配管・配線・メンテナンスなどが単純化されてコストを低減することができる。   As a more preferred embodiment, the two heat exchangers 51 and 52 for heating can be housed in an integrated heat exchanger 70 and combined into one unit as a three-circuit type heat exchanger. This saves space and simplifies piping, wiring, maintenance, etc., and can reduce costs.

さらに、図示した例では配管抵抗を増大させないように、加熱用熱交換器の回路をバイパス回路で構成しているが、第1と第2の熱交換器51,52はバイパス回路でなく戻り管の途中に直列で挿入できるように切り替え可能とすることもできる。   Furthermore, in the illustrated example, the circuit of the heat exchanger for heating is configured by a bypass circuit so as not to increase the pipe resistance, but the first and second heat exchangers 51 and 52 are not bypass circuits but return pipes. It can also be made switchable so that it can be inserted in series in the middle.

図3は、本発明による氷蓄熱槽装置を用いて戻り管の冷水を加熱する際の温度制御プロセスを流れ図にしたものである。
工程81・・・製氷ポンプ16・ブラインポンプ24などを運転して製氷を開始する
工程82・・・加熱ポンプ58の運転を開始する
工程83・・・温度センサTE1での感知温度に応じて電動式制御弁53でバイパス回路55の開閉を判断する
工程84・・・感知温度TE1が0.5℃以下なら電動式制御弁53を切り換えてバイパス回路55を閉鎖する。躯体蓄熱用回路34に水が流れて躯体蓄熱が開始される
工程85・・・感知温度TE1が0.5℃以上なら電動式制御弁53を切り換えてバイパス回路55を開放する。躯体蓄熱用回路34の水が停止して躯体蓄熱が終了となる
FIG. 3 is a flow chart of the temperature control process when the cold water in the return pipe is heated using the ice heat storage tank device according to the present invention.
Step 81: Starts ice making by operating the ice making pump 16 and the brine pump 24, etc. Step 82 ... Starts the operation of the heating pump 58 Step 83 ... Electric drive according to the temperature sensed by the temperature sensor TE1 Step 84: If the detected temperature TE1 is 0.5 ° C. or less, the electric control valve 53 is switched to close the bypass circuit 55. Water flows into the housing heat storage circuit 34 and housing heat storage is started. Step 85... If the detected temperature TE1 is 0.5 ° C. or higher, the electric control valve 53 is switched to open the bypass circuit 55. The water in the housing heat storage circuit 34 stops and the housing heat storage ends.

工程86・・・温度センサTE2での感知温度に応じて電動式制御弁54でバイパス回路56の開閉を判断する
工程87・・・感知温度TE2が0.5℃以下なら電動式制御弁54を切り換えてバイパス回路56を閉鎖する。冷却水再冷却回路38に水が流れて冷却水の再冷が開始される
工程88・・感知温度TE1が0.5℃以上なら電動式制御弁54を切り換えてバイパス回路56を開放する。冷却水再冷却回路38の水が停止して冷却水の再冷が終了となる
工程89・・・製氷ポンプ16・ブラインポンプ24などを停止させて製氷運転を終了させる
工程90・・・加熱用ポンプ58の運転を停止させる。
Step 86: Judgment of opening / closing of the bypass circuit 56 by the electric control valve 54 in accordance with the temperature sensed by the temperature sensor TE2 Step 87: If the sensed temperature TE2 is 0.5 ° C. or less, turn the electric control valve 54 The bypass circuit 56 is closed by switching. Water flows into the cooling water recooling circuit 38 and cooling water recooling is started. Step 88 .. If the sensed temperature TE1 is 0.5 ° C. or higher, the electric control valve 54 is switched to open the bypass circuit 56. Water in the cooling water re-cooling circuit 38 is stopped and the re-cooling of the cooling water is finished. Step 89... The ice making pump 16 and the brine pump 24 are stopped to finish the ice making operation. The operation of the pump 58 is stopped.

以上、詳細に説明したように、本発明によれば、過冷却水から密閉系の配管内で氷を生成する際に、戻り管内での氷結を防止すると共にその冷熱を有効に活用する手段が提供され、氷蓄熱装置を含むシステム全体の高効率化を図ることができるなど、その技術的効果にはきわめて顕著なものがある。   As described above in detail, according to the present invention, when ice is generated from supercooled water in a closed pipe, there is a means for preventing freezing in the return pipe and effectively utilizing the cold. The technical effects of the system including the ice heat storage device can be improved, and the technical effect is extremely remarkable.

本発明による氷蓄熱槽装置の全体を表す回路図。The circuit diagram showing the whole ice heat storage tank apparatus by this invention. 本発明による氷蓄熱槽装置の特徴部分を拡大して表す回路図。The circuit diagram which expands and represents the characteristic part of the ice thermal storage tank apparatus by this invention. 本発明による氷蓄熱槽装置の温度制御方法の一例を表す流れ図。The flowchart showing an example of the temperature control method of the ice thermal storage tank apparatus by this invention.

符号の説明Explanation of symbols

10 過冷却水製造用熱交換器
14 氷蓄熱槽
16 製氷ポンプ
18 戻り管
34 躯体蓄熱用回路
36 冷水ポンプ
38 冷却水再冷却回路
50 バイパス回路
51,52 加熱用熱交換器
53,54 電動式制御弁
55,56 バイパス回路
58 加熱ポンプ
60 躯体蓄熱用冷却装置
70 一体型熱交換器
DESCRIPTION OF SYMBOLS 10 Heat exchanger for supercooled water production 14 Ice storage tank 16 Ice making pump 18 Return pipe 34 Housing heat storage circuit 36 Chilled water pump 38 Cooling water recooling circuit 50 Bypass circuit 51, 52 Heat exchanger 53, 54 Electric control Valves 55 and 56 Bypass circuit 58 Heating pump 60 Cooling device for housing heat storage 70 Integrated heat exchanger

Claims (4)

水を過冷却水にする過冷却水製造熱交換器と、
過冷却水から製造した氷を蓄える氷蓄熱槽と、
前記氷蓄熱槽の底部付近からの冷水を前記過冷却水製造熱交換器へと案内する戻り管と、
該戻り管の途中に配置した水循環ポンプと、
前記氷蓄熱槽からの冷水を循環させる空調その他の二次系回路とを備える氷蓄熱槽装置において、
前記戻り管の途中にバイパス回路を設けてこのバイパス回路中に第1の熱交換器と第2の熱交換器を直列に配置し、第1の熱交換器の2次側を夜間冷房負荷処理用空調システム系統に接続し、第2の熱交換器の2次側を空調システムの冷凍機へ通じる冷却水再冷却回路に接続したことを特徴とする過冷却水ダイナミック式氷蓄熱槽装置。
A supercooled water production heat exchanger that turns water into supercooled water;
An ice storage tank for storing ice produced from supercooled water;
A return pipe for guiding cold water from near the bottom of the ice heat storage tank to the supercooled water production heat exchanger;
A water circulation pump arranged in the middle of the return pipe;
In an ice heat storage tank device comprising an air conditioning or other secondary system circuit for circulating cold water from the ice heat storage tank,
A bypass circuit is provided in the middle of the return pipe, and the first heat exchanger and the second heat exchanger are arranged in series in the bypass circuit, and the secondary side of the first heat exchanger is subjected to nighttime cooling load processing. A supercooled water dynamic ice heat storage tank device, which is connected to a cooling air recirculation circuit connected to a cooling air recirculation circuit that is connected to an air conditioning system system and that leads to a secondary side of the second heat exchanger to a refrigerator of the air conditioning system.
前記夜間冷房負荷処理用空調システム系統として、前記第1の熱交換器の2次側を建物の躯体蓄熱用冷却装置に接続したことを特徴とする請求項1記載の氷蓄熱槽装置。 The ice heat storage tank device according to claim 1, wherein a secondary side of the first heat exchanger is connected to a building heat storage cooling device of a building as the nighttime cooling load processing air conditioning system system. 前記第1と第2の熱交換器はそれぞれ一体型の熱交換器の内部回路として形成されている請求項1又は2記載の氷蓄熱槽装置。 The ice heat storage tank device according to claim 1 or 2, wherein each of the first and second heat exchangers is formed as an internal circuit of an integrated heat exchanger. 前記第1又は第2の熱交換器の2次側冷水温度を調節するのに冷水ポンプの回転数を制御して調節している請求項1又は2記載の氷蓄熱槽装置。
The ice heat storage tank device according to claim 1 or 2, wherein the temperature of the secondary side cold water of the first or second heat exchanger is adjusted by controlling the number of rotations of the cold water pump.
JP2004257489A 2004-09-03 2004-09-03 Supercooled water dynamic ice storage tank Active JP4369331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257489A JP4369331B2 (en) 2004-09-03 2004-09-03 Supercooled water dynamic ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257489A JP4369331B2 (en) 2004-09-03 2004-09-03 Supercooled water dynamic ice storage tank

Publications (2)

Publication Number Publication Date
JP2006071228A true JP2006071228A (en) 2006-03-16
JP4369331B2 JP4369331B2 (en) 2009-11-18

Family

ID=36152045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257489A Active JP4369331B2 (en) 2004-09-03 2004-09-03 Supercooled water dynamic ice storage tank

Country Status (1)

Country Link
JP (1) JP4369331B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068758A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Ice making method
JP2009198105A (en) * 2008-02-22 2009-09-03 Shinryo Corp Ice making and air-conditioning system using supercooled water
JP2009204162A (en) * 2008-02-26 2009-09-10 Shinryo Corp Ice making system using supercooled water
CN101922830A (en) * 2010-08-05 2010-12-22 华中科技大学 Supercooled liquid ice slurry continuous preparation device
JP2011190983A (en) * 2010-03-15 2011-09-29 Shinryo Corp Dynamic type ice storage system suitable for great depth water tank
JP2013204884A (en) * 2012-03-28 2013-10-07 Takasago Thermal Eng Co Ltd Dynamic type ice thermal storage system
CN109140822A (en) * 2018-10-10 2019-01-04 上海华电源牌环境工程有限公司 Lithium bromide and the big temperature-difference refrigerating device of ice storage
CN111928389A (en) * 2020-09-04 2020-11-13 南京工程学院 Efficient cold and heat supply system based on combined operation of heat source tower and ice cold accumulation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068758A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Ice making method
JP2009198105A (en) * 2008-02-22 2009-09-03 Shinryo Corp Ice making and air-conditioning system using supercooled water
JP4514804B2 (en) * 2008-02-22 2010-07-28 新菱冷熱工業株式会社 Ice making and air conditioning system using supercooled water
JP2009204162A (en) * 2008-02-26 2009-09-10 Shinryo Corp Ice making system using supercooled water
JP4514805B2 (en) * 2008-02-26 2010-07-28 新菱冷熱工業株式会社 Ice making system using supercooled water
JP2011190983A (en) * 2010-03-15 2011-09-29 Shinryo Corp Dynamic type ice storage system suitable for great depth water tank
CN101922830A (en) * 2010-08-05 2010-12-22 华中科技大学 Supercooled liquid ice slurry continuous preparation device
JP2013204884A (en) * 2012-03-28 2013-10-07 Takasago Thermal Eng Co Ltd Dynamic type ice thermal storage system
CN109140822A (en) * 2018-10-10 2019-01-04 上海华电源牌环境工程有限公司 Lithium bromide and the big temperature-difference refrigerating device of ice storage
CN111928389A (en) * 2020-09-04 2020-11-13 南京工程学院 Efficient cold and heat supply system based on combined operation of heat source tower and ice cold accumulation

Also Published As

Publication number Publication date
JP4369331B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US20100154438A1 (en) Ice thermal storage
KR20030029882A (en) Heat pump
KR20150081090A (en) Thermal storage air-conditioning system using a different phase change materials.
JP4369331B2 (en) Supercooled water dynamic ice storage tank
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
JP4964439B2 (en) Operation method of heat storage enhancement system by cooling coil
JP4514804B2 (en) Ice making and air conditioning system using supercooled water
JP2006336949A (en) Heat storage type air conditioner
JP4464114B2 (en) Thermal storage device and thermal storage control method
WO2015001976A1 (en) Heat source system
JPH09159232A (en) Controlling method for ice storage type water chiller
KR200395419Y1 (en) Improved Heating and Cooling System
JP3947780B2 (en) Remodeling existing air conditioning system
JP2004233009A (en) Operation control method of ice storage type water cooler
JP3412371B2 (en) Freezing prevention system for ice storage type chiller
JP7324602B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP3276013B2 (en) Thermal storage system
JP2009186115A (en) Refrigerating cycle device
JPH0618107A (en) Ice and hot-water double heat accumulation system
JPH08145437A (en) Storage type cooler/heater, and controlling method therefor
JP2846146B2 (en) Ice heat storage device using supercooling
JP2006292267A (en) Ice heat storage type heat source device
JPH05215490A (en) Air conditioner utilizing heat pump
JP3788391B2 (en) Ice heat storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4369331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250