JP2009061552A - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
JP2009061552A
JP2009061552A JP2007232084A JP2007232084A JP2009061552A JP 2009061552 A JP2009061552 A JP 2009061552A JP 2007232084 A JP2007232084 A JP 2007232084A JP 2007232084 A JP2007232084 A JP 2007232084A JP 2009061552 A JP2009061552 A JP 2009061552A
Authority
JP
Japan
Prior art keywords
tool
axis direction
tool bit
long axis
piston cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007232084A
Other languages
Japanese (ja)
Other versions
JP5058726B2 (en
Inventor
Younosuke Aoki
陽之介 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to JP2007232084A priority Critical patent/JP5058726B2/en
Priority to PCT/JP2008/065972 priority patent/WO2009031615A1/en
Publication of JP2009061552A publication Critical patent/JP2009061552A/en
Application granted granted Critical
Publication of JP5058726B2 publication Critical patent/JP5058726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/062Means for driving the impulse member comprising a wobbling mechanism, swash plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/061Swash-plate actuated impulse-driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/321Use of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/331Use of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/371Use of springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved technique effective for reducing vibration of an impact tool in the impact tool that linearly drives a tool bit in the longitudinal axial direction by using a swinging mechanism. <P>SOLUTION: The impact tool is provided with the tool bit 119, a tool body part 103, a motor 111, a rotary shaft 125, the swinging mechanism 130, a piston cylinder 141, a striker 143, and an air chamber 141a. A mass body is composed of the piston cylinder 141 and the swinging mechanism 130. An elastic body 153 is arranged between the swinging mechanism 130 and a tool body part side. The elastic body 153 is elastically deformed by the mass body moving backward to accumulate resilient force therein. Kinetic energy generated in the mass body moved forward by the resilient force accumulated in the elastic body 153, is oppositely operated against compressive reaction force acting on the piston cylinder 141 when the striker 143 is hit forward. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、揺動動作を行う揺動機構によって工具ビットを長軸方向に直線状に駆動する打撃工具の制振技術に関する。   The present invention relates to a vibration control technique for an impact tool in which a tool bit is linearly driven in a long axis direction by a swing mechanism that performs a swing operation.

斜板が揺動するスワッシュ機構(揺動機構)を用いてハンマビットを駆動するスワッシュベアリング式の電動ハンマドリルにおいて、加工作業時に当該ハンマドリルに生ずる振動を抑制する技術は、例えばGB特許公開第2154497号公報(特許文献1)に開示されている。上記公報に記載の制振機構は、打撃機構を有する工具本体部と作業者が握るハンドル部を分離構造とし、弾性体を介して当該本体部とハンドル部を結合することで本体部に発生した振動のハンドル部への伝達を低減し、これにより低振動化を図る技術である。   In a swash bearing type electric hammer drill that drives a hammer bit using a swash mechanism (oscillation mechanism) in which a swash plate oscillates, for example, GB Patent Publication No. 2154497 is a technique for suppressing vibration generated in the hammer drill during machining operations. It is disclosed in the gazette (patent document 1). The vibration damping mechanism described in the above publication is generated in the main body portion by separating the tool main body portion having the striking mechanism and the handle portion gripped by the operator and connecting the main body portion and the handle portion via an elastic body. This is a technique for reducing the transmission of vibration to the handle part and thereby reducing the vibration.

加工作業時に工具本体部に生ずる制振対象としての主たる振動としては、ピストンがストライカを前方へと打ち出すべく空気室の空気を圧縮する際に当該ピストンに作用する圧縮反力がある。上記公報に記載の制振機構によれば、上記のピストンに作用する圧縮反力により工具本体部に振動が生じた際、弾性体が弾性変形することによって当該振動のハンドル部への伝達を低減することができる。しかしながら、公報に記載の制振機構は、打撃工具の低振動化を図る上でなお改良の余地がある。
GB特許公開第2154497号公報
The main vibration as a vibration suppression target generated in the tool main body during machining operation is a compression reaction force that acts on the piston when the piston compresses air in the air chamber so as to strike the striker forward. According to the vibration control mechanism described in the above publication, when vibration is generated in the tool main body due to the compression reaction force acting on the piston, the elastic body is elastically deformed to reduce transmission of the vibration to the handle. can do. However, the vibration damping mechanism described in the publication still has room for improvement in order to reduce the vibration of the impact tool.
GB Patent Publication No. 2154497

本発明は、揺動機構によって工具ビットを長軸方向に直線状に駆動する打撃工具において、当該打撃工具の低振動化を実現する上で有効な改良された技術を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an improved technique that is effective in realizing a low vibration of the impact tool in an impact tool in which a tool bit is driven linearly in the long axis direction by a swing mechanism. .

上記課題を達成するため、本発明に係る打撃工具の好ましい形態は、工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具において、工具本体部と、工具本体部に収容されたモータと、工具ビットの長軸方向と平行に配置されてモータにより回転駆動される回転軸と、回転軸に支持されて当該回転軸の回転動作に基づき当該回転軸の長軸方向に揺動動作を行う揺動機構部と、揺動機構部の揺動動作によって工具ビット長軸方向に直線動作され、一端が塞がれた筒状のピストンシリンダと、ピストンシリンダの筒孔内で工具ビット長軸方向に直線動作する打撃子と、ピストンシリンダと打撃子との間に形成された空気室とを有する。そして、ピストンシリンダの工具ビット長軸方向前方への直線運動に伴う空気室の圧力変動を介して工具ビット長軸方向前方へと直線動作される打撃子が工具ビットを打撃動作することによって被加工材に所定のハンマ作業が行われる構成とされる。
なお、本発明における「打撃工具」とは、典型的にはハンマビットが直線状に打撃動作してハンマ加工作業を行う電動ハンマ、あるいはハンマビットが直線状に打撃動作しつつ周方向に回転動作してハンマドリル加工作業を行う電動ハンマドリルがこれに該当する。また、本発明における「回転軸の回転動作に基づき当該回転軸の長軸方向に揺動動作を行う」とは、典型的には揺動部材が回転軸の軸線に対して所定の角度で傾斜した状態で回転軸に相対回転自在に支持され、回転軸の回転に基づき揺動部材が回転軸に相対回転しつつ当該回転軸の長軸方向に揺動する態様がこれに該当する。
In order to achieve the above-mentioned object, a preferred embodiment of the impact tool according to the present invention is an impact tool for performing a predetermined machining operation on a workpiece by an impact operation in the long axis direction of a tool bit. A motor housed in the shaft, a rotating shaft that is arranged in parallel to the long axis direction of the tool bit and is driven to rotate by the motor, and a long axis direction of the rotating shaft that is supported by the rotating shaft and based on a rotating operation of the rotating shaft Oscillating mechanism that oscillates at the same time, a cylindrical piston cylinder that is linearly moved in the longitudinal direction of the tool bit by the oscillating operation of the oscillating mechanism, and closed at one end, And a striking element that linearly moves in the longitudinal direction of the tool bit, and an air chamber formed between the piston cylinder and the striking element. Then, the striker, which is linearly moved forward in the tool bit long axis direction through the pressure fluctuation of the air chamber accompanying the linear movement of the piston cylinder in the long axis direction of the tool bit, strikes the tool bit and is machined. A predetermined hammering operation is performed on the material.
The “striking tool” in the present invention is typically an electric hammer that performs hammering work by hammering a hammer bit in a straight line, or a hammer bit that rotates in a circumferential direction while performing a hammering operation. This corresponds to an electric hammer drill for performing a hammer drilling operation. Further, in the present invention, “perform a swinging operation in the major axis direction of the rotating shaft based on the rotating operation of the rotating shaft” typically means that the swinging member is inclined at a predetermined angle with respect to the axis of the rotating shaft. In this state, the rotating shaft is supported so as to be relatively rotatable, and the swinging member swings in the major axis direction of the rotating shaft while rotating relative to the rotating shaft based on the rotation of the rotating shaft.

本発明の打撃工具の好ましい形態によれば、揺動機構は、回転軸に対し、工具本体部側に当接して工具ビット長軸方向前方への移動が規制される位置を基準位置として、当該基準位置から工具ビット長軸方向後方への後退動作可能に装着される。また、ピストンシリンダ及び揺動機構部によって質量体が構成されるとともに、質量体の後方において、当該質量体と工具本体部側との間に配置され、回転軸の長軸方向に付勢力を作用する弾性体を更に有する。弾性体は、質量体が後退動作することで揺動機構が工具ビット長軸方向に基準位置よりも後方へと移動される際に弾性変形されて弾発力を保存する構成とされる。そして、空気室の圧縮動作により打撃子が工具ビット長軸方向前方へと移動される(打ち出される)際にピストンシリンダに作用する圧縮反力に対し、保存された弾性体の弾発力(復元力)により質量体が工具ビット長軸方向前方へと移動されることで当該質量体に生ずる運動エネルギーを作用させ、これにより圧縮反力を相殺させる構成とした。
なお、本発明における「弾性体の配置態様」については、揺動機構部と工具本体部側との間に配置される態様、あるいはピストンシリンダと工具本体部側との間に配置される態様のいずれも好適に包含する。また、「弾性体による付勢力の作用方向」は、回転軸の長軸方向成分を含めば足りる。また、本発明における「弾性体」は、典型的にはバネがこれに該当するが、ゴムを好適に包含する。また、本発明における「工具本体部側」とは、少なくともハンマビット長軸方向には移動しない部材を含む概念であり、工具本体部それ自体のみを指すものではない。
According to a preferred embodiment of the impact tool of the present invention, the swing mechanism is configured such that the reference position is a position at which the forward movement of the tool bit in the long axis direction is restricted with respect to the rotary shaft. The tool bit is mounted so as to be retractable backward from the tool bit longitudinal direction. In addition, the mass body is configured by the piston cylinder and the swing mechanism portion, and is disposed between the mass body and the tool body portion side behind the mass body, and exerts an urging force in the major axis direction of the rotating shaft. It further has an elastic body. The elastic body is configured such that when the mass body moves backward, the swinging mechanism is elastically deformed to store the elastic force when the swing mechanism is moved rearward from the reference position in the tool bit long axis direction. Then, the elastic force (restoration) of the stored elastic body against the compression reaction force acting on the piston cylinder when the striker is moved (fired) forward in the longitudinal direction of the tool bit by the compression operation of the air chamber. The mass body is moved forward in the tool bit long axis direction by the force), so that the kinetic energy generated in the mass body is applied, thereby canceling the compression reaction force.
Note that the “arrangement mode of the elastic body” in the present invention is a mode in which the elastic body is disposed between the swinging mechanism unit and the tool main body side, or a mode in which the elastic body is disposed between the piston cylinder and the tool main body side. Both are included suitably. Further, “the direction in which the urging force is applied by the elastic body” only needs to include the major axis direction component of the rotating shaft. The “elastic body” in the present invention typically corresponds to a spring, but preferably includes rubber. Further, the “tool body side” in the present invention is a concept including a member that does not move at least in the long axis direction of the hammer bit, and does not indicate only the tool body itself.

本発明によれば、揺動機構を基準位置より後方へと移動させる力、すなわち揺動機構に作用する後ろ向きの力を弾性体の弾発力として保存し、そして当該保存された弾発力をピストンシリンダ及び揺動機構によって構成される質量体の前向きの運動エネルギーに変換するとともに、当該運動エネルギーを、打撃子を前方へと移動させる(打ち出す)際にピストンシリンダに加わる圧縮反力に対してカウンタ力として作用させることによって、当該圧縮反力を相殺する構成としたものである。これにより、打撃子を前方へ打ち出す際にピストンシリンダに加わる圧縮反力を合理的に吸収(減衰)することが可能となり、打撃工具の低振動化を実現できる。なお、弾性体の弾発力で前方へと移動された質量体は、揺動機構が基準位置において工具本体部側に当接して工具ビット長軸方向前方への移動を規制され、これにより質量体の無用な動きが阻止される。   According to the present invention, the force for moving the swing mechanism backward from the reference position, that is, the backward force acting on the swing mechanism is stored as the elastic force of the elastic body, and the stored elastic force is stored. While converting to the forward kinetic energy of the mass body constituted by the piston cylinder and the swing mechanism, the kinetic energy is applied to the compression reaction force applied to the piston cylinder when the striker is moved forward (fired) By acting as a counter force, the compression reaction force is offset. Thereby, it is possible to rationally absorb (attenuate) the compression reaction force applied to the piston cylinder when the striker is driven forward, and the vibration of the impact tool can be reduced. Note that the mass body moved forward by the elastic force of the elastic body is restricted from moving forward in the tool bit long axis direction by the swing mechanism abutting against the tool body at the reference position. Useless movement of the body is prevented.

本発明の打撃工具に係る更なる形態によれば、揺動機構部と回転軸との間に配置され、揺動機構部と回転軸の双方に対し当該回転軸の長軸方向に転がり接触する複数の転動部材を有する。なお、本発明における「転動部材」としては、球体や円柱体を好適に用いることができる。本発明によれば、揺動機構部と回転軸との間に複数の転動部材を介在することで、揺動機構部の回転軸に対する長軸方向の移動動作を転動部材により円滑に行わせることができる。   According to the further form which concerns on the impact tool of this invention, it arrange | positions between a rocking | swiveling mechanism part and a rotating shaft, and it rolls and contacts in the major axis direction of the said rotating shaft with respect to both a rocking | swiveling mechanism part and a rotating shaft. It has a plurality of rolling members. As the “rolling member” in the present invention, a spherical body or a cylindrical body can be preferably used. According to the present invention, a plurality of rolling members are interposed between the swinging mechanism portion and the rotating shaft, so that the moving operation in the major axis direction of the swinging mechanism portion with respect to the rotating shaft is smoothly performed by the rolling member. Can be made.

本発明の打撃工具に係る更なる形態によれば、揺動機構部と回転軸間には、複数の転動部材相互の配置間隔を維持するように、当該複数の転動部材を保持する位置決め部材が配置された構成とされる。なお、本発明における「位置決め部材」は、典型的には、筒状部材によって構成されるとともに、当該筒状部材が回転軸と揺動機構部のいずれか一方に対しては長軸方向に相対移動可能に取り付けられ、他方に対しては相対移動不能に取り付けられる。また、位置決め部材による転動部材の保持は、典型的には、筒状部材に形成される径方向に貫通する保持孔に転動部材を嵌合することによって行う構成とされる。本発明によれば、揺動機構部と回転軸間に配置される複数の転動部材同士を常に所定の配置間隔に保持することが可能となり、これにより当該転動部材による揺動機構部の移動動作の円滑性を維持継続できる。   According to the further form which concerns on the impact tool of this invention, between the rocking | fluctuation mechanism part and a rotating shaft, the positioning which hold | maintains the said several rolling member so that the arrangement space | interval of several rolling members may be maintained. It is set as the structure by which the member is arrange | positioned. Note that the “positioning member” in the present invention is typically constituted by a cylindrical member, and the cylindrical member is relative to either the rotating shaft or the swinging mechanism portion in the long axis direction. It is attached so that it can move, and it is attached so that it cannot move relative to the other. Further, the rolling member is typically held by the positioning member by fitting the rolling member into a holding hole penetrating in the radial direction formed in the cylindrical member. According to the present invention, it is possible to always maintain a plurality of rolling members arranged between the swinging mechanism portion and the rotation shaft at a predetermined arrangement interval. The smoothness of the moving operation can be maintained.

本発明によれば、揺動機構によって工具ビットを長軸方向に直線状に駆動する打撃工具において、当該打撃工具の低振動化を実現する上で有効な改良された技術が提供されることとなった。   According to the present invention, in an impact tool that drives a tool bit linearly in the long axis direction by a swing mechanism, an improved technique effective in realizing low vibration of the impact tool is provided. became.

以下、本発明の実施形態につき、図1〜図4を参照しつつ詳細に説明する。本発明の実施形態は、打撃工具の一例として電動式のハンマドリルを用いて説明する。図1は本実施形態に係るハンマドリル101の全体構成を示す側断面図であり、ハンマビット119が被加工材に押し付けられていない無負荷時を示す。図1に示すように、ハンマドリル101は、概括的に見て、ハンマドリル101の外郭を形成する本体部103、当該本体部103の先端領域にツールホルダ137を介して着脱自在に取付けられたハンマビット119を主体として構成される。本体部103は、本発明における「工具本体部」に対応し、ハンマビット119は、本発明における「工具ビット」に対応する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. The embodiment of the present invention will be described using an electric hammer drill as an example of an impact tool. FIG. 1 is a side sectional view showing the overall configuration of the hammer drill 101 according to the present embodiment, and shows a no-load state in which the hammer bit 119 is not pressed against the workpiece. As shown in FIG. 1, the hammer drill 101 generally includes a main body 103 that forms an outline of the hammer drill 101, and a hammer bit that is detachably attached to a tip region of the main body 103 via a tool holder 137. 119 is mainly configured. The main body 103 corresponds to the “tool main body” in the present invention, and the hammer bit 119 corresponds to the “tool bit” in the present invention.

本体部103は、駆動モータ111を収容したモータハウジング105と、運動変換機構113、動力伝達機構114及び打撃要素115を収容したギアハウジング107と、ハンドグリップ109とを主体として構成されている。駆動モータ111は、本発明における「モータ」に対応する。駆動モータ111の回転出力は、運動変換機構113によって直線動作に適宜変換された上で打撃要素115に伝達され、当該打撃要素115を介してハンマビット119の長軸方向(図1における左右方向)への衝撃力を発生する。また駆動モータ111の回転出力は、動力伝達機構114によって適宜減速された上でハンマビット119に伝達され、当該ハンマビット119が周方向に回転動作される。駆動モータ111は、ハンドグリップ109に配置されたトリガ109aの引き操作によって通電駆動される。なお説明の便宜上、ハンマビット119側を前、ハンドグリップ109側を後という。   The main body 103 includes a motor housing 105 that houses a drive motor 111, a gear housing 107 that houses a motion conversion mechanism 113, a power transmission mechanism 114, and a striking element 115, and a hand grip 109. The drive motor 111 corresponds to a “motor” in the present invention. The rotation output of the drive motor 111 is appropriately converted into a linear motion by the motion conversion mechanism 113 and then transmitted to the striking element 115, and the major axis direction of the hammer bit 119 (the left-right direction in FIG. 1) via the striking element 115. Generates an impact force on The rotational output of the drive motor 111 is transmitted to the hammer bit 119 after being appropriately decelerated by the power transmission mechanism 114, and the hammer bit 119 is rotated in the circumferential direction. The drive motor 111 is energized and driven by pulling a trigger 109 a disposed on the handgrip 109. For convenience of explanation, the hammer bit 119 side is referred to as the front, and the hand grip 109 side is referred to as the rear.

運動変換機構113は、駆動モータ111により鉛直面内にて回転駆動される駆動ギア121、当該駆動ギア121に噛み合い係合する被動ギア123、当該被動ギア123とともに中間軸125を介して回転する回転体127、回転体127の回転によってハンマビット119の長軸方向に揺動される揺動部材としての揺動リング129、及び揺動リング129の揺動によって直線状に往復移動する筒状ピストン141を主体として構成される。中間軸125は、本発明における「回転軸」に対応し、筒状ピストン141は、本発明における「ピストンシリンダ」に対応する。中間軸125はハンマビット119の長軸方向に平行(水平)に配置され、当該中間軸125に取り付けられた回転体127の外周面が中間軸125の軸線に対し所定の傾斜角度で傾斜状に形成されている。揺動リング129は、回転体127の傾斜外周面にベアリング126を介して相対回転可能に支持され、当該回転体127の回転動作に伴ってハンマビット119の長軸方向及び当該長軸方向と交差する方向に揺動される。回転体127、及び回転体127にベアリング126を介して相対回転自在に支持される揺動リング129によって揺動機構130が構成され、当該揺動機構130が、本発明における「揺動機構部」に対応する。   The motion conversion mechanism 113 is driven to rotate in the vertical plane by the drive motor 111, the driven gear 123 that meshes and engages with the drive gear 121, and the rotation that rotates together with the driven gear 123 via the intermediate shaft 125. Body 127, rocking ring 129 as a rocking member rocked in the major axis direction of hammer bit 119 by rotation of rotating body 127, and cylindrical piston 141 reciprocating linearly by rocking of rocking ring 129. It is composed mainly of. The intermediate shaft 125 corresponds to the “rotary shaft” in the present invention, and the cylindrical piston 141 corresponds to the “piston cylinder” in the present invention. The intermediate shaft 125 is disposed parallel (horizontally) to the major axis direction of the hammer bit 119, and the outer peripheral surface of the rotating body 127 attached to the intermediate shaft 125 is inclined at a predetermined inclination angle with respect to the axis of the intermediate shaft 125. Is formed. The rocking ring 129 is supported on the inclined outer peripheral surface of the rotating body 127 so as to be relatively rotatable via a bearing 126, and intersects the major axis direction of the hammer bit 119 and the major axis direction in accordance with the rotational operation of the rotating body 127. It is swung in the direction of The oscillating mechanism 130 is constituted by the rotator 127 and the oscillating ring 129 supported by the rotator 127 via a bearing 126 so as to be relatively rotatable, and the oscillating mechanism 130 is the “oscillator mechanism” in the present invention. Corresponding to

揺動リング129の上端部領域には、上方(放射方向)に一体に突設された揺動ロッド128が設けられ、当該揺動ロッド128が筒状ピストン141の後端部に当該筒状ピストン141の長軸北港(移動方向)と交差する軸線回りに回動自在に設けた係合部124に遊嵌状に係合されている。これにより、揺動リング129の揺動動作に伴う当該揺動リング129と筒状ピストン141間の、当該筒状ピストン141の長軸方向と交差する方向(揺動ロッド128の長軸方向)の干渉が吸収されている。筒状ピストン141は、一端(後端)が塞がれた円筒状に形成されている。筒状ピストン141は、シリンダ135内に摺動自在に配置されており、揺動リング129の揺動動作(ハンマビット119の長軸方向成分)によって駆動され、当該シリンダ135に沿って直線動作を行う。揺動機構130と筒状ピストン141によって本発明における「質量体」が構成される。   In the upper end portion region of the rocking ring 129, a rocking rod 128 that protrudes integrally upward (radially) is provided, and the rocking rod 128 is located at the rear end of the cylindrical piston 141. 141 is engaged in a loose-fitting manner with an engaging portion 124 provided so as to be rotatable around an axis intersecting with the long-axis north port 141 (moving direction). Thereby, the direction (long axis direction of the rocking rod 128) intersecting the long axis direction of the cylindrical piston 141 between the rocking ring 129 and the cylindrical piston 141 accompanying the rocking motion of the rocking ring 129. Interference is absorbed. The cylindrical piston 141 is formed in a cylindrical shape with one end (rear end) closed. The cylindrical piston 141 is slidably disposed in the cylinder 135 and is driven by the swinging motion of the swinging ring 129 (the component in the long axis direction of the hammer bit 119) to perform a linear motion along the cylinder 135. Do. The “mass body” in the present invention is constituted by the swing mechanism 130 and the cylindrical piston 141.

打撃要素115は、筒状ピストン141の筒孔に摺動自在に配置されたストライカ143と、ツールホルダ137に摺動自在に配置されるとともに、ストライカ143の動作エネルギーをハンマビット119に伝達する中間子としてのインパクトボルト145を主体として構成される。ストライカ143は、本発明における「打撃子」に対応する。ストライカ143は、筒状ピストン141の摺動動作に伴う当該筒状ピストン141の空気室141aの圧力変動(空気バネ)を介して駆動され(打ち出され)、筒状のツールホルダ137内に摺動自在に配置されたインパクトボルト145に衝突(打撃)し、当該インパクトボルト145を介してハンマビット119に打撃力を伝達する。筒状ピストン141、空気室141a、ストライカ143及びインパクトボルト145によってビット打撃機構が構成される。   The striking element 115 includes a striker 143 slidably disposed in a cylindrical hole of the cylindrical piston 141, and an intermediate element that is slidably disposed on the tool holder 137 and transmits operating energy of the striker 143 to the hammer bit 119. As an impact bolt 145 as a main constituent. The striker 143 corresponds to the “batter” in the present invention. The striker 143 is driven (fired) through the pressure fluctuation (air spring) of the air chamber 141a of the cylindrical piston 141 accompanying the sliding operation of the cylindrical piston 141, and slides into the cylindrical tool holder 137. The impact bolt 145 that is freely arranged collides (hits), and the impact force is transmitted to the hammer bit 119 via the impact bolt 145. A bit striking mechanism is configured by the cylindrical piston 141, the air chamber 141a, the striker 143, and the impact bolt 145.

動力伝達機構114は、駆動モータ111から駆動ギア121及び中間軸125を介して鉛直面内にて回転駆動される第1伝達ギア131、当該第1伝達ギア131に噛み合い係合する第2伝達ギア133、当該第2伝達ギア133とともに回転されるシリンダ135を主体として構成される。そしてシリンダ135の回転駆動力は、ツールホルダ137に伝達され、更には当該ツールホルダ137に保持されたハンマビット119へと伝達される。   The power transmission mechanism 114 includes a first transmission gear 131 that is rotationally driven in the vertical plane from the drive motor 111 via the drive gear 121 and the intermediate shaft 125, and a second transmission gear that meshes with and engages with the first transmission gear 131. 133, which is mainly composed of a cylinder 135 that rotates together with the second transmission gear 133. The rotational driving force of the cylinder 135 is transmitted to the tool holder 137 and further transmitted to the hammer bit 119 held by the tool holder 137.

次にハンマドリル101の加工作業時において、ストライカ143を前方へと移動させる(打ち出す)際に筒状ピストン141に作用する圧縮反力を吸収するべく設けられる制振機構151につき、図2〜図4を参照しつつ説明する。図2は筒状ピストン141の移動方向が後退動作から前進動作へと切り替わる反転動作時、すなわちスワッシュ切り返し時を示し、図3は空気室141aの最大圧縮時、すなわちピストン−ストライカ最大圧縮時を示す。また、図4は図3のA−A線断面図である。   Next, regarding the vibration control mechanism 151 provided to absorb the compression reaction force acting on the cylindrical piston 141 when the striker 143 is moved forward (fired) during the machining operation of the hammer drill 101, FIGS. Will be described with reference to FIG. FIG. 2 shows a reversing operation in which the moving direction of the cylindrical piston 141 is switched from a backward operation to a forward operation, that is, a swash switching, and FIG. 3 shows a maximum compression of the air chamber 141a, that is, a piston-striker maximum compression. . 4 is a cross-sectional view taken along line AA in FIG.

本実施の形態に係る制振機構151は、揺動機構130を中間軸125に対して後方への移動可能に付勢するコイルバネ153を主体として構成される。揺動機構130の構成部材の1つである回転体127は、中間軸125に対し当該中間軸125と共に回転しつつ軸方向に相対移動可能に取り付けられる。そして、コイルバネ153は、回転体127と当該回転体127の後方に位置する被動ギア123との間に配置され、回転体127に対し前方向への付勢力を作用する。これにより、揺動機構130は、ハンマビット119が被加工材に押し付けられていない無負荷時、すなわちハンマドリル101の非稼動時には、図1に示すように、中間軸125に固定された第1伝達ギア131の後端と当接する位置に保持される。このように、揺動機構130は、第1伝達ギア131との当接により前方への移動を規制される最前端位置が、無負荷時における基準位置として設定され、当該基準位置からの後退動作が許容されている。第1伝達ギア131が、本発明における「工具本体部側」に対応する。   The vibration damping mechanism 151 according to the present embodiment is mainly configured by a coil spring 153 that urges the swing mechanism 130 to move backward with respect to the intermediate shaft 125. A rotating body 127 that is one of the constituent members of the swing mechanism 130 is attached to the intermediate shaft 125 so as to be relatively movable in the axial direction while rotating together with the intermediate shaft 125. The coil spring 153 is disposed between the rotating body 127 and the driven gear 123 positioned behind the rotating body 127 and acts on the rotating body 127 in the forward direction. As a result, the swing mechanism 130 allows the first transmission fixed to the intermediate shaft 125 as shown in FIG. 1 when there is no load when the hammer bit 119 is not pressed against the workpiece, that is, when the hammer drill 101 is not in operation. It is held at a position where it contacts the rear end of the gear 131. Thus, in the swing mechanism 130, the foremost position at which forward movement is restricted by contact with the first transmission gear 131 is set as the reference position at the time of no load, and the backward movement operation from the reference position is performed. Is allowed. The first transmission gear 131 corresponds to the “tool main body side” in the present invention.

揺動機構130における回転体127と中間軸125との間には、複数の鋼球155が介在状に配置されている。鋼球155は、本発明における「転動部材」に対応する。回転体127の軸孔内周面と中間軸125の外周面には、長軸方向に延在する複数列、本実施の形態では図4に示すように4列の溝127a,125aが周方向に等間隔で対向状に形成されており、対向する各列の溝127a,125aには、複数、本実施の形態では図2及び図3に示すように各4個の鋼球155が転動自在に配置されている。これにより、回転体127は中間軸125に対し鋼球155を介して当該中間軸125とともに回転しつつ、長軸方向に相対移動可能に連結される。このように鋼球155を介して回転体127と中間軸125を連結することで、揺動機構130の基準位置からの後退動作が円滑化される。   A plurality of steel balls 155 are interposed between the rotating body 127 and the intermediate shaft 125 in the swing mechanism 130. The steel ball 155 corresponds to the “rolling member” in the present invention. On the inner peripheral surface of the shaft hole of the rotating body 127 and the outer peripheral surface of the intermediate shaft 125, a plurality of rows extending in the major axis direction, in this embodiment, four rows of grooves 127a and 125a as shown in FIG. In this embodiment, a plurality of steel balls 155 roll in each of the grooves 127a and 125a in each row as shown in FIG. 2 and FIG. Arranged freely. Thereby, the rotating body 127 is connected to the intermediate shaft 125 so as to be relatively movable in the major axis direction while rotating together with the intermediate shaft 125 via the steel ball 155. By connecting the rotating body 127 and the intermediate shaft 125 through the steel balls 155 in this way, the backward movement operation of the swing mechanism 130 from the reference position is smoothed.

また、複数の鋼球155は、回転体127と中間軸125との間に配置された筒状の保持スリーブ157によって相互間の配置間隔を維持するように保持される。保持スリーブ157は、本発明における「位置決め部材」に対応する。保持スリーブ157は、径方向に貫通する所定数の保持孔159を有し、当該各保持孔159に鋼球155を1個ずつ嵌合して保持する。保持スリーブ157は、長軸方向の一端(後端)に外径側に張り出すフランジ部157aを有する円筒形に形成されており、中間軸125に対しては遊嵌状に嵌合されて当該中間軸125に対する長軸方向の相対移動が許容され、回転体127に対しては、例えば軸孔に圧入することで固定されている。これにより、複数の鋼球155は、互いに所定の配置間隔を維持した状態で溝127a,125a内を転動することが可能とされる。なお、保持スリーブ157のフランジ部157aは、回転体127の軸方向後端に当接され、当該フランジ部157aの端面にコイルバネ153の一端が当接されている。また、コイルバネ153の軸方向他端は、その一部が被動ギア123の前側の側面に形成された収容凹部123aに遊嵌状に嵌入されて径方向の移動が規制され、伸縮動作の安定化が図られている。被動ギア123の収容凹部123aが、本発明における「工具本体部側」に対応する。   Further, the plurality of steel balls 155 are held by a cylindrical holding sleeve 157 arranged between the rotating body 127 and the intermediate shaft 125 so as to maintain a mutual arrangement interval. The holding sleeve 157 corresponds to the “positioning member” in the present invention. The holding sleeve 157 has a predetermined number of holding holes 159 penetrating in the radial direction, and holds one steel ball 155 in each holding hole 159 one by one. The holding sleeve 157 is formed in a cylindrical shape having a flange portion 157a projecting to the outer diameter side at one end (rear end) in the long axis direction, and is fitted into the intermediate shaft 125 in a loosely fitting manner. Relative movement in the major axis direction with respect to the intermediate shaft 125 is allowed, and the rotating body 127 is fixed by, for example, press-fitting into the shaft hole. As a result, the plurality of steel balls 155 can roll in the grooves 127a and 125a while maintaining a predetermined arrangement interval. The flange portion 157a of the holding sleeve 157 is in contact with the axial rear end of the rotating body 127, and one end of the coil spring 153 is in contact with the end surface of the flange portion 157a. The other end of the coil spring 153 in the axial direction is partly fitted into a housing recess 123a formed on the front side surface of the driven gear 123 so that the movement in the radial direction is restricted, and the expansion and contraction operation is stabilized. Is planned. The housing recess 123a of the driven gear 123 corresponds to the “tool body side” in the present invention.

次に、上記のように構成されたハンマドリル201の作用について説明する。駆動モータ111が通電駆動されると、その回転出力により、駆動ギア121が鉛直面内にて回動動作する。すると、駆動ギア121に噛み合い係合される被動ギア123、中間軸125を介して回転体127が鉛直面内にて回転動作され、これによって揺動リング129及び揺動ロッド128が前後方向(ハンマビット119の長軸方向)に揺動する。揺動ロッド128の揺動によって筒状ピストン141が直線状に摺動動作され、それに伴う筒状ピストン141の空気室141aの空気バネの作用により、ストライカ143は筒状ピストン141内を直線動作し、インパクトボルト145に衝突することで、その動作エネルギーをハンマビット119へと伝達する。   Next, the operation of the hammer drill 201 configured as described above will be described. When the drive motor 111 is energized, the drive gear 121 rotates in the vertical plane by the rotation output. Then, the rotating body 127 is rotated in the vertical plane via the driven gear 123 engaged with and engaged with the drive gear 121 and the intermediate shaft 125, whereby the swing ring 129 and the swing rod 128 are moved in the front-rear direction (hammer). It swings in the long axis direction of the bit 119. The cylindrical piston 141 slides linearly by the swing of the swing rod 128, and the striker 143 moves linearly in the cylindrical piston 141 by the action of the air spring of the air chamber 141a of the cylindrical piston 141. By colliding with the impact bolt 145, the operating energy is transmitted to the hammer bit 119.

一方、中間軸125とともに第1伝達ギア131が回転されると、第1伝達ギア131に噛み合い係合される第2伝達ギア133を介してシリンダ135が鉛直面内にて回転され、更にシリンダ135とともにツールホルダ137及びこのツールホルダ137にて保持されるハンマビット119が一体状に回転される。かくして、ハンマビット119が長軸方向のハンマ動作と周方向のドリル動作を行い、被加工材に加工作業(穴開け作業)を遂行する。   On the other hand, when the first transmission gear 131 is rotated together with the intermediate shaft 125, the cylinder 135 is rotated in the vertical plane via the second transmission gear 133 engaged and engaged with the first transmission gear 131. At the same time, the tool holder 137 and the hammer bit 119 held by the tool holder 137 are rotated together. Thus, the hammer bit 119 performs a hammering operation in the major axis direction and a drilling operation in the circumferential direction to perform a machining operation (drilling operation) on the workpiece.

上記の加工作業時において、図2に示すように、後方(図2の右側)へと移動する筒状ピストン141が前方へと移動方向を変えるとき(スワッシュ切り返し時)、コイルバネ153に対して、当該切り返しに伴う後ろ向きの力(以下、この力を反力という)が作用する。すなわち、筒状ピストン141の運動方向が後方から前方へと切り替わる切り返し時において、揺動機構130の揺動支点側部材である回転体127には、筒状ピストン141の反転後の移動方向と反対方向(後ろ向き)の力、すなわち切り返しの反力が生ずる。そして、この反力で揺動機構130の回転体127が中間軸125に沿って基準位置から後方へと移動し、これによりコイルバネ153は、後退動作する回転体127によって押されて弾性変形し、弾発力を保存する。なお、図2において矢印Pがスワッシュ切り返し方向を示し、矢印Fが反力の作用方向を示す。
このように、コイルバネ153は、筒状ピストン141および揺動機構130によって構成される質量体の後退動作、具体的には揺動機構130の揺動支点側部材としての回転体127が基準位置より後方へと移動する際、当該回転体127に押されて弾発力を保存する。
In the above machining operation, as shown in FIG. 2, when the cylindrical piston 141 moving backward (right side in FIG. 2) changes the moving direction forward (when swash is turned back), the coil spring 153 is A backward force (hereinafter, this force is referred to as a reaction force) due to the turn-back is applied. That is, when the movement direction of the cylindrical piston 141 switches from the rear to the front, the rotating body 127 that is the swing fulcrum side member of the swing mechanism 130 is opposite to the moving direction after the tubular piston 141 is reversed. A force in the direction (backward), that is, a counter-reaction force is generated. Then, due to this reaction force, the rotating body 127 of the swinging mechanism 130 moves rearward from the reference position along the intermediate shaft 125, whereby the coil spring 153 is pushed and elastically deformed by the rotating body 127 moving backward. Save resilience. In FIG. 2, an arrow P indicates a swash turn-back direction, and an arrow F indicates a direction in which a reaction force is applied.
As described above, the coil spring 153 is configured such that the mass body constituted by the cylindrical piston 141 and the swing mechanism 130 is retracted, specifically, the rotating body 127 as the swing fulcrum side member of the swing mechanism 130 is moved from the reference position. When moving backward, it is pushed by the rotating body 127 to store the resilience.

移動方向を反転した筒状ピストン141の前方への移動(及びストライカ143の後方への移動)により空気室141aの空気が圧縮され、当該空気室141aの最大圧縮状態を経てストライカ143が前方へと移動される(打ち出される)際、筒状ピストン141には圧縮反力が作用する。このとき、前記慣性力によってコイルバネ153に保存された弾発力が、質量体としての揺動機構130及び筒状ピストン141を前方へと移動させることで当該質量体に生じた運動エネルギーを、上記の圧縮反力を相殺するようにカウンタ力として作用する。すなわち、コイルバネ153の弾発力は、質量体としての揺動機構130及び筒状ピストン141を前方へ押し出すように運動させる形に変化し、これによって当該揺動機構130及び筒状ピストン141がカウンタウェイトとして圧縮反力に対抗するように作用する。この状態が図3に示される。なお、図3において矢印Wがカウンタ力の作用方向を示す。   The air in the air chamber 141a is compressed by the forward movement of the cylindrical piston 141 whose movement direction is reversed (and the movement of the striker 143 rearward), and the striker 143 moves forward through the maximum compression state of the air chamber 141a. When moved (fired), a compression reaction force acts on the cylindrical piston 141. At this time, the elastic force stored in the coil spring 153 by the inertial force moves the swing mechanism 130 and the cylindrical piston 141 as the mass body forward, and the kinetic energy generated in the mass body is It acts as a counter force so as to cancel the compression reaction force. That is, the elastic force of the coil spring 153 changes so as to move the swing mechanism 130 and the cylindrical piston 141 as mass bodies so as to push them forward, whereby the swing mechanism 130 and the cylindrical piston 141 are countered. Acts as a weight against the compression reaction force. This state is shown in FIG. In FIG. 3, the arrow W indicates the direction of counter force action.

このように、本実施の形態によれば、筒状ピストン141が後方へと移動することに基づく慣性力を利用してコイルバネ153に弾発力を保存させ、そして当該コイルバネ153の弾発力を、ストライカ143を前方へと打ち出す際に筒状ピストン141に加わる圧縮反力に対し、対抗するカウンタ力として作用させることによって当該圧縮反力を相殺する構成としたものである。これにより、ストライカ143を前方へ打ち出す際に筒状ピストン141に加わる圧縮反力を合理的に吸収(減衰)することが可能となり、本体部103の低振動化が実現されることとなる。   As described above, according to this embodiment, the spring force is stored in the coil spring 153 using the inertial force based on the backward movement of the cylindrical piston 141, and the spring force of the coil spring 153 is reduced. The compression reaction force is offset by acting as a counter force against the compression reaction force applied to the cylindrical piston 141 when the striker 143 is driven forward. As a result, it is possible to rationally absorb (attenuate) the compression reaction force applied to the cylindrical piston 141 when the striker 143 is driven forward, and the vibration of the main body 103 can be reduced.

なお、カウンタウェイトとして作用する揺動機構130及び筒状ピストン141の中間軸125に沿う前方への移動動作は、揺動機構130の回転体127が前方位置の第1伝達ギア131に当接することで阻止される。すなわち、カウンタウェイトとして作用後の揺動機構130及び筒状ピストン141は、次回のスワッシュ切り返しの反力を受けるまでは、第1伝達ギア131にて規定された基準位置に保持される。   In addition, in the forward movement operation along the intermediate shaft 125 of the swing mechanism 130 and the cylindrical piston 141 acting as a counterweight, the rotating body 127 of the swing mechanism 130 comes into contact with the first transmission gear 131 at the front position. Is blocked. That is, the swing mechanism 130 and the cylindrical piston 141 after acting as the counterweight are held at the reference position defined by the first transmission gear 131 until receiving the next swash-turning reaction force.

また、本実施の形態においては、揺動機構部130における回転体127は、中間軸125に対し鋼球155を介して当該中間軸125とともに回転しつつ長軸方向への相対移動可能に連結された構成とした。このため、揺動機構130及び筒状ピストン141の中間軸125の長軸方向の移動動作が鋼球155を介しての転がり接触による相対移動となり、例えばスプライン嵌合のような滑り接触による摺動方式に比べて、摩擦抵抗が少なく移動動作の円滑性を向上できる。   In the present embodiment, the rotating body 127 in the swing mechanism 130 is connected to the intermediate shaft 125 via the steel ball 155 so as to be capable of relative movement in the long axis direction while rotating together with the intermediate shaft 125. The configuration was as follows. For this reason, the movement in the major axis direction of the intermediate shaft 125 of the swing mechanism 130 and the cylindrical piston 141 becomes a relative movement by rolling contact via the steel ball 155, and for example, sliding by sliding contact such as spline fitting. Compared with the system, there is less frictional resistance and the smoothness of the moving operation can be improved.

また、本実施の形態によれば、回転体127と中間軸125間に位置決め部材としての保持スリーブ157を介在し、これにより複数の鋼球155相互の配置間隔を維持する構成としている。このため、鋼球155が、回転体127の長軸方向の移動動作に伴い溝127a,125aの軸方向の一方に片寄ることが無く、常時に所定の配置間隔に保持されることになる。その結果、当該鋼球155による回転体127の長軸方向の移動動作の円滑性を継続することが可能となる。   In addition, according to the present embodiment, the holding sleeve 157 as a positioning member is interposed between the rotating body 127 and the intermediate shaft 125, thereby maintaining the arrangement interval between the plurality of steel balls 155. For this reason, the steel balls 155 are not shifted to one of the axial directions of the grooves 127a and 125a with the movement of the rotating body 127 in the major axis direction, and are always held at a predetermined arrangement interval. As a result, it is possible to continue the smooth movement of the rotating body 127 in the major axis direction by the steel ball 155.

なお、上述した実施の形態では、揺動機構130につき、揺動リング129が中間軸125に所定の傾斜角度で相対回転可能に支持されて中間軸125の回転に基づき当該中間軸125の軸方向に揺動動作を行う場合で説明したが、これに限定されない。すなわち、揺動リングを斜板とし、当該斜板が中間軸の軸線に対して所定の傾斜角度で傾斜した状態で中間軸と一体に回転するように取り付け、中間軸の回転に基づき斜板が中間軸とともに回転しつつ軸方向に揺動動作を行う構成の揺動機構に採用しても構わない。また、上述した実施の形態では、打撃工具としてハンマドリル101を例にとって説明しているが、ハンマドリル101に限らず、ハンマ作業のみを行うハンマに適用できる。   In the above-described embodiment, the swing ring 129 of the swing mechanism 130 is supported by the intermediate shaft 125 so as to be relatively rotatable at a predetermined inclination angle, and the axial direction of the intermediate shaft 125 is based on the rotation of the intermediate shaft 125. However, the present invention is not limited to this. That is, the oscillating ring is a swash plate, and the swash plate is attached so as to rotate integrally with the intermediate shaft while being inclined at a predetermined inclination angle with respect to the axis of the intermediate shaft. You may employ | adopt for the rocking | swiveling mechanism of the structure which performs rocking | fluctuation operation | movement to an axial direction, rotating with an intermediate shaft. In the above-described embodiment, the hammer drill 101 is described as an example of the striking tool. However, the hammer drill 101 is not limited to the hammer drill 101 and can be applied to a hammer that performs only a hammer operation.

また本実施の形態では、コイルバネ153を揺動機構130の回転体127と被動ギア123との間に配置する構成としたが、コイルバネ153を筒状ピストン141とギアハウジング107との間、あるいは筒状ピストン141とシリンダ135との間に配置してもよい。また、本実施の形態では、位置決め部材としての保持スリーブ157を、回転体127側に固定し、中間軸125に遊嵌状に嵌合したが、回転体127に遊嵌状に嵌合し、中間軸125側に固定する構成に変更してもよい。また、転動部材としての鋼球155は、例えば円筒体(ころ)に変更してもよい。   In the present embodiment, the coil spring 153 is disposed between the rotating body 127 of the swing mechanism 130 and the driven gear 123. However, the coil spring 153 is disposed between the cylindrical piston 141 and the gear housing 107, or The cylindrical piston 141 and the cylinder 135 may be disposed. Further, in the present embodiment, the holding sleeve 157 as a positioning member is fixed to the rotating body 127 side and fitted to the intermediate shaft 125 in a loose fitting manner, but is fitted to the rotating body 127 in a loose fitting manner, You may change to the structure fixed to the intermediate shaft 125 side. Moreover, you may change the steel ball 155 as a rolling member into a cylindrical body (roller), for example.

本発明の実施形態に係る電動式のハンマドリルの全体構成を示す側断面図であり、ハンマビットが被加工材に押し付けられていない無負荷時を示す。It is a sectional side view showing the whole composition of the electric hammer drill concerning the embodiment of the present invention, and shows the time of no load in which the hammer bit is not pressed against a work material. 主要部の拡大断面図であり、筒状ピストンの運動方向が後退動作から前進動作へと切り替わる反転動作時、すなわちスワッシュ切り返し時を示す。It is an expanded sectional view of the principal part, and shows the time of the reversal operation in which the direction of movement of the cylindrical piston switches from the backward movement to the forward movement, that is, the time of swash switching. 主要部の拡大断面図であり、空気室の最大圧縮時、すなわちピストン−ストライカ最大圧縮時を示す。It is an expanded sectional view of the principal part, and shows the time of maximum compression of an air chamber, ie, the time of piston-striker maximum compression. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3.

符号の説明Explanation of symbols

101 ハンマドリル(打撃工具)
103 本体部(工具本体部)
105 モータハウジング
107 ギアハウジング
109 ハンドグリップ
109a トリガ
111 駆動モータ
113 運動変換機構
114 動力伝達機構
115 打撃要素
119 ハンマビット(工具ビット)
121 駆動ギア
123 被動ギア
123a 収容凹部(工具本体部側)
124 係合部
125 中間軸(回転軸)
125a 溝
126 ベアリング
127 回転体
127a 溝
128 揺動ロッド
129 揺動リング
130 揺動機構(揺動機構部)
131 第1伝達ギア(工具本体部側)
133 第2伝達ギア
135 シリンダ
137 ツールホルダ
141 筒状ピストン(ピストンシリンダ)
141a 空気室
143 ストライカ(打撃子)
145 インパクトボルト
151 制振機構
153 コイルバネ(弾性体)
155 鋼球(転動部材)
157 保持スリーブ(位置決め部材)
157a フランジ部
159 保持孔
101 Hammer drill (blow tool)
103 Body (Tool body)
105 Motor housing 107 Gear housing 109 Hand grip 109a Trigger 111 Drive motor 113 Motion conversion mechanism 114 Power transmission mechanism 115 Impact element 119 Hammer bit (tool bit)
121 Drive gear 123 Driven gear 123a Housing recess (tool body side)
124 engaging portion 125 intermediate shaft (rotating shaft)
125a groove 126 bearing 127 rotating body 127a groove 128 rocking rod 129 rocking ring 130 rocking mechanism (rocking mechanism)
131 1st transmission gear (tool body side)
133 Second transmission gear 135 Cylinder 137 Tool holder 141 Cylindrical piston (piston cylinder)
141a Air chamber 143 Strike (batter)
145 Impact bolt 151 Damping mechanism 153 Coil spring (elastic body)
155 Steel ball (rolling member)
157 Holding sleeve (positioning member)
157a Flange portion 159 Holding hole

Claims (3)

工具ビットの長軸方向前方への打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
工具本体部と、
前記工具本体部に収容されたモータと、
前記工具ビットの長軸方向と平行に配置されて前記モータにより回転駆動される回転軸と、
前記回転軸に支持されて当該回転軸の回転動作に基づき当該回転軸の長軸方向に揺動動作を行う揺動機構部と、
前記揺動機構部の揺動動作によって前記工具ビット長軸方向に直線動作され、一端が塞がれた筒状のピストンシリンダと、
前記ピストンシリンダの筒孔内で前記工具ビット長軸方向に直線動作する打撃子と、
前記ピストンシリンダと前記打撃子との間に形成された空気室と、を有し、
前記ピストンシリンダの前記工具ビット長軸方向前方への直線運動による前記空気室の圧力変動を介して前記工具ビット長軸方向前方へと直線動作される前記打撃子が、前記工具ビットを打撃動作することで被加工材に所定のハンマ作業が行われる構成とされ、
前記揺動機構は、前記回転軸に対し、前記工具本体部側に当接することで前記工具ビット長軸方向前方への移動が規制される位置を基準位置として、当該基準位置から前記工具ビット長軸方向後方への後退動作可能に装着され、
前記ピストンシリンダ及び前記揺動機構部によって質量体が構成されており、
前記質量体の後方において、当該質量体と前記工具本体部側との間に配置され、前記回転軸の長軸方向に付勢力を作用する弾性体を更に有し、
前記弾性体は、前記質量体が後退動作することで前記揺動機構が前記工具ビット長軸方向に前記基準位置より後方へと移動する際に弾性変形されて弾発力を保存する構成とされ、
前記空気室の圧縮動作により前記打撃子が前記工具ビット長軸方向前方へと移動される際に前記ピストンシリンダに作用する圧縮反力に対し、前記保存された前記弾性体の弾発力により前記質量体が前記工具ビット長軸方向前方へと移動されることで当該質量体に生ずる運動エネルギーを作用させ、これにより前記圧縮反力を相殺させる構成としたことを特徴とする打撃工具。
A striking tool that performs a predetermined processing operation on a workpiece by a striking motion forward of the tool bit in the long axis direction,
A tool body,
A motor housed in the tool body,
A rotating shaft that is arranged in parallel with the long axis direction of the tool bit and is driven to rotate by the motor;
A swing mechanism that is supported by the rotary shaft and swings in the major axis direction of the rotary shaft based on the rotary operation of the rotary shaft;
A cylindrical piston cylinder that is linearly moved in the long axis direction of the tool bit by the swinging motion of the swinging mechanism portion and closed at one end;
A striker that linearly moves in the long axis direction of the tool bit within the cylindrical hole of the piston cylinder;
An air chamber formed between the piston cylinder and the striker,
The striking element that is linearly moved forward in the tool bit long axis direction through pressure fluctuations in the air chamber due to linear movement of the piston cylinder in the tool bit long axis direction forward strikes the tool bit. It is configured so that a predetermined hammering operation is performed on the workpiece,
The swing mechanism is configured such that the tool bit length from the reference position is a reference position where a position in which the movement of the tool bit in the long axis direction is restricted by contacting the tool main body side with respect to the rotating shaft is defined as a reference position. It is mounted so that it can move backward in the axial direction,
A mass body is constituted by the piston cylinder and the swing mechanism,
In the rear of the mass body, the elastic body is further disposed between the mass body and the tool main body portion side, and exerts an urging force in the major axis direction of the rotating shaft,
The elastic body is configured such that when the mass body moves backward, the swinging mechanism is elastically deformed when the tool bit moves in the longitudinal direction of the tool bit from the reference position to the rear to store the elastic force. ,
The compression force of the stored elastic body against the compression reaction force acting on the piston cylinder when the striker is moved forward in the long axis direction of the tool bit by the compression operation of the air chamber. A striking tool characterized in that the mass body is moved forward in the longitudinal direction of the tool bit to cause kinetic energy generated in the mass body to act, thereby canceling out the compression reaction force.
請求項1に記載の打撃工具であって、
前記揺動機構部と前記回転軸との間に配置され、前記揺動機構部と前記回転軸の双方に対し当該回転軸の長軸方向に転がり接触する複数の転動部材を有することを特徴とする打撃工具。
The impact tool according to claim 1,
A plurality of rolling members arranged between the swinging mechanism portion and the rotating shaft and in rolling contact with both the swinging mechanism portion and the rotating shaft in the major axis direction of the rotating shaft. Blow tool.
請求項2に記載の打撃工具であって、
前記揺動機構部と前記回転軸間には、前記複数の転動部材相互の配置間隔を維持するように、当該複数の転動部材を保持する位置決め部材が配置されていることを特徴とする打撃工具。
The impact tool according to claim 2,
A positioning member for holding the plurality of rolling members is disposed between the swinging mechanism portion and the rotating shaft so as to maintain the spacing between the plurality of rolling members. Blow tool.
JP2007232084A 2007-09-06 2007-09-06 Impact tool Active JP5058726B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007232084A JP5058726B2 (en) 2007-09-06 2007-09-06 Impact tool
PCT/JP2008/065972 WO2009031615A1 (en) 2007-09-06 2008-09-04 Hammer tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232084A JP5058726B2 (en) 2007-09-06 2007-09-06 Impact tool

Publications (2)

Publication Number Publication Date
JP2009061552A true JP2009061552A (en) 2009-03-26
JP5058726B2 JP5058726B2 (en) 2012-10-24

Family

ID=40428928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232084A Active JP5058726B2 (en) 2007-09-06 2007-09-06 Impact tool

Country Status (2)

Country Link
JP (1) JP5058726B2 (en)
WO (1) WO2009031615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160339577A1 (en) * 2015-05-19 2016-11-24 Makita Corporation Power tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284881A (en) * 1989-04-25 1990-11-22 Matsushita Electric Works Ltd Hammer drill
JPH08141937A (en) * 1994-11-18 1996-06-04 Hitachi Koki Co Ltd Switching device of hammer drill
JP2006021261A (en) * 2004-07-06 2006-01-26 Makita Corp Reciprocation type tool
JP2007136586A (en) * 2005-11-16 2007-06-07 Max Co Ltd Hammer drill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024770U (en) * 1988-06-17 1990-01-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284881A (en) * 1989-04-25 1990-11-22 Matsushita Electric Works Ltd Hammer drill
JPH08141937A (en) * 1994-11-18 1996-06-04 Hitachi Koki Co Ltd Switching device of hammer drill
JP2006021261A (en) * 2004-07-06 2006-01-26 Makita Corp Reciprocation type tool
JP2007136586A (en) * 2005-11-16 2007-06-07 Max Co Ltd Hammer drill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160339577A1 (en) * 2015-05-19 2016-11-24 Makita Corporation Power tool
CN106166729A (en) * 2015-05-19 2016-11-30 株式会社牧田 Power tool
JP2016215309A (en) * 2015-05-19 2016-12-22 株式会社マキタ Working tool
EP3132897A1 (en) 2015-05-19 2017-02-22 Makita Corporation Power tool
US10500706B2 (en) 2015-05-19 2019-12-10 Makita Corporation Power tool
CN106166729B (en) * 2015-05-19 2020-10-16 株式会社牧田 Working tool

Also Published As

Publication number Publication date
JP5058726B2 (en) 2012-10-24
WO2009031615A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5345893B2 (en) Impact tool
JP5767511B2 (en) Reciprocating work tool
JP6441588B2 (en) Impact tool
JP6325360B2 (en) Impact tool
JP4461046B2 (en) Reciprocating work tool
WO2013111460A1 (en) Striking tool
JP5147488B2 (en) Work tools
JP2007007832A (en) Power tool
JP2010052115A (en) Hammering tool
JP6397337B2 (en) Electric tool
JP2017042887A (en) Hammering tool
WO2016121837A1 (en) Work tool
JP6517634B2 (en) Impact tool
WO2006041139A1 (en) Reciprocating working tool
JP2008307654A (en) Hammering tool
JP5984659B2 (en) Impact tool
JP5058726B2 (en) Impact tool
JP2007203388A (en) Impact tool
JP4456558B2 (en) Impact type work tool
JP2017202560A (en) Impact tool
JP2008126378A5 (en)
WO2008062851A1 (en) Percussion tool
JP6517633B2 (en) Impact tool
JP5859249B2 (en) Impact tool
JP2024007801A (en) Reciprocation tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250