JP2009064054A - Control method and control apparatus of product quality - Google Patents

Control method and control apparatus of product quality Download PDF

Info

Publication number
JP2009064054A
JP2009064054A JP2007228680A JP2007228680A JP2009064054A JP 2009064054 A JP2009064054 A JP 2009064054A JP 2007228680 A JP2007228680 A JP 2007228680A JP 2007228680 A JP2007228680 A JP 2007228680A JP 2009064054 A JP2009064054 A JP 2009064054A
Authority
JP
Japan
Prior art keywords
quality
manufacturing
product
target value
manufacturing condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228680A
Other languages
Japanese (ja)
Other versions
JP5003362B2 (en
Inventor
Hiroshi Kitada
宏 北田
Yoshiaki Nakagawa
義明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007228680A priority Critical patent/JP5003362B2/en
Publication of JP2009064054A publication Critical patent/JP2009064054A/en
Application granted granted Critical
Publication of JP5003362B2 publication Critical patent/JP5003362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Control Of Metal Rolling (AREA)
  • General Factory Administration (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for controlling product quality under optimal manufacturing conditions; and a control apparatus of product quality for implementing the method. <P>SOLUTION: The method comprises a regression formula definition process of defining quality relating to a count value of a product specified in response to manufacturing conditions by a linear regression formula; a coefficient calculation process of calculating the coefficient of the regression formula by using result data of the quality and result data of the conditions; a target value calculation process of calculating the target value of the manufacturing conditions by using the coefficient of the regression formula calculated in the coefficient calculation process and the result data of the manufacturing conditions; and a manufacturing condition change process of changing the manufacturing conditions on the basis of the calculated target value of the conditions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄鋼条鋼製品等に代表される製品の品質を制御する方法、及び、当該製品品質の制御に用いられる製品品質の制御装置に関する。   The present invention relates to a method for controlling the quality of products represented by steel products and the like, and a product quality control device used for controlling the product quality.

製品の表面疵や内部欠陥の欠点数、及び、製品の不良品数は、離散確率変数で表される計数値である。欠点数はポアソン分布に、不良品個数は二項分布に各々従うものとしてモデル化することができる。従来は、ポアソン分布に従う欠点数の管理にはc管理図やu管理図等により、また、二項分布に従う不良品個数標はnp管理図やp管理図等で管理され、管理限界線を越えた場合や、グラフの時間的傾向から管理限界線を越えそうな場合には、製造条件の異常を調査するという方法がとられていた(JIS Z 9020:1999)。   The number of defects on the surface defects and internal defects of the product, and the number of defective products are count values represented by discrete random variables. The number of defects can be modeled as following a Poisson distribution and the number of defective products according to a binomial distribution. Conventionally, the number of defects in accordance with the Poisson distribution is managed by the c control chart, the u control chart, etc., and the number of defective products in accordance with the binomial distribution is managed by the np control chart, the p control chart, etc., and exceeds the control limit line. If the control limit line is likely to be exceeded from the time trend of the graph, a method of investigating abnormal manufacturing conditions has been taken (JIS Z 9020: 1999).

これらの管理図による製品品質管理によれば、品質が悪くなる傾向にあることは検出できるが、どの製造条件が悪いのか、どの方向に修正すれば改善するのかは不明である。そのため、品質悪化の原因となる製造条件を特定して品質改善を図るべく、製造条件データから製品品質指標を予測する方法や、予測結果に基づき製造条件を制御する方法が、これまでに提案されている。   According to the product quality control based on these control charts, it can be detected that the quality tends to deteriorate, but it is unclear which manufacturing condition is bad and in which direction it is improved. For this reason, methods for predicting product quality indicators from manufacturing condition data and methods for controlling manufacturing conditions based on the prediction results have been proposed so far in order to identify manufacturing conditions that cause quality deterioration and improve quality. ing.

例えば、特許文献1では、製造条件データの過去事例との類似度に基づいて製品品質の結果を予測する結果予測装置、方法、及びコンピュータ読み取り可能な記憶媒体に関する技術が開示されている。また、特許文献2には、現実に得られる製造の条件のデータと品質との関係を多変量解析を用いて明らかにする品質影響要因解析方法、解析結果を利用した品質予測方法、品質制御方法、及び、品質制御装置等に関する技術が開示されている。さらに、品質予測に適用可能な、一般化線形モデルとよばれる方法が、非特許文献1に開示されている。   For example, Patent Document 1 discloses a technique relating to a result prediction apparatus, method, and computer-readable storage medium that predicts a product quality result based on the similarity of manufacturing condition data with past cases. Further, Patent Document 2 discloses a quality influence factor analysis method for clarifying the relationship between quality data of actual manufacturing conditions and quality using multivariate analysis, a quality prediction method using the analysis result, and a quality control method. And a technology related to a quality control device and the like. Furthermore, Non-Patent Document 1 discloses a method called a generalized linear model that can be applied to quality prediction.

特開2001−290508号公報JP 2001-290508 A 特開2005−242818号公報JP 2005-242818 A P. McCullagh and J. A. Nelder, Generalized Linear Models.:Chapman and Hall,(1989)P. McCullagh and J. A. Nelder, Generalized Linear Models .: Chapman and Hall, (1989)

しかし、特許文献1に開示されている技術では、現実の製造条件データに基づくことなく、過去事例との類似度に基づいて現在の状況を予測するため、例えば、過去事例の代表性が低い場合には、予測精度が低下する恐れがあり、品質制御の精度が低下する恐れがあるという問題があった。   However, in the technique disclosed in Patent Document 1, since the current situation is predicted based on the similarity to the past case without being based on actual manufacturing condition data, for example, when the representativeness of the past case is low However, there is a problem that the prediction accuracy may be lowered, and the quality control accuracy may be lowered.

また、特許文献2に開示されている技術では、個々の製品品質を良又は不良へと分類し、製造条件データの主成分分析結果を用いて、分類に対する判別分析を行う。判別分析では、主成分分析結果を一次元の判別空間に射影した結果の閾値判定により良・不良を分類する。さらに、特許文献2に開示されている技術では、判別分析における射影結果を製品の品質指標とし、それを製造条件データに回帰することにより、品質指標を改善する製造条件の各成分の変更方法を求めて品質を制御する。それゆえ、特許文献2に開示されている技術における品質指標は、最も正確に品質の良・不良の判別ができるように、製造条件データを判別空間における位置に変換するものであるから、その製造条件における品質不良の確率を推定することはできない。また、特許文献2に開示されている技術では、品質を二つの区分への分類でしか表現しないため、疵個数のようなポアソン分布にしたがう計数値品質指標がどのように変化するかを、製造条件データを用いて推定することができない。特許文献2に開示されている技術では、品質指標と製品の製造条件とを正しく結びつけることができず、どの製造条件を変更すれば品質がどの程度改善するかを推定できないため、品質を制御する上で必要とされる最適な製造条件を特定できないという問題があった。   In the technique disclosed in Patent Document 2, each product quality is classified as good or defective, and discriminant analysis is performed on the classification using the principal component analysis result of the manufacturing condition data. In discriminant analysis, good / bad is classified by threshold determination as a result of projecting the principal component analysis result onto a one-dimensional discriminant space. Further, in the technique disclosed in Patent Document 2, the projection result in discriminant analysis is used as a quality index of a product, and the method of changing each component of the manufacturing condition to improve the quality index by returning it to the manufacturing condition data. Seeking and controlling quality. Therefore, the quality index in the technique disclosed in Patent Document 2 is to convert manufacturing condition data into a position in the determination space so that the quality can be determined most accurately. The probability of poor quality under conditions cannot be estimated. In addition, since the technology disclosed in Patent Document 2 expresses quality only by classification into two categories, how the count value quality index according to the Poisson distribution such as the number of wrinkles changes Cannot be estimated using condition data. In the technique disclosed in Patent Literature 2, the quality index cannot be correctly linked to the manufacturing conditions of the product, and it is impossible to estimate how much the quality will be improved by changing which manufacturing conditions, so the quality is controlled. There was a problem that the optimum manufacturing conditions required above could not be specified.

そこで、本発明は、特定された最適な製造条件に基づいて製品の品質を制御することが可能な製品品質の制御方法、及び、当該制御方法を実施することが可能な製品品質の制御装置を提供することを課題とする。   Therefore, the present invention provides a product quality control method capable of controlling the product quality based on the specified optimum manufacturing conditions, and a product quality control apparatus capable of executing the control method. The issue is to provide.

以下、本発明について説明する。なお、本発明の理解を容易にするため、添付図面の参照符号を括弧書きにて付記することがあるが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference sign of an accompanying drawing may be appended in parentheses, but this invention is not limited to the form of illustration by it.

第1の本発明は、製品の品質を制御する方法であって、製造条件に応じて特定される製品の計数値に関する品質を、線形回帰式で定義する回帰式定義工程と、線形回帰式の係数を、品質の実績データ及び製造条件の実績データを用いて算出する係数算出工程と、係数算出工程で算出した線形回帰式の係数、及び、製造条件の実績データを用いて、製造条件の目標値を算出する目標値算出工程と、算出された製造条件の目標値に基づいて、製造条件を変更する製造条件変更工程と、を備えることを特徴とする、製品品質の制御方法により、上記課題を解決する。   A first aspect of the present invention is a method for controlling the quality of a product, wherein a regression equation defining step of defining a quality related to a product count value specified according to manufacturing conditions by a linear regression equation, and a linear regression equation A coefficient calculation step for calculating the coefficient using the actual quality data and the actual manufacturing condition data, the linear regression coefficient calculated in the coefficient calculating step, and the manufacturing condition target data using the actual manufacturing condition data According to a product quality control method comprising: a target value calculating step for calculating a value; and a manufacturing condition changing step for changing a manufacturing condition based on the calculated target value of the manufacturing condition. To solve.

第1の本発明及び以下に示す本発明(以下において、単に「本発明」という。)において、「製品の計数値に関する品質」の具体例としては、鋼材の表面疵や内部欠陥等に代表される欠点数や、製品の不良品数等を挙げることができる。さらに、「製造条件」の具体例としては、製造装置の設定値、鋼材に代表される製品又は中間製品の物理量(温度、形状、組成等)、及び、製品を製造する各工程の時間等を挙げることができる。   In the first invention and the following invention (hereinafter simply referred to as “the present invention”), specific examples of “quality related to product count” are represented by surface defects, internal defects, etc. of steel materials. The number of defects and the number of defective products can be listed. Furthermore, specific examples of “manufacturing conditions” include the set values of the manufacturing equipment, the physical quantities (temperature, shape, composition, etc.) of products or intermediate products represented by steel materials, and the time of each process for manufacturing products. Can be mentioned.

上記第1の本発明において、製造条件に、変更可能な製造条件と変更不可能な製造条件とが含まれ、さらに、変更可能な製造条件から品質に対する影響が大きい製造条件を抽出する製造条件抽出工程が備えられ、目標値算出工程において、製造条件抽出工程で抽出された製造条件を用いて、目標値が算出されることが好ましい。   In the first aspect of the present invention, the manufacturing conditions include a changeable manufacturing condition and a non-changeable manufacturing condition, and a manufacturing condition extraction for extracting a manufacturing condition having a great influence on quality from the changeable manufacturing condition. It is preferable that a process is provided, and in the target value calculation process, the target value is calculated using the manufacturing conditions extracted in the manufacturing condition extraction process.

また、上記第1の本発明において、製品が鋼材であることが好ましい。   In the first aspect of the present invention, the product is preferably a steel material.

本発明において、鋼材製品の具体例としては、鉄鋼条鋼製品等を挙げることができる。   In the present invention, specific examples of steel products include steel products.

第2の本発明は、製品の品質を制御するために用いられる制御装置(10)であって、製造条件に応じて特定される製品の計数値に関する品質を線形回帰式で定義する回帰式定義部(1)と、線形回帰式の係数を、品質の実績データ及び製造条件の実績データを用いて算出する係数算出部(2)と、係数算出部(2)で算出された線形回帰式の係数、及び、製造条件の実績データを用いて、製造条件の目標値を算出する目標値算出部(3)と、算出された製造条件の目標値に基づいて、製造条件を変更する製造条件変更部(4)と、を備えることを特徴とする、製品品質の制御装置(10)により、上記課題を解決する。   The second aspect of the present invention is a control apparatus (10) used for controlling the quality of a product, and defines a regression equation that defines a quality related to a count value of a product specified according to manufacturing conditions by a linear regression equation. Part (1), the coefficient of the linear regression equation calculated by the coefficient calculation unit (2) and the coefficient calculation unit (2) for calculating the coefficient of the linear regression equation using the actual performance data and the actual performance data. A target value calculation unit (3) that calculates the target value of the manufacturing condition using the coefficient and the actual data of the manufacturing condition, and a manufacturing condition change that changes the manufacturing condition based on the calculated target value of the manufacturing condition The above-mentioned problem is solved by a product quality control device (10) comprising: a unit (4).

上記第2の本発明において、製造条件に、変更可能な製造条件と変更不可能な製造条件とが含まれ、さらに、変更可能な製造条件から品質に対する影響が大きい製造条件を抽出する製造条件抽出部(5)が備えられ、目標値算出部(3)において、製造条件抽出部(5)で抽出された製造条件を用いて、上記目標値が算出されることが好ましい。   In the second aspect of the present invention, the manufacturing condition includes a changeable manufacturing condition and a non-changeable manufacturing condition, and further extracts a manufacturing condition that has a large influence on quality from the changeable manufacturing condition. It is preferable that a part (5) is provided, and the target value is calculated in the target value calculation part (3) using the manufacturing conditions extracted by the manufacturing condition extraction part (5).

また、上記第2の本発明において、製品が鋼材であることが好ましい。   In the second aspect of the present invention, the product is preferably a steel material.

本発明によれば、製品製造工程について、計数値に基づく製品品質データを製品製造条件で説明するモデルを構築することが可能となる。また、本発明によれば、過去に蓄積したデータからモデルのパラメータを同定することで、製品製造工程における品質の推定モデルを構築することも可能となる。加えて、本発明によれば、最適な製品品質を得るための製造条件目標値を算出して製造条件を制御することにより、良好な品質の製品を安定して得ることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to construct | assemble the model explaining the product quality data based on a count value by product manufacturing conditions about a product manufacturing process. Further, according to the present invention, it is possible to construct a quality estimation model in a product manufacturing process by identifying model parameters from data accumulated in the past. In addition, according to the present invention, it is possible to stably obtain a product of good quality by calculating the manufacturing condition target value for obtaining the optimum product quality and controlling the manufacturing condition.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

1.製品品質の制御方法
工業製品製造過程における製品製造条件は、製造工程における製品又は中間製品に関する物理量(温度、形状、組成等)の測定結果、製造装置に関する物理量(温度、圧力等)の測定結果、これらの物理量の制御目標値、運転条件設定値、及び、製造装置間において測定・設定される値等によって構成される群から選択される一又は複数の製造条件によって構成される。個々の製品製造条件の項目をxで表し、製造条件全体を組み合わせたベクトルをx=[x … x]とする。また、欠点数や不良品数等に代表される品質に関する測定データをyで表す。本発明では、品質に関する測定データyを目的変数とし製造条件xを説明変数とする回帰モデルによって、品質モデルを構成する。本発明では、品質モデルを構成するにあたり、目的変数の確率モデルとして二項分布やポアソン分布等の離散確率分布を仮定し、製造条件xに対する品質yの期待値を単調増加関数で変換し、線形回帰式でモデル化する一般化線形モデルと呼ばれる方法を用いる。本発明における品質モデルの構成では、線形回帰式の係数を最尤法で推定する。
1. Product Quality Control Method Product manufacturing conditions in the manufacturing process of industrial products are measured results of physical quantities (temperature, shape, composition, etc.) related to products or intermediate products in the manufacturing process, measured results of physical quantities (temperature, pressure, etc.) related to manufacturing equipment, These physical quantities are configured by one or a plurality of manufacturing conditions selected from a group consisting of control target values, operating condition setting values, values measured and set between manufacturing apparatuses, and the like. Each product manufacturing condition item is represented by x i , and a vector obtained by combining the entire manufacturing conditions is x = [x 1 x 2 ... X K ] T. Moreover, the measurement data regarding quality represented by the number of defects, the number of defective products, etc. is represented by y. In the present invention, the quality model is constituted by a regression model in which the measurement data y related to quality is an objective variable and the manufacturing condition x is an explanatory variable. In the present invention, in constructing the quality model, a discrete probability distribution such as a binomial distribution or a Poisson distribution is assumed as the probability model of the objective variable, and the expected value of the quality y with respect to the manufacturing condition x is converted by a monotonically increasing function to obtain a linear model. A method called a generalized linear model for modeling with a regression equation is used. In the configuration of the quality model in the present invention, the coefficient of the linear regression equation is estimated by the maximum likelihood method.

1.1.第1実施形態
図1は、第1実施形態にかかる本発明の製品品質の制御方法(以下、「第1実施形態にかかる制御方法」という。)に備えられる工程を示すフローチャートである。図1に示すように、第1実施形態にかかる制御方法は、データ集計工程(工程S11)と、回帰式定義工程(工程S12)と、係数算出工程(工程S13)と、目標値算出工程(工程S14)と、製造条件変更工程(工程S15)と、を備える。
1.1. First Embodiment FIG. 1 is a flowchart showing steps provided in a product quality control method of the present invention according to a first embodiment (hereinafter referred to as “control method according to the first embodiment”). As shown in FIG. 1, the control method according to the first embodiment includes a data aggregation step (step S11), a regression equation definition step (step S12), a coefficient calculation step (step S13), and a target value calculation step ( Step S14) and a manufacturing condition changing step (Step S15).

<工程S11>
工程S11では、個々の製品と製造条件及び品質の実現値とを対応付けた製造条件データ又は品質データが作成されるとともに、製造条件データ又は品質データの集合が作成される。製造条件データは、製品番号をn=1、2、…、Nとしてxと表す。製造条件データの集合は、1又は複数の製造条件データを要素とする集合であり、ベクトルxを転置して行方向に並べた行列X=[x … x]で表す。着目する計数値で表される製品品質をyとし、製品品質データをyと表す。製品品質データの集合は、1又は複数の製品品質データを要素とする集合であり、yを転置して行方向に並べたベクトルY=[y … y]で表す。
<Step S11>
In step S11, manufacturing condition data or quality data in which individual products are associated with manufacturing conditions and quality realization values are created, and a set of manufacturing condition data or quality data is created. In the manufacturing condition data, product numbers are expressed as xn , where n = 1, 2,. The set of manufacturing condition data is a set having one or a plurality of manufacturing condition data as elements, and is represented by a matrix X = [x 1 x 2 ... X N ] T in which the vector x n is transposed and arranged in the row direction. Product quality represented by the focused count and y, representing the product quality data and y n. A set of product quality data is a set having one or a plurality of product quality data as elements, and is represented by a vector Y = [y 1 y 2 ... Y N ] T obtained by transposing y n and arranging them in the row direction.

<工程S12>
工程S12は、製造条件に応じた製品の品質を線形回帰式で定義する工程である。回帰計数ベクトルをc=[c … c]とするとき、線形回帰式は下記式1により表すことができる。
<Step S12>
Step S12 is a step of defining the quality of the product according to the manufacturing conditions by a linear regression equation. When the regression count vector is c = [c 0 c 1 ... C N ] T , the linear regression equation can be expressed by the following equation 1.

Figure 2009064054
Figure 2009064054

<工程S13>
工程S13は、線形回帰式の係数を、品質の測定結果、及び/又は、製造条件の実績データに基づいて算出する工程である。制御される製品の品質が、不具合の発生確率の小さい対象である場合、当該品質は、ポアソン分布や二項分布等に代表される離散確率分布によって高精度に近似することができる。制御される製品の品質が、条鋼製品の表面疵や内部欠陥の欠点数である場合、単位当たりの欠点数平均をλとすると、対象量Wにおける欠点数yは平均λWのポアソン分布に従う確率変数であり、その確率は下記式2により表すことができる。
<Step S13>
Step S13 is a step of calculating the coefficient of the linear regression equation based on the quality measurement result and / or the production result data. When the quality of the product to be controlled is an object with a low probability of occurrence of defects, the quality can be approximated with high accuracy by a discrete probability distribution represented by a Poisson distribution, a binomial distribution, or the like. When the quality of the product to be controlled is the number of defects of the surface defects or internal defects of the long steel product, if the average number of defects per unit is λ, the number of defects y in the target quantity W is a random variable according to the Poisson distribution with the average λW The probability can be expressed by the following equation 2.

Figure 2009064054

欠点数は、単位当たりの個数で比較されるものなので、単位当たり欠点数平均λを製造条件の線形回帰式で表す品質モデルは下記式3により表すことができ、製造条件に対する対象量Wにおける欠点数の確率分布は下記式4で表すことができる。
Figure 2009064054

Since the number of defects is compared by the number per unit, the quality model that expresses the average number of defects per unit λ by the linear regression equation of the production condition can be expressed by the following equation 3, and the defect in the target amount W with respect to the production condition: The probability distribution of the numbers can be expressed by the following formula 4.

Figure 2009064054
Figure 2009064054

Figure 2009064054
Figure 2009064054

最尤法による回帰パラメータcの推定は、対数尤度Lを、製品品質データ集合及び製造条件データ集合を用いて下記式5で定義し、これを最大化する回帰パラメータcを求めることにより行う。   The estimation of the regression parameter c by the maximum likelihood method is performed by defining the log likelihood L by the following equation 5 using the product quality data set and the manufacturing condition data set, and obtaining the regression parameter c that maximizes this.

Figure 2009064054
Figure 2009064054

Figure 2009064054
Figure 2009064054

Figure 2009064054
Figure 2009064054

式6で表される対数尤度Lを最大にする回帰パラメータcは、下記式7で表される必要条件を満たす解を、ニュートン法等により求め、その解の中から対数尤度Lを最大にするものを選択する方法や、遂次二次計画法のような非線形最適化法により求めることができる。   The regression parameter c for maximizing the log likelihood L expressed by Equation 6 is obtained by finding a solution satisfying the requirements expressed by the following Equation 7 by the Newton method or the like, and the log likelihood L is maximized from the solution. This can be obtained by a method of selecting a target to be selected or by a nonlinear optimization method such as successive quadratic programming.

Figure 2009064054
Figure 2009064054

これに対し、制御される製品の品質が、不良品数の場合、対象製品個数Mに対する不良個数yは、1回試行した場合に発生する確率がρの事象をM回試行する場合における、発生回数に関する二項分布に従う確率変数であり、その確率分布は、一つの製品が不良品になる確率をρとして、下記式8により表すことができる。   On the other hand, when the quality of the product to be controlled is the number of defective products, the number of defectives y for the target product number M is the number of occurrences when the probability of occurrence of ρ when trying once is tried M times. The probability distribution can be expressed by the following equation 8 where ρ is the probability that one product will be defective.

Figure 2009064054

また、式8において、
Figure 2009064054

Also, in Equation 8,

Figure 2009064054

は、相異なるM個の中からy個を抽出する組合せの数である。
Figure 2009064054

Is the number of combinations that extract y out of the different M.

不良品の発生確率は、製造条件の線形回帰式で表した下記式9により表すことができる。また、製造条件に対する対象個数Mに対する不良品数の確率分布は、下記式10により表すことができる。   The occurrence probability of a defective product can be expressed by the following formula 9 expressed by a linear regression formula of manufacturing conditions. Further, the probability distribution of the number of defective products with respect to the target number M with respect to the manufacturing conditions can be expressed by the following formula 10.

Figure 2009064054
Figure 2009064054

Figure 2009064054
Figure 2009064054

制御される製品の品質が不良品数の場合、最尤法による回帰パラメータcの推定は、対数尤度Lを、製品品質データ集合及び製造条件データ集合を用いて下記式11で定義し、これを最大化する回帰パラメータcを求めることにより行う。   When the quality of the controlled product is the number of defective products, the regression parameter c is estimated by the maximum likelihood method. The log likelihood L is defined by the following equation 11 using the product quality data set and the manufacturing condition data set, This is done by determining the regression parameter c to be maximized.

Figure 2009064054

式11において、M=[M … M]である。
Figure 2009064054

In Equation 11, M = [M 1 M 2 ... M N ] T.

上記式4、式9、及び、式10より、対数尤度Lは下記式12で表すことができる。   From the above Equation 4, Equation 9, and Equation 10, the log likelihood L can be expressed by the following Equation 12.

Figure 2009064054
Figure 2009064054

式12で表される対数尤度Lを最大にする回帰パラメータcは、制御される製品の品質が欠点数である場合と同様の方法により、求めることができる。   The regression parameter c that maximizes the log likelihood L expressed by Equation 12 can be obtained by the same method as that when the quality of the controlled product is the number of defects.

<工程S14>
工程S14は、線形回帰式S(x,c)に基づき、製造条件の最適目標値を算出する工程である。上記式3のλ(x,c)、及び、上記式9のρ(x,c)は、線形回帰式S(x,c)を単調増加関数で変換したものに相当する。それゆえ、λ(x,c)及びS(x,c)と、ρ(x,c)及びS(x,c)とは、それぞれ、一対一に対応している。また、λ(x,c)及びρ(x,c)は、これらの値が小さくなるほど製品の品質は改善される。したがって、欠点数及び不良品数の何れの品質に対しても、上記式1で表される線形回帰式の各項cが減少する方向にxが変化すれば、品質は改善する。本実施形態では、最適目標値として製造条件データ集合の要素を用いて算出した製造条件
<Step S14>
Step S14 is a step of calculating the optimum target value of the manufacturing conditions based on the linear regression equation S (x, c). Λ (x, c) in Equation 3 and ρ (x, c) in Equation 9 correspond to a linear regression equation S (x, c) converted by a monotonically increasing function. Therefore, λ (x, c) and S (x, c) and ρ (x, c) and S (x, c) correspond to each other one to one. Further, as λ (x, c) and ρ (x, c) are smaller, the quality of the product is improved. Therefore, for any quality of the number of defects and the number of defective products, the quality improves if x i changes in a direction in which each term c i x i of the linear regression equation expressed by the above equation 1 decreases. In the present embodiment, the manufacturing condition calculated using the elements of the manufacturing condition data set as the optimum target value

Figure 2009064054

を最適目標値とする。製造条件データは実際の製品製造時に得られたものであるから、製造条件データに基づいて得られる最適操業目標値は、製造条件データから大きく外れることがなく、実際に適用する場合に信頼性が高い。
Figure 2009064054

Is the optimum target value. Since the manufacturing condition data is obtained at the time of actual product manufacture, the optimum operation target value obtained based on the manufacturing condition data is not greatly deviated from the manufacturing condition data, and is reliable when actually applied. high.

最適目標値の計算方法の具体例としては、以下のものを挙げることができる。   Specific examples of the method for calculating the optimum target value include the following.

・S(x,c)の値が最小となるxを求め、下記式13より最適目標値を得る方法。 A method for obtaining x n that minimizes the value of S (x n , c) and obtaining the optimum target value from the following equation (13).

Figure 2009064054
Figure 2009064054

・上記式13で表される   ・ Represented by Equation 13 above

Figure 2009064054

と製造条件データxとを用いて表される
Figure 2009064054

And manufacturing condition data x n

Figure 2009064054

の値が小さい順に予め定めた、ν個のxの平均値(下記式14で表される
Figure 2009064054

The average value of ν 2 x n (represented by the following formula 14)

Figure 2009064054

)を求めることにより、最適目標値を得る方法。
Figure 2009064054

) To obtain the optimal target value.

Figure 2009064054
Figure 2009064054

・上記式13で表される   ・ Represented by Equation 13 above

Figure 2009064054

と、製造条件データ集合における平均値
Figure 2009064054

And the average value in the production condition data set

Figure 2009064054

とについて、成分毎に比較して、回帰係数と各条件項目との積が品質を改善する方向にある方を選択して組み合わせた、下記式15で表される
Figure 2009064054

For each of the components, the product of the regression coefficient and each condition item is selected and combined in the direction of improving the quality, and is expressed by the following formula 15.

Figure 2009064054

を求めることにより、最適目標値を得る方法。
Figure 2009064054

A method to obtain the optimal target value by obtaining

Figure 2009064054

上記式15において、
Figure 2009064054

In Equation 15 above,

Figure 2009064054

の場合(j=1、2)、
Figure 2009064054

(J = 1, 2),

Figure 2009064054

であり、
Figure 2009064054

And

Figure 2009064054

の場合(j=1、2)、
Figure 2009064054

(J = 1, 2),

Figure 2009064054

である。
Figure 2009064054

It is.

<工程S15>
工程S15は、上記工程S14で算出された目標値に基づいて、製造条件を変更する工程である。製造条件の変更形態は、変更前よりも目標値に近い製造条件となるように変更後の製造条件が特定される形態であれば特に限定されるものではないが、例えば、上記工程S14で算出した目標値を、変更後の製造条件とする形態等を挙げることができる。
<Step S15>
Step S15 is a step of changing manufacturing conditions based on the target value calculated in step S14. The manufacturing condition change mode is not particularly limited as long as the manufacturing condition after the change is specified so that the manufacturing condition is closer to the target value than before the change, but for example, calculated in step S14 above. The form etc. which make the set target value the manufacturing conditions after a change can be mentioned.

このように、工程S11〜工程S15を備える第1実施形態にかかる制御方法によれば、実際の製品製造時に得た製造条件データに基づいて算出した目標値を用いて、製造条件を変更することにより、製品の品質を制御する。それゆえ、第1実施形態にかかる制御方法によれば、信頼性の高い目標値に基づいて製品の品質を制御することができるので、良好な品質の製品を安定して得ることが可能な、製品品質の制御方法を提供することができる。   Thus, according to the control method concerning 1st Embodiment provided with process S11-process S15, manufacturing conditions are changed using the target value calculated based on the manufacturing condition data obtained at the time of actual product manufacture. To control the quality of the product. Therefore, according to the control method according to the first embodiment, the quality of the product can be controlled based on the reliable target value, so that a product with a good quality can be stably obtained. A product quality control method can be provided.

1.2.第2実施形態
図2は、第2実施形態にかかる本発明の製品品質の制御方法(以下、「第2実施形態にかかる制御方法」という。)に備えられる工程を示すフローチャートである。図2に示すように、第2実施形態にかかる制御方法は、データ集計工程(工程S21)と、回帰式定義工程(工程S22)と、係数算出工程(工程S23)と、製造条件抽出工程(工程S24)と、目標値算出工程(工程S25)と、製造条件変更工程(工程S26)と、を備える。
1.2. Second Embodiment FIG. 2 is a flowchart showing steps provided in a product quality control method of the present invention according to a second embodiment (hereinafter referred to as “control method according to the second embodiment”). As shown in FIG. 2, the control method according to the second embodiment includes a data aggregation step (step S21), a regression equation definition step (step S22), a coefficient calculation step (step S23), and a manufacturing condition extraction step ( Step S24), a target value calculation step (Step S25), and a manufacturing condition change step (Step S26).

<工程S21>
工程S21では、個々の製品と製造条件及び品質の実現値とを対応付けた製造条件データ又は品質データが作成されるとともに、製造条件データ又は品質データの集合が作成される。工程S21は上記工程S11と同様の工程であるため、説明は省略する。
<Step S21>
In step S21, manufacturing condition data or quality data in which individual products are associated with manufacturing conditions and quality realization values are created, and a set of manufacturing condition data or quality data is created. Since step S21 is the same as step S11, description thereof is omitted.

<工程S22>
工程S22は、製造条件に応じた製品の品質を線形回帰式で定義する工程である。工程S22は上記工程S12と同様の工程であるため、説明は省略する。
<Step S22>
Step S22 is a step of defining the quality of the product according to the manufacturing conditions by a linear regression equation. Since step S22 is the same as step S12, description thereof is omitted.

<工程S23>
工程S23は、線形回帰式の係数を、品質の測定結果、及び/又は、製造条件の実績データに基づいて算出する工程である。工程S23は上記工程S13と同様の工程であるため、説明は省略する。
<Step S23>
Step S23 is a step of calculating the coefficient of the linear regression equation based on the quality measurement result and / or the production result data. Since step S23 is the same as step S13, description thereof is omitted.

<工程S24>
工程S24は、品質モデルにおける説明変数の全てが製造装置で変更可能ではなく、又は、変更可能であっても品質へ与える影響が小さい場合があることを考慮して、変更可能かつ品質へ与える影響が大きい変数(製造条件)を選択し、選択した製造条件を用いて、最適目標値を特定することを目的とする工程である。工程S24では、一般化線形モデルにおけるデビアンスと呼ばれる統計量を基に、品質への影響が大きい変数を選択する。デビアンスdは、製造条件データ及び品質データを最尤法で求めた最適な回帰係数
<Step S24>
In step S24, all of the explanatory variables in the quality model are not changeable in the manufacturing apparatus, or even if they can be changed, the influence on the quality may be small and the influence on the quality may be changed. This is a process aimed at selecting a variable (manufacturing condition) having a large value and specifying an optimum target value using the selected manufacturing condition. In step S24, a variable having a large influence on quality is selected based on a statistic called deviance in the generalized linear model. Debiansu d v, the optimum regression coefficient calculated production condition data and quality data in the maximum likelihood method

Figure 2009064054

を用いた最大尤度を基に、下記式16で定義される。ただし、下記式16では、記号が煩雑になるため欠点数における対象量や不良品数における対象個数は省略している。
Figure 2009064054

Based on the maximum likelihood using However, in the following Expression 16, since the symbols are complicated, the target amount in the number of defects and the target number in the number of defective products are omitted.

Figure 2009064054

式16より、デビアンスが小さいほど、回帰係数
Figure 2009064054

From Equation 16, the smaller the deviance, the regression coefficient

Figure 2009064054

を用いた品質モデルは、データに対して当てはまりが良いと言える。
Figure 2009064054

It can be said that the quality model using is suitable for data.

品質モデルの全ての説明変数におけるデビアンス   Deviance in all explanatory variables of the quality model

Figure 2009064054

と、k番目の説明変数を一つだけ除外した品質モデルのデビアンス
Figure 2009064054

And the deviance of the quality model that excludes only one k-th explanatory variable.

Figure 2009064054

とを用いて、デビアンス増分Δdvkを下記式17で定義する。
Figure 2009064054

And the deviance increment Δd vk is defined by Equation 17 below.

Figure 2009064054

式17において、Xはk番目の説明変数を一つだけ除外した製造条件データ集合を表し、
はXとYから求めた一般化線形モデルの回帰係数である。デビアンス増分Δdvkは、除外した変数を説明変数に含めることで一般化線形モデルの当てはまりが改善される程度を表す指標である。したがって、デビアンス増分Δdvkが全ての説明変数の中で上位にある変数(Δdvk)は、製品の品質の変動に与える影響が大きいとみなすことができる。このようにして選択した製造条件から製造装置の運転により操作可能なものを選んだものを操作可能変数と呼び、製品の製造条件から操作可能変数を除いた変数を外乱変数と呼ぶ。
Figure 2009064054

In Equation 17, X k represents a manufacturing condition data set excluding only one k-th explanatory variable,
c k is a regression coefficient of the generalized linear model obtained from X k and Y. The deviance increment Δd vk is an index representing the degree to which the fit of the generalized linear model is improved by including the excluded variable in the explanatory variable. Therefore, it can be considered that the variable (Δd vk ) in which the deviance increment Δd vk is higher than all the explanatory variables has a large influence on the fluctuation of the product quality. A variable that can be operated by operating the manufacturing apparatus from the selected manufacturing conditions is referred to as an operable variable, and a variable obtained by removing the operable variable from the manufacturing conditions of the product is referred to as a disturbance variable.

品質モデルにおける線形回帰式S(x,c)を、操作可能項S(x,c)と外乱項S(x,c)との和として表すと、下記式18のようになる。 When the linear regression equation S (x, c) in the quality model is expressed as the sum of the operable term S C (x C , c C ) and the disturbance term S D (x D , c D ), the following equation 18 is obtained. become.

Figure 2009064054

ここで、操作可能項S(x,c)は、操作可能変数xとこれに乗ぜられる係数c及び定数項からなり、下記式19で表される。また、外乱項S(x,c)は、外乱変数xとこれに乗ぜられる係数cからなり、下記式20で表される。
Figure 2009064054

Here, the manipulable term S C (x C , c C ) is composed of the manipulable variable x C , a coefficient c C multiplied by the variable, and a constant term, and is represented by the following Expression 19. The disturbance term S D (x D , c D ) is composed of a disturbance variable x D and a coefficient c D multiplied by the disturbance variable x D, and is expressed by the following equation 20.

Figure 2009064054
Figure 2009064054

Figure 2009064054
Figure 2009064054

<工程S25>
工程S25は、上記工程S22〜工程S24で得られた情報に基づいて、製造条件の目標値を算出する工程である。工程S25では、操作可能変数の最適目標値(製造条件の目標値)を、以下の手順で算出する。
(1)製品製造条件データ集合におけるS(xCn,c)の平均値
<Step S25>
Step S25 is a step of calculating a target value of the manufacturing conditions based on the information obtained in the above steps S22 to S24. In step S25, the optimal target value of the operable variable (target value of the manufacturing condition) is calculated according to the following procedure.
(1) Average value of S C (x Cn , c C ) in the product manufacturing condition data set

Figure 2009064054

とS(xDn,c)の平均値
Figure 2009064054

And the average value of S D (x Dn , c D )

Figure 2009064054

とを各々算出する。
(2)製品製造条件データ集合において、
Figure 2009064054

Are calculated respectively.
(2) In the product manufacturing condition data set,

Figure 2009064054

である製造条件データxを用いて、S(xCn,c)が小さく、製品品質が良好になる製造条件
Figure 2009064054

Manufacturing conditions in which S C (x Cn , c C ) is small and product quality is good using manufacturing condition data x n

Figure 2009064054

を算出する。ここで、εは予め定めた正の定数で、例えば、製造条件データ集合全体での|S(x,c)|の平均値
Figure 2009064054

Is calculated. Here, ε is a predetermined positive constant, for example, the average value of | S (x, c) | over the entire manufacturing condition data set

Figure 2009064054

の5%程度に設定することができる。製造条件
Figure 2009064054

Can be set to about 5%. Manufacturing conditions

Figure 2009064054

の算出方法の具体例としては、以下のものを挙げることができる。
Figure 2009064054

As specific examples of the calculation method, the following can be cited.

・S(xCn,c)が最小となるxを選択し、 Select xn that minimizes S C (x Cn , c C ),

Figure 2009064054

を算出する方法。かかる方法で算出される製造条件の目標値
Figure 2009064054

How to calculate Target value of manufacturing conditions calculated by this method

Figure 2009064054

は、下記式21で表すことができる。
Figure 2009064054

Can be represented by the following formula 21.

Figure 2009064054
Figure 2009064054

・上記式21で表される   ・ Represented by Equation 21 above

Figure 2009064054

と変更可能製造条件データxCnとを用いて表される
Figure 2009064054

And changeable manufacturing condition data x Cn

Figure 2009064054

の値が小さい順に予め定めたν個のxCnに関する平均値
Figure 2009064054

The average value for ν 2 x Cn determined in ascending order

Figure 2009064054

を目標値とする方法。かかる方法で算出される製造条件の目標値
Figure 2009064054

A method for setting the target value. Target value of manufacturing conditions calculated by this method

Figure 2009064054

は、下記式22で表すことができる。
Figure 2009064054

Can be represented by the following formula 22.

Figure 2009064054
Figure 2009064054

・上記式21で表される   ・ Represented by Equation 21 above

Figure 2009064054

及び上記式22で表される
Figure 2009064054

And represented by Formula 22 above

Figure 2009064054

と、製造条件データ集合における平均値
Figure 2009064054

And the average value in the production condition data set

Figure 2009064054

とについて、成分毎に比較して、回帰係数と各条件項目との積が品質を改善する方向にある方を取り出して組み合わせた
Figure 2009064054

Compared for each component, the product of the regression coefficient and each condition item is in the direction of improving quality and combined.

Figure 2009064054

を製造条件の目標値とする方法。かかる方法で算出される製造条件の目標値
Figure 2009064054

Is the target value of manufacturing conditions. Target value of manufacturing conditions calculated by this method

Figure 2009064054

は、下記式23で表すことができる。
Figure 2009064054

Can be represented by the following Equation 23.

Figure 2009064054

上記式23において、
Figure 2009064054

In Equation 23 above,

Figure 2009064054

の場合(j=1、2)、
Figure 2009064054

(J = 1, 2),

Figure 2009064054

であり、
Figure 2009064054

And

Figure 2009064054

の場合(j=1、2)、
Figure 2009064054

(J = 1, 2),

Figure 2009064054

である。
Figure 2009064054

It is.

<工程S26>
工程S26は、上記工程S25で算出された目標値に基づいて、製造条件を変更する工程である。製造条件の変更形態は、変更前よりも目標値に近い製造条件となるように変更後の製造条件が特定される形態であれば特に限定されるものではないが、例えば、上記工程S25で算出した目標値を、変更後の製造条件とする形態等を挙げることができる。
<Step S26>
Step S26 is a step of changing the manufacturing conditions based on the target value calculated in step S25. The change mode of the manufacturing condition is not particularly limited as long as the manufacturing condition after the change is specified so that the manufacturing condition is closer to the target value than before the change, but for example, calculated in the above step S25. The form etc. which make the set target value the manufacturing conditions after a change can be mentioned.

このように、工程S21〜工程S26を備える第2実施形態にかかる制御方法によれば、品質に大きな影響を及ぼす製造条件の目標値を求め、求めた目標値に基づいて製造条件を変更することにより、製品の品質を制御する。それゆえ、第2実施形態にかかる制御方法によれば、製品の品質を確実に向上させることができるので、良好な品質の製品を安定して得ることが可能な、製品品質の制御方法を提供することができる。   Thus, according to the control method concerning 2nd Embodiment provided with process S21-process S26, the target value of the manufacturing conditions which have big influence on quality is calculated | required, and manufacturing conditions are changed based on the calculated | required target value. To control the quality of the product. Therefore, according to the control method according to the second embodiment, it is possible to reliably improve the quality of the product, and thus it is possible to provide a product quality control method capable of stably obtaining a good quality product. can do.

2.製品品質の制御装置
2.1.第1実施形態
図3は、第1実施形態にかかる本発明の製品品質の制御装置(以下、「第1実施形態にかかる制御装置」という。)の形態例を示す概念図である。図3に示すように、第1実施形態にかかる制御装置10は、回帰式定義部1と、係数算出部2と、目標値算出部3と、製造条件変更部4と、算出部6と、結果表示部7と、を備えている。
2. Product quality control device 2.1. First Embodiment FIG. 3 is a conceptual diagram showing a configuration example of a product quality control apparatus (hereinafter referred to as “control apparatus according to a first embodiment”) according to the first embodiment of the present invention. As shown in FIG. 3, the control device 10 according to the first embodiment includes a regression equation defining unit 1, a coefficient calculating unit 2, a target value calculating unit 3, a manufacturing condition changing unit 4, a calculating unit 6, And a result display unit 7.

算出部6には、作業者によって入力された製造条件データや品質データに関する情報が送られ、当該情報に基づいて、上記工程S11の作業が行われる。算出部6で算出された数値等に関する情報は、回帰式定義部1及び係数算出部2へと送られる。そして、回帰式定義部1において、上記工程S12の作業が行われることにより、線形回帰式が定義され、係数算出部2において、上記工程S13の作業が行われることにより、線形回帰式の係数が計算される。回帰式定義部1で定義された線形回帰式に関する情報、及び、係数算出部2で特定された線形回帰式の係数に関する情報は、その後、目標値算出部3へと送られる。そして、これらの情報を用いて、目標値算出部3において、上記工程S14の作業が行われることにより、製造条件の目標値が算出され、算出された目標値に関する情報は、製造条件変更部4及び結果表示部7へと送られる。製造条件変更部4では、目標値算出部3から送られてきた目標値に基づいて、上記工程S15の作業が行われ、変更後の製造条件が特定される。変更後の製造条件に関する情報は、結果表示部7へと送られる。結果表示部7は、目標値算出部3及び製造条件変更部4から送られてきた情報を表示し、当該結果表示部7に表示された情報は、作業者によって確認される。   Information relating to the manufacturing condition data and quality data input by the operator is sent to the calculation unit 6, and the operation of the above-described step S11 is performed based on the information. Information on the numerical values calculated by the calculation unit 6 is sent to the regression equation definition unit 1 and the coefficient calculation unit 2. Then, the regression equation defining unit 1 defines the linear regression equation by performing the operation of the step S12, and the coefficient calculating unit 2 performs the operation of the step S13 so that the coefficient of the linear regression equation is determined. Calculated. Information regarding the linear regression equation defined by the regression equation defining unit 1 and information regarding the coefficient of the linear regression equation identified by the coefficient calculating unit 2 are then sent to the target value calculating unit 3. Then, using these pieces of information, the target value calculation unit 3 calculates the target value of the manufacturing condition by performing the operation of the above-described step S14, and the information regarding the calculated target value is the manufacturing condition changing unit 4 And sent to the result display unit 7. In the manufacturing condition changing unit 4, the process S15 is performed based on the target value sent from the target value calculating unit 3, and the changed manufacturing condition is specified. Information about the changed manufacturing conditions is sent to the result display unit 7. The result display unit 7 displays information sent from the target value calculation unit 3 and the manufacturing condition change unit 4, and the information displayed on the result display unit 7 is confirmed by the operator.

このように、制御装置10によれば、上記第1実施形態にかかる制御方法を実施することができるので、本発明によれば、良好な品質の製品を安定して得ることが可能な、製品品質の制御装置10を提供することができる。なお、制御装置10における回帰式定義部1、係数算出部2、目標値算出部3、及び、製造条件変更部4は、パーソナルコンピュータやプロセスコンピュータの中央処理装置(CPU)等に、その機能を担わせることができる。   As described above, according to the control device 10, the control method according to the first embodiment can be performed. Therefore, according to the present invention, a product capable of stably obtaining a product of good quality can be obtained. A quality control device 10 can be provided. Note that the regression equation defining unit 1, the coefficient calculating unit 2, the target value calculating unit 3, and the manufacturing condition changing unit 4 in the control device 10 have their functions provided to a central processing unit (CPU) of a personal computer or a process computer. You can carry it.

2.2.第2実施形態
図4は、第2実施形態にかかる本発明の製品品質の制御装置(以下、「第2実施形態にかかる制御装置」という。)の形態例を示す概念図である。図4において、図3と同様の構成を採るものには、図3で使用した符号と同符号を付す。
図4に示すように、第2実施形態にかかる制御装置20は、回帰式定義部1と、係数算出部2と、目標値算出部3と、製造条件変更部4と、製造条件抽出部5と、算出部6と、結果表示部7と、を備えている。
2.2. Second Embodiment FIG. 4 is a conceptual diagram showing an example of a product quality control apparatus (hereinafter referred to as “control apparatus according to a second embodiment”) of the present invention according to a second embodiment. 4, components having the same configuration as in FIG. 3 are denoted by the same symbols as those used in FIG.
As shown in FIG. 4, the control device 20 according to the second embodiment includes a regression equation defining unit 1, a coefficient calculating unit 2, a target value calculating unit 3, a manufacturing condition changing unit 4, and a manufacturing condition extracting unit 5. And a calculation unit 6 and a result display unit 7.

算出部6では、上記工程S21の作業が行われ、回帰式定義部1では上記工程S22の作業が、係数算出部2では上記工程S23の作業が、それぞれ行われる。製造条件抽出部5では、上記工程S24の作業が行われ、当該製造条件抽出部5により、製品の品質に大きな影響を及ぼす製造条件が抽出される。製造条件抽出部5で抽出された製造条件に関する情報、並びに、回帰式定義部1及び係数算出部2で得られた情報は、目標値算出部3へと送られ、当該目標値算出部3において、上記工程S25の作業が行われる。上記工程S25の作業が行われることにより、目標値算出部3で算出された目標値に関する情報は、製造条件変更部4及び結果表示部7へと送られる。製造条件変更部4では、目標値算出部3から送られてきた目標値に基づいて、上記工程S26の作業が行われ、変更後の製造条件が特定される。変更後の製造条件に関する情報は、結果表示部7へと送られる。結果表示部7は、目標値算出部3及び製造条件変更部4から送られてきた情報を表示し、当該結果表示部7に表示された情報は、作業者によって確認される。   The calculation unit 6 performs the process S21, the regression equation definition unit 1 performs the process S22, and the coefficient calculation unit 2 performs the process S23. In the manufacturing condition extraction unit 5, the operation of the above-described step S <b> 24 is performed, and the manufacturing condition extraction unit 5 extracts manufacturing conditions that greatly affect the quality of the product. Information on the manufacturing conditions extracted by the manufacturing condition extracting unit 5 and information obtained by the regression equation defining unit 1 and the coefficient calculating unit 2 are sent to the target value calculating unit 3, and the target value calculating unit 3 The operation of step S25 is performed. By performing the operation of step S25, information on the target value calculated by the target value calculation unit 3 is sent to the manufacturing condition change unit 4 and the result display unit 7. In the manufacturing condition changing unit 4, the process S26 is performed based on the target value sent from the target value calculating unit 3, and the changed manufacturing condition is specified. Information about the changed manufacturing conditions is sent to the result display unit 7. The result display unit 7 displays information sent from the target value calculation unit 3 and the manufacturing condition change unit 4, and the information displayed on the result display unit 7 is confirmed by the operator.

このように、制御装置20によれば、上記第2実施形態にかかる制御方法を実施することができるので、本発明によれば、製品の品質を確実に向上させることが可能な、製品品質の制御装置20を提供することができる。なお、制御装置20における回帰式定義部1、係数算出部2、目標値算出部3、製造条件変更部4、及び、製造条件抽出部5は、パーソナルコンピュータやプロセスコンピュータの中央処理装置(CPU)等に、その機能を担わせることができる。   Thus, according to the control apparatus 20, since the control method concerning the said 2nd Embodiment can be implemented, according to this invention, the quality of product which can improve the quality of a product reliably is improved. A control device 20 can be provided. Note that the regression equation defining unit 1, the coefficient calculating unit 2, the target value calculating unit 3, the manufacturing condition changing unit 4, and the manufacturing condition extracting unit 5 in the control device 20 are a central processing unit (CPU) of a personal computer or a process computer. And so on.

実施例の結果を参照しつつ、本発明についてさらに説明する。   The present invention will be further described with reference to the results of the examples.

本実施例で取り上げる鉄鋼条鋼製品の製造プロセス例を図5に示す。二次精錬後に連続鋳造機で鋳造されたブルーム鋳片を加熱炉で加熱・分塊し、その後、分塊圧延工程及び条鋼圧延工程等を経て、棒鋼・線材等の鉄鋼条鋼製品が製造される。   FIG. 5 shows an example of the manufacturing process of the steel product taken up in this embodiment. Bloom slabs cast by a continuous casting machine after secondary refining are heated and slabbed in a heating furnace, and then steel strip products such as bar and wire rods are manufactured through the slabbing and strip rolling processes. .

本実施例における制御装置では、品質指標として製品表面疵不良品率を選択し、製造条件として、溶鋼成分、連続鋳造における製造条件、及び、分塊圧延における加熱炉温度等、合計14項目を選択した。また、算出部では、各製造条件を項目ごとに平均0、分散1となるように規準化し、係数算出部で本実施例における品質モデルの線形回帰式の係数を算出した。本実施例における品質モデルの線形回帰式の係数及びデビアンス増分を、表1に併せて示す。また、図6に、過去の製造実績データを用いた線形回帰式の係数計算における、線形回帰式の値と不良品率の推定値との関係を示す。図6は、最尤法で、表1の回帰式の係数を決定した結果、製造条件の線形回帰値Sと不良品発生率ρとの関係をプロットした図であり、実績データに対する本回帰式の推定精度を表している。   In the control apparatus in the present embodiment, the product surface defect rate is selected as a quality index, and a total of 14 items, such as molten steel components, manufacturing conditions in continuous casting, and furnace temperature in ingot rolling, are selected as manufacturing conditions. did. The calculation unit normalized each manufacturing condition so that the average was 0 and the variance 1 for each item, and the coefficient calculation unit calculated the coefficient of the linear regression equation of the quality model in this example. Table 1 also shows the coefficients of the linear regression equation of the quality model and the deviance increment in this example. FIG. 6 shows the relationship between the value of the linear regression equation and the estimated value of the defective product rate in the calculation of the coefficient of the linear regression equation using past manufacturing performance data. FIG. 6 is a graph plotting the relationship between the linear regression value S of the manufacturing conditions and the defective product incidence ρ as a result of determining the coefficients of the regression formula of Table 1 by the maximum likelihood method. Represents the estimated accuracy.

Figure 2009064054
Figure 2009064054

図7に、本実施例で示したデータの操作可能項Sと外乱項Sとの関係を示す。図7に示すように、操作可能項Sを横軸に、外乱項Sを縦軸に各々とり、各製品のロット毎の実績値をプロットすると、操作可能変数の最適条件等による線形回帰式の到達値が理解しやすい。図7に示す複数の破線は、品質指標の等高線であり、線上では同じ値であることを表している。水平方向の実線は、外乱項の平均値である。また、図7のSは、S(x,c)
を意味する。上記式21に基づいて算出した
Figure 7 shows the relationship between the operational section S C and the disturbance term S D of the data shown in this embodiment. As shown in FIG. 7, the operational section S C on the horizontal axis, taking each disturbance term S D on the vertical axis and plotting the actual values for each lot of the product, a linear regression by the optimum conditions of the operational variables The reached value of the formula is easy to understand. A plurality of broken lines shown in FIG. 7 are contour lines of the quality index and represent the same value on the line. The solid line in the horizontal direction is the average value of the disturbance term. Further, S in FIG. 7 is S (x, c)
Means. Calculated based on Equation 21 above

Figure 2009064054

を、図7の丸で囲んだ点で示し、
Figure 2009064054

Is indicated by the circled points in FIG.

Figure 2009064054

の近傍6個から上記式22に基づいて算出した
Figure 2009064054

Calculated based on the above formula 22 from 6 neighborhoods

Figure 2009064054

を、図7の菱形で示す。
Figure 2009064054

Is shown by the diamonds in FIG.

このようにして決定した最適目標値を参考にして、製造を行った。上記式18より、S(x,c)は操作可能項と外乱項との和として表され、操作可能項を構成する操作可能変数のうち、品質の変動に与える影響が最も大きい操作可能変数(製造条件)は、表1より、xC1で表される製造条件である。そこで、本実施例では、操作可能変数のxC1が、ほぼ目標値どおりとなる製造条件へと変更し、製品を製造した。各操作可能変数の目標値の平均値(規格化後)と、変更後の製造条件における各操作可能変数の平均値(規格化後)との関係を図8に、製造条件変更前後の不良品発生率の結果を図9に、それぞれ示す。図9に示すように、本実施例によれば、10%程度であった不良品発生率を、5%未満へと低減することができた。したがって、本発明によれば、製品の品質を確実に向上させることができる。 The production was carried out with reference to the optimum target value determined in this way. From the above equation 18, S (x, c) is expressed as the sum of the manipulable term and the disturbance term, and among the manipulable variables constituting the manipulable term, the manipulable variable having the greatest influence on the quality fluctuation ( (Manufacturing conditions) is a manufacturing condition represented by xC1 from Table 1. Therefore, in this example, the manufacturable variable x C1 is changed to a manufacturing condition that is almost the target value, and the product is manufactured. FIG. 8 shows the relationship between the average value of target values for each operable variable (after standardization) and the average value of each operable variable (after standardization) under the changed manufacturing conditions. The results of the incidence are shown in FIG. As shown in FIG. 9, according to this example, the defective product generation rate which was about 10% could be reduced to less than 5%. Therefore, according to this invention, the quality of a product can be improved reliably.

第1実施形態にかかる制御方法に備えられる工程を示すフローチャートである。It is a flowchart which shows the process with which the control method concerning 1st Embodiment is equipped. 第2実施形態にかかる制御方法に備えられる工程を示すフローチャートである。It is a flowchart which shows the process with which the control method concerning 2nd Embodiment is equipped. 第1実施形態にかかる制御装置の形態例を示す概念図である。It is a conceptual diagram which shows the form example of the control apparatus concerning 1st Embodiment. 第2実施形態にかかる制御装置の形態例を示す概念図である。It is a conceptual diagram which shows the form example of the control apparatus concerning 2nd Embodiment. 鉄鋼条鋼製品の製造プロセス例を示す図である。It is a figure which shows the example of a manufacturing process of steel products. 最尤法で、表1の回帰式の係数を決定した結果、製造条件の線形回帰値Sと不良品発生率ρとの関係をプロットした図である。It is the figure which plotted the relationship between the linear regression value S of manufacturing conditions, and the defect-product incidence ρ as a result of determining the coefficient of the regression equation of Table 1 by the maximum likelihood method. 操作可能項と外乱項との関係を示す図である。It is a figure which shows the relationship between an operable term and a disturbance term. 操作可能変数の平均値を示す図である。It is a figure which shows the average value of an operable variable. 製造条件変更前後の不良品発生率の結果を示す図である。It is a figure which shows the result of the defective product incidence before and behind manufacture condition change.

符号の説明Explanation of symbols

1…回帰式定義部
2…係数算出部
3…目標値算出部
4…製造条件変更部
5…製造条件抽出部
6…算出部
7…結果表示部
10、20…製品品質の制御装置
DESCRIPTION OF SYMBOLS 1 ... Regression formula definition part 2 ... Coefficient calculation part 3 ... Target value calculation part 4 ... Manufacturing condition change part 5 ... Manufacturing condition extraction part 6 ... Calculation part 7 ... Result display part 10, 20 ... Control apparatus of product quality

Claims (6)

製品の品質を制御する方法であって、
製造条件に応じて特定される前記製品の計数値に関する品質を、線形回帰式で定義する、回帰式定義工程と、
前記線形回帰式の係数を、前記品質の実績データ及び前記製造条件の実績データを用いて算出する、係数算出工程と、
前記係数算出工程で算出した前記線形回帰式の前記係数、及び、前記製造条件の前記実績データを用いて、前記製造条件の目標値を算出する、目標値算出工程と、
算出された前記製造条件の前記目標値に基づいて、前記製造条件を変更する、製造条件変更工程と、
を備えることを特徴とする、製品品質の制御方法。
A method for controlling the quality of a product,
A regression equation defining step that defines a quality related to the count value of the product specified according to manufacturing conditions by a linear regression equation;
A coefficient calculating step of calculating the coefficient of the linear regression equation using the actual result data of the quality and the actual result data of the manufacturing conditions;
A target value calculating step of calculating a target value of the manufacturing condition using the coefficient of the linear regression equation calculated in the coefficient calculating step and the actual data of the manufacturing condition;
A manufacturing condition changing step of changing the manufacturing condition based on the calculated target value of the manufacturing condition;
A method for controlling product quality, comprising:
前記製造条件に、変更可能な製造条件と変更不可能な製造条件とが含まれ、
さらに、前記変更可能な製造条件から前記品質に対する影響が大きい製造条件を抽出する、製造条件抽出工程が備えられ、
前記目標値算出工程において、前記製造条件抽出工程で抽出された前記製造条件を用いて、前記目標値が算出されることを特徴とする、請求項1に記載の製品品質の制御方法。
The manufacturing conditions include changeable manufacturing conditions and non-changeable manufacturing conditions,
Furthermore, a manufacturing condition extraction step for extracting a manufacturing condition having a large influence on the quality from the changeable manufacturing condition is provided,
2. The method for controlling product quality according to claim 1, wherein, in the target value calculating step, the target value is calculated using the manufacturing conditions extracted in the manufacturing condition extracting step.
前記製品が鋼材であることを特徴とする、請求項1又は2に記載の製品品質の制御方法。 The product quality control method according to claim 1, wherein the product is a steel material. 製品の品質を制御するために用いられる制御装置であって、
製造条件に応じて特定される前記製品の計数値に関する品質を線形回帰式で定義する、回帰式定義部と、
前記線形回帰式の係数を、前記品質の実績データ及び前記製造条件の実績データを用いて算出する、係数算出部と、
前記係数算出部で算出された前記線形回帰式の前記係数、及び、前記製造条件の前記実績データを用いて、前記製造条件の目標値を算出する、目標値算出部と、
算出された前記製造条件の前記目標値に基づいて、前記製造条件を変更する、製造条件変更部と、
を備えることを特徴とする、製品品質の制御装置。
A control device used to control the quality of the product,
A regression equation defining unit that defines a quality related to the count value of the product specified according to manufacturing conditions by a linear regression equation;
A coefficient calculating unit that calculates the coefficient of the linear regression equation using the actual result data of the quality and the actual result data of the manufacturing conditions;
A target value calculation unit that calculates a target value of the manufacturing condition using the coefficient of the linear regression equation calculated by the coefficient calculation unit and the actual data of the manufacturing condition;
A manufacturing condition changing unit that changes the manufacturing condition based on the calculated target value of the manufacturing condition;
A product quality control device comprising:
前記製造条件に、変更可能な製造条件と変更不可能な製造条件とが含まれ、
さらに、前記変更可能な製造条件から前記品質に対する影響が大きい製造条件を抽出する、製造条件抽出部が備えられ、
前記目標値算出部において、前記製造条件抽出部で抽出された前記製造条件を用いて、前記目標値が算出されることを特徴とする、請求項4に記載の製品品質の制御装置。
The manufacturing conditions include changeable manufacturing conditions and non-changeable manufacturing conditions,
Furthermore, a production condition extraction unit is provided for extracting production conditions having a large influence on the quality from the changeable production conditions,
5. The product quality control apparatus according to claim 4, wherein the target value calculation unit calculates the target value using the manufacturing conditions extracted by the manufacturing condition extraction unit.
前記製品が鋼材であることを特徴とする、請求項4又は5に記載の製品品質の制御装置。 6. The product quality control device according to claim 4, wherein the product is a steel material.
JP2007228680A 2007-09-04 2007-09-04 Product quality control method and control device Expired - Fee Related JP5003362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228680A JP5003362B2 (en) 2007-09-04 2007-09-04 Product quality control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228680A JP5003362B2 (en) 2007-09-04 2007-09-04 Product quality control method and control device

Publications (2)

Publication Number Publication Date
JP2009064054A true JP2009064054A (en) 2009-03-26
JP5003362B2 JP5003362B2 (en) 2012-08-15

Family

ID=40558615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228680A Expired - Fee Related JP5003362B2 (en) 2007-09-04 2007-09-04 Product quality control method and control device

Country Status (1)

Country Link
JP (1) JP5003362B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084057A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Management method for product quality and management device for product quality
JP2013235566A (en) * 2012-04-11 2013-11-21 Jfe Steel Corp Setting method and setting device
CN104216382A (en) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 Spatial small aircraft formation flying control system
WO2016138674A1 (en) * 2015-03-03 2016-09-09 深圳市华星光电技术有限公司 Method for online real-time control on product process
JP2017130025A (en) * 2016-01-20 2017-07-27 日本電気株式会社 Factor analysis device, method and program
WO2020235194A1 (en) 2019-05-22 2020-11-26 株式会社 東芝 Manufacture condition output device, quality management system, and program
JP2020191007A (en) * 2019-05-23 2020-11-26 株式会社東芝 Manufacturing control apparatus, manufacturing control method, and program therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183250A (en) * 2000-12-12 2002-06-28 Nippon Steel Corp Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium
JP2004054420A (en) * 2002-07-17 2004-02-19 Nippon Steel Corp Association analyzer for operation and quality in manufacturing process, association analyzing method and computer readable storage medium
JP2007058806A (en) * 2005-08-26 2007-03-08 Sumitomo Metal Ind Ltd Production condition calculation method, quality adjustment method, steel production method, production condition calculation device, quality adjustment system, and computer program
JP2007513391A (en) * 2003-05-26 2007-05-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション How to identify a subset of multiple components of a system
JP2007140694A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Device and method for analyzing relevance of operation and quality in manufacturing process, computer program and computer-readable recording medium
JP2008146127A (en) * 2006-12-06 2008-06-26 Toyota Central R&D Labs Inc Apparatus, method and program for analyzing degree of contribution
JP2009059045A (en) * 2007-08-30 2009-03-19 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183250A (en) * 2000-12-12 2002-06-28 Nippon Steel Corp Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium
JP2004054420A (en) * 2002-07-17 2004-02-19 Nippon Steel Corp Association analyzer for operation and quality in manufacturing process, association analyzing method and computer readable storage medium
JP2007513391A (en) * 2003-05-26 2007-05-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション How to identify a subset of multiple components of a system
JP2007058806A (en) * 2005-08-26 2007-03-08 Sumitomo Metal Ind Ltd Production condition calculation method, quality adjustment method, steel production method, production condition calculation device, quality adjustment system, and computer program
JP2007140694A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Device and method for analyzing relevance of operation and quality in manufacturing process, computer program and computer-readable recording medium
JP2008146127A (en) * 2006-12-06 2008-06-26 Toyota Central R&D Labs Inc Apparatus, method and program for analyzing degree of contribution
JP2009059045A (en) * 2007-08-30 2009-03-19 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084057A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Management method for product quality and management device for product quality
JP2013235566A (en) * 2012-04-11 2013-11-21 Jfe Steel Corp Setting method and setting device
CN104216382A (en) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 Spatial small aircraft formation flying control system
WO2016138674A1 (en) * 2015-03-03 2016-09-09 深圳市华星光电技术有限公司 Method for online real-time control on product process
JP2017130025A (en) * 2016-01-20 2017-07-27 日本電気株式会社 Factor analysis device, method and program
WO2020235194A1 (en) 2019-05-22 2020-11-26 株式会社 東芝 Manufacture condition output device, quality management system, and program
KR20210047955A (en) 2019-05-22 2021-04-30 가부시끼가이샤 도시바 Manufacturing condition output devices, quality management systems and programs
KR20230135177A (en) 2019-05-22 2023-09-22 가부시끼가이샤 도시바 Manufacture condition output device, quality management system, and program
JP2020191007A (en) * 2019-05-23 2020-11-26 株式会社東芝 Manufacturing control apparatus, manufacturing control method, and program therefor
JP7352378B2 (en) 2019-05-23 2023-09-28 株式会社東芝 Manufacturing control device, manufacturing control method and program

Also Published As

Publication number Publication date
JP5003362B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5003362B2 (en) Product quality control method and control device
JP5012660B2 (en) Product quality prediction and control method
JP4855353B2 (en) Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium
JP5169096B2 (en) Quality prediction apparatus, quality prediction method, and product manufacturing method
JP5704040B2 (en) Product quality management method and product quality management device
JP5604945B2 (en) Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium
JP5682484B2 (en) Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method
JP6439780B2 (en) Magnetic property prediction device and magnetic property control device for electrical steel sheet
JP4613751B2 (en) Manufacturing condition calculation method, quality adjustment method, steel manufacturing method, manufacturing condition calculation device, quality adjustment system, and computer program
CN110991495B (en) Method, system, medium, and apparatus for predicting product quality in manufacturing process
JP2008112288A (en) Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP7503150B2 (en) System and method for controlling a production facility consisting of several facility parts, in particular for producing industrial products such as metal semi-finished products - Patents.com
JP5817450B2 (en) Thick plate width control method
JP2022132895A (en) Manufacturing support system for predicting characteristics of alloy material, method for generating prediction model, and computer program
JP4365600B2 (en) Steel product quality design apparatus and steel product manufacturing method
JP5962290B2 (en) Steel heat transfer coefficient prediction apparatus and cooling control method
JP2007052739A (en) Method and device for generating model, method and device for predicting state, and method and system for adjusting state
JP4400253B2 (en) Quality influence factor analysis method, quality prediction method, quality control method, quality influence factor analysis device, quality prediction device, quality control device, quality influence factor analysis system, quality prediction system, quality control system, and computer program
JP4623020B2 (en) Optimal quality design support device
JP2006309709A (en) Result prediction device, control device and quality design device
JP5195331B2 (en) Quality prediction apparatus, prediction method, program, and computer-readable recording medium in manufacturing process
JP5375507B2 (en) Quality prediction apparatus, quality prediction method, program, and computer-readable recording medium
JP3738738B2 (en) Steel product quality control equipment
KR20230116870A (en) Quality anomaly analysis method, metal material manufacturing method, and quality anomaly analysis device
JP5488140B2 (en) Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees