JP2009062248A - Method for growing aluminum nitride single crystal using ultrafine particle source material - Google Patents

Method for growing aluminum nitride single crystal using ultrafine particle source material Download PDF

Info

Publication number
JP2009062248A
JP2009062248A JP2007233632A JP2007233632A JP2009062248A JP 2009062248 A JP2009062248 A JP 2009062248A JP 2007233632 A JP2007233632 A JP 2007233632A JP 2007233632 A JP2007233632 A JP 2007233632A JP 2009062248 A JP2009062248 A JP 2009062248A
Authority
JP
Japan
Prior art keywords
aluminum nitride
single crystal
ultrafine particles
nitride single
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233632A
Other languages
Japanese (ja)
Other versions
JP5488947B2 (en
Inventor
Masuzo Yamada
益三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPD GIJUTSU KENKYUSHO KK
Original Assignee
CPD GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPD GIJUTSU KENKYUSHO KK filed Critical CPD GIJUTSU KENKYUSHO KK
Priority to JP2007233632A priority Critical patent/JP5488947B2/en
Publication of JP2009062248A publication Critical patent/JP2009062248A/en
Application granted granted Critical
Publication of JP5488947B2 publication Critical patent/JP5488947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum nitride single crystal by growing an aluminum nitride single crystal on a seed crystal, by which an aluminum nitride single crystal can be continuously manufactured without interruption. <P>SOLUTION: The method for manufacturing aluminum nitride single crystal is carried out by using a single crystal having a wurtzite type crystal structure comprising silicon carbide, sapphire, aluminum nitride or the like as a seed crystal 3 and growing an aluminum nitride single crystal on the seed crystal 3. Ultrafine particles of a compound containing aluminum atoms and ultrafine particles containing carbon, and/or ultrafine particles of a compound containing carbon atoms and nitrogen atoms are supplied to the surface of the seed crystal 3 held while heated in an atmosphere containing nitrogen, so as to reduce and nitride the particles on or near the surface of the seed crystal 3 to grow an aluminum nitride single crystal on the seed crystal 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

種結晶として、炭化珪素、サファイア、又は、窒化アルミニウム等からなるウルツ鉱型の結晶構造を有する単結晶を用い、該種結晶上に窒化アルミニウム単結晶を成長させてなる窒化アルミニウム単結晶の製造方法であって、窒素を含む雰囲気中に加熱状態で保持されている該種結晶表面に向けて、アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子を供給し、該種結晶表面、及び又は、近傍において、アルミニウム原子を含有する化合物超微粒子を炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子により、還元窒化させ、窒化アルミニウム単結晶を該種結晶上に成長させることを特徴とする窒化アルミニウム単結晶の製造方法に関する。   A method for producing an aluminum nitride single crystal obtained by growing a single crystal having a wurtzite type crystal structure made of silicon carbide, sapphire, aluminum nitride or the like as a seed crystal and growing the aluminum nitride single crystal on the seed crystal The compound ultrafine particles containing aluminum atoms and the carbon-containing ultrafine particles and / or containing carbon atoms and nitrogen atoms are directed toward the surface of the seed crystal held in a heated state in an atmosphere containing nitrogen. Compound ultrafine particles are supplied, and the compound ultrafine particles containing aluminum atoms are reduced and nitrided with carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms at or near the seed crystal surface. And an aluminum nitride single crystal is grown on the seed crystal.

窒化アルミニウムは液相状態を有しないので、融液法での製造は困難であり、工夫(特許文献1に記載の方法等)により製造できても成長速度が遅く、反応温度における保持時間が24時間程度と長時間を要し、生産性が悪く、エネルギー消費も大きく、生産コストの面でも問題があった。特許文献2に記載の方法は1.6mm/時間程度と比較的速い結晶成長速度を達成することができるが、結晶の引き上げ装置、各種制御装置等の複雑な機構を備えた、高価な特殊装置を用いて初めて製造することができる。   Since aluminum nitride does not have a liquid phase state, it is difficult to produce it by the melt method, and even if it can be produced by a device (the method described in Patent Document 1, etc.), the growth rate is slow and the holding time at the reaction temperature is 24. It took about an hour and a long time, productivity was bad, energy consumption was large, and there was a problem in terms of production cost. Although the method described in Patent Document 2 can achieve a relatively fast crystal growth rate of about 1.6 mm / hour, it is an expensive special device having complicated mechanisms such as a crystal pulling device and various control devices. Can be manufactured for the first time.

一方、窒化アルミニウムは単結晶を用いた電子デバイスを実用化するためには結晶欠陥の少ない高品質で低コストの窒化アルミニウム単結晶基板の製造を可能にしなければならない。そこで、窒化アルミニウム単結晶の薄膜が、HVPE(Hydride Vapor Phase Epitaxy)法やMOCVD(Metal Organic Chemical Vapor Deposition)法により、炭化珪素基板、サファイア基板上にガス原料を用いたヘテロエピタキシャル成長により製造されているが、いずれも成長反応に用いられる原料の濃度が希薄であり、結晶の成長速度が遅く生産性が悪く、また、希薄環境下での結晶の成長においては、螺旋転移の発生が優勢と成りやすいことからモザイク結晶と成り易いなどの欠点がある。
特開平10−53495号公報 特表2003−505331号公報
On the other hand, aluminum nitride must be capable of producing a high-quality, low-cost aluminum nitride single crystal substrate with few crystal defects in order to put an electronic device using a single crystal into practical use. Therefore, a thin film of aluminum nitride single crystal is manufactured by heteroepitaxial growth using a gas raw material on a silicon carbide substrate or sapphire substrate by HVPE (Hydride Vapor Phase Epitaxy) method or MOCVD (Metal Organic Chemical Vapor Deposition) method. However, in all cases, the concentration of the raw material used for the growth reaction is dilute, the crystal growth rate is slow and the productivity is poor, and the occurrence of the spiral transition is likely to be dominant in the growth of the crystal in a dilute environment. For this reason, there are drawbacks such as the tendency to form mosaic crystals.
JP-A-10-53495 Special Table 2003-505331

本発明は、螺旋転位などの欠陥が少なくフラックスなどの不純物が少ない高品質の窒化アルミニウム単結晶を速い成長速度で製造すること目的とする。   An object of the present invention is to produce a high-quality aluminum nitride single crystal with few defects such as screw dislocations and few impurities such as flux at a high growth rate.

種結晶として、炭化珪素、サファイア、又は、窒化アルミニウム等からなるウルツ鉱型の結晶構造を有する単結晶を用い、該種結晶上に窒化アルミニウム単結晶を成長させてなる窒化アルミニウム単結晶の製造方法であって、窒素を含む雰囲気中に加熱状態で保持されている該種結晶表面に向けて、アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子を供給し、該種結晶表面、及び又は、近傍において、アルミニウム原子を含有する化合物超微粒子を炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子により、還元窒化させ、窒化アルミニウム単結晶を該種結晶上に成長させることを特徴とする窒化アルミニウム単結晶の製造方法である。   A method for producing an aluminum nitride single crystal obtained by growing a single crystal having a wurtzite type crystal structure made of silicon carbide, sapphire, aluminum nitride or the like as a seed crystal and growing the aluminum nitride single crystal on the seed crystal The compound ultrafine particles containing aluminum atoms and the carbon-containing ultrafine particles and / or containing carbon atoms and nitrogen atoms are directed toward the surface of the seed crystal held in a heated state in an atmosphere containing nitrogen. Compound ultrafine particles are supplied, and the compound ultrafine particles containing aluminum atoms are reduced and nitrided with carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms at or near the seed crystal surface. And an aluminum nitride single crystal is grown on the seed crystal.

本発明におけるアルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子を該種結晶表面に向けて、供給される際のアルミニウム原子を含有する化合物超微粒子が、Alである場合は、該種結晶表面、及び又は、その近傍において、下記式(1)に示すような反応により、窒化アルミニウムを生成する。 In the present invention, the compound ultrafine particles and carbon-containing ultrafine particles containing aluminum atoms and / or the compound ultrafine particles containing carbon atoms and nitrogen atoms are directed toward the seed crystal surface, and contain aluminum atoms when supplied. When the compound ultrafine particles are Al 2 O 3 , aluminum nitride is generated by a reaction represented by the following formula (1) on the surface of the seed crystal and / or in the vicinity thereof.

この反応は、式(2)に示す炭素による還元反応と(3)に示す窒素による窒化反応の2段階からなると考えられ、該種結晶表面、及び又は、その近傍で超微粒子の化学反応により、合成される窒化アルミニウム(AlN)分子は、極めて高濃度であり、急速に該種結晶表面に融合して単結晶としてエピタキシャルに成長するため、成長速度が速く螺旋転位などが発生し難く、高品質の窒化アルミニウム単結晶が得られる。   This reaction is considered to be composed of two stages, a reduction reaction with carbon shown in Formula (2) and a nitriding reaction with nitrogen shown in (3). By the chemical reaction of ultrafine particles on or near the seed crystal surface, The synthesized aluminum nitride (AlN) molecules are extremely high in concentration and rapidly fused to the surface of the seed crystal to grow epitaxially as a single crystal. An aluminum nitride single crystal is obtained.

Al+3C+N→2AlN+3CO ・・・(1)
Al+2C→AlO+2CO ・・・・・・(2)
AlO+C+N→2AlN+CO・・・・・・(3)
Al 2 O 3 + 3C + N 2 → 2AlN + 3CO (1)
Al 2 O 3 + 2C → Al 2 O + 2CO (2)
Al 2 O + C + N 2 → 2AlN + CO (3)

本発明の窒化アルミニウム単結晶の製造方法によれば、螺旋転位などの欠陥が少なくフラックスなどの不純物が少ない高品質の窒化アルミニウム単結晶を速い成長速度で製造することができる。
According to the method for producing an aluminum nitride single crystal of the present invention, a high-quality aluminum nitride single crystal having few defects such as screw dislocations and few impurities such as flux can be produced at a high growth rate.

以下、本発明の窒化アルミニウム単結晶の製造方法を実施するための形態について具体的に説明するが、本発明の製造方法は以下の実施形態に限定されるものではない。   Hereinafter, although the form for implementing the manufacturing method of the aluminum nitride single crystal of this invention is demonstrated concretely, the manufacturing method of this invention is not limited to the following embodiment.

本発明に使用するアルミニウム原子を含有する化合物超微粒子の種類、粒径、粒子形状などの構成は、特に限定されず、例えば、AlClを酸水素炎中で加水分解して得られる超微粒子酸化アルミニウムなどが挙げられる。 The type, particle size, particle shape, etc. of the compound ultrafine particles containing aluminum atoms used in the present invention are not particularly limited. For example, ultrafine particle oxidation obtained by hydrolyzing AlCl 3 in an oxyhydrogen flame. Aluminum etc. are mentioned.

本発明に使用する炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子の種類、粒径、粒子形状などの構成は、特に限定されず、例えば、カーボンブラックと尿素(NCO)の混合物などが挙げられる。 The configuration of the carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms, such as the type, particle size, and particle shape, is not particularly limited. For example, carbon black and urea (N 2 H 4 CO) and the like.

上記アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子の供給量の比は、適宜選択できる。上記アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子のいずれもが、2種類以上の物を混合して使用しても良い。また、上記アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子は、必要に応じ、本発明の作用を阻害しない範囲で、前処理を施したり、他の成分を微量添加してもよい。   The ratio of the supply amount of the compound ultrafine particles containing aluminum atoms and the carbon-containing ultrafine particles and / or the compound ultrafine particles containing carbon atoms and nitrogen atoms can be appropriately selected. Any of the above compound ultrafine particles containing aluminum atoms and carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms may be used by mixing two or more kinds. In addition, the compound ultrafine particles and carbon-containing ultrafine particles containing aluminum atoms and / or the compound ultrafine particles containing carbon atoms and nitrogen atoms may be pretreated within a range that does not hinder the action of the present invention, if necessary. Or a small amount of other components may be added.

上記アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子の該種結晶表面への供給は、該種結晶表面に上記超微粒子が効率よく付着するために、上記超微粒子に適当な速度が与えられることが望ましい。
上記超微粒子の該種結晶表面への供給方法は特に限定されず、例えば、所望の流速を有するキャリアガスと混合して該種結晶表面に向けて供給する方法が挙げられる。この際、使用するキャリアガスは、窒素、及び又は、アンモニア等の窒素を含むガスあるいは、これにアルゴン等の不活性ガスを加えたガスを用いることもできる。なお、上記アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子は、該種結晶表面へ混合された状態で供給されるのであれば、別個に供給しても混合した状態で供給しても良い。混合した状態で供給する場合、予め原料の段階で混合しても。キャリアガス中に別個に供給し混合するようにしても良い。
Supply of the compound ultrafine particles containing aluminum atoms and carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms to the surface of the seed crystal allows the ultrafine particles to be efficiently applied to the surface of the seed crystal. In order to adhere, it is desirable that an appropriate speed is given to the ultrafine particles.
The method for supplying the ultrafine particles to the seed crystal surface is not particularly limited, and examples thereof include a method in which the ultrafine particles are mixed with a carrier gas having a desired flow rate and supplied toward the seed crystal surface. At this time, the carrier gas used may be nitrogen and / or a gas containing nitrogen such as ammonia, or a gas obtained by adding an inert gas such as argon thereto. In addition, if the compound ultrafine particle and the carbon-containing ultrafine particle containing the aluminum atom and / or the compound ultrafine particle containing the carbon atom and the nitrogen atom are supplied in a mixed state to the seed crystal surface, It may be supplied separately or in a mixed state. When supplying in a mixed state, it may be mixed in advance at the raw material stage. You may make it supply and mix separately in carrier gas.

さらに、例えば、窒化アルミニウム単結晶中にドーピングを行う場合には、上記超微粒子やキャリアガスにドーパントとなる成分を混合しても良い。   Furthermore, for example, when doping is performed in an aluminum nitride single crystal, a component serving as a dopant may be mixed in the ultrafine particles or carrier gas.

本発明で使用する該種結晶の構成、サイズ、形状は、目的とする窒化アルミニウム単結晶の構成、大きさ、形状などによって選択すれば良く、例えばレーリー法による炭化珪素単結晶、ベルヌーイ法によるサファイア単結晶、昇華法による窒化アルミニウム単結晶など、必要に応じ処理を施したものを用いることができる。   The configuration, size, and shape of the seed crystal used in the present invention may be selected depending on the configuration, size, shape, etc. of the target aluminum nitride single crystal. For example, a silicon carbide single crystal by the Rayleigh method, sapphire by the Bernoulli method A single crystal, an aluminum nitride single crystal by a sublimation method, or the like subjected to treatment as necessary can be used.

該種結晶表面は、供給されたアルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子が、溶融しながら反応して、窒化アルミニウム(AlN)分子を生成し、該種結晶表面にエピタキシャルに融合し、結晶成長する温度であれば、特に限定されず、好ましくは1400〜2300℃とするのが良い。   The surface of the seed crystal is reacted with the compound ultrafine particles containing aluminum atoms and carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms while being melted. ) No particular limitation is imposed on the temperature as long as it is a temperature at which molecules are generated, fused to the seed crystal surface epitaxially, and grows, and preferably 1400 to 2300 ° C.

本発明の窒化アルミニウム単結晶を得るために使用する窒化アルミニウム単結晶の製造装置の構成(サイズ、加熱方法、原料供給方法、雰囲気調整方法など)は、特に限定されず、目的とする窒化アルミニウム単結晶の大きさや形状、原料の種類などに応じて選択する。   The structure (size, heating method, raw material supply method, atmosphere adjustment method, etc.) of the aluminum nitride single crystal production apparatus used to obtain the aluminum nitride single crystal of the present invention is not particularly limited, and the intended aluminum nitride single crystal Select according to the size and shape of the crystal, the type of raw material, and the like.

また、窒化アルミニウム単結晶の製造条件も特に限定されず、目的とする窒化アルミニウム単結晶の大きさや形状、原料の種類や供給方法、キャリアガスの種類等に応じて選択する。   Further, the production conditions of the aluminum nitride single crystal are not particularly limited, and are selected according to the size and shape of the target aluminum nitride single crystal, the type and supply method of raw materials, the type of carrier gas, and the like.

本発明の窒化アルミニウム単結晶を得るための製造装置の一例を用いて窒化アルミニウム単結晶を合成した過程を図1により示す。   A process of synthesizing an aluminum nitride single crystal using an example of a production apparatus for obtaining the aluminum nitride single crystal of the present invention is shown in FIG.

図1に示すような製造装置を用いて、窒化アルミニウム単結晶の育成を行った。図1の製造装置は、グラファイト製のヒートゾーンを有する抵抗加熱炉1の水冷された底部から立てられたグラファイト製の支持棒2の上に種結晶3を密着固定し、該種結晶上部のヒートゾーン上端に超微粒子原料粉の供給口を設け、原料粉貯蔵ホッパー4から、落下する超微粒子原料粉をバルブ5を開いて窒素ガスボンベから窒素ガスを流すことにより該種結晶3の表面に供給する。抵抗加熱炉1には、図示しない放射温度計が設置されていてヒートゾーンの温度を測定し、それに応じて抵抗加熱炉のヒーター電力を制御することにより、該種結晶の温度を調整する。   An aluminum nitride single crystal was grown using a manufacturing apparatus as shown in FIG. The manufacturing apparatus shown in FIG. 1 fixes a seed crystal 3 tightly on a graphite support rod 2 standing from a water-cooled bottom of a resistance heating furnace 1 having a graphite heat zone, and heats the top of the seed crystal. An ultrafine raw material powder supply port is provided at the upper end of the zone, and the falling ultrafine raw material powder is supplied from the raw material powder storage hopper 4 to the surface of the seed crystal 3 by opening the valve 5 and flowing nitrogen gas from a nitrogen gas cylinder. . The resistance heating furnace 1 is provided with a radiation thermometer (not shown), measures the temperature of the heat zone, and adjusts the temperature of the seed crystal by controlling the heater power of the resistance heating furnace accordingly.

抵抗加熱炉内は、図示しない真空ポンプ、及び、圧力調整弁により、圧力調整が可能であって、ヒートゾーン内部の反応雰囲気の圧力調整を行うことができる。超微粒子原料粉をキャリアガスと窒素源を兼ねる窒素ガスと共に供給することにより、超微粒子原料粉に適度な速度を与え、ヒートゾーン内に固定された該種結晶に向かって移動し、該種結晶表面に到達させることができる。超微粒子原料粉の供給量はバルブ7により、調節される。   The inside of the resistance heating furnace can be adjusted with a vacuum pump (not shown) and a pressure adjusting valve, and the pressure of the reaction atmosphere inside the heat zone can be adjusted. By supplying ultrafine raw material powder together with nitrogen gas that also serves as a carrier gas and a nitrogen source, the ultrafine particle raw material powder is given an appropriate speed and moves toward the seed crystal fixed in the heat zone. Can reach the surface. The supply amount of the ultrafine raw material powder is adjusted by the valve 7.

窒化アルミニウム単結晶の製造(単結晶の成長)は、次のように行われる。
抵抗加熱炉のグラファイト製のヒートゾーン内に下端を水冷されて立てられたグラファイト製の支持棒上端に、下記に示す構成の炭化珪素種結晶を密着固定して、抵抗加熱炉内を減圧状態とし、窒素ガスによりガス置換を行う、次いで抵抗加熱炉を加熱し、炭化珪素種結晶表面が1400〜2300℃となるようにする。
Production of an aluminum nitride single crystal (growth of a single crystal) is performed as follows.
A silicon carbide seed crystal having the structure shown below is tightly fixed to the upper end of a graphite support rod, which is standing by water-cooling the lower end in a graphite heat zone of the resistance heating furnace, and the inside of the resistance heating furnace is reduced in pressure. The gas is replaced with nitrogen gas, and then the resistance heating furnace is heated so that the surface of the silicon carbide seed crystal becomes 1400 to 2300 ° C.

原料として下記の材料を用い、アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子を窒素ガス(キャリアガス)と共に、下記製造条件でヒートゾーン内に供給した。その結果、炭化珪素種結晶表面上に厚さ約200μmの窒化アルミニウム単結晶が成長した。   Using the following materials as raw materials, heat compound ultrafine particles containing aluminum atoms and carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms together with nitrogen gas (carrier gas) under the following production conditions Feeded into the zone. As a result, an aluminum nitride single crystal having a thickness of about 200 μm was grown on the surface of the silicon carbide seed crystal.

<原料>
(1)アルミニウム原子を含有する化合物超微粒子:(Al
酸化アルミニウム粉末、AEROXIDE AluC(日本アエロジル(株)製)
一次平均粒径=13nm、BET比表面積=100m/g
(2)炭素含有超微粒子:(C)
カーボンブラック、MA600(三菱化学(株)製)
一次平均粒径=18nm、窒素吸着法による比表面積=140m/g
(3)炭素原子と窒素原子を含有する化合物超微粒子:(NCO)
尿素を用いる。
上記、3原料をモル比で(1):(2):(3)=1:3:1で混合し、純水と共にテフロンボールを用いて24時間ボールミルして水性サスペンションとし、スプレードライヤーにより乾燥造粒し、平均粒子径40μmのほぼ球形として単結晶連続成長装置のホッパー4に収納する。
<Raw material>
(1) Compound ultrafine particles containing aluminum atoms: (Al 2 O 3 )
Aluminum oxide powder, AEROXIDE AluC (manufactured by Nippon Aerosil Co., Ltd.)
Primary average particle diameter = 13 nm, BET specific surface area = 100 m 2 / g
(2) Carbon-containing ultrafine particles: (C)
Carbon black, MA600 (Mitsubishi Chemical Corporation)
Primary average particle size = 18 nm, specific surface area by nitrogen adsorption method = 140 m 2 / g
(3) Compound ultrafine particles containing carbon and nitrogen atoms: (N 2 H 4 CO)
Urea is used.
The above three raw materials are mixed at a molar ratio of (1) :( 2) :( 3) = 1: 3: 1 and ball milled with Teflon balls with pure water for 24 hours to form an aqueous suspension and dried with a spray dryer. Granulated and stored in a hopper 4 of a single crystal continuous growth apparatus as an approximately spherical shape with an average particle diameter of 40 μm.

Figure 2009062248
Figure 2009062248

本発明の窒化アルミニウム単結晶の製造方法によれば、螺旋転位などの欠陥が少なくフラックスなどの不純物が少ない高品質の窒化アルミニウム単結晶を速い成長速度で製造することができる。   According to the method for producing an aluminum nitride single crystal of the present invention, a high-quality aluminum nitride single crystal having few defects such as screw dislocations and few impurities such as flux can be produced at a high growth rate.

本発明の窒化アルミニウム単結晶を得るための製造装置の一例を示す図である。It is a figure which shows an example of the manufacturing apparatus for obtaining the aluminum nitride single crystal of this invention.

符号の説明Explanation of symbols

1 抵抗加熱炉
2 グラファイト製支持棒
3 種結晶
4 超微粒子原料粉ホッパー
5 キャリアガス用開閉バルブ
6 キャリアガスボンベ
7 超微粒子原料粉調節バルブ
DESCRIPTION OF SYMBOLS 1 Resistance heating furnace 2 Graphite support rod 3 Seed crystal 4 Ultrafine particle raw material powder hopper 5 Carrier gas open / close valve 6 Carrier gas cylinder 7 Ultrafine particle raw material control valve

Claims (2)

種結晶として、炭化珪素、サファイア、又は、窒化アルミニウム等からなるウルツ鉱型の結晶構造を有する単結晶を用い、該種結晶上に窒化アルミニウム単結晶を成長させてなる窒化アルミニウム単結晶の製造方法であって、窒素を含む雰囲気中に加熱状態で保持されている該種結晶表面に向けて、アルミニウム原子を含有する化合物超微粒子と炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子を供給し、該種結晶表面、及び又は、近傍において、アルミニウム原子を含有する化合物超微粒子を炭素含有超微粒子、及び又は、炭素原子と窒素原子を含有する化合物超微粒子により、還元窒化させ、窒化アルミニウム単結晶を該種結晶上に成長させることを特徴とする窒化アルミニウム単結晶の製造方法。 A method for producing an aluminum nitride single crystal obtained by growing a single crystal having a wurtzite type crystal structure made of silicon carbide, sapphire, aluminum nitride or the like as a seed crystal and growing the aluminum nitride single crystal on the seed crystal The compound ultrafine particles containing aluminum atoms and the carbon-containing ultrafine particles and / or containing carbon atoms and nitrogen atoms are directed toward the surface of the seed crystal held in a heated state in an atmosphere containing nitrogen. Compound ultrafine particles are supplied, and the compound ultrafine particles containing aluminum atoms are reduced and nitrided with carbon-containing ultrafine particles and / or compound ultrafine particles containing carbon atoms and nitrogen atoms at or near the seed crystal surface. A method for producing an aluminum nitride single crystal, comprising growing an aluminum nitride single crystal on the seed crystal. 窒化アルミウム単結晶を成長させる種結晶の表面温度が、1400〜2300℃であることを特徴とする請求項1に記載する窒化アルミニウム単結晶の製造方法。 The method for producing an aluminum nitride single crystal according to claim 1, wherein the surface temperature of the seed crystal for growing the aluminum nitride single crystal is 1400 to 2300 ° C.
JP2007233632A 2007-09-10 2007-09-10 Growth method of aluminum nitride single crystal using ultrafine particle material Active JP5488947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233632A JP5488947B2 (en) 2007-09-10 2007-09-10 Growth method of aluminum nitride single crystal using ultrafine particle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233632A JP5488947B2 (en) 2007-09-10 2007-09-10 Growth method of aluminum nitride single crystal using ultrafine particle material

Publications (2)

Publication Number Publication Date
JP2009062248A true JP2009062248A (en) 2009-03-26
JP5488947B2 JP5488947B2 (en) 2014-05-14

Family

ID=40557187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233632A Active JP5488947B2 (en) 2007-09-10 2007-09-10 Growth method of aluminum nitride single crystal using ultrafine particle material

Country Status (1)

Country Link
JP (1) JP5488947B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233697A (en) * 2000-02-23 2001-08-28 Nippon Pillar Packing Co Ltd Silicon carbide single crystal
JP2004137142A (en) * 2002-03-14 2004-05-13 Rikogaku Shinkokai Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device
JP2005104829A (en) * 2003-09-12 2005-04-21 Tokuyama Corp Highly crystalline aluminum nitride laminated substrate and its producing method
JP2005132699A (en) * 2003-10-31 2005-05-26 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
JP2006045047A (en) * 2004-07-08 2006-02-16 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
JP2006069814A (en) * 2004-08-31 2006-03-16 Tokyo Institute Of Technology Substrate having stacked aluminum nitride layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233697A (en) * 2000-02-23 2001-08-28 Nippon Pillar Packing Co Ltd Silicon carbide single crystal
JP2004137142A (en) * 2002-03-14 2004-05-13 Rikogaku Shinkokai Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device
JP2005104829A (en) * 2003-09-12 2005-04-21 Tokuyama Corp Highly crystalline aluminum nitride laminated substrate and its producing method
JP2005132699A (en) * 2003-10-31 2005-05-26 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
JP2006045047A (en) * 2004-07-08 2006-02-16 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
JP2006069814A (en) * 2004-08-31 2006-03-16 Tokyo Institute Of Technology Substrate having stacked aluminum nitride layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
平井伸治、他3名: "Al2O3の還元窒化によるAlN合成の促進法の検討", 日本金属学会誌, vol. 第54巻,第2号, JPN6009018210, 1990, pages 181 - 185, ISSN: 0002733443 *

Also Published As

Publication number Publication date
JP5488947B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US9359690B2 (en) Process for growing silicon carbide single crystal and device for the same
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
JP2007055881A (en) Ain crystal, method for growing the same, and ain crystal substrate
JP2008001569A (en) SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
CN108118394B (en) Method for reducing nitrogen impurity content in silicon carbide single crystal
JP3505597B2 (en) Silicon carbide single crystal
WO2009098997A1 (en) Process for producing silicon carbide single crystal
JP2004189549A (en) Method of manufacturing aluminum nitride single crystal
JP5488947B2 (en) Growth method of aluminum nitride single crystal using ultrafine particle material
JP2007246320A (en) Method for producing aluminum oxide single crystal and aluminum oxide single crystal obtained by the same
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP2008050174A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCING THE SAME
JP4670002B2 (en) Method for producing nitride single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2004131376A (en) Silicon carbide single crystal, and method and apparatus for producing the same
JP2008115045A (en) SINGLE CRYSTAL SiC AND ITS PRODUCING METHOD
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP2008308369A (en) SINGLE CRYSTAL SiC, AND METHOD AND APPARATUS FOR PRODUCING THE SAME
JP2009023846A (en) Method for producing silicon carbide single crystal and apparatus for producing the same
JP2008037729A (en) Single crystal silicon carbide and method for manufacturing the same
JP2009057221A (en) Single crystal silicon carbide, and method for producing the same
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
JP2009057265A (en) SINGLE CRYSTAL SiC AND METHOD FOR PRODUCTION THEREOF
JP2009029664A (en) SINGLE CRYSTAL SiC AND ITS MANUFACTURING METHOD
JP2009073696A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250