JP2009061444A - 静電式集塵装置及び荷電装置 - Google Patents
静電式集塵装置及び荷電装置 Download PDFInfo
- Publication number
- JP2009061444A JP2009061444A JP2008201167A JP2008201167A JP2009061444A JP 2009061444 A JP2009061444 A JP 2009061444A JP 2008201167 A JP2008201167 A JP 2008201167A JP 2008201167 A JP2008201167 A JP 2008201167A JP 2009061444 A JP2009061444 A JP 2009061444A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- counter electrode
- discharge
- discharge line
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrostatic Separation (AREA)
Abstract
【課題】荷電部と集塵部とを備えた静電式集塵装置及び荷電装置において、集塵効率を向上させる。
【解決手段】本発明に係わる静電式集塵装置10の荷電部20は、粒子の流れ方向と直交する面方向に等間隔で配置された複数の放電線21と、複数の通風孔24が形成され、粒子の流れ方向と直交する面に配置された対向電極22,23とを備え、複数の放電線21と対向電極22,23との間に高電圧を印加してコロナ放電を発生させたときに、放電線21の周囲に形成される一定以上の荷電領域が、粒子の流れ方向と直交する方向に隙間なく連続して形成される。また、放電線と対向電極の間の距離bと、対向電極通風孔の目開きDとの比(D/b)≧0.05とする。
【選択図】図1
【解決手段】本発明に係わる静電式集塵装置10の荷電部20は、粒子の流れ方向と直交する面方向に等間隔で配置された複数の放電線21と、複数の通風孔24が形成され、粒子の流れ方向と直交する面に配置された対向電極22,23とを備え、複数の放電線21と対向電極22,23との間に高電圧を印加してコロナ放電を発生させたときに、放電線21の周囲に形成される一定以上の荷電領域が、粒子の流れ方向と直交する方向に隙間なく連続して形成される。また、放電線と対向電極の間の距離bと、対向電極通風孔の目開きDとの比(D/b)≧0.05とする。
【選択図】図1
Description
本発明は、空気中に浮遊する塵埃などの粒子を荷電(帯電)させて集塵する静電式集塵装置及び荷電装置に関する。
近年、空気中に浮遊する各種粉塵、塵埃又は煙草の煙を除去するために、粉塵、塵埃又は煙草の煙などの粒子をコロナ放電によって荷電する荷電部(アイオナイザ)と、この荷電部で荷電された荷電粒子を静電気力により捕集する集塵部(コレクタ)とを備えた静電式集塵装置が開発されている。
このような静電式集塵装置に関する従来技術として、放電部と金網電極とで構成された起風装置を備えた空気調和装置が提案されている(特許文献1参照)。また、放電線の下流側に格子状の対向電極を設けた粒子荷電装置が提案されている(特許文献2参照)。
また、荷電部の接地電極を台形状とした空気清浄装置が提案されている(特許文献3参照)。さらに、放電部を2つの対向電極で挟み、この対向電極を気流の向きに対して直交するように設けた空気清浄機が提案されている(特許文献4参照)。
実開昭63−32221号公報
特開昭61−21752号公報
特開平10−113577号公報
特開2002−200437号公報
上記従来構造の集塵装置では、いずれもコロナ放電における、粒子に電荷を与える空間、すなわち荷電領域(荷電量領域=粒子の帯電量領域)の連なりが考慮されていないため、粒子の帯電量にムラが生じてしまい、集塵効率をより向上させることは困難であった。また、荷電部ではコロナ放電により気流の乱れが生じるため、集塵部では粒子の帯電量とは関係なく粒子の捕集効率が悪化するという課題があった。このように、上記従来装置では、いずれも装置全体として集塵効率を向上させることは困難であった。
本発明の目的は、集塵効率を向上させることができる静電式集塵装置及び荷電装置を提供することにある。
上記目的を達成するため、請求項1に係わる発明は、粒子の流れ方向上流側に設けられ、前記粒子に電荷を与える荷電部と、当該荷電部の下流側に設けられ、前記荷電部で荷電された粒子を静電気力により捕集する集塵部とを備えた静電式集塵装置において、前記荷電部は、粒子の流れ方向と直交する面方向に等間隔で配置された複数の放電線と、複数の通風孔が形成され、粒子の流れ方向と直交する面に前記放電線より所定間隔離れて配置された対向電極とを備え、複数の前記放電線と前記対向電極との間に高電圧を印加してコロナ放電を発生させたときに、前記放電線の周囲に形成される一定以上の荷電領域が、粒子の流れ方向と直交する方向に隙間なく連続して形成されることを特徴とする。
請求項2の発明は、請求項1において、隣接する放電線間の距離をL1、前記放電線と前記対向電極との距離をL2としたときに、L1≦L2であることを特徴とする。
請求項3の発明は、請求項1又は2において、複数の前記放電線を挟んで上流側と下流側にそれぞれ前記対向電極が配置されたことを特徴とする。
請求項4の発明は、請求項1又は2において、複数の前記放電線の下流側に前記対向電極が配置されたことを特徴とする。
請求項5の発明は、請求項1又は2において、複数の前記放電線の上流側に前記対向電極が配置されたことを特徴とする。
請求項6の発明は、請求項1乃至5のいずれか一項において、前記対向電極の通風孔がハニカム形状であることを特徴とする。
また、請求項7に係わる発明は、空気中の粒子に電荷を与える荷電装置において、粒子の流れ方向と直交する面方向に所定の間隔で配列された複数の放電線と、粒子の流れ方向と直交する面方向に複数の通風孔を有し、前記放電線より粒子の流れ方向に所定間隔離れて配置された導電性の対向電極とを備え、前記放電線と対向電極との距離をbとし、前記通風孔の目開きをDとするときに、該Dとbの比(D/b)が0.05以上であることを特徴とする。
請求項8の発明は、請求項7において、前記対向電極は前記放電線の上流側又は下流側に配置されたことを特徴とする。
請求項9の発明は、請求項7において、前記対向電極は前記放電線の上流側及び下流側に配置されたことを特徴とする。
請求項10の発明は、請求項7乃至9のいずれか一項において、前記対向電極は、導電性板部材の厚み方向が粒子の流れ方向と垂直になる態様で格子状に組み合わされた構造を備えることを特徴とする。
請求項11の発明は、請求項7乃至9のいずれか一項において、前記対向電極は、導電性線材をメッシュ状に編んだ構造を備えることを特徴とする。
請求項12の発明は、請求項7乃至9のいずれか一項において、前記対向電極は、導電性板部材の面方向に複数の通風孔を配列した構造を備えることを特徴とする。
請求項13の発明は、請求項7において、前記対向電極は前記放電線の上流側及び下流側に配置されると共に、該上流側と下流側の対向電極が異なる電極構造を備えることを特徴とする。
本発明によれば、各放電線の周囲に形成される一定以上の荷電領域が、粒子の流れ方向と直交する方向に隙間なく連続して形成されることになるため、通過した粒子が、ある帯電量以上に荷電される確率が高くなり、帯電量が低い粒子の発生が抑制される。このため、粒子の帯電量にムラを生じることがなく、全体として帯電量の高い粒子の割合を増やすことができる。また、放電線の両側に配置される対向電極には複数の通風孔が形成されているため、気流とともに流れる粒子の乱れも少なくなり、集塵部における粒子の捕集効率を向上させることができる。したがって、従来構造に比べて集塵効率を向上させることができる。
また本発明によれば、放電線と対向電極の間の距離bと、対向電極通風孔の目開きDとの比(D/b)が0.05以上とすることにより、放電線を発した電気力線は対向電極の通風口周縁部に集中することになり、該周縁部近傍に高い電場が形成される。これによって、該通風孔を通り抜けるダスト粒子は所要に荷電又は所要以上に再荷電される。
以下、本発明に係わる静電式集塵装置及び荷電装置の実施形態を図面を参照しながら説明する。
[構成]
図1は、本実施形態に係わる静電式集塵装置の構成を示す概略断面図である。本実施形態に係わる静電式集塵装置10は、装置入口から流入する空気中の粒子に電荷を与える荷電部20と、この荷電部20の下流側に設けられ、荷電部20で荷電された粒子を静電気力(クーロン力)により捕集する集塵部30と、装置内に空気を流入させるための送風部40とを備え、これら各部が筐体11内に収納されている。
図1は、本実施形態に係わる静電式集塵装置の構成を示す概略断面図である。本実施形態に係わる静電式集塵装置10は、装置入口から流入する空気中の粒子に電荷を与える荷電部20と、この荷電部20の下流側に設けられ、荷電部20で荷電された粒子を静電気力(クーロン力)により捕集する集塵部30と、装置内に空気を流入させるための送風部40とを備え、これら各部が筐体11内に収納されている。
荷電部20は、空気の流入方向Aと直交する面方向に等間隔で配置された複数の放電線(イオン化線)21と、この放電線21を挟んで上流側と下流側にそれぞれ配置された対向電極22、23とを備えている。
放電線21は、金属製の細線であり、例えばタングステン線のほか、抗張力に富む線材の表面に白金、ロジウム、パラジウム又はこれらの合金からなる被覆したメッキ線やクラッド線等の部材、又は同等の特性、機能を有する部材を用いることができる。また、各放電線21は空気の流入方向Aと直交する面方向に等間隔で配置されている。隣接する放電線21間の距離については後述する。
対向電極22、23は、導電性樹脂又は導電性の高い金属からなる板状電極である。この対向電極22、23は、放電線21を挟んで上流側と下流側にあり、且つ空気の流入方向Aと直交する面にそれぞれ配置されている。本実施形態の対向電極22、23は、図2の部分拡大図に示すように、ハニカム形状の複数の通風孔24が形成されている。この通風孔24は、気流の乱れを整流する効果を有する。また、通風孔24の形状はハニカム形状に限らず、四角形、三角形、菱形、円形等でもよい。
対向電極22、23と放電線21との間には図示しない電源回路から高電圧が印加される。これにより、対向電極22、23と放電線21との間でコロナ放電が発生する。このとき、粉塵、塵埃又は煙草の煙等の粒子がコロナ放電により形成される荷電領域を通過すると、これらの粒子は帯電されて荷電粒子となる。ただし、それぞれの荷電粒子の帯電量は通過する荷電領域により異なる。
図3は、対向電極22、23と放電線21との関係を示す部分拡大図である。放電線21には、例えば6kV〜8kV程度の直流電圧Viが印加され、対向電極22、23はアース接地される。本実施形態では、複数の放電線21と対向電極22、23との間に高電圧を印加してコロナ放電を発生させたときに、各放電線21の周囲に形成される一定以上の荷電領域が、空気の流入方向Aと直交する方向に隙間なく連続して形成されるように、隣接する放電線21間の距離、及び放電線21と対向電極22、23との距離を定めている。具体的には、隣接する放電線21間の距離をL1、放電線21と対向電極22、23との距離をL2としたときに、L1≦L2となるように各部の距離を定めている。
なお、本実施形態では図1に示すように、放電線21を挟んで上流側と下流側に対向電極22、23を配置した例を示したが、対向電極は放電線21の上流側又は下流側のいずれか一方にのみ配置されていてもよい。図4(a)、(b)は、荷電部20の他の実施形態を示す概略断面図である。図4(a)は、放電線21の下流側に対向電極22を配置した例を示し、図4(b)は、放電線21の上流側に対向電極23を配置した例を示している。図4においても、隣接する放電線21間の距離をL1、放電線21と対向電極22又は23との距離をL2としたときに、L1≦L2となるように各部の距離を定めている。
集塵部30は、図5の部分拡大図に示すように、導電性を有する樹脂又は金属からなる集塵電極31、32と、導電性もしくは半絶縁性を有する樹脂又は金属からなる非集塵電極33とを交互に配置した構成となっている(図5では導電性樹脂製集塵電極31、32と半絶縁性樹脂製非集塵電極33の一組の構成を示している)。ここでは、非集塵電極33には、例えば3.5kV程度の直流電圧Vcが印加され、集塵電極31、32はアース接地される。荷電部20を通過した荷電粒子は、集塵電極31、32と非集塵電極33との電位差により、集塵電極31、32側に引き寄せられ、集塵電極31、32の電極表面に捕集される。
送風部40は、ファン41を図示しないモータで回転させることにより集塵部30の下流側に負圧を発生させ、空気が流入方向Aから流出方向Bへ向けて流れるようにしている。
なお、図1では、静電式集塵装置10の主要構成部のみを示したが、この静電式集塵装置10は、図示しない粗塵除去用フィルタや電源部等とともに、空気清浄器、冷暖房装置、空気調和装置などに組み込まれて使用される。
[作用及び効果]
図6は、放電線と対向電極間に形成される荷電領域の分布を示す説明図であり、図6(a)は本実施形態の構造における荷電領域の分布、図6(b)は従来構造における荷電領域の分布をそれぞれ表している。なお、荷電領域を示す線は、放電線から対向電極に向かう電気力線の等しい強度の点を結んだ線であり、放電線に近いほど高い帯電量を示す領域、すなわち高い荷電領域が形成されることになる。各図においては、一定以上の荷電領域を示す荷電領域の一部を破線で表している。なお、一定以上の荷電領域を示す線は破線で示すほかにも存在しているが、ここでは説明上必要な部分のみを示している。
図6は、放電線と対向電極間に形成される荷電領域の分布を示す説明図であり、図6(a)は本実施形態の構造における荷電領域の分布、図6(b)は従来構造における荷電領域の分布をそれぞれ表している。なお、荷電領域を示す線は、放電線から対向電極に向かう電気力線の等しい強度の点を結んだ線であり、放電線に近いほど高い帯電量を示す領域、すなわち高い荷電領域が形成されることになる。各図においては、一定以上の荷電領域を示す荷電領域の一部を破線で表している。なお、一定以上の荷電領域を示す線は破線で示すほかにも存在しているが、ここでは説明上必要な部分のみを示している。
図6(a)に示すように、本実施形態の構造では、各放電線21の周囲に形成される一定以上の荷電領域が、空気の流入方向Aと直交する方向に隙間なく連続して形成されている。このように、放電線21の周囲に形成される一定以上の荷電領域が、隣接する他の放電線21の周囲に形成される一定以上の荷電領域と連なっていると、その領域を通過する粒子P1、P2はある帯電量以上に荷電されることになる。図6(a)では、放電線21の間を通過する粒子の一例としてP1、P2を示している。このように、放電線21の間を通過する粒子は、その通過する位置がどの位置であっても一定以上の荷電領域を通過することになるため、帯電量が低い粒子の発生が抑制されることになる。したがって、粒子の帯電量にムラを生じることがなく、全体として帯電量の高い粒子の割合を増やすことができる。
一方、図6(b)に示すように、従来構造では、放電線101の周囲に形成される一定以上の荷電領域が、隣接する他の放電線101の周囲に形成される一定以上の荷電領域と連なっていないため、通過した粒子がある帯電量以上に荷電される確率が低くなる。図6(b)では、放電線21の間を通過する粒子の一例としてP3、P4を示している。従来構造では、通過する粒子P3、P4のうち、粒子P3は一定以上の荷電領域を通過することになるが、粒子P4は一定以下の荷電領域を通過することになる。このように、従来構造では、粒子の通過する位置によっては、一定以下の荷電領域を通過することになるため、帯電量が低い粒子の発生を抑制できないことになる。このため、粒子の帯電量にムラを生じることになり、全体として帯電量の高い粒子の割合を増やすことができないことになる。なお、図6(b)において、符合102は対向電極を示す。
ここで、本実施形態の構造と従来構造による粒子の帯電量分布の違いについて説明する。図7は、荷電部を通過した粒子の帯電量と、その相対度数(全体を1としたときの存在割合)との関係を示す特性図である。一点鎖線のグラフが従来構造による特性を示し、実線のグラフが本実施形態の構造による特性を示している。なお、横軸の帯電量は、帯電数に電気素量eを乗じたもので、帯電数は荷電された1つの粒子(本実施形態では、0.3μmのPAO粒子を使用)の電荷が電子何個分かを示すもので、帯電量と帯電数はほぼ同じ意味で用いられる。
図7において、領域Aの粒子は帯電数が少ないので、集塵部30の集塵電極31、32にクーロン力により引き付けられる力が弱く、捕集しにくい粒子となる。また、領域Bの粒子は帯電数が非常に多いので、集塵部30の集塵電極31、32に引き付けられるクーロン力が強いため、電極の上流側で捕集される。このため、領域Bの粒子の帯電数が多少減少しても、集塵効率への影響はない。集塵効率を向上させるには、帯電数が少ない粒子の数を減らして、ピーク帯電数が右側、すなわち帯電数が多い側にピーク帯電数をシフトさせればよいことになる。
このような観点から図7のグラフを見てみると、本実施形態の構造による特性は、従来構造の特性に比べてピーク帯電数が右側にシフトしていることが分かる。これは、帯電数20以下の粒子の数が減り、帯電数30〜50程度の粒子が増加したためと考えられる。このことから、本実施形態の構造とすることにより、集塵効率の向上が期待できる。
図8は、図4で説明した他の実施形態における放電線と対向電極間に形成される等電位線の分布を示す説明図であり、図8(a)は図4(a)の構造における等電位線の分布、図8(b)は図4(b)の構造における等電位線の分布をそれぞれ表している。ここでも、一定以上の荷電領域を破線で表している。
図8(a)、(b)に示すように、放電線に片側に対向電極を配置した場合でも、一定以上の荷電領域が、空気の流入方向Aと直交する方向に隙間なく連続して形成されるため、帯電量が低い粒子の発生を抑制することができる。この場合、一定以上の荷電領域は、放電線の両側に対向電極を配置した場合よりも、更に高い荷電領域が連なることになる。しかしながら、放電している空間の広さは、両側に対向電極を配置した場合に比べて半分になるため、同じ風速(空気の流入速度)であれば荷電時間は半分になる。また、荷電部20を通過した各粒子は、様々な帯電量で帯電されるが、後段の集塵部30が取り逃がしやすいのは、帯電量の少ない粒子と考えられている。そして、帯電量の低い粒子が最も出にくいのは、放電線の両側に対向電極を配置した構造であることが実験によって確認されている。また、その次に帯電量の低い粒子が出にくいのは、放電線の下流側に対向電極を配置した構造、最後に放電線の上流に対向電極を配置した構造となる。ただし、放電線の片側に対向電極を配置した構造では、対向電極が1枚となるので、部品数の削減による軽量化とコスト低減を図ることができる。また、空気の流入方向Aの寸法を短くすることができるので、装置を小型化することができる。
このように、本実施形態の構造によれば、粒子の帯電量にムラを生じることがなく、帯電量の高い粒子の割合を増やすことができるので、従来構造に比べて集塵効率を向上させることができる。
また、従来構造の装置と同じ放電電力で比較すると、本実施形態の構造では各粒子の平均帯電量が増加するため、単位電力当たりの集塵効率を向上させることができる。一方、集塵効率が同じであれば、放電電力を少なくすることができるので、低消費電力とすることができる。加えて、コロナ放電によるオゾンの発生量も少なくすることができる。
さらに、放電線21と集塵部30との間にアース接地された対向電極22が配置されているので、荷電部20が集塵部30の非集塵電極33で発生する高電界の影響を受けることがなく、このため荷電部20と集塵部30との距離を縮めることができる。これにより装置の小型化を図ることが可能となる。
また、本実施形態の構造では、放電線21の両側に配置される対向電極22、23に複数の通風孔24が形成されているため、気流の乱れを整流することができる。
ここで、ハニカム形状の対向電極を配置した場合の捕集率の向上について説明する。図9は、一般的な静電式集塵装置の上流側、すなわち荷電部の上流にハニカム形状の板材を配置した場合の捕集率と、何もつけない場合の捕集率及び15mmの角棒を2本配置した場合の捕集率とを示す特性図である。図9に示すように、ハニカム形状の板材を配置した場合は、角棒を配置した場合に比べて捕集率が約2〜3%程度向上し、何もつけない場合と比べると捕集率が1〜2%向上することが分かる。
このように、コロナ放電による気流の乱れは対向電極22、23により整流されるので、気流とともに流れる粒子の乱れも少なくなり、集塵部30における粒子の捕集効率を向上させることができる。とくに、本実施形態では、通風孔24をハニカム形状としているので、対向電極の機械的な強度を確保しつつ整流効果を得ることができる。なお、放電線の片側に対向電極を配置した構造においても同様の効果を得ることができる。
静電式集塵装置として、同一構成の集塵部を用い、実施形態(図1)と同じ構成の荷電部を用いたものを実施例とし、図6(b)のような構成の荷電部を用いたものを比較例とした。これら実施例と比較例を同一条件で運転し、集塵効率を測定した。実験の結果、実施例の装置では比較例に比べて集塵効率が10%程度向上することが明らかとなった。
このような実施例の装置における集塵効率の向上は、一定以上の荷電領域が空気の流入方法と直交する方向に隙間なく連続して形成されたことにより帯電量の高い粒子の割合が増えたことと、ハニカム形状の対向電極により気流の乱れが整流されたことによるものと推察される。
本発明者等は、荷電部20の具体的構成について更に研究を重ねた結果、ダスト粒子に対する荷電効率を改善し、その状態を長く維持できる荷電部の具体的構成について新たな知見を得た。以下、説明する。
図10に従来の荷電部{(図6(b)に相当}を再度示し、帯電量低下の主要因である逆電離現象について説明する。図10(A)は通常の正コロナ放電の状態を示しており、放電線101の周囲近傍で生成された空気の+イオン(図の○で示す)は気流と電界(電気力線)に従ってその一部が対向電極102の側に流れ、対向電極102から電子を受け取って中和される。
一方、気流にのってこの荷電部に流入したダスト(誘電体)粒子Pは、荷電部の電界により分極してその−分極側に+イオンを吸着すると共に、気流と電界に従って下流側に運ばれるが、一部は対向電極102の表面に吸着され、そこに堆積する。従来の電極配置では対向電極102の表面が気流と平行になっているため、ダストは対向電極102の風下側により厚く堆積することになる。
図10(B)に高抵抗ダストが堆積した状態を示す。逆電離とは対向電極102に付着した高抵抗ダストがマイナスの電荷を帯び、放電線101に向かって放電する異常放電現象である。即ち、対向電極102に高抵抗ダストが堆積すると、対向電極102における+イオンの中和が滞留するため、ダスト層が十分な電流を流すことができなくなり、ダスト層の表面と接地電極102の間には電界Ed、
Ed=id×ρd
Ed:ダスト層内の電界強度[V/m]
id:ダスト層内の電流密度[A/m2]
ρd:ダストの見かけ固有抵抗率[Ωm]
が生じる。この電界Edはダスト層の薄いところ(ウィークポイント)に集中するため、電界Edが空気の絶縁破壊強度Edsを超えると、放電が起こる。ダスト層(接地側)における放電では空気の−イオン(図の●で示す)が生成され、これらは気流と電界に従って放電線101の側に流れる。この−イオンは+イオンを中和してダスト粒子の荷電効率(帯電量)を低下させると共に、−に帯電したダスト粒子が放電線101に付着し、放電効率を大幅に低下させる。
Ed=id×ρd
Ed:ダスト層内の電界強度[V/m]
id:ダスト層内の電流密度[A/m2]
ρd:ダストの見かけ固有抵抗率[Ωm]
が生じる。この電界Edはダスト層の薄いところ(ウィークポイント)に集中するため、電界Edが空気の絶縁破壊強度Edsを超えると、放電が起こる。ダスト層(接地側)における放電では空気の−イオン(図の●で示す)が生成され、これらは気流と電界に従って放電線101の側に流れる。この−イオンは+イオンを中和してダスト粒子の荷電効率(帯電量)を低下させると共に、−に帯電したダスト粒子が放電線101に付着し、放電効率を大幅に低下させる。
このように、従来方式の荷電部では、放電線101と対向電極板102とを気流と垂直な方向に交互に積層しているため、対向電極102に塵埃が付着すると共に、比較的早い時点で逆電離が発生し、集塵効率を低下させていた。
本実施例の荷電部では、高い荷電効率が得られると共に、対向電極が高い逆電離耐性を有することから、この高い荷電効率を長く維持できるものである。以下、具体的に説明する。
図11は実施例1の荷電部(本発明の荷電装置に相当)20Aの斜視図で、対向電極をハニカム構造にした場合を示している。この荷電部20Aは、空気の流入方向Aと直交する面方向に等間隔hで配置した複数の放電線(イオン化線)21a〜21gを備える。また、この放電線21を挟んで気流の上流側と下流側とに距離bだけ離れて配置したハニカム構造の対向電極22A、23Aを備えている。以下、この対向電極22A、23Aをハニカム電極22A、23Aとも呼ぶ。
更に、空気の流入方向Aにおいて、ハニカム電極22A(23A)の空気入口側の端部は、空気の流入方向Aと直交する一平面上に存在しており、またハニカム電極22A(23A)の空気出口側の端部も、空気の流入方向Aと直交する他の一平面上に存在している。そして、この両端面の間を貫通するように複数の通風孔24Aが形成されている。
図12(A)にハニカム電極22A(23Aも同様)の部分拡大図を示す。この例の通風孔24Aは、中空の正六角柱状(即ち、ハニカム構造)に形成されており、その幅waの方向が空気の流入方向A(即ち、空気の流出方向B)と一致している。この通風孔24Aは、空気の流れる方向に幅waを有するため、気流の乱れを整流する効果を有する。またハニカム構造では所要の機械的強度を保ちつつ板厚tを薄くして開口率を大きくできるため、対向電極22A、23Aを空気やダスト粒子が流れるときの抵抗を小さくすることができる。なお、開口率は所定の断面積に対する開口面積の比によって与えられる。
また、この通風孔24Aは目開きDaを有する。目開きとは、メッシュ(金網)の規格に習ったものであり、通風孔24Aの開き具合を長さDaで表したものである。目開きDaは、
目開きDa=(1インチ/メッシュ数)−ta
ta:ハニカム構造の実質的な板厚
により求められる。
目開きDa=(1インチ/メッシュ数)−ta
ta:ハニカム構造の実質的な板厚
により求められる。
図12(B)にこのようなハニカム電極の一例の製法を示す。対向電極22A、23Aのハニカム構造は、例えば厚さtの矩形状平板25Aを図示の如く折り曲げて貼り合わせることにより形成できる。この平板25Aはその両側面が空気の流入方向Aと平行となるように配置され、それぞれの側面の一部を接合して組み合わされている。この対向電極22A、23Aを正面(矢印A方向)から見ると、上記組み合わせた平板25Aが多数の正六角形(ハニカム構造)を形成している。
なお、通風孔24Aの形状は上記正六角(ハニカム)形状に限らない。多数の平板を組み合わせることで、正面から見て複数の三角形、四角形又は菱形等を形成するようにしても良く、或いは平板を丸めて形成した多数の円形又は楕円形を組み合わせるようにしても良い。これらの対向電極に共通な特徴は、導電性板部材の厚みtの方向が粒子の流れ方向と垂直になる態様で格子状に組み合わされた構造を備えることであり、これらの内の何れかの構造の対向電極を使用することで、以下のハニカム電極22A、23Aについて述べるのと同様の高い荷電効率と高い逆電離耐性とが得られるものである。
図13は実施例1の荷電部20Aの動作説明図である。放電線21の間隔をh、放電線21とハニカム電極22A、23Aの内側面との距離をb、ハニカム電極22A、23Aの目開きをDaとすると共に、この放電線21に正の直流高電圧(例えば6.6kV)を加え、ハニカム電極22A、23Aを接地している。係る構成では、放電線21の周囲近傍で空気の+イオンが生成されると共に、それらの多くは気流と電界に従ってハニカム電極22Aの側に、また一部はハニカム電極23Aの側に流れ、ハニカム電極22A、23Aから電子を受け取って中和される。
また、静電場の一般的性質によれば、放電線21より発した電気力線は最寄りの接地電極22A、23Aの端面に吸収される。この電気力線の任意点上の接線はその点における電場の方向を示し、電気力線が平行な部分では電場は一様である。更に、単位面積を通過する電気力線の本数は電場の強さに比例し、電気力線の密な部分では電場が強く、粗な部分では電場が弱い。
これに従い、本実施例では、まず放電線21の周囲近傍で電気力線が集中しており、この部分の電場が強い。また、放電線21より発した各電気力線はハニカム電極22A、23Aの内側端面部に吸収されると共に、この部分では略平行に到来した電気力線が目開きDaを有する通風孔の周縁部に集められる結果、ハニカム電極の通風孔周縁部では再度電場が強くなっている。
これに従い、本実施例では、まず放電線21の周囲近傍で電気力線が集中しており、この部分の電場が強い。また、放電線21より発した各電気力線はハニカム電極22A、23Aの内側端面部に吸収されると共に、この部分では略平行に到来した電気力線が目開きDaを有する通風孔の周縁部に集められる結果、ハニカム電極の通風孔周縁部では再度電場が強くなっている。
このような荷電部20Aの空間に誘電体であるダスト粒子Pが到来すると、ダスト粒子Pは空間内の静電場によって分極させられると共に、その+分極側は+イオンを反発するが、−分極側は+イオンを吸着する結果、このダスト粒子Pは+極性に帯電する。この場合に、放電線21bの近傍を通過するダスト粒子P1は、放電線21bの周辺の強い電場によって強く分極され、相応の+イオンを吸着すると共に、下流側のハニカム電極22Adを通過する際にも、その通風孔周縁部の強い電場を通過することによって更に分極され、より多くの+イオンを吸着する。本実施例ではこれを再荷電効果と呼ぶ。
ところで、放電線21の間隔hが先の出願で述べた所定の荷電条件(h≦bに相当)を満足している場合には、ダスト粒子Pが放電線21の間の何処を通過しても一定以上の電界により所要レベルに荷電されることになる。
しかるに、本実施例1の如く、目開きDを有するハニカム電極22A(23A)を使用した場合には、放電線21の間隔hに上記のような荷電条件(h≦b)を課さなくても、所要レベルの荷電が得られることになる。それは、放電線21の間隔hを仮に広げた結果、その中間部の比較的弱い電界を通過したようなダスト粒子P2であっても、ハニカム電極22Aeの通風孔を通り抜ける際には、その周縁部に形成された強い電場を通過することによって分極され、これによって所要レベルの+イオンを付着するからである。
このことは、荷電部20Aの荷電効率が、先の出願で述べた荷電条件(h≦b)とは無関係に、専ら、放電線21とハニカム電極22A、23Aとの間の距離bと、ハニカム電極22A、23Aの目開きDaとの比(Da/b)によって独立に決定可能であることを意味する。
更に、この荷電部20Aに流入するダスト粒子P3は、上流側のハニカム電極23Afの後縁部付近に形成される強い電場によって分極した結果、所要レベルに荷電されている。
<高い荷電効率>
かくして、本実施例1の荷電部20Aに流入するダスト粒子は、放電線21の周囲はもとより、その上流及び下流側に設けたハニカム電極23A及び又は22Aの通風孔を通り抜けるため、これらの部分で所要レベルに帯電する確率が高いと共に、好ましく上記の再荷電効果によって、より多くの電荷を帯電することになり、荷電効率が大幅に向上する。
かくして、本実施例1の荷電部20Aに流入するダスト粒子は、放電線21の周囲はもとより、その上流及び下流側に設けたハニカム電極23A及び又は22Aの通風孔を通り抜けるため、これらの部分で所要レベルに帯電する確率が高いと共に、好ましく上記の再荷電効果によって、より多くの電荷を帯電することになり、荷電効率が大幅に向上する。
この場合に、必ずしも放電線21の間隔hを短くする必要は無く、むしろ放電線21とハニカム電極の間の距離bに対するハニカム電極22A、23Aの目開きDaの値を所定以上にすれば良い。即ち、距離bに対してハニカム電極22A、23Aの目開きDaが大きいと、より多くの電気力線がハニカム電極の狭い周縁部に集まることになるため、電気力線の集中の効果(即ち、高い電場)が得られる。一方、 距離bに対して目開きDaがあまりに小さいと、電気力線は均一なままハニカム電極の細密な開き目部分に吸収されるため、通風孔の無い平板電極を置いた場合と同等になってしまう。
<高い逆電離耐性による高い荷電効率の維持>
また、下流側ハニカム電極22Aの場合は、上記の再荷電効果に加え、放電線21に対して通風孔24Aの周縁部が面しており、この周縁部は面積が小さくダスト粒子が付着し難い形状であるため、ダストが堆積しない。特に、上流側ハニカム電極23Aの裏側周縁部は気流に逆らう方向でもあるため、ダスト粒子が一層付着し難い。そして、ダスト粒子が堆積しなければ、逆電離の発生も有効に防止できる。また、気流と平行なハニカム内周面にダストが付着しても、この部分の電界は小さいため、逆電離も発生し難い。かくして、本実施例のハニカム電極22A、23Aは高い逆電離耐性を有しており、逆電離が起こらなければ、荷電効率も低下しないので、高い荷電効率を長く維持できる。
また、下流側ハニカム電極22Aの場合は、上記の再荷電効果に加え、放電線21に対して通風孔24Aの周縁部が面しており、この周縁部は面積が小さくダスト粒子が付着し難い形状であるため、ダストが堆積しない。特に、上流側ハニカム電極23Aの裏側周縁部は気流に逆らう方向でもあるため、ダスト粒子が一層付着し難い。そして、ダスト粒子が堆積しなければ、逆電離の発生も有効に防止できる。また、気流と平行なハニカム内周面にダストが付着しても、この部分の電界は小さいため、逆電離も発生し難い。かくして、本実施例のハニカム電極22A、23Aは高い逆電離耐性を有しており、逆電離が起こらなければ、荷電効率も低下しないので、高い荷電効率を長く維持できる。
図14はハニカム電極の目開きと帯電量の関係を示すグラフ図であり、荷電部20Aに一定量のダスト粒子を投入した場合における帯電量の存在分布を示している。横軸は荷電粒子の帯電量[e]、縦軸は各帯電量[e]に帯電した粒子の相対度数(全体を1とした場合の存在割合)である。
荷電部20Aの寸法については、放電線21の間隔h=9mm、放電線21とハニカム電極22A、23Aの内側との距離b=10mmとし、目開きDaについては、目開きDa1=1.59mm(1/16in)、目開きDa2=3.18mm(1/8in)、目開きDa3=6.35mm(1/4in)とした。そして、試験は、風速=3.3m/s、放電電力=3.3W(放電電流500μA)、放電線への印加電圧=+6.6kV、帯電量測定に用いた粒子:PAO粒子、帯電量測定に使用した粒子径範囲:0.285〜0.313μmの条件で行った。
特性H1は目開きDa1=1.59mm、特性H2は目開きDa2=3.18mm、特性H3は目開きDa3=6.35mmとした場合の帯電量の分布をそれぞれ表している。図より、目開きDaが大きい程、グラフが帯電量の高い右側にシフトしていることが分かる。即ち、帯電量の低い粒子の数が減り、相対度数のピークが帯電量の高い方にシフトすると共に、帯電量の高い粒子の数が増えている。また、目開きDaが増すと、相対度数のピークが減る傾向にあり、代わりに相対度数は帯電量の高い領域にまで延びている。特に、特性H3では相対度数のピークが平坦化されており、このことは集塵効率に寄与する大半の荷電粒子が所定の帯電量の範囲内で略均一に分布していることを表す。このように、ハニカム電極では目開きDaが増す程、荷電効率が向上しており、これによって集塵効率の大幅な向上が期待できる。
以上の帯電量特性を目開きDaと距離bの比(Da/b)で評価すると、特性H1ではDa1/b=0.16、特性H2ではDa2/b=0.32、特性H3ではDa3/b=0.64であり、これらについて良好な帯電量特性が得られている。本発明者等は更に多くの実験を行った結果、Da/b≧0.05(即ち、1/20以上)の範囲で所要の荷電分布が得られた。なお、目開きDaについては、別段の上限を設けるものでは無いが、実用的には保安基準に従えば、通風孔24Aに指を挿入できない程度と言うことになる。
図15は従来の荷電部と実施例1の荷電部20Aの帯電量分布(荷電効率の持続性)を比較したグラフ図である。従来の荷電部としては図10の並行平板電極方式のものを使用し、実施例の荷電部20Aについては、ハニカム電極の目開きDa1=1.59mm(1/16in)、幅wa=3mm、ハニカム電極(アルミ泊)の厚みt=0.025mmとした。
この試験は、低温(約20℃)低湿度(略相対湿度25%)の下で、JIS B9908での試験ダクトである質量法ダクトを用いて行った。風量を8.9m3/minの一定に保ち、既定の直流高電圧6.6[kV]を印加して電流520[μA]が流れている荷電部20Aに、高抵抗で逆電離状態をつくりやすいJIS6種(ポルトランドセメント粉)を振りかけることで行った。セメント粉はふるいにかけた後、コンプレッサエアで吹き飛ばして分散させた。投入セメント量を10gおきに、荷電部20Aに投入してその都度ダスト粒子の帯電量分布を測定した。従来の荷電部に対しても同等の荷電条件で試験を行った。
図15(A)に従来の荷電部による帯電量特性を示す。特性J1(最初の10g)では、投入粒子の大部分が帯電量10〜25[e]の範囲で帯電しており、所要の集塵効果が得られる。特性J2(次の10g、即ち、20g目)では、一部帯電量15[e]程度に帯電した粒子も存在するが、もはやこの時点では帯電量10[e]に満たない粒子が大半を占めており、これでは集塵効率が大幅に低下してしまう。特性J3(30〜60g目)についても同様である。このように、従来方式の荷電部は、上記図10で述べた如く逆電離耐性が低いため、所要の帯電量特性を長く維持することができない。
図15(B)に実施例の荷電部20Aによる帯電量特性を示す。特性H1(最初の10g)では、投入粒子の大部分が帯電量20〜30[e]の範囲で帯電しており、所要の集塵効果が得られる。しかも、帯電量のピークは略25[e]の当たりに集中しており、これは従来例よりも充分に高いと共に、多くのダスト粒子が略均一なレベルで帯電していることを表す。この事は帯電量の少ない粒子の存在確立が少ないことを表わし、従って、高い集塵効率が得られる。特性H2(20g目)でも同様の帯電量特性が得られており、20g目でも荷電効率が殆ど低下していない。特性H3(30g目)では帯電量が10〜20[e]の粒子も多少存在するが、その大半は帯電量20〜30[e]の範囲内を維持している。そして、特性H4(40g目)では、一部帯電量20〜30[e]に帯電した粒子も存在するが、この時点では帯電量10[e]に満たない粒子が大半を占めており、集塵効率は大幅に低下する。特性J5(50g目)についても同様である。
このように、実施例1の荷電部20Aでは、最初のダスト投入より均一で高い帯電量特性が得られると共に、その後のダスト投入でも、高い逆電離耐性により、この高い帯電量特性が維持されるため、高い荷電効率を従来の3倍程度も長く維持できている。
図16は実施例1の他の例の荷電部20A’の動作説明図で、放電線21の下流側にのみハニカム電極22Aを設けた場合の動作を示している。この構成では、例えば放電線21bの近傍を通過したダスト粒子P1は、放電線21bの周辺部の強い電場と、その下流側ハニカム電極22Adの通風孔周縁部の強い電場とで二重に分極され、より多くの+イオンを吸着する。即ち、再荷電効果が得られる。また放電線間隔中間部の比較的弱い電場を通過したようなダスト粒子P2であっても、下流側ハニカム電極22Aeの強い電場を通過する際に所要に分極されることで、所要レベルに帯電される。
本実施例の荷電部20A’では、放電線21の下流側に単一のハニカム電極22Aを設けたため、荷電部20A’の小型化、低コスト化が図れる。また、ハニカム電極22Aを使用したことにより、所要レベルの荷電効果も、それ以上の再荷電効果も得られるため、ハニカム電極22Aの高い逆電離耐性とも相まって、高い荷電効率を長く維持できる。その際には、放電線21の間隔hについて先の出願で述べた荷電条件(h≦bに相当)を併用しても良い。
図17は実施例1の更に他の例の荷電部20A”の動作説明図で、放電線21の上流側にのみハニカム電極23Aを設けた場合の動作を示している。この構成では、例えば放電線21bの近傍を通過したダスト粒子P1は、該放電線周辺部の強い電場により分極され、所要レベル以上に荷電される。一方、ダスト粒子P3は、上流側ハニカム電極23Ahの後縁部付近に形成される強い電場によって分極されたことにより、所要レベルに荷電されている。
この荷電部20A”では、放電線21の上流側に単一のハニカム電極23Aを設けたため、荷電部20A”の小型化、低コスト化が図れる。特に上流側ハニカム電極23Aの裏面側周縁部は、放電線21の風上で、かつ裏面側であるため、ダスト粒子がたまり難い。本実施例では、このようなハニカム電極23Aの高い逆電離耐性とも相まって、高い荷電効率を、より長く維持できる。その際には、放電線21の間隔hについて先の出願で述べた荷電条件(h≦bに相当)を併用しても良い。
図18は実施例2の荷電部20Bの斜視図で、対向電極をメッシュ構造にした場合を示している。この荷電部20Bは 空気の流入方向Aと直交する面方向に等間隔hで配置した複数の放電線21a〜21gを備える。また、放電線21を挟んでその上流側と下流側とに距離bだけ離れて配置したメッシュ構造の対向電極22B、23Bを備えている。以下、これらの対向電極22B、23Bをメッシュ電極22B、23Bとも呼ぶ。
この例のメッシュ電極22B、23Bは目開きDbを有する正四角形の通風孔24Bを備えている。挿入図(a)に目開きDbのイメージを示す。このようなメッシュ電極22B、23Bは、公知の金網の製法等に従って安価に構成できると共に、メッシュ構造の場合は、細線を使用しても所要の機械的強度が得られると共に、開口率を大きくできるため、メッシュ電極22B、23Bを空気やダスト粒子が流れるときの抵抗を小さくできる。
なお、通風孔24Bの形状は上記正四角形に限らない。長方形や菱形に編むことで、様々な通風形状のメッシュ電極22B、23Bをに構成できる。これらのメッシュ電極に共通な特徴は、導電性線材をメッシュ状に編んだ構造を備えることであり、これらの何れかの構造のメッシュ電極を使用することで、上記のハニカム電極22A、23Aについて述べたと同様の高い荷電効率と高い逆電離耐性が得られる。以下、説明する。
図19は実施例2の荷電部20Bの動作説明図である。ハニカム電極とメッシュ電極の側断面形状には相違があるが、静電場を形成するための目開きを考慮した基本的な構造(即ち、Da/bとDb/b)には類似性があるため、荷電部20Bにおける静電場は上記図13の荷電部20Aについて述べたものと類似したものになる。即ち、まず、放電線21の周囲近傍で電気力線が集中しており、この部分の電場が強い。また、放電線21より発した各電気力線はメッシュ電極22B、23Bの内側端面部に吸収されると共に、この部分では略平行に到来した電気力線が目開きDbを有する通風孔24Bの周縁部に集められる結果、メッシュ電極の通風孔周縁部では電場が再度強くなっている。このため、荷電部20Bに流入するダスト粒子P1〜P3については、上記図13で述べたと同様の荷電効果や再荷電効果が得られる。
図20はメッシュ電極20Bによる目開きと帯電量の関係を示すグラフ図であり、荷電部20Bに一定量のダスト粒子を投入した場合における帯電量の存在分布を示している。荷電部20Bの寸法については、放電線21の間隔h=9mm、放電線21とメッシュ電極22B、23Bの内側との距離b=10mmとし、目開きDbについては、目開きDb1=1.44mm(線径Φ=0.37mm)、目開きDb2=5.55mm(線径Φ=0.8mm)とした。そして、この試験は、風速=3.3m/s、放電電力=3.3W(放電電流500μA)、放電線への印加電圧=+6.6kV、帯電量測定に用いた粒子:PAO粒子、帯電量測定に使用した粒子径範囲:0.285〜0.313μmの条件で行った。
特性M1は目開きDb1=1.44mm、特性M2は目開きDb2=5.55mmとした場合の帯電量の分布を表している。図より、目開きDbが大きい程、グラフが帯電量の高い右側にシフトしていることが分かる。即ち、帯電量の低い粒子の数が減り、相対度数のピークが帯電量の高い方にシフトすると共に、帯電量の高い粒子の数が増えている。目開きDbの変化に伴う帯電量特性の変化は、上記図14に示したハニカム電極の場合ほど顕著ではないが、何れも帯電量20〜40[e]の範囲で充分な帯電量特性が得られている。このように、メッシュ電極でも目開きDbが増す程、荷電効率が向上しており、これによって集塵効率の大幅な向上が期待できる。
以上の帯電量特性を目開きDbと距離bの比(Db/b)で評価すると、特性M1はDb1/b=0.14、特性M2はDb2/b=0.56であり、これらについて良好な帯電量特性が得られている。本発明者等は更に多くの実験を行った結果、Db/b≧0.05(即ち、1/20以上)の範囲で所要の荷電分布が得られた。
図21は実施例3の荷電部20Cの斜視図で、対向電極をパンチングメタル構造にした場合を示している。この荷電部20Cは 空気の流入方向Aと直交する面方向に等間隔hで配置した複数の放電線21a〜21gを備える。また、放電線21を挟んでその上流側と下流側とに距離bだけ離れて配置したパンチングメタル構造の対向電極22C、23Cを備えている。以下、これらの対向電極22C、23Cをパンチングメタル電極22C、23Cとも呼ぶ。
この例のパンチングメタル電極22C、23Cは目開き(即ち、直径)Dcを有する円形の通風孔24Cを備えている。このようなパンチングメタル電極22C、23Cは、導電性の板部材に孔を開ける製法(パンチング)で容易に構成できると共に、板厚を所要に選択することで充分な機械的強度が得られる。
なお、複数の通風孔24Cについては、図示の如く平行に設けても良いが、1行(又は1列)毎に孔の中心を1/2ピッチ分ずらして配列することにより、通風孔24Cが密に並び、高い開口率が得られる。また通風孔24Cの形状は上記円形に限らない。他にも、三角形、四角形、菱形等を含む任意多角形、楕円形、2つの楕円を十字にクロスさせた孔等、装飾性も兼ねた様々な孔形状を採用できる。これらのパンチングメタル電極に共通な特徴は、導電性板部材の面方向に複数の通風孔を配列した構造を備えることであり、これらのうちの何れかの構造のパンチングメタル電極を使用することで、上記のハニカム電極22A、23Aやメッシュ電極22B、23Bについて述べたと同様の高い荷電効率と高い逆電離耐性が得られる。以下、説明する。
図22は実施例3の荷電部20Cの動作説明図である。ハニカム電極とパンチングメタル電極の側断面形状には相違があるが、静電場を形成するための目開きを考慮した基本的な構造(Da/bとDc/b)には類似性があるため、荷電部20Cにおける静電場は上記図13のハニカム電極について述べたものと類似したものになる。即ち、まず、放電線21の周囲近傍では電気力線が集中しており、この部分の電場が強い。また、放電線21より発した各電気力線はパンチングメタル電極22C、23Cの内側端面部に吸収されると共に、この部分では略平行に到来した電気力線が目開きDcを有する通風孔24Cの周縁部に集められる結果、パンチングメタル電極の通風孔周縁部では電場が再度強くなっている。このため、荷電部20Cに流入するダスト粒子P1〜P3については、上記図13のハニカム電極について述べたと同様の荷電効果や再荷電効果が得られる。
図23は上記の各種対向電極の帯電量を比較するグラフ図であり、荷電部20A〜20Cに各一定量のダスト粒子を投入した場合における帯電量の存在分布を示している。荷電部20A〜20Cの寸法については、放電線21の間隔h=9mm、放電線21と対向電極22、23の内側との距離b=10mmとし、各対向電極の形状は、
ハニカム電極Hの目開きDa=6.35mm、幅wa=3mm、開口率=99.4%
メッシュ電極Mの目開きDb=1.44mm、線径Φ=0.37mm、開口率=60.8%
パンチングメタル電極Pの通風孔:Φ7×10P×60°、板厚wc=1.5mm、開口率=44.4%
とした。更に、この試験は、風速=3.3m/s、放電電力=3.3W(放電電流500μA)、放電線への印加電圧=+6.6kV、帯電量測定に用いた粒子:PAO粒子、帯電量測定に使用した粒子径範囲:0.285〜0.313μmの条件で行った。
ハニカム電極Hの目開きDa=6.35mm、幅wa=3mm、開口率=99.4%
メッシュ電極Mの目開きDb=1.44mm、線径Φ=0.37mm、開口率=60.8%
パンチングメタル電極Pの通風孔:Φ7×10P×60°、板厚wc=1.5mm、開口率=44.4%
とした。更に、この試験は、風速=3.3m/s、放電電力=3.3W(放電電流500μA)、放電線への印加電圧=+6.6kV、帯電量測定に用いた粒子:PAO粒子、帯電量測定に使用した粒子径範囲:0.285〜0.313μmの条件で行った。
特性Pはパンチングメタル電極、特性Mはメッシュ電極、特性Hはハニカム電極を使用した場合の帯電量分布を表している。図より、パンチングメタル電極P、メッシュ電極M、ハニカム電極Hの順でグラフが帯電量の高い右側にシフトしていることが分かる。即ち、帯電量の低い粒子の数が減り、相対度数のピークが帯電量の高い方にシフトすると共に、帯電量の高い粒子の数が増えている。
このことは、目開きDにつては、(メッシュ電極M)<(ハニカム電極H)の関係にあることから理解できる。また対向電極における電気力線の集中度については、図13のハニカム電極、図19のメッシュ電極、図22のパンチングメタル電極の場合を比較する分かるように、ハニカム電極やメッシュ電極の方がパンチングメタル電極よりも電気力線の集中度が高いから、と考えられる。また、この順序は各電極の開口率の大きさとも一致しており、即ち、(パンチングメタル電極Pの開口率=44.4%)<(メッシュ電極Mの開口率=60.8%)<(ハニカム電極Hの開口率=99.4% )の関係になっており、同一の目開きでは、開口率が大きいほど電気力線の集中度が高いことが分かる。これらの何れのタイプの対向電極も、高い荷電効率を示しており、使用目的やコストに応じて、条件に適した対向電極を選択可能である。
なお、上記各実施例では複数の放電線21が水平方向に展開する場合を述べたが、これに限らない。複数の放電線21は垂直方向に設けても、または任意角度の斜め方向に設けても良い。何れの場合も放電線21からの電気力線は対向電極通風孔24の周縁部に集中することになり、上記同様の再荷電効果や逆電離防止の効果が得られるからである。
また、上記各実施例では放電線21が等間隔hで配列される場合を述べたが、これに限らない。放電線21の間隔hを短くした部分ではより高いレベルの帯電量が得られ、逆に間隔hを長くした部分では低いレベルの帯電量が得られることが容易に理解できる。荷電部20の周囲を筐体(ダクト)11で囲むような場合には、空気の流れ方向の中心部で流速が速く、その周囲部ではダクトとの摩擦により流速が遅くなることが考えられるが、この場合でも、中心部で放電線21の間隔hを短くすることで、中心部における荷電能力を強化できる。
また、上記各実施例では放電線21と対向電極22、23の間の間隔を等間隔bとしたが、これに限らない。放電線21と下流側対向電極22の間隔をb1とした場合に、放電線21と上流側対向電極23の間隔を前記b1とは異なるb2にしても良い。
また、上記各実施例では対向電極22、23の構造を上流側と下流側とで同一にしたが、これに限らない。対向電極22と23についてはハニカム構造、メッシュ構造、パンチングメタル構造のうちの任意異なる二つを組み合わせて設けても良い。
また、上記各実施例では放電線21に正の直流高電圧を印加したが、これに限らない。放電線21に負の直流高電圧を印加するよう構成しても良い。この場合は、放電線21の近傍で電離された空気の+イオンは該放電線21に吸収され、電子が対向電極22、23の側に向かうと共に、これらの電子が周囲の空気分子に付着することで空気を−イオン化させ、これがダスト粒子に付着してダスト粒子を−極性に帯電させることになる。この場合でも、対向電極22、23の通風孔周縁部における電気力線をD/bに応じて密にさせるよう構成することが可能であり、これによって上記同様の再荷電効果や逆電離防止の効果が得られる。
また、本発明に係わる荷電部の構造は、電子写真複写機、静電塗装機、静電選別機等の静電気応用機器にも使用可能である。
10…静電式集塵装置
11…筐体
20…荷電部
21…放電線
22、23…対向電極
24…通風孔
30…集塵部
31、32…集塵電極
33…非集塵電極
40…送風部
41…ファン
11…筐体
20…荷電部
21…放電線
22、23…対向電極
24…通風孔
30…集塵部
31、32…集塵電極
33…非集塵電極
40…送風部
41…ファン
Claims (13)
- 粒子の流れ方向上流側に設けられ、前記粒子に電荷を与える荷電部と、当該荷電部の下流側に設けられ、前記荷電部で荷電された粒子を静電気力により捕集する集塵部とを備えた静電式集塵装置において、
前記荷電部は、粒子の流れ方向と直交する面方向に等間隔で配置された複数の放電線と、複数の通風孔が形成され、粒子の流れ方向と直交する面に前記放電線より所定間隔離れて配置された対向電極とを備え、
複数の前記放電線と前記対向電極との間に高電圧を印加してコロナ放電を発生させたときに、前記放電線の周囲に形成される一定以上の荷電領域が、粒子の流れ方向と直交する方向に隙間なく連続して形成されることを特徴とする静電式集塵装置。 - 隣接する放電線間の距離をL1、前記放電線と前記対向電極との距離をL2としたときに、L1≦L2であることを特徴とする請求項1に記載の静電式集塵装置。
- 複数の前記放電線を挟んで上流側と下流側にそれぞれ前記対向電極が配置されたことを特徴とする請求項1又は2に記載の静電式集塵装置。
- 複数の前記放電線の下流側に前記対向電極が配置されたことを特徴とする請求項1又は2に記載の静電式集塵装置。
- 複数の前記放電線の上流側に前記対向電極が配置されたことを特徴とする請求項1又は2に記載の静電式集塵装置。
- 前記対向電極の通風孔がハニカム形状であることを特徴とする請求項1乃至5のいずれか一項に記載の静電式集塵装置。
- 空気中の粒子に電荷を与える荷電装置において、
粒子の流れ方向と直交する面方向に所定の間隔で配列された複数の放電線と、
粒子の流れ方向と直交する面方向に複数の通風孔を有し、前記放電線より粒子の流れ方向に所定間隔離れて配置された導電性の対向電極とを備え、
前記放電線と対向電極との距離をbとし、前記通風孔の目開きをDとするときに、該Dとbの比(D/b)が0.05以上であることを特徴とする荷電装置。 - 前記対向電極は前記放電線の上流側又は下流側に配置されたことを特徴とする請求項7に記載の荷電装置。
- 前記対向電極は前記放電線の上流側及び下流側に配置されたことを特徴とする請求項7に記載の荷電装置。
- 前記対向電極は、導電性板部材の厚み方向が粒子の流れ方向と垂直になる態様で格子状に組み合わされた構造を備えることを特徴とする請求項7乃至9のいずれか一項に記載の荷電装置。
- 前記対向電極は、導電性線材をメッシュ状に編んだ構造を備えることを特徴とする請求項7乃至9のいずれか一項に記載の荷電装置。
- 前記対向電極は、導電性板部材の面方向に複数の通風孔を配列した構造を備えることを特徴とする請求項7乃至9のいずれか一項に記載の荷電装置。
- 前記対向電極は前記放電線の上流側及び下流側に配置されると共に、該上流側と下流側の対向電極が異なる電極構造を備えることを特徴とする請求項7に記載の荷電装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008201167A JP2009061444A (ja) | 2007-08-10 | 2008-08-04 | 静電式集塵装置及び荷電装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007210289 | 2007-08-10 | ||
JP2008201167A JP2009061444A (ja) | 2007-08-10 | 2008-08-04 | 静電式集塵装置及び荷電装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009061444A true JP2009061444A (ja) | 2009-03-26 |
Family
ID=40556540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008201167A Pending JP2009061444A (ja) | 2007-08-10 | 2008-08-04 | 静電式集塵装置及び荷電装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009061444A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015056465A1 (ja) * | 2013-10-16 | 2015-04-23 | 三菱電機株式会社 | 空気調和機 |
WO2023106867A1 (ko) * | 2021-12-09 | 2023-06-15 | 한국에너지기술연구원 | 전기집진장치 및 이를 이용한 집진방법 |
KR20230087114A (ko) * | 2021-12-09 | 2023-06-16 | 한국에너지기술연구원 | 전기집진장치 |
-
2008
- 2008-08-04 JP JP2008201167A patent/JP2009061444A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015056465A1 (ja) * | 2013-10-16 | 2015-04-23 | 三菱電機株式会社 | 空気調和機 |
WO2023106867A1 (ko) * | 2021-12-09 | 2023-06-15 | 한국에너지기술연구원 | 전기집진장치 및 이를 이용한 집진방법 |
KR20230087114A (ko) * | 2021-12-09 | 2023-06-16 | 한국에너지기술연구원 | 전기집진장치 |
KR102682600B1 (ko) * | 2021-12-09 | 2024-07-08 | 한국에너지기술연구원 | 전기집진장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9808809B2 (en) | Dust collector, electrode selection method for dust collector, and dust collection method | |
WO2016136270A1 (ja) | 電気集塵装置 | |
JPH09262500A (ja) | 電気集塵器 | |
JP3503718B2 (ja) | 電気集塵器及びこれの集塵電極の集塵電極用被覆膜 | |
JP2009061444A (ja) | 静電式集塵装置及び荷電装置 | |
US20230140445A1 (en) | Electrostatic separator | |
JP3254134B2 (ja) | 電気集塵装置 | |
US11331678B2 (en) | Charging apparatus and precipitator | |
KR102629969B1 (ko) | 대전 장치 및 집진 장치 | |
JP6953605B2 (ja) | 電気集塵装置 | |
KR20210024116A (ko) | 전기 집진 장치 | |
KR102554741B1 (ko) | 스크롤형 전기집진장치 및 이를 포함하는 공기조화장치 | |
JP2011161355A (ja) | 集塵装置 | |
WO2019087997A1 (ja) | 電気集塵装置 | |
JP6684986B2 (ja) | 電気集塵装置 | |
US9574586B2 (en) | System and method for an electrostatic bypass | |
JP7358216B2 (ja) | 電気集塵装置 | |
JP7300298B2 (ja) | 帯電装置及び集塵装置 | |
CN210373804U (zh) | 静电除尘模块和空气处理装置 | |
KR102533511B1 (ko) | 전기집진장치용 빗살형 이오나이저 | |
JPH0226141B2 (ja) | ||
JP5098885B2 (ja) | 荷電装置及び空気処理装置 | |
US9808808B2 (en) | Electrostatic precipitator | |
WO2020217566A1 (ja) | 電気集塵装置 | |
WO2020036185A1 (ja) | 電気集塵装置 |