JP2002183250A - Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium - Google Patents

Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium

Info

Publication number
JP2002183250A
JP2002183250A JP2000378068A JP2000378068A JP2002183250A JP 2002183250 A JP2002183250 A JP 2002183250A JP 2000378068 A JP2000378068 A JP 2000378068A JP 2000378068 A JP2000378068 A JP 2000378068A JP 2002183250 A JP2002183250 A JP 2002183250A
Authority
JP
Japan
Prior art keywords
quality data
probability
manufacturing process
data
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000378068A
Other languages
Japanese (ja)
Other versions
JP4102019B2 (en
Inventor
Toshio Akagi
俊夫 赤木
Junji Ise
淳治 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000378068A priority Critical patent/JP4102019B2/en
Publication of JP2002183250A publication Critical patent/JP2002183250A/en
Application granted granted Critical
Publication of JP4102019B2 publication Critical patent/JP4102019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze the correlation between process control data and quality data, which can not be obtained by a scatter diagram or a correlation coefficient. SOLUTION: In a iron and steel process, the range of values that can be taken by a manufacturing line velocity V in a certain manufacturing period is divided into L pieces of ranges, the probability distribution Pi of the number N of surface faults is calculated in each range (i), and the number NiPc of fault occurrences, where a prescribed cumulative probability in each range (i) becomes Pc is calculated. The relation between the manufacturing line velocity V and the number NiPc of surface faults to be the prescribed cumulative probability is expressed by an approximate expression or a table, an appropriate manufacturing line velocity to obtain a product with few surface faults is obtained and the maximum number of surface faults of a product, which occurs in the probability Pc is predicted in the case of being a certain manufacturing line velocity by using the approximate expression or the table.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼プロセス等に
おける品質データとプロセス操業データとの相関を解析
する製造プロセスにおける解析装置、方法、及びコンピ
ュータ読み取り可能な記憶媒体に関する。
The present invention relates to an analyzer, a method, and a computer-readable storage medium in a manufacturing process for analyzing a correlation between quality data in a steel process or the like and process operation data.

【0002】[0002]

【従来の技術】プロセス操業データと品質データとの関
係等、2つのデータ間の関係を見出す一般的な手法とし
ては、散布図の観察評価、或いは、相関係数による評価
が行われている。これらの手法によれば、2つのデータ
間に直線的或いは曲線的に表される関係があるとき、散
布図においては点のばらつきがその直線・曲線のまわり
に集中することによって、また、相関係数では、それぞ
れ直線相関係数、曲線相関係数の絶対値が高い(すなわ
ち、1に近い値を示す)ことによって、両者のデータ間
の関係が明らかにされる。
2. Description of the Related Art As a general method for finding a relationship between two data, such as a relationship between process operation data and quality data, observation and evaluation of a scatter diagram or evaluation by a correlation coefficient is performed. According to these methods, when there is a linear or curved relationship between two data, in a scatter diagram, the dispersion of points concentrates around the straight line / curve, and the phase relationship is increased. In terms of numbers, the relationship between the data is clarified by the absolute value of the linear correlation coefficient and the absolute value of the curve correlation coefficient (that is, a value close to 1).

【0003】また、鉄鋼プロセス等における品質を予測
する手法としては、例えば、特開平6−304723号
公報に開示されたものがある。そこでは、プロセス操業
データと品質データとを神経回路網に入力し、神経回路
網を学習させることによって、品質制御診断を行ってい
る。
As a method for predicting the quality in a steel process or the like, for example, there is a method disclosed in Japanese Patent Application Laid-Open No. 6-304723. There, quality control diagnosis is performed by inputting process operation data and quality data to a neural network and learning the neural network.

【0004】また、確率分布を用いた品質管理・予測の
手法としては、ランダムに発生する表面品質欠陥がポア
ソン分布に近似される性質を用いて、主に半導体製造分
野等において、表面欠陥発生平均個数から製品歩留りを
推定する手法が知られている。
[0004] As a quality control / prediction method using a probability distribution, a property that a randomly generated surface quality defect is approximated to a Poisson distribution is used. A method of estimating the product yield from the number is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、品質デ
ータによっては、各プロセス操業データに対して直線的
或いは曲線的な関係を持っていないことがある。この場
合、散布図や相関係数を評価しても、両者は相関が低い
と判断され、両者の関係を捉えることができないという
問題があった。
However, depending on the quality data, there is a case where each process operation data does not have a linear or curvilinear relationship. In this case, even if the scatter diagram and the correlation coefficient are evaluated, there is a problem that the two are determined to have low correlation and the relationship between the two cannot be grasped.

【0006】また、特開平6−304723号公報に開
示された手法では、プロセス操業データとして、鋳片の
カーボン量等の物性値、板幅等の連鋳操業値、各冷却ゾ
ーン温度等を、また、品質データとして、表面欠陥の有
り・無しを入力している。しかし、現実の鉄鋼プロセス
においては、表面欠陥の発生要因は無数にあり、人為的
な設定や計測が困難な場合も多い。この場合、操業の結
果として現れる品質データにも不確定性が含まれること
になり、品質データを表面欠陥の有り・無しという2値
で与えて、入力したプロセス操業データとの関係を学習
しても、十分に精度の高い学習結果を得ることは必ずし
もできないという問題があった。
In the method disclosed in Japanese Patent Application Laid-Open No. 6-304723, as process operation data, physical property values such as the carbon amount of a slab, continuous casting operation values such as a sheet width, and the temperature of each cooling zone are described. In addition, presence / absence of a surface defect is input as quality data. However, in an actual steel process, the causes of surface defects are numerous, and it is often difficult to artificially set or measure them. In this case, the quality data appearing as a result of the operation also includes uncertainty, and the quality data is given as two values, that is, whether or not there is a surface defect, and the relationship with the input process operation data is learned. However, there is a problem that it is not always possible to obtain a sufficiently accurate learning result.

【0007】また、ごく単純な工程の製造プロセスで
は、表面欠陥の発生個数をポアソン分布で近似すること
ができるが、多工程にわたり複雑化している現実の製造
プロセス、例えば鉄鋼プロセスや半導体プロセス等にお
いては、最終製品における表面欠陥の発生個数は、必ず
しもポアソン分布を示すとは限らず、品質に関する情報
を表面欠陥発生平均個数のみで代表させることはできな
いという問題があった。
In a very simple manufacturing process, the number of surface defects can be approximated by a Poisson distribution. However, in a real manufacturing process that is complicated over many steps, for example, a steel process or a semiconductor process, etc. However, the number of occurrences of surface defects in the final product does not always indicate a Poisson distribution, and there is a problem in that quality-related information cannot be represented only by the average number of occurrences of surface defects.

【0008】本発明は上記のような点に鑑みてなされた
ものであり、散布図や相関係数では捉えられないプロセ
ス制御データと品質データとの間の相関を解析できるよ
うにすることを目的とする。
The present invention has been made in view of the above points, and has as its object to analyze a correlation between process control data and quality data which cannot be captured by a scatter diagram or a correlation coefficient. And

【0009】[0009]

【課題を解決するための手段】本発明の製造プロセスに
おける解析装置は、プロセス操業データと品質データと
の間の相関について解析する製造プロセスにおける解析
装置であって、プロセス操業データのとり得る値の範囲
を複数の範囲に分割する分割手段と、前記各範囲ごとの
品質データの確率分布を求める確率分布算出手段と、前
記各範囲での所定の累積確率となる品質データ値を算出
する品質データ値算出手段とを備えた点に特徴を有す
る。
SUMMARY OF THE INVENTION An analyzing apparatus in a manufacturing process according to the present invention is an analyzing apparatus in a manufacturing process for analyzing a correlation between process operation data and quality data. Dividing means for dividing the range into a plurality of ranges; probability distribution calculating means for obtaining a probability distribution of quality data for each of the ranges; and quality data value for calculating a quality data value having a predetermined cumulative probability in each of the ranges. It is characterized in that it has a calculating means.

【0010】本発明の製造プロセスにおける解析装置の
他の特徴とするところは、前記確率分布算出手段では、
前記各範囲ごとの品質データの確率分布を、指数分布を
表す確率密度関数を用いて近似処理する点にある。
Another feature of the analyzing apparatus in the manufacturing process of the present invention is that the probability distribution calculating means includes:
The point is that the probability distribution of the quality data for each range is approximated using a probability density function representing an exponential distribution.

【0011】また、本発明の製造プロセスにおける解析
装置の他の特徴とするところは、プロセス操業データ
と、前記品質データ値算出手段により算出された各範囲
での所定の累積確率となる品質データ値との関係を近似
式で表す近似式算出手段を備えた点にある。
Another characteristic of the analyzer in the manufacturing process according to the present invention is that the process operation data and the quality data value which is a predetermined cumulative probability in each range calculated by the quality data value calculating means. And an approximate expression calculating means for expressing the relationship with the approximate expression.

【0012】また、本発明の製造プロセスにおける解析
装置の他の特徴とするところは、前記近似式算出手段に
より求められた近似式を用いて、新たなプロセス操業デ
ータに対して所定の確率で発生すると予測される品質デ
ータの最大値を求める予測手段を備えた点にある。
Another feature of the analyzing apparatus in the manufacturing process of the present invention is that a new process operation data is generated at a predetermined probability using the approximate expression obtained by the approximate expression calculating means. In this case, there is provided a prediction unit for obtaining the maximum value of the predicted quality data.

【0013】また、本発明の製造プロセスにおける解析
装置の他の特徴とするところは、プロセス操業データ
と、前記品質データ値算出手段により算出された各範囲
での所定の累積確率となる品質データ値とをテーブルと
して表して記憶するテーブル記憶手段を備えた点にあ
る。
Another feature of the analyzing apparatus in the manufacturing process of the present invention is that the process operation data and the quality data value which is a predetermined cumulative probability in each range calculated by the quality data value calculating means. And a table storage means for expressing and storing these as a table.

【0014】また、本発明の製造プロセスにおける解析
装置の他の特徴とするところは、前記テーブル記憶手段
に記憶されているテーブルを用いて、新たなプロセス操
業データに対して所定の確率で発生すると予測される品
質データの最大値を求める予測手段を備えた点にある。
Another feature of the analyzing apparatus in the manufacturing process of the present invention is that a new process operation data is generated at a predetermined probability using a table stored in the table storage means. The point is that a prediction means for obtaining the maximum value of the predicted quality data is provided.

【0015】また、本発明の製造プロセスにおける解析
装置の他の特徴とするところは、鉄鋼プロセスに適用さ
れ、前記品質データは、製品表面の単位面積あたりの欠
陥の個数である点にある。
Another feature of the analyzer in the manufacturing process of the present invention is that it is applied to a steel process, and the quality data is the number of defects per unit area of a product surface.

【0016】本発明の製造プロセスにおける解析方法
は、プロセス操業データと品質データとの間の相関につ
いて解析する製造プロセスにおける解析方法であって、
プロセス操業データのとり得る値の範囲を複数の範囲に
分割する処理と、前記各範囲ごとの品質データの確率分
布を求める処理と、前記各範囲での所定の累積確率とな
る品質データ値を算出する処理とを実行する点に特徴を
有する。
An analysis method in a manufacturing process according to the present invention is an analysis method in a manufacturing process for analyzing a correlation between process operation data and quality data,
A process of dividing a range of possible values of the process operation data into a plurality of ranges, a process of obtaining a probability distribution of quality data for each of the ranges, and calculating a quality data value that is a predetermined cumulative probability in each of the ranges. This is characterized in that the following processing is performed.

【0017】本発明のコンピュータ読み取り可能な記憶
媒体は、上述の各手段としてコンピュータを機能させる
ためのプログラムを格納した点に特徴を有する。
The computer-readable storage medium of the present invention is characterized in that a program for causing a computer to function as each of the above means is stored.

【0018】本発明の別のコンピュータ読み取り可能な
記憶媒体は、上述の各処理をコンピュータに実行させる
ためのプログラムを格納した点に特徴を有する。
Another computer-readable storage medium according to the present invention is characterized in that a program for causing a computer to execute the above-described processing is stored.

【0019】上記のようにした本発明においては、例え
ば鉄鋼プロセスにおいて、ある製造期間の製造ライン速
度等のプロセス操業データのとり得る値の範囲を複数の
範囲に分割し、各範囲ごとの表面欠陥の個数等の品質デ
ータの確率分布を求めて、各範囲での所定の累積確率と
なる表面欠陥の個数を算出する。そして、製造ライン速
度と上記所定の累積確率となる表面欠陥の個数との関係
を、近似式或いはテーブルにより表す。
In the present invention as described above, for example, in a steel process, the range of values that can be taken by process operation data such as the production line speed during a certain production period is divided into a plurality of ranges, and the surface defects for each range are divided. The probability distribution of the quality data such as the number of surface defects is obtained, and the number of surface defects having a predetermined cumulative probability in each range is calculated. Then, the relationship between the production line speed and the number of surface defects having the predetermined cumulative probability is represented by an approximate expression or a table.

【0020】[0020]

【発明の実施の形態】以下、図面を参照して、本発明の
製造プロセスにおける解析装置、方法、及びコンピュー
タ読み取り可能な記憶媒体の実施の形態について説明す
る。本実施の形態では、鉄鋼プロセスにおいて、プロセ
ス操業データの1つである製造ライン速度と、品質デー
タである製品表面の単位面積あたりの欠陥の個数(以
下、「表面欠陥の個数」と称する)との関係を解析し、
その関係を用いて、新たなプロセス操業データに対して
発生すると予測される表面欠陥の個数を求める例につい
て説明する。なお、ここでの表面欠陥は、鉄鋼鋳片の内
部に含まれる気泡、介在物、パウダー等を起因として発
生するものを対象とする。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of an analyzing apparatus, a method, and a computer-readable storage medium according to the present invention. In the present embodiment, in the steel process, the production line speed, which is one of the process operation data, and the number of defects per unit area of the product surface, which is quality data (hereinafter, referred to as “the number of surface defects”). Analyze the relationship of
An example will be described in which the number of surface defects predicted to be generated with respect to new process operation data is obtained using the relationship. Here, the surface defect is intended to be generated due to bubbles, inclusions, powder, and the like contained in the steel slab.

【0021】図1は、本実施の形態の製造プロセスにお
ける解析装置の構成を示す図である。同図において、1
01はデータ入力部であり、図示しないデータ蓄積部よ
り、ある製造期間における操業設定値や測定値等からな
るプロセス操業データと、表面欠陥データとが入力され
る。本実施の形態では、プロセス操業データとして製造
ライン速度が、また、品質データとして表面欠陥の個数
が入力されることになる。
FIG. 1 is a diagram showing a configuration of an analyzer in the manufacturing process of the present embodiment. In the figure, 1
Reference numeral 01 denotes a data input unit, from which process operation data including operation setting values and measured values during a certain manufacturing period and surface defect data are input from a data storage unit (not shown). In the present embodiment, the production line speed is input as process operation data, and the number of surface defects is input as quality data.

【0022】102は確率分布算出部であり、プロセス
操業データ(製造ライン速度)のとり得る値の範囲を複
数の範囲に分割し、各範囲ごとの品質データ(表面欠陥
の個数)の確率分布を求めて、各範囲での所定の累積確
率となる品質データ値(表面欠陥の個数)を算出する。
この際に、各範囲ごとの品質データ(表面欠陥の個数)
の確率分布を、指数分布を表す確率密度関数を用いて近
似処理する。
Reference numeral 102 denotes a probability distribution calculation unit which divides a range of possible values of process operation data (manufacturing line speed) into a plurality of ranges and calculates a probability distribution of quality data (the number of surface defects) for each range. Then, a quality data value (the number of surface defects) that becomes a predetermined cumulative probability in each range is calculated.
At this time, quality data for each range (number of surface defects)
Is approximated using a probability density function representing an exponential distribution.

【0023】103は相関解析部であり、プロセス操業
データ(製造ライン速度)と、上記一定の累積確率とな
る品質データ値(表面欠陥の個数)との関係を示す近似
式を算出する。104は相関表示部であり、相関解析部
103により算出された結果を表示する。
Reference numeral 103 denotes a correlation analysis unit which calculates an approximate expression indicating a relationship between the process operation data (manufacturing line speed) and the quality data value (the number of surface defects) that provides the above-mentioned constant cumulative probability. A correlation display unit 104 displays a result calculated by the correlation analysis unit 103.

【0024】105は欠陥発生予測部であり、相関解析
部103により得られた近似式を用いて、新たなプロセ
ス操業データ(製造ライン速度)に対して所定の確率で
発生すると予測される品質データの最大値(表面欠陥の
最大個数)を予測する。106は予測結果表示部であ
り、欠陥発生予測部105により予測された結果を表示
する。
Numeral 105 denotes a defect occurrence predicting unit which uses the approximation formula obtained by the correlation analyzing unit 103 to generate quality data predicted to occur at a predetermined probability with respect to new process operation data (manufacturing line speed). (The maximum number of surface defects) is predicted. A prediction result display unit 106 displays a result predicted by the defect occurrence prediction unit 105.

【0025】107はヒストグラム算出部であり、デー
タ入力部101に入力されたプロセス操業データ(製造
ライン速度)と品質データ(表面欠陥の個数)とからヒ
ストグラムを算出する。上述したように確率分布算出部
102では指数分布を表す確率密度関数を用いた近似を
行うが、その確率密度関数を、ヒストグラム算出部10
7で算出されたヒストグラムに基づいて定めることがで
きる。
Reference numeral 107 denotes a histogram calculation unit that calculates a histogram from the process operation data (manufacturing line speed) and the quality data (the number of surface defects) input to the data input unit 101. As described above, the probability distribution calculation unit 102 performs approximation using a probability density function representing an exponential distribution.
7 can be determined based on the histogram calculated.

【0026】次に、図2に示すフローチャートを参照し
て、本実施の形態の製造プロセスにおける解析装置の処
理動作について説明する。データ入力部101にある製
造期間における製造ライン速度Vと表面欠陥の個数Nと
が入力されると、ヒストグラム算出部107はヒストグ
ラムを算出する(ステップS201)。
Next, the processing operation of the analyzer in the manufacturing process of this embodiment will be described with reference to the flowchart shown in FIG. When the manufacturing line speed V and the number N of surface defects during the manufacturing period are input to the data input unit 101, the histogram calculator 107 calculates a histogram (step S201).

【0027】図3は、ある製造期間における製造ライン
速度Vと表面欠陥の個数Nとの関係を散布図で表したも
のである。この散布図からは、両者の相関を見出すこと
は難しい。また、このときの一次相関係数の絶対値、す
なわち、両者がどの程度直線的な関係に近いかを0〜1
で表した値は、0.1と低い値であり、両者に相関がほ
とんどないことを示している。
FIG. 3 is a scatter diagram showing the relationship between the production line speed V and the number N of surface defects during a certain production period. From the scatter plot, it is difficult to find the correlation between the two. Also, the absolute value of the primary correlation coefficient at this time, that is, how close the two are to a linear relationship is 0-1.
Is a low value of 0.1, indicating that there is almost no correlation between the two.

【0028】ここで、図3における表面欠陥の個数Nの
度数(どれだけのプロット数が存在するか)のヒストグ
ラムを求めると、図4に示すようになる。同図の点線に
示すように、このヒストグラムは指数分布で近似できる
ものと判断される。
Here, a histogram of the frequency of the number N of surface defects (how many plots exist) in FIG. 3 is obtained as shown in FIG. As shown by the dotted line in the figure, it is determined that this histogram can be approximated by an exponential distribution.

【0029】そこで、この場合は、製造ライン速度Vを
定めたときの表面欠陥の発生確率分布を指数分布で近似
することとする。すなわち、表面欠陥の個数N、その発
生確率分布Pとすると、kをパラメータとして、下記の
数1に示す式(1)により表すことができる。
Therefore, in this case, the probability distribution of the occurrence of surface defects when the production line speed V is determined is approximated by an exponential distribution. That is, assuming that the number N of surface defects and the occurrence probability distribution P are k, parameters can be represented by the following equation (1) using k as a parameter.

【0030】[0030]

【数1】 (Equation 1)

【0031】次に、確率分布算出部102は、下記の数
2に示すように、製造ライン速度Vの最小値Vminから
最大値Vmaxまでを、ΔV毎に区切った複数(L個)の
範囲に分割する(ステップS202)。
Next, as shown in the following Expression 2, the probability distribution calculation unit 102 divides the production line speed V from the minimum value V min to the maximum value V max into a plurality (L) of sections divided by ΔV. It is divided into ranges (step S202).

【0032】[0032]

【数2】 (Equation 2)

【0033】そして、各範囲ごとの表面欠陥の発生確率
分布Piを求める(ステップS203)。図5は、製造
ライン速度Vと、表面欠陥個数Nと、各範囲ごとの発生
確率分布Piとの関係を示す。同図に示す各実線が、各
範囲(同図では3つの範囲について表示する)の発生確
率分布Piを示すものである。
[0033] Then, determine the probability distribution P i of surface defects for each range (step S203). Figure 5 illustrates a production line speed V, and the surface defect number N, the relation between occurrence probability distribution P i for each range. Each solid line shown in the figure illustrates the probability distribution P i for each range (in the figure displays the three ranges).

【0034】次に、各範囲iの発生確率分布Piに対し
て、既知の手法である最尤法を用いて、上式(1)に相
当する確率密度関数の式(下記の数3に示す式(3))
へのフィッティングを行い、各範囲iにおけるパラメー
タkiを求める(ステップS204)。図5に示す各点
線が、各範囲の発生確率分布Piについてフィッティン
グを行った様子を示すものである。
Next, for the occurrence probability distribution P i in each range i, using a known maximum likelihood method, an equation of a probability density function corresponding to the above equation (1) Equation (3) shown)
Performs fitting to determine a parameter k i for each range i (step S204). Each dotted line shown in FIG. 5 illustrates a state of performing a fitting on the occurrence probability distribution P i for each range.

【0035】[0035]

【数3】 (Equation 3)

【0036】本実施の形態のように、表面欠陥の発生確
率が指数分布で表される場合、ある累積確率Pcに相当
する欠陥発生個数NiPcは、下記の数4に示す式(4)
により表される。
When the probability of occurrence of surface defects is represented by an exponential distribution as in the present embodiment, the number of occurrences of defects NiPc corresponding to a certain cumulative probability Pc is calculated by the following equation (4).
Is represented by

【0037】[0037]

【数4】 (Equation 4)

【0038】ここでは、各範囲iにおいて、80%の確
率で発生する表面欠陥の最大個数N i0.8を考える(ステ
ップS205)。これは、上式(4)において、Pc=
0.8となる表面欠陥の個数に相当し、下記の数5に示
す式(5)で表される。
Here, in each range i, the 80% certainty is obtained.
Number of surface defects occurring at a rate N i0.8Think about
Step S205). This means that in the above equation (4), Pc =
0.8, which is equivalent to the number of surface defects,
Equation (5).

【0039】[0039]

【数5】 (Equation 5)

【0040】上式(5)を用いて各範囲iにおけるN
iPcをプロットしたものが、図6に示す複数の黒点であ
る。このプロット点を、相関解析部103において適切
な次数の多項式で近似することにより(ステップS20
6)、製造ライン速度と、表面欠陥の個数との関係を求
めることができる。本実施の形態では、下記の数6に示
す式(6)のように一次式で表すことができ、製造ライ
ン速度Vが遅い方が、80%の確率で発生する表面欠陥
の最大個数を少なくすることができることがわかる。
Using the above equation (5), N in each range i
Plots of iPc are a plurality of black points shown in FIG. This plot point is approximated by a polynomial of an appropriate order in the correlation analysis unit 103 (step S20).
6) The relationship between the production line speed and the number of surface defects can be obtained. In the present embodiment, it can be expressed by a linear expression as shown in the following Expression (6), and the lower the production line speed V, the smaller the maximum number of surface defects that occur with a probability of 80%. You can see that it can be done.

【0041】[0041]

【数6】 (Equation 6)

【0042】このときの一次相関の強さを表す相関係数
は0.95となり、製造ライン速度と表面欠陥の個数と
の間に強い相関があることが、本実施の形態の装置を用
いることで明らかとなった。
At this time, the correlation coefficient representing the magnitude of the primary correlation is 0.95, and the strong correlation between the production line speed and the number of surface defects indicates that the apparatus of the present embodiment is used. It became clear.

【0043】したがって、欠陥発生予測部105におい
て、上式(6)を用いることにより、新たな任意の製造
ライン速度に対して発生する表面欠陥の個数を、80%
の確率で発生する最大個数として予測することができる
(ステップS207)。
Therefore, by using the above equation (6) in the defect occurrence prediction unit 105, the number of surface defects generated for a new arbitrary production line speed can be reduced by 80%.
(Step S207).

【0044】なお、本実施の形態では、上式(1)、
(3)で説明したように指数関数分布を適用したが、ヒ
ストグラムが示す傾向に従って、ポアソン分布、2項分
布、ベータ分布、ガンマ分布等の適切な確率分布を適用
し、それぞれ確率密度関数を設定して近似すればよい。
In this embodiment, the above equation (1)
Although the exponential function distribution is applied as described in (3), appropriate probability distributions such as Poisson distribution, binomial distribution, beta distribution, and gamma distribution are applied according to the tendency indicated by the histogram, and the respective probability density functions are set. And approximate them.

【0045】さらに、上記適切な確率分布を用いた近似
は必ずしも行わなければならないものではなく、上式
(2)に従って分割された各範囲iにおける表面欠陥の
発生確率分布Piから、直接、累積確率がPcとなる欠
陥発生個数NiPcを求めて、図6に示すようにプロット
してもよい。ただし、近似を行うことにより、入力デー
タに含まれるノイズを除去することができ、プロセス操
業データと品質データとの間のより明確な相関を得るこ
とができる。
[0045] In addition, the appropriate probability distribution approximated using is not intended to be necessarily performed, the occurrence probability distribution P i of surface defects in the range i, which are divided according to the above equation (2), directly, the accumulated The defect occurrence number NiPc having a probability of Pc may be obtained and plotted as shown in FIG. However, by performing the approximation, noise included in the input data can be removed, and a clearer correlation between the process operation data and the quality data can be obtained.

【0046】また、本実施の形態では、図6に示すよう
にプロットされた点を一次式で近似したが、二次式以上
の多項式その他の式に近似することもできる。さらに、
式への近似を行うことなく、上式(2)の各範囲iにお
いて、累積確率Pcとなる欠陥発生個数NiPcを関係テ
ーブルとしてメモリに蓄積しておき、表面欠陥の発生個
数の予測に用いてもよい。
In this embodiment, the points plotted as shown in FIG. 6 are approximated by a linear expression, but they may be approximated by a polynomial or any other expression that is higher than a quadratic expression. further,
Without performing approximation to the expression, the number of occurrences NiPc of the defect which is the cumulative probability Pc in each range i of the above expression (2) is stored in a memory as a relation table, and is used to predict the number of occurrences of surface defects. You may.

【0047】また、本実施の形態では、プロセス操業デ
ータとして製造ライン速度を用いたが、他のプロセス操
業データ、例えば鋳片のカーボン量等の物性値、板幅等
の製品寸法、製品温度等を用いることもできる。
Further, in this embodiment, the production line speed is used as the process operation data. However, other process operation data, such as physical properties such as the carbon amount of the slab, product dimensions such as plate width, product temperature, etc. Can also be used.

【0048】また、本実施の形態では、1つのプロセス
操業データと表面欠陥の個数との間の相関を解析するよ
うにしたが、複数のプロセス操業データと表面欠陥の個
数との間の相関を解析することもできる。例えば、2つ
のプロセス操業データと表面欠陥の個数との間の相関を
解析する場合、上式(2)でL個に分割した範囲に相当
するL×L個の範囲に分割し、それぞれの範囲ijにお
けるNijPcを求めることにより、2つのプロセス操業デ
ータと表面欠陥の個数との間の相関を表現することがで
きる。
In this embodiment, the correlation between one process operation data and the number of surface defects is analyzed. However, the correlation between a plurality of process operation data and the number of surface defects is analyzed. It can also be analyzed. For example, when analyzing the correlation between two process operation data and the number of surface defects, the data is divided into L × L ranges corresponding to the range divided into L in the above equation (2), and each range is divided. By determining N ijPc at ij, the correlation between the two process run data and the number of surface defects can be expressed.

【0049】また、本実施の形態では、本発明を鉄鋼プ
ロセスに適用した例を説明したが、他の製造プロセス、
例えば半導体プロセスにおける解析に適用することも可
能である。
In this embodiment, an example in which the present invention is applied to a steel process has been described.
For example, the present invention can be applied to analysis in a semiconductor process.

【0050】(他の実施の形態)本発明の製造プロセス
における解析装置は、複数の機器から構成されるもので
あっても、1つの機器から構成されるものであってもよ
い。
(Other Embodiments) The analyzer in the manufacturing process of the present invention may be composed of a plurality of devices or one device.

【0051】また、上前述した実施の形態は、コンピュ
ータのCPU或いはMPU、RAM、ROM等で構成さ
れるものであり、RAMやROMに記録されたプログラ
ムが動作することで実現される。したがって、前記実施
の形態の機能を実現するためのソフトウェアのプログラ
ムコードをコンピュータに供給するための手段、例えば
かかるプログラムコードを格納した記憶媒体は本発明の
範疇に含まれる。
The above-described embodiment is constituted by a CPU or MPU of a computer, a RAM, a ROM, and the like, and is realized by operating a program recorded in the RAM or the ROM. Therefore, means for supplying a computer with software program codes for realizing the functions of the above-described embodiments, for example, a storage medium storing such program codes is included in the scope of the present invention.

【0052】[0052]

【発明の効果】以上述べたように本発明によれば、鉄鋼
プロセス等の製造プロセスにおいて、プロセス操業デー
タと品質データとの間の相関を、確率分布を用いて解析
できるようにすることにより、散布図や相関係数では捉
えられなかった両者の相関について明確にすることがで
きる。したがって、その解析の結果を利用して、高品質
な製品を得るための適切なプロセス操業データを得た
り、あるプロセス操業データとした場合に得られる製品
の品質を予測したりすることができる。
As described above, according to the present invention, in a manufacturing process such as a steel process, the correlation between process operation data and quality data can be analyzed using a probability distribution. It is possible to clarify the correlation between the two, which was not captured by the scatter diagram or the correlation coefficient. Therefore, using the results of the analysis, it is possible to obtain appropriate process operation data for obtaining high-quality products, or to predict the quality of products obtained when certain process operation data is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の解析装置の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of an analyzer according to an embodiment of the present invention.

【図2】解析装置での処理動作を説明するためのフロー
チャートである。
FIG. 2 is a flowchart for explaining a processing operation in the analyzer.

【図3】ある製造期間における製造ライン速度Vと表面
欠陥の個数Nとの関係を表す散布図を示す図である。
FIG. 3 is a scatter diagram illustrating a relationship between a manufacturing line speed V and the number N of surface defects during a certain manufacturing period.

【図4】図3における表面欠陥の個数Nの度数のヒスト
グラムを示す図である。
FIG. 4 is a diagram showing a histogram of the frequency of the number N of surface defects in FIG. 3;

【図5】製造ライン速度Vと、表面欠陥個数Nと、各範
囲ごとの発生確率分布Piとの関係を示す図である。
[5] and the production line speed V, and the surface defect number N, is a diagram showing the relationship between the occurrence probability distribution P i for each range.

【図6】各範囲iにおけるNiPcをプロットした図であ
る。
FIG. 6 is a diagram plotting NiPc in each range i.

【符号の説明】[Explanation of symbols]

101 データ入力部 102 確率分布算出部(本発明でいう分割手段、確
率分布算出手段、品質データ値算出手段) 103 相関解析部(本発明でいう近似式算出手段) 104 相関表示部 105 欠陥発生予測部(本発明でいう予測手段) 106 予測結果表示部 107 ヒストグラム算出部
Reference Signs List 101 Data input unit 102 Probability distribution calculation unit (division unit, probability distribution calculation unit, quality data value calculation unit in the present invention) 103 Correlation analysis unit (approximate expression calculation unit in the present invention) 104 Correlation display unit 105 Defect occurrence prediction Unit (prediction means in the present invention) 106 prediction result display unit 107 histogram calculation unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 プロセス操業データと品質データとの間
の相関について解析する製造プロセスにおける解析装置
であって、 プロセス操業データのとり得る値の範囲を複数の範囲に
分割する分割手段と、 前記各範囲ごとの品質データの確率分布を求める確率分
布算出手段と、 前記各範囲での所定の累積確率となる品質データ値を算
出する品質データ値算出手段とを備えたことを特徴とす
る製造プロセスにおける解析装置。
1. An analyzing apparatus in a manufacturing process for analyzing a correlation between process operation data and quality data, wherein the dividing unit divides a range of possible values of the process operation data into a plurality of ranges; A probability distribution calculating means for obtaining a probability distribution of quality data for each range; and a quality data value calculating means for calculating a quality data value that is a predetermined cumulative probability in each of the ranges. Analysis device.
【請求項2】 前記確率分布算出手段では、前記各範囲
ごとの品質データの確率分布を、指数分布を表す確率密
度関数を用いて近似処理することを特徴とする請求項1
に記載の製造プロセスにおける解析装置。
2. The method according to claim 1, wherein the probability distribution calculating means approximates the probability distribution of the quality data for each of the ranges using a probability density function representing an exponential distribution.
An analyzer in the manufacturing process according to 1.
【請求項3】 プロセス操業データと、前記品質データ
値算出手段により算出された各範囲での所定の累積確率
となる品質データ値との関係を近似式で表す近似式算出
手段を備えたことを特徴とする請求項1又は2に記載の
製造プロセスにおける解析装置。
3. An approximate expression calculating means for expressing a relationship between the process operation data and a quality data value which is a predetermined cumulative probability in each range calculated by the quality data value calculating means by an approximate expression. An analysis device in a manufacturing process according to claim 1 or 2, wherein:
【請求項4】 前記近似式算出手段により求められた近
似式を用いて、新たなプロセス操業データに対して所定
の確率で発生すると予測される品質データの最大値を求
める予測手段を備えたことを特徴とする請求項3に記載
の製造プロセスにおける解析装置。
4. A prediction means for calculating a maximum value of quality data predicted to occur at a predetermined probability with respect to new process operation data using an approximation formula obtained by said approximation formula calculation means. The analyzer according to claim 3, wherein
【請求項5】 プロセス操業データと、前記品質データ
値算出手段により算出された各範囲での所定の累積確率
となる品質データ値とをテーブルとして表して記憶する
テーブル記憶手段を備えたことを特徴とする請求項1又
は2に記載の製造プロセスにおける解析装置。
5. A table storage means for storing a table of process operation data and quality data values which are predetermined cumulative probabilities in each range calculated by the quality data value calculation means. An analysis device in the manufacturing process according to claim 1 or 2.
【請求項6】 前記テーブル記憶手段に記憶されている
テーブルを用いて、新たなプロセス操業データに対して
所定の確率で発生すると予測される品質データの最大値
を求める予測手段を備えたことを特徴とする請求項5に
記載の製造プロセスにおける解析装置。
6. A prediction means for obtaining a maximum value of quality data predicted to occur at a predetermined probability for new process operation data using a table stored in the table storage means. An analyzer in the manufacturing process according to claim 5.
【請求項7】 鉄鋼プロセスに適用され、前記品質デー
タは、製品表面の単位面積あたりの欠陥の個数であるこ
とを特徴とする請求項1〜6のいずれか1項に記載の製
造プロセスにおける解析装置。
7. The analysis in the manufacturing process according to claim 1, wherein the quality data is applied to a steel process, and the quality data is the number of defects per unit area of a product surface. apparatus.
【請求項8】 プロセス操業データと品質データとの間
の相関について解析する製造プロセスにおける解析方法
であって、 プロセス操業データのとり得る値の範囲を複数の範囲に
分割する処理と、 前記各範囲ごとの品質データの確率分布を求める処理
と、 前記各範囲での所定の累積確率となる品質データ値を算
出する処理とを実行することを特徴とする製造プロセス
における解析方法。
8. An analysis method in a manufacturing process for analyzing a correlation between process operation data and quality data, wherein the range of possible values of the process operation data is divided into a plurality of ranges; An analysis method in a manufacturing process, comprising: performing a process of obtaining a probability distribution of quality data for each of the plurality of processes; and a process of calculating a quality data value that is a predetermined cumulative probability in each of the ranges.
【請求項9】 請求項1〜7に記載の各手段としてコン
ピュータを機能させるためのプログラムを格納したこと
を特徴とするコンピュータ読み取り可能な記憶媒体。
9. A computer-readable storage medium storing a program for causing a computer to function as each of the means according to claim 1.
【請求項10】 請求項8に記載の各処理をコンピュー
タに実行させるためのプログラムを格納したことを特徴
とするコンピュータ読み取り可能な記憶媒体。
10. A computer-readable storage medium storing a program for causing a computer to execute each processing according to claim 8.
JP2000378068A 2000-12-12 2000-12-12 Analysis apparatus, method, and computer-readable storage medium in manufacturing process Expired - Lifetime JP4102019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378068A JP4102019B2 (en) 2000-12-12 2000-12-12 Analysis apparatus, method, and computer-readable storage medium in manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378068A JP4102019B2 (en) 2000-12-12 2000-12-12 Analysis apparatus, method, and computer-readable storage medium in manufacturing process

Publications (2)

Publication Number Publication Date
JP2002183250A true JP2002183250A (en) 2002-06-28
JP4102019B2 JP4102019B2 (en) 2008-06-18

Family

ID=18846703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378068A Expired - Lifetime JP4102019B2 (en) 2000-12-12 2000-12-12 Analysis apparatus, method, and computer-readable storage medium in manufacturing process

Country Status (1)

Country Link
JP (1) JP4102019B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146621A (en) * 2006-11-14 2008-06-26 Nippon Steel Corp Device and method for analyzing quality improvement condition of product, computer program, and computer readable recording medium
JP2009020600A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Quality control apparatus, method, and program
JP2009059045A (en) * 2007-08-30 2009-03-19 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality
JP2009064054A (en) * 2007-09-04 2009-03-26 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality
US20130174111A1 (en) * 2011-12-29 2013-07-04 Flextronics Ap, Llc Circuit assembly yield prediction with respect to manufacturing process
JP2016105100A (en) * 2010-09-14 2016-06-09 株式会社リコー Arithmetic device, stereo camera device, apparatus control system, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146621A (en) * 2006-11-14 2008-06-26 Nippon Steel Corp Device and method for analyzing quality improvement condition of product, computer program, and computer readable recording medium
JP2009020600A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Quality control apparatus, method, and program
JP2009059045A (en) * 2007-08-30 2009-03-19 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality
JP2009064054A (en) * 2007-09-04 2009-03-26 Sumitomo Metal Ind Ltd Control method and control apparatus of product quality
JP2016105100A (en) * 2010-09-14 2016-06-09 株式会社リコー Arithmetic device, stereo camera device, apparatus control system, and program
US20130174111A1 (en) * 2011-12-29 2013-07-04 Flextronics Ap, Llc Circuit assembly yield prediction with respect to manufacturing process
US8707221B2 (en) * 2011-12-29 2014-04-22 Flextronics Ap, Llc Circuit assembly yield prediction with respect to manufacturing process

Also Published As

Publication number Publication date
JP4102019B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US10628292B2 (en) Methods and systems for predicting estimation of project factors in software development
US7107187B1 (en) Method for modeling system performance
JP4855353B2 (en) Product quality improvement condition analysis apparatus, analysis method, computer program, and computer-readable recording medium
JP2016062544A (en) Information processing device, program, information processing method
JP5867349B2 (en) Quality prediction apparatus, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium
JP2010033536A (en) Method, device for predicting product material value, method, program for determining handling condition, and computer readable recording medium
JP3733057B2 (en) Operation analysis apparatus in manufacturing process, method thereof, and computer-readable storage medium
CN109766593B (en) Method and device for evaluating buckling risk of strip steel in furnace
CN109900363A (en) A kind of object infrared measurement of temperature method and apparatus based on contours extract
JP2002183250A (en) Analyzer in manufacturing process, method of analysis in manufacturing process and computer-readable storage medium
JP4299508B2 (en) Operation and quality related analysis device in manufacturing process, related analysis method, and computer-readable storage medium
JP2014018844A (en) Heat transfer coefficient predictor for steel material and cooling control method
CN118070040A (en) Steel mill data acquisition method and device, electronic equipment and storage medium
JP6885321B2 (en) Process status diagnosis method and status diagnosis device
JP2004078780A (en) Method, device, and program for prediction, and recording medium recording the prediction program
CN113435464B (en) Abnormal data detection method and device, electronic equipment and computer storage medium
CN107222328B (en) Method and device for predicting saturation inflection point
JP5522060B2 (en) Quality prediction apparatus, operation condition determination method, quality prediction method, computer program, and computer-readable storage medium
JP3319297B2 (en) Blast furnace abnormal furnace condition prediction method
JP2002334293A (en) System and method for predicting characteristic and storage medium stored with the method
JP2008165412A (en) Performance-computing device
Dassanayake et al. An improved cumulative sum‐based procedure for prospective disease surveillance for count data in multiple regions
CN114154667A (en) Mixed time series elevator operation parameter prediction method based on big data
US8650007B2 (en) Apparatus and method for evaluating deterioration performance
CN111061711A (en) Large data flow unloading method and device based on data processing behavior

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050513

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350