WO2020217566A1 - 電気集塵装置 - Google Patents

電気集塵装置 Download PDF

Info

Publication number
WO2020217566A1
WO2020217566A1 PCT/JP2019/037158 JP2019037158W WO2020217566A1 WO 2020217566 A1 WO2020217566 A1 WO 2020217566A1 JP 2019037158 W JP2019037158 W JP 2019037158W WO 2020217566 A1 WO2020217566 A1 WO 2020217566A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dust collecting
discharge
dust
discharge electrode
Prior art date
Application number
PCT/JP2019/037158
Other languages
English (en)
French (fr)
Inventor
一隆 富松
加藤 雅也
上田 泰稔
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Publication of WO2020217566A1 publication Critical patent/WO2020217566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention relates to an electrostatic precipitator.
  • a device equipped with a flat plate-shaped dust collector arranged in parallel along a gas flow and a discharge electrode having a corona discharge portion arranged in the center thereof is known.
  • the shape of the corona discharge part of the discharge electrode has a method of ensuring corona discharge by giving a protrusion shape and causing electric field concentration, and a structure that causes the discharge electrode body to generate uniform electric field concentration, for example, a square wire.
  • a structure with a protruding corona discharge part is the mainstream. The structure is assumed.
  • a high DC voltage is applied between the dust collecting electrode and the discharge electrode, and stable corona discharge is performed at the corona discharge part of the discharge electrode to charge the dust in the gas flow.
  • Conventional dust collection theory explains that charged dust is collected by the Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collection electrode.
  • the electrostatic precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and are provided with a dust collecting electrode having a closed space for collecting dust inside.
  • the collected dust is made difficult to re-scatter by confining the dust in a closed space through the through hole.
  • the electrostatic precipitator of Patent Document 3 includes a dust collecting electrode including an earth electrode having an aperture ratio of 65% to 85% and a dust collecting filter layer for collecting gas.
  • a dust collecting electrode including an earth electrode having an aperture ratio of 65% to 85% and a dust collecting filter layer for collecting gas.
  • an ionic wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , I try to collect dust efficiently.
  • ionic wind is actively used, but the purpose of this case is to collect dust mainly in the dust collecting filter layer.
  • the dust collection efficiency ⁇ in the electrostatic precipitator can be calculated by the following well-known Irish's mathematical formula (Equation (1)).
  • w is the dust collection index (movement speed of particulate matter)
  • f is the dust collection area per unit gas amount.
  • 1-exp ( ⁇ w ⁇ f) ⁇ ⁇ ⁇ (1)
  • the moving speed w of dust is determined by the relationship between the force due to Coulomb force and the viscous resistance of gas.
  • dust moves from the release electrode in the electric field, and ion wind is not directly considered in terms of its effect on performance.
  • the precondition that the distribution of the dust concentration which is the premise of the performance design, is always uniform within the cross section of the dust collection space between the discharge electrode and the dust collection electrode orthogonal to the gas flow of the electrostatic precipitator. Ion wind is considered to be one of the factors that cause gas turbulence to make the dust concentration uniform.
  • Ion wind is generated as a result of the corona discharge of negative ions generated at the discharge electrode when a negative voltage is applied between the electrodes, and in the case of a positive voltage, it is generated by positive ions.
  • a negative voltage is applied will be described in order to consider based on an industrial electrostatic precipitator, but the same applies even if it is positive.
  • the ionic wind generated at the discharge electrode flows toward the dust collecting electrode and crosses the gas flow.
  • the ionic wind that has reached the dust collecting electrode reverses at the dust collecting electrode and changes the flow direction. This creates a spiral turbulence between the electrodes.
  • the flow from the discharge electrode to the dust collection electrode has the effect of transporting dust to the vicinity of the dust collection electrode.
  • the dust carried to the vicinity of the dust collection electrode is finally collected by Coulomb force.
  • the ionic wind inverted at the dust collecting electrode moves the dust away from the dust collecting electrode, which is the collector, so it also has the effect of hindering dust collection. Therefore, it is effective to provide an opening in the dust collecting electrode to prevent the reversal of the ionic wind.
  • Patent Document 3 describes an electrostatic precipitator that also considers the effect of ionic wind.
  • the structure is such that ion air is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust in a place that is not affected by the main gas. It was complicated, and it was difficult to remove and recover the adhered dust by the dry method.
  • the corona discharge generated from the corona discharge portion causes the ion wind to flow toward the dust collecting electrode side together with the corona current.
  • the discharge electrode is not provided with the corona discharge portion, the corona discharge does not occur between the discharge electrode and the dust collecting electrode, so that ion wind cannot be used.
  • the amount of charge in the dust collection space due to the corona current and charged dust is smaller than that in the corona discharge section, so the increase in electric field strength near the dust collection electrode is corona discharge. It is smaller than the part side, and the dust collecting action due to the Coulomb force is also weakened. For this reason, the present inventors have focused on the active use of the dust collecting electrode facing the discharge electrode having no corona discharge portion.
  • the present invention has been made in view of such circumstances, and is an electrostatic precipitator capable of effectively collecting dust even with a dust collecting electrode facing a discharge electrode having no corona discharge portion.
  • the purpose is to provide.
  • the electrostatic precipitator has a main body portion, a first discharge electrode having a first corona discharge portion for corona discharge protruding from the main body portion, and a second electrode having a surface on which no protrusion is formed.
  • the dust collecting electrode is located between the discharge electrode and the first discharge electrode and the second discharge electrode, and the first discharge electrode side is provided with a dust collecting electrode facing the first corona discharge portion. Is located in a direction away from the first release electrode than the central position between the first release electrode and the second release electrode.
  • the first discharge electrode has a first corona discharge portion that projects toward the dust collecting electrode, and the second discharge electrode has a surface on which the protrusion is not formed.
  • the corona discharge can be performed from the first corona discharge unit toward the dust collecting electrode to allow ion air to flow.
  • the second discharge electrode which is located on the opposite side of the first discharge electrode with the dust collecting electrode on the opposite side, that is, on the opposite side of the first corona discharge portion, does not have a protrusion like the first corona discharge portion. Almost no discharge occurs.
  • the dust collecting electrode is located in a direction away from the first discharge electrode rather than the central position between the first discharge electrode and the second discharge electrode, the second discharge electrode and the dust collection electrode are brought closer to each other.
  • the dust collecting electrode include a discrete dust collecting electrode in which a plurality of rigid members are arranged at predetermined intervals.
  • the member having rigidity include a member having a pipe-shaped main body.
  • a flat plate dust collecting electrode formed into a plate-like body having a plurality of through holes can be mentioned.
  • punching metal or wire mesh is used as the flat plate dust collecting electrode.
  • the distance between the first discharge electrode and the dust collection electrode is D1
  • the distance between the second discharge electrode and the dust collection electrode is D2.
  • the dust collecting electrodes are arranged along one direction, and the D1 is located between the first discharge electrode and the arrangement position of the dust collecting electrode. It is a distance, and D2 is a distance between the second discharge electrode and the arrangement position of the dust collecting electrode.
  • the dust collecting electrodes are arranged along one direction, D1 is the distance between the first radiation electrode and the arrangement position of the dust collecting electrodes in the direction perpendicular to the arrangement direction of the dust collecting electrodes, and D2 is. , The distance between the second discharge electrode and the arrangement position of the dust collection electrodes in the direction perpendicular to the arrangement direction of the dust collection electrodes.
  • the electric field strength between the front first discharge electrode and the dust collection electrode and the electric field strength between the second discharge electrode and the dust collection electrode Is equivalent to.
  • the dust collecting electrode is made the first discharge electrode and the second discharge electrode.
  • the electric field strength between the second discharge electrode and the dust collecting electrode can be increased as compared with the case where the position is located at the center between the electrodes.
  • the front first discharge electrode has a corona discharge projecting from the main body portion on the side opposite to the first corona discharge portion with the main body portion in between. It has a second corona discharge unit for use, and a dust collection electrode different from the dust collection electrode is located so as to face the second corona discharge unit.
  • the dust collection efficiency is improved by improving the Coulomb force even at the dust collection electrode that faces the discharge electrode that does not have a corona discharge part. Can be increased to collect dust more effectively.
  • the electrostatic precipitator 1 is used in, for example, a thermal power plant that uses coal or the like as fuel, and collects dust (particulate matter) in combustion exhaust gas derived from a boiler. Further, although the size of each component of the electrostatic precipitator 1 is different from that for a thermal power plant, it is installed in a building, an underground space, etc., and collects fine particulate matter (for example, PM2.5) to create a space. Purify the air inside.
  • the electrostatic precipitator 1 includes a plurality of conductive dust collecting poles 4 such as those made of metal.
  • the dust collecting poles 4 are hollow columnar circular pipes having a circular cross section, and are arranged at predetermined intervals in the x direction (gas flow G direction) orthogonal to the z direction which is the longitudinal direction. Has been done.
  • a plurality of rows of dust collecting poles 4 arranged in the x direction are provided in parallel at predetermined intervals in the z direction and the y direction orthogonal to the x direction.
  • a first discharge electrode 5 or a second discharge electrode 6 is arranged in the xz plane between each row of the dust collecting electrodes 4.
  • the first release electrode 5 and the second release electrode 6 are alternately arranged in the y direction.
  • FIG. 1 the positions of the mounting frame 5d of the first release electrode 5 or the mounting frame 6b of the second release electrode 6 are shown.
  • the dust collecting electrode 4 is offset from the central position CL between the first emission electrode 5 and the second emission electrode 6 arranged in the y direction orthogonal to the gas flow G direction to the second emission electrode 6 side. ing. That is, the pitch between the dust collecting electrode 4 and the first discharge electrode 5 is larger than the pitch between the dust collecting electrode 4 and the second discharge electrode 6.
  • the dust collecting electrode 4 is grounded.
  • the first release electrode 5 and the second release electrode 6 are connected to a power source having a negative polarity (not shown).
  • the power supply connected to the first discharge electrode 5 and the second discharge electrode 6 may have a positive polarity.
  • the first discharge electrode 5 includes a main body portion 5c fixed to the mounting frame 5d and a plurality of thorn-shaped protrusions (first corona discharge portion) 5a protruding from the main body portion 5c.
  • a plurality of thorn-shaped protrusions (second corona discharge portions) 5b protruding from the main body 5c are provided on the opposite side of the main body 5c with the main body 5c sandwiched between them.
  • the main body 5c is, for example, a round bar having a circular cross section, a square bar having a square cross section, or the like.
  • the protrusions 5a and 5b and the main body 5c may be connected by welding or the like as separate members, or may be formed by punching a flat plate and integrally formed.
  • the protrusion 5a is provided so as to project toward one dust collecting electrode 4 side with the tip facing
  • the protrusion 5b is provided so as to project toward the other dust collecting electrode 4 side with the tip facing.
  • the protrusions 5a and 5b are arranged so as to be located between the dust collecting poles 4 in the x direction, which is the gas flow G direction. Corona discharge is generated at the protrusions 5a and 5b, and ion wind is generated from the tips of the protrusions 5a and 5b toward the dust collecting poles 4 facing each other.
  • the second discharge electrode 6 includes a main body portion 6a fixed to the mounting frame 6b. Unlike the first release electrode 5, the outer peripheral surface of the second release electrode 6 does not have protrusions such as protrusions 5a and 5b that protrude from the main body 6a.
  • the second emission electrode 6 is, for example, a round bar having a circular cross section, a square bar having a square cross section, or the like.
  • the second discharge electrode 6 is arranged so that the axial direction is parallel to the z direction.
  • the center C1 of the dust collecting electrode 4 is from the center position CL between the center C2 of the first emission electrode 5 and the center C3 of the second emission electrode 6 to the second emission electrode 6. It is offset to the side. Specifically, the dust collecting electrode 4 is positioned from the central position CL in the direction away from the first release electrode 5 having the protrusions 5a and 5b and closer to the second discharge electrode 6 in which the protrusion is not formed. It is shifted. Therefore, as shown in FIGS. 3 and 4, the distance D1 seen in the y direction between the center C2 of the main body 5c of the first emission electrode 5 and the arrangement position passing through the center C1 of the dust collecting electrode 4 is the first. 2 It is larger than the distance D2 seen in the y direction between the center C3 of the main body 6a of the release electrode 6 and the arrangement position passing through the center C1 of the dust collecting electrode 4 (D1> D2).
  • the distance D1 is the distance between the center C2 of the main body 5c of the first emission electrode 5 and the arrangement position passing through the center C1 of the dust collecting electrode 4. That is, D1 is located between the center C2 of the main body 5c of the first discharge electrode 5 and the arrangement position (center axis) of the dust collection electrode 4 in the direction perpendicular to the arrangement direction of the dust collection electrode 4 (y direction). The distance.
  • the distance D2 is the distance between the center C3 of the main body 6a of the second emission electrode 6 and the arrangement position passing through the center C1 of the dust collecting electrode 4. That is, D2 is located between the center C3 of the main body 6a of the second discharge electrode 6 and the arrangement position (center axis) of the dust collection electrode 4 in the direction perpendicular to the arrangement direction of the dust collection electrode 4 (y direction). The distance.
  • FIG. 3 shows a front view of FIG. 1 as viewed from the gas flow G direction.
  • the protrusions 5a and 5b are provided at predetermined intervals in the height direction. Further, the protrusions 5a and the protrusions 5b are alternately provided at different positions so as to have different phases, that is, along the z direction of the main body 5c.
  • FIG. 4 shows the positional relationship of the dust collecting electrode 4, the first discharge electrode 5, and the second discharge electrode 6 in a plan view.
  • the distance between the dust collecting electrodes 4 arranged in the x direction, which is the gas flow G direction, is Pc
  • the distance between the first discharge electrode 5 or the second discharge electrode 6 arranged in the x direction is Pd.
  • the distance between the dust collecting electrodes 4 arranged in the y direction, which is perpendicular to the gas flow G direction is 2D1 when the first emission electrode 5 is located in the middle, and the second emission electrode 6 is in the middle.
  • the distance when is located is 2D2.
  • the diameter of the dust collecting electrode 4 is Dc.
  • the ratio of the distance D1 and the distance D2 is 1.1 ⁇ D1 / D2. ⁇ It is desirable to set it in the range of 2.0. The lower limit of D1 / D2 is even better set to 1.2.
  • FIG. 5 shows an enlarged cross section at a height position corresponding to the protrusion 5a of the first release electrode 5.
  • the main body 5c of the first release electrode 5 has a circular cross section, and the diameter thereof is Dd1.
  • the length of the protrusion 5a protruding from the main body 5c is Lb.
  • the main body portion 6a of the second emission electrode 6 has a circular cross section, and its diameter is Dd2.
  • L1 and L2 can be expressed as the following equations.
  • L1 ((D1-Dd1 / 2-Lb) 2 + (Pd / 2) 2 ) 0.5- Dc / 2
  • L2 (D2 2 + (Pd / 2) 2 ) 0.5- Dc / 2-Dd2 / 2
  • Le (D1-D2) / 2
  • the distances 2D1 and 2D2 between the dust collecting electrodes 4 arranged in the y direction are, for example, 300 mm or more and 500 mm or less for general industrial use. However, for other uses, other dimensions may be used.
  • FIG. 6A and 6B show the electric field strength distribution when there is no offset when the offset amount is 0, that is, when the center C1 of the dust collecting electrode 4 is provided on the center position CL.
  • the electric field strength E1max near the dust collecting electrode 4 exists in the space.
  • the electric field strength increases relatively significantly due to the space charge effect of the electric charges of the negative ions and the charged dust.
  • the electric field strength (Ecr) of the spark discharge limit near the dust collecting electrode 4 is the condition of the maximum applicable maximum electric field strength (E1max ⁇ Ecr).
  • FIG. 7A and 7B show the electric field strength distribution between the first emission electrode 5 and the dust collecting electrode 4 when the dust collecting electrode 4 is offset from the central position CL, and the first 2 The electric field strength distribution between the discharge electrode 6 and the dust collecting electrode 4 is shown.
  • FIG. 7A corresponds to FIG. 6A
  • FIG. 7B corresponds to FIG. 6B.
  • E1max is operated at the spark discharge limit electric field strength Ecr or less, but since the distance L1 on the protrusions 5a and 5b side becomes longer due to the offset, the same electric field strength as the initial E1max is compared with the case without offset. Therefore, the applied linear pressure Vn itself can be increased (Vn> Vo), and therefore the maximum electric field strength E2max on the opposite side of the protrusions 5a and 5b can be further increased. In this way, by offsetting and increasing the applied voltage, the electric field strength E1max is maintained at the same level as before the offset, and E2max is increased to the same level as E1max to collect the most dust near the dust collecting electrode 4.
  • the second discharge electrode 6 having no protrusions is also installed to collect dust.
  • the second discharge electrode 6 having no protrusions is also installed to collect dust.
  • the offset amount (D1 / D2 ratio) is preferably adjusted so that the electric field strength E1max on the first discharge electrode 5 side and the electric field strength E2max on the second discharge electrode 6 side are equivalent.
  • the examples of the electric field strength shown in FIGS. 6A to 7B are examples in which the pipe-shaped dust collecting poles 4 are arranged at intervals, and are described based on the shortest distances in L1 and L2.
  • the electrode of the dust collecting electrode 4 there is a mesh-shaped electrode or the like. Therefore, in order to define the offset amount below, the arrangement position passing through the center C1 of the dust collecting electrode 4 and the center C2 of the first discharge electrode 5 are provided.
  • the distance D1 of the above, the arrangement position passing through the center C1 of the dust collecting electrode 4, and the distance D2 between the center C3 of the second discharge electrode 6 are collectively described.
  • the electrodes are pipe-shaped, even if they are evaluated by D1 and D2 instead of L1 and L2, they can be regarded as substantially the same in a practical range, so that there is no problem.
  • the range in which the electric field strengths of both are equal is, for example, 1.5 ⁇ D1 / D2 ⁇ 1.8.
  • the optimum range of D1 / D2 varies depending on the operating conditions of the electrostatic precipitator 1, the dust collecting electrode 4, the first discharge electrode 5 or the second discharge electrode 6.
  • the lower limit of the ratio D1 / D2 of the distance D1 and the distance D2 is, for example, 1.1, more preferably 1.2. As shown in FIG. 8, it has been found that the relationship between the offset amount and the dust collection performance changes depending on the flow velocity of the gas flow G. When the gas flow G is relatively fast, the dust collection performance is improved when D1 / D2 is 1.1 or more. When the gas flow G is relatively slow, the dust collection performance is improved when D1 / D2 is 1.2 or more, and in this range, when the gas flow G is relatively fast, the dust collection performance is surely improved. ..
  • the maximum offset amount is set within the range where E2max does not greatly exceed E1max.
  • FIG. 9 shows the corona discharge side when D1 / D2 is changed in the general industrial electrostatic precipitator 1 (the side having the protrusions 5a and 5b on the main body 5c of the first discharge electrode 5, that is, that is, Analyze and compare the electric field strength near the dust collecting electrode 4 on the discharge line (side with thorns) and the electric field strength near the dust collecting electrode 4 on the electric field side (second discharge electrode 6 side, that is, the side without thorns). An example is shown. Both the current and voltage as the operating conditions of the electrostatic precipitator 1 were increased. In FIG. 9, the current and voltage increase from the graph on the left to the graph on the right.
  • the spark discharge electric field strength in the electric dust collector 1 for general industry is particularly large in the region where D1 / D2 having a large offset amount is large. This varies greatly depending on the composition of the gas and the operating temperature conditions, but is usually 8 kV / cm to 12 kV / cm), which is preferable because the dust collecting electrode 4 on the side without thorns exceeds it first. Absent. More specifically, it is desirable that D1 / D2 ⁇ 2.0.
  • D1 / D2 exceeds 2.0, the electric field strength on the second emission electrode 6 side reaches or reaches a value where spark discharge occurs under normal operating conditions of the electrostatic precipitator 1. Get closer. Therefore, stable operation becomes difficult due to restrictions on the operating conditions of the electrostatic precipitator 1. Therefore, it is desirable that the upper limit of D1 / D2 is 2.0.
  • the operation of the electrostatic precipitator 1 of the present embodiment will be described.
  • a corona discharge is generated at the tips of the protrusions 5a and 5b by applying a negative voltage from the power source to the first discharge electrode 5 and the second discharge electrode 6.
  • the dust contained in the gas flow G is charged by the corona discharge.
  • the charged dust is attracted to the grounded dust collection electrode 4 by the Coulomb force and is collected on the dust collection electrode 4. Is greatly affected by the ion wind.
  • the dust collecting poles 4 formed as circular pipes at intervals in the x direction which is the predetermined gas flow G direction, one of the ion winds flowing from the protrusions 5a and 5b toward the dust collecting pole 4 Allows the portion to escape to the back side of the dust collecting electrode 4. As a result, the flow in which the ionic wind is reversed at the dust collecting electrode 4 and separated can be suppressed, so that the collecting efficiency is improved.
  • a part of the ion wind including dust and flowing toward the dust collecting electrode 4 passes between the dust collecting electrodes 4.
  • the dust collection electrode 4 is offset from the central position CL to the second discharge electrode 6 side as described with reference to FIG. 7B.
  • the electric field strength E2max in the vicinity of the dust collecting electrode 4 on the second discharge electrode 6 side can be increased as compared with the case without offset.
  • dust is effectively collected by the Coulomb force even at the dust collecting electrode 4 on the second discharge electrode 6 side. That is, it is possible to efficiently collect the uncollected dust that has sneak around to the second discharge electrode 6 side, which is the back surface of the dust collection electrode 4, by the ion wind from the first discharge electrode 5 side.
  • the dust collected in the dust collecting electrode 4 is peeled off and collected by hammering.
  • a method of moving the dust collecting electrode 4 to scrape off the dust with a brush or a wet cleaning method may be adopted.
  • the dust collector Since the center C1 of the dust collecting electrode 4 is located in a direction away from the first discharge electrode 5 than the center position CL between the center C2 of the first discharge electrode 5 and the center C3 of the second discharge electrode 6, the dust collector is collected.
  • the dust electrode 4 and the second emission electrode 6 come close to each other. As a result, the electric field strength between the dust collecting electrode 4 and the second discharge electrode 6 can be increased, and the dust collecting efficiency due to the Coulomb force can be increased also at the dust collecting electrode 4 on the second discharge electrode 6 side. ..
  • the dust collecting electrode 4 may be a flat plate-shaped dust collecting electrode such as a punching metal having a large number of holes formed in the flat plate.
  • the dust collecting electrode 4 may be a woven wire mesh (for example, a rock crimp woven wire mesh) in which metal wire rods are crossed in the vertical direction and the horizontal direction.
  • the dust collecting electrode 4, the first discharge electrode 5, and the second discharge electrode 6 are arranged as shown in FIGS. 10 to 12. Since the woven wire mesh has a constant aperture ratio and no edge on the surface, the electric field strength in the vicinity of the dust collecting electrode 4 can be uniformly increased.
  • the wire mesh is not limited to the woven wire mesh, and may be a wire mesh having a circular cross section connected in the vertical direction and the horizontal direction, such as a welded wire mesh.
  • the electrostatic precipitator 1 When the electrostatic precipitator 1 is used as an air purifier for air purification, the time for particles to stay in the device is short and the particle concentration is low. On the other hand, the electrostatic precipitator 1 used in a thermal power plant has a large scale, a long time for particles to stay, and a high particle concentration, unlike the case where it is used for air purification. In the electrostatic precipitator 1 for air purification, when low-concentration particles are passed through in a short residence time, the particles are collected by the dust collecting electrode 4 due to the effect of gas circulation generated by the ion wind from the first discharge electrode 5. Can not.
  • the gas shutoff plate 7 is installed on the upstream side of the gas flow G between the dust collecting electrode 4 and the second discharge electrode 6. By obstructing the gas flow G by the gas shutoff plate 7, the flow rate of the gas flow flowing between the dust collecting electrode 4 and the second discharge electrode 6 is reduced, the residence time of the particles is lengthened, and the particles pass through the dust collecting electrode 4. The collection performance can be improved.
  • the dust collecting electrode 4 is a flat plate-shaped dust collecting electrode, as shown in FIG. 13, even as a folded plate-shaped dust collecting electrode in which flat plates such as punching metal and wire mesh are alternately and regularly folded back in the gas flow G direction. good.
  • the first release electrode 5 and the second release electrode 6 are offset according to the unevenness of the opposing folded plates.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

コロナ放電部を有さない放電極に対向する集塵極であっても有効に集塵することができる電気集塵装置を提供する。本体部(5c)と、該本体部(5c)から突出するコロナ放電用の第1コロナ放電部(5a)を有する第1放電極(5)と、突起部が形成されない面を有する第2放電極(6)と、第1放電極(5)及び第2放電極(6)の間に位置し、第1放電極(5)側は第1コロナ放電部(5a)に対向している集塵極(4)とを備え、集塵極(4)は、第1放電極(5)と第2放電極(6)との間の中央位置(CL)よりも第1放電極(5)から遠ざかる方向に位置されている。

Description

電気集塵装置
 本発明は、電気集塵装置に関するものである。
 従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列されたコロナ放電部を有する放電極とを備えたものが知られている。放電極のコロナ放電部の形状には、突起形状を持たせて電界の集中を生じさせることでコロナ放電を確保する方式と、放電極本体を一様な電界集中を生じさせる構造、例えば角線や細いピアノ線などがあるが、一般産業用の電気集塵装置では、電極が汚れても安定したコロナ放電を確保するため、突起状のコロナ放電部を有した構造が主流であり、以降この構造を前提とする。
 電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極のコロナ放電部で安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると、従来の集じん理論では説明されている。
 ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、該貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。
 特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、本ケースはダストを、主として集じんフィルタ層に捕集させることを目的としている。
特許第5761461号公報 特許第5705461号公報 特許第4823691号公報
 電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの数式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
  η=1-exp(-w×f)・・・(1)
 上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの数式(上記式(1))では、ダストが放電極から電界中を移動するとされており、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度の分布は、常に電気集塵装置のガス流れに直交した放電極と集塵極との間の集じん空間の断面内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。
 イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、本明細書では、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。
 ガス流れに沿って電極群が配置されている電気集塵装置では、放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。
 乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。
 しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。そのため、集塵極に開口部を設け、イオン風の反転を防ぐ手段が有効である。
 特許文献3には、イオン風の効果も考慮した電気集塵装置が記載されている。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない箇所での集じんをすることを目的としていて、構造も複雑であること、及び、乾式では付着ダストの剥離回収が困難であった。
 また、放電極において放電極の本体部から突出するコロナ放電部が設けられている場合、コロナ放電部から発生するコロナ放電によってコロナ電流とともにイオン風が集塵極側に向かって流れる。これに対し、放電極においてコロナ放電部が設けられていない場合、放電極と集塵極との間ではコロナ放電が発生しないため、イオン風を利用することができない。また、コロナ放電部が設けられていない放電極では、コロナ電流や帯電ダストによる集塵空間での電荷量がコロナ放電部に比べて少ないため、集塵極近傍での電界強度の持ち上がりがコロナ放電部側に比べて小さく、クーロン力による集塵作用も弱くなる。このため、本発明者等は、コロナ放電部を有さない放電極に対向する集塵極の積極的な利用に着目した。
 本発明は、このような事情に鑑みてなされたものであって、コロナ放電部を有さない放電極に対向する集塵極であっても有効に集塵することができる電気集塵装置を提供することを目的とする。
 本発明の一態様に係る電気集塵装置は、本体部と、該本体部から突出するコロナ放電用の第1コロナ放電部を有する第1放電極と、突起部が形成されない面を有する第2放電極と、前記第1放電極及び前記第2放電極の間に位置し、前記第1放電極側は前記第1コロナ放電部に対向している集塵極とを備え、前記集塵極は、前記第1放電極と前記第2放電極との間の中央位置よりも前記第1放電極から遠ざかる方向に位置されている。
 第1放電極は、集塵極に対向して突出する第1コロナ放電部を有し、第2放電極は突起部が形成されない面を有している。これにより、第1コロナ放電部から集塵極に向かってコロナ放電させてイオン風を流すことができる。
 集塵極を挟んで第1放電極の反対側、すなわち第1コロナ放電部の反対側に位置する第2放電極は、第1コロナ放電部のような突起部が形成されていないため、コロナ放電はほとんど生じない。しかし、集塵極は、第1放電極と第2放電極との間の中央位置よりも第1放電極から遠ざかる方向に位置されているので、第2放電極と集塵極とが近づくことになる。
 これにより、第2放電極と集塵極との間の電界強度を増加させることができ、第2放電極においてもクーロン力の向上による集塵効率を高めることができる。また、この方式は、両側にコロナ放電部を有する放電極のみが設置される従来の方式に比べて、突起部がない第2放電極も設置されることにより、集塵極を挟んで隣り合う放電極同士によるイオン風の干渉をなくすことができるメリットがある。
 集塵極としては、例えば、複数の剛性を有する部材を所定間隔で並べた離散形集塵極が挙げられる。剛性を有する部材としては、例えば本体部がパイプ形状とされた部材が挙げられる。また、他の形式の集塵極としては、例えば、複数の貫通孔を有する板状体とされた平板集塵極が挙げられる。平板集塵極としては、例えばパンチングメタルや金網が用いられる。
 さらに、本発明の一態様に係る電気集塵装置では、前記第1放電極と前記集塵極との間の距離をD1、前記第2放電極と前記集塵極との間の距離をD2とした場合、1.1 ≦ D1/D2 ≦ 2.0とされている。
 1.1 ≦ D1/D2 ≦ 2.0とすることにより、第2放電極と集塵極との間の電界強度を増加させつつ、当該電界強度を第1コロナ放電部と集塵極との間の電界強度に近づけることができる。1.1 > D1/D2とする場合と比べて、集塵性能が向上し、D1/D2 > 2.0とする場合と異なり、火花放電の発生を防止できる。
 さらに、本発明の一態様に係る電気集塵装置では、前記集塵極は、一方向に沿って配列され、前記D1は、前記第1放電極と前記集塵極の配列位置との間の距離であり、前記D2は、前記第2放電極と前記集塵極の配列位置との間の距離である。
 集塵極が一方向に沿って配列されており、D1は、集塵極の配列方向に対して垂直方向において第1放電極と集塵極の配列位置との間の距離であり、D2は、集塵極の配列方向に対して垂直方向において第2放電極と集塵極の配列位置との間の距離である。
 さらに、本発明の一態様に係る電気集塵装置では、前前記第1放電極と前記集塵極との間の電界強度と、前記第2放電極と前記集塵極との間の電界強度とが同等とされている。
 第1放電極と集塵極との間の電界強度と、第2放電極と集塵極との間の電界強度とを同等とすることで、集塵極を第1放電極と第2放電極間の中央に位置させる場合に比べて、第2放電極と集塵極との間の電界強度を増加させることができる。
 さらに、本発明の一態様に係る電気集塵装置では、前前記第1放電極は、前記本体部を間に挟んで前記第1コロナ放電部とは反対側に前記本体部から突出するコロナ放電用の第2コロナ放電部を有し、前記第2コロナ放電部に対向するように前記集塵極とは別の集塵極が位置する。
 放電極の本体部に対して第1コロナ放電部及び第2コロナ放電部を両側に有することで、両サイドに位置する集塵極それぞれに向かってコロナ放電させてイオン風を流すことができる。
 コロナ放電部を有さない放電極と集塵極との間の電界強度を増加させることで、コロナ放電部を有さない放電極に対向する集塵極においてもクーロン力の向上により集塵効率を高めて、さらに有効に集塵することができる。
本発明の一実施形態に係る電気集塵装置を示した斜視図である。 図1の電気集塵装置を上方から見た平面図である。 図1の電気集塵装置をガス流れ方向から見た正面図である。 集塵極と放電極との位置関係を示した平面図である。 放電極の突起部に相当する高さ位置の横断面図である。 オフセット無し場合の第1放電極と集塵極間の電界強度を示した図である。 オフセット無し場合の第2放電極と集塵極間の電界強度を示した図である。 オフセット有り場合の第1放電極と集塵極間の電界強度を示した図である。 オフセット有り場合の第2放電極と集塵極間の電界強度を示した図である。 集塵性能指数比とオフセット比の関係を示すグラフである。 集塵極近傍の電界強度とオフセット比の関係を示すグラフである。 本発明の一実施形態に係る電気集塵装置の変形例を示した平面図である。 図10の電気集塵装置をガス流れ方向から見た正面図である。 集塵極と放電極との位置関係を示した平面図である。 集塵極の変形例を示した平面図である。
 以下に、本発明に係る電気集塵装置の一実施形態について、図面を参照して説明する。
 電気集塵装置1は、例えば石炭等を燃料とする火力発電プラントに用いられ、ボイラから導かれた燃焼排ガス中のダスト(粒子状物質)を回収する。また、電気集塵装置1は、火力発電プラント用とは各構成要素のサイズが異なるが、建築物や地下空間等に設置され、微小粒子状物質(例えばPM2.5など)を回収し、空間内の空気を浄化する。
 電気集塵装置1は、例えば金属製等の導電性とされた複数の集塵極4を備えている。集塵極4は、円形の横断面を有する中空の柱状とされた円形パイプとされており、長手方向であるz方向に直交するx方向(ガス流れG方向)に所定の間隔をあけて配列されている。x方向に配列された集塵極4の列は、z方向及びx方向に直交するy方向に所定間隔をあけて平行に複数列設けられている。集塵極4の各列の間に、x-z面内に第1放電極5又は第2放電極6が配置されている。第1放電極5と第2放電極6は、y方向に交互に配置される。
 図1では、第1放電極5の取付枠5d又は第2放電極6の取付枠6bの位置が示されている。集塵極4は、図2から分かるように、ガス流れG方向に直交するy方向に並ぶ第1放電極5と第2放電極6間の中央位置CLから第2放電極6側にオフセットされている。すなわち、集塵極4と第1放電極5間のピッチは、集塵極4と第2放電極6間のピッチより大きい。
 集塵極4は接地されている。第1放電極5及び第2放電極6は、図示しない負の極性を有する電源に接続されている。なお、第1放電極5及び第2放電極6に接続する電源は正の極性を有していても良い。
 図2に示すように、第1放電極5は、取付枠5dに固定された本体部5cと、本体部5cから突出するトゲ状とされた複数の突起部(第1コロナ放電部)5aと、本体部5cを間に挟んで突起部5aとは反対側に本体部5cから突出するトゲ状とされた複数の突起部(第2コロナ放電部)5bとを備えている。本体部5cは、例えば、断面が円形状を有する丸棒、又は、断面が四角形状を有する角棒などである。また、突起部5a,5bと本体部5cは別部材で溶接等によって接続されたものでも良いし、平板を打ち抜いて形成されて一体的に構成されているものであっても良い。
 突起部5aは、一方の集塵極4側に先端を向けて突出するように設けられ、突起部5bは、他方の集塵極4側に先端を向けて突出するように設けられている。突起部5a,5bは、ガス流れG方向であるx方向において、集塵極4の間に位置するように配置されている。突起部5a,5bにおいてコロナ放電が発生し、突起部5a,5bの先端からそれぞれに対向する集塵極4側に向けてイオン風が発生する。
 第2放電極6は、取付枠6bに固定された本体部6aを備える。第2放電極6の外周面は、第1放電極5と異なり、突起部5a,5bのような本体部6aから突出した突起部が形成されない。第2放電極6は、例えば、断面が円形状を有する丸棒、又は、断面が四角形状を有する角棒などである。第2放電極6は、軸方向がz方向に対して平行に配置される。
 図2及び図3に示されているように、集塵極4の中心C1は、第1放電極5の中心C2と第2放電極6の中心C3間の中央位置CLから第2放電極6側にオフセットされている。具体的には、集塵極4は、突起部5a,5bを有する第1放電極5から遠ざかる方向に、かつ、突起部が形成されない第2放電極6に近づくように中央位置CLから位置がずらされている。したがって、図3及び図4に示すように、第1放電極5の本体部5cの中心C2と集塵極4の中心C1を通る配列位置との間のy方向に見た距離D1は、第2放電極6の本体部6aの中心C3と集塵極4の中心C1を通る配列位置との間のy方向に見た距離D2よりも大きい(D1>D2)。
 距離D1は、第1放電極5の本体部5cの中心C2と集塵極4の中心C1を通る配列位置との間の距離である。すなわち、D1は、集塵極4の配列方向に対して垂直方向(y方向)において第1放電極5の本体部5cの中心C2と集塵極4の配列位置(中心軸線)との間の距離である。
 距離D2は、第2放電極6の本体部6aの中心C3と集塵極4の中心C1を通る配列位置との間の距離である。すなわち、D2は、集塵極4の配列方向に対して垂直方向(y方向)において第2放電極6の本体部6aの中心C3と集塵極4の配列位置(中心軸線)との間の距離である。
 図3には、図1をガス流れG方向から見た正面図が示されている。同図に示されているように、突起部5a,5bは、いずれも高さ方向において、所定間隔を空けて設けられている。また、突起部5aと突起部5bは、位相が異なるように、すなわち、本体部5cのz方向に沿って異なる位置に交互に設けられる。
 図4には、集塵極4と第1放電極5と第2放電極6を平面視したときの位置関係が示されている。
 ガス流れG方向であるx方向に並ぶ集塵極4の間隔はPc、x方向に並ぶ第1放電極5又は第2放電極6の間隔はPdとされる。また、ガス流れG方向に対して垂直方向であるy方向に並ぶ集塵極4の間隔は、中間に第1放電極5が位置する場合の距離が2D1とされ、中間に第2放電極6が位置する場合の距離が2D2とされる。集塵極4の直径はDcとされる。
 本実施形態において、集塵極4のオフセット位置、すなわち、集塵極4の中心C1が中央位置CLからy方向にずれる位置は、距離D1及び距離D2の比が、1.1 ≦ D1/D2 ≦ 2.0の範囲に設定されることが望ましい。D1/D2の下限は、1.2とされると更によい。
 図5には、第1放電極5の突起部5aに相当する高さ位置における横断面が拡大して示されている。図4又は図5に示すように、第1放電極5の本体部5cは円形断面を有しており、その直径はDd1とされる。突起部5aが本体部5cから突出する突起長さはLbとされる。図4に示すように、第2放電極6の本体部6aは円形断面を有しており、その直径はDd2とされる。
 図4及び図5に示した諸元を用いると、L1及びL2は下式のように表すことができる。
  L1=((D1-Dd1/2-Lb)+(Pd/2)0.5-Dc/2
  L2=(D2+(Pd/2)0.5-Dc/2-Dd2/2
 そして、集塵極4の中心が中央位置CLからy方向にずれるオフセット量Leは、下式によって表される。
  Le=(D1-D2)/2
 なお、図4及び図5では、トゲ状の突起部5a又は突起部5bの位置での断面での例を示したが、実際には突起部5a,5bが占める部分は第1放電極5の一部であり、隣り合う二つの突起部5a,5b間の部分が第1放電極5の大部分を占める。そのため、突起部5a,5bの長さLbは無視してL1、L2を評価しても構わない。
 y方向に並ぶ集塵極4間の距離である2D1や2D2は、たとえば一般産業用では300mm以上500mm以下とされている。ただし他の用途では、それ以外の寸法とすることもできる。
 次に、図6A乃至図7Bを用いて、第1放電極5と第2放電極6の間で集塵極4をオフセットさせた場合の作用効果について説明する。
 図6A及び図6Bには、オフセット量=0とされたオフセット無しの場合、すなわち集塵極4の中心C1が中央位置CL上に設けられている場合の電界強度分布が示されている。図6Aに示すように、第1放電極5の突起部5a,5bと集塵極4との間は、コロナ電流が流れるにしたがい、集塵極4近傍の電界強度E1maxは空間中に存在するマイナスイオンと帯電ダストが有する電荷による空間電荷効果で、電界強度が比較的大きく上昇する。この集塵極4付近での火花放電限界の電界強度(Ecr)が最大の印加可能な最大電界強度の条件となる(E1max≦Ecr)。
 一方、図6Bに示すように、突起部を有さない第2放電極6と集塵極4との間では、図6Aのような空間電荷効果がなく電界強度の上昇が少ないため、集塵極4近傍の電界強度E2maxは、E1maxよりも小さい。
 なお、電界強度を距離L1,L2で積分した面積A1,A2はそれぞれが印加電圧Voに相当するため、等しい値となる。
 図7A及び図7Bには、本実施形態に相当し、集塵極4が中央位置CLからオフセットされた場合の第1放電極5と集塵極4との間の電界強度分布、及び、第2放電極6と集塵極4との間の電界強度分布が示されている。図7Aが図6Aに対応し、図7Bが図6Bに対応する。
 図7A及び図7Bに示されているように、突起部5a,5bと集塵極4との間の電界強度は、オフセットによりD1>D2、つまりL1>L2とされているため、集塵極4近傍の電界強度E1maxは、オフセット無しの場合と同じ電圧Voであれば、図6Aよりは低下し、E1ave.(=Vo/L1)も小さくなる。一方、オフセットによって図6Bの場合よりもL2が小さくなり、平均電界強度E2ave.が大きくなることで、集塵極4近傍の電界強度E2maxは増加させることができる。
 一般に、E1maxが火花放電限界電界強度Ecr以下での運転となるが、オフセットすることで突起部5a,5b側の距離L1が長くなるため、オフセット無しの場合に比べて当初のE1maxと同じ電界強度にするためには、印加線圧Vnそのものを高くすることができ(Vn>Vo)、このため突起部5a,5bと反対側の最大電界強度E2maxもさらに高くすることができる。このように、オフセットするとともに、印加電圧を高くすることで、電界強度E1maxをオフセット前と同等に維持しつつ、E2maxをE1maxと同じレベルまで高くすることで、集塵極4近傍の最も集塵に効果のある場の電界強度を高め、クーロン力による捕集効率を高めることが可能となる。なお、オフセットすることでコロナ放電が生じる突起部5a,5b側の距離L1は大きくなり、この間を移動するダストの移動距離は大きくなるが、この部分でのダストの移動はイオン風が主体となるため、若干の到達距離の増加や途中の平均電界強度の低下は性能にはマイナスとならず、集塵極4の第2放電極6側に回り込んだダストの集塵極4近傍の電界強度E2maxの増大で性能を高くすることが可能となる。
 また、本実施形態では、両側に突起部(コロナ放電部)を有する放電極のみが設置される従来の方式に比べて、突起部がない第2放電極6も設置されることにより、集塵極4を挟んで隣り合う放電極同士によるイオン風の干渉をなくすことができるメリットがある。すなわち、集塵極4において第2放電極6側から流れてくるイオン風がない又は少ないため、帯電ダストが第1放電極5側へ巻き戻されることがなく、帯電ダストを集塵極4近傍へ近づけることができる。さらに、突起部5aと突起部5bが位相をずらして設けられることによって、第2放電極6側からのイオン風による影響を更に減らすことができる。
 オフセット量(D1/D2比)は、第1放電極5側の電界強度E1maxと第2放電極6側の電界強度E2maxとが同等となるように調整されることが好ましい。図6A乃至図7Bで示す電界強度の例は、パイプ状の集塵極4を間隔をあけて配置した事例であり、L1,L2での最短距離をベースに記載している。集塵極4の電極例としては、メッシュ状の電極等もあるため、以下はオフセット量を定義するため、集塵極4の中心C1を通過する配列位置と第1放電極5の中心C2間の距離D1と、集塵極4の中心C1を通過する配列位置と第2放電極6の中心C3間の距離D2でまとめて表記する。この場合、パイプ状の電極であっても、L1,L2でなく、D1,D2で評価しても実用上の範囲ではほぼ同等とみなせるため、支障はない。
 両者の電界強度が等しくなる範囲は、例えば、1.5 ≦ D1/D2 ≦ 1.8である。但し、電気集塵装置1の運転条件や集塵極4、第1放電極5又は第2放電極6の条件によって最適なD1/D2の範囲は変動する。
 距離D1及び距離D2の比D1/D2の下限は、例えば1.1であり、より望ましくは1.2である。図8に示すように、ガス流れGの流速によって、オフセット量と集塵性能の関係が変化するという知見が得られている。ガス流れGが比較的速いときは、D1/D2が1.1以上になると、集塵性能が向上する。ガス流れGが比較的遅いときは、D1/D2が1.2以上になると、集塵性能が向上し、この範囲では、ガス流れGが比較的速いときは、集塵性能が確実に向上する。
 ガス流れGの流速が速い条件では、よりクーロン力の影響が大きいため、電界強度の増大に影響を受けて、比較的小さいオフセット量(例えば1.1 ≦ D1/D2)でも集塵性能が向上する。これに対し、流速が遅い条件では、イオン風の影響が大きいことから、電界強度の増大によって集塵性能が向上するには、より大きなオフセット量(例えば1.2 ≦ D1/D2)が必要になる。1.2 ≦ D1/D2であれば、ガス流れGの流速に関わらず、集塵性能を向上させることができる。
 オフセット量を過大にして、集塵極4と第2放電極6間のピッチを極端に小さくすると、集塵極4近傍の電界強度E2max>E1maxとなり、突起部を有さない第2放電極6側での火花放電限界電界強度が運転上の制約条件となり、突起部5a,5bを有する第1放電極5側での性能が発揮できなくなるため、好ましくない。よって、最大のオフセット量はE2maxがE1maxを大きく超えない範囲に設定されることが望ましい。
 図9には、一般産業用の電気集塵装置1において、D1/D2を変化させた時のコロナ放電側(第1放電極5の本体部5cに突起部5a,5bを有する側、すなわち、放電線にトゲのある側)の集塵極4近傍の電界強度と、電界側(第2放電極6側、すなわち、トゲのない側)の集塵極4近傍の電界強度を解析して比較した例を示す。電気集塵装置1の運転条件としての電流電圧をともに上昇させていった。図9において、左のグラフから右のグラフに行くに従い、電流電圧が高くなっている。
 いずれの場合も、D1/D2=1の場合には、トゲのある側の集塵極4のほうがトゲの長さ分距離が近いことに加え、コロナ電流による空間電荷で電界が持ち上がる効果が加算されるため、トゲのある側の集塵極4のほうの電界強度が高い。そして、電流が増えていくに従い、その持ち上がりの効果が大きくなり、電界強度の値が高くなっていく。
 一方、図9のいずれのグラフの場合もD1/D2が増えていくに従いトゲのない側の集塵極4の電界強度は一義的に増加していく傾向を示す。理想的にはトゲのある側とトゲのない側の電界強度が一致するポイントが、最もバランスの取れた電界強度配分と考えられる。しかし、実際の運転では、いろいろな条件が複合しているため、最適な条件は変動する。このため、図8のD1/D2を変化させた時の集塵性の向上に関するテスト結果でも、集塵性能の最適ポイントもある程度のばらつきを有している。
 また、図9の右側のほうのグラフ、すなわち電流電圧を上昇させた運転では、特にオフセット量の大きなD1/D2が大きな領域では、一般産業用の電気集塵装置1での火花放電電界強度(これは、ガスの組成や運転温度条件によっても大きく異なるが、通常8kV/cm~12kV/cmとされている。)をトゲのない側の集塵極4のほうが先に超えてしまうため、好ましくない。
 より具体的には、D1/D2 ≦ 2.0とされることが望ましい。
 D1/D2が2.0を超えると、第2放電極6側の電界強度が、電気集塵装置1の通常運転条件下において、火花放電が発生する領域に到達する、又は、到達する値に近くなる。そのため、電気集塵装置1の運転条件の制約を受けて、安定運転は困難になる。したがって、D1/D2の上限は2.0とされることが望ましい。
 次に、本実施形態の電気集塵装置1の動作を説明する。
 電気集塵装置1では、第1放電極5及び第2放電極6に電源から負電圧を印加することで、突起部5a,5bの先端でコロナ放電が発生する。ガス流れGに含まれるダストは、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電されたダストは、クーロン力により接地された集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
 コロナ放電が発生すると、突起部5a,5b近くでマイナスイオンが発生し、そのマイナスイオンが電界によって集塵極4に向けて移動し、イオン風が生じる。そのためクーロン力がダストに作用すると同時に、集塵極4に向かって流れるイオン風が、ガス流れGに含まれるダストを集塵極4の近傍まで移動させるように作用する。そして、集塵極4の近傍の領域で、電界強度の持ち上がりによってクーロン力を高め、効果的にダストを集塵する。また、円形パイプとされた集塵極4を所定のガス流れG方向であるx方向に間隔をあけて配置することで、突起部5a,5bから集塵極4へ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できるため、捕集効率が向上する。
 ダストを含んで集塵極4に向かって流れるイオン風の一部は、集塵極4の間を通り抜ける。
 一方、突起部を有さない第2放電極6と集塵極4との間では、図7Bを用いて説明したように、集塵極4を中央位置CLから第2放電極6側へオフセットし、集塵極4と第2放電極6間のピッチを狭めることによって、第2放電極6側の集塵極4近傍の電界強度E2maxをオフセット無しに比べて増加することができる。これにより、第2放電極6側の集塵極4でもクーロン力によって効果的に集塵が行われる。すなわち、第1放電極5側からのイオン風によって集塵極4の背面である第2放電極6側に回り込んだ未捕集ダストを効率的に捕集することができる。
 集塵極4に捕集されたダストは、槌打によって剥離回収される。あるいは、集塵極4を移動させてブラシでダストを掻き落とす方式や、湿式洗浄を採用しても良い。
 本実施形態によれば、以下の作用効果を奏する。
 集塵極4の中心C1が第1放電極5の中心C2と第2放電極6の中心C3との間の中央位置CLよりも第1放電極5から遠ざかる方向に位置されているので、集塵極4と第2放電極6とが近づくことになる。これにより、集塵極4と第2放電極6との間の電界強度を増加させることができ、第2放電極6側の集塵極4においてもクーロン力による集塵効率を高めることができる。
 上述した実施形態では、集塵極4が円形パイプである例について説明したが、本発明はこの例に限定されない。例えば、集塵極4は、平板に多数の孔を形成したパンチングメタルのような平板状集塵極としても良い。
 または、集塵極4は、金属製線材を縦方向と横方向などに交差させた織金網(例えばロッククリンプ織金網など)でもよい。この集塵極4、第1放電極5及び第2放電極6は、図10乃至図12に示すように配置される。織金網は、一定の開口率を有しつつ、表面にエッジがないため、集塵極4近傍の電界強度を一様に上昇させることができる。なお、金網は、織金網に限定されず、溶接金網のように断面円形状の線材を縦方向と横方向に並べて接続したものでもよい。
 電気集塵装置1が、空気浄化用に空気清浄機として用いられる場合、粒子が装置内に滞留する時間が短く、粒子濃度も低い。一方、火力発電プラントに用いられる電気集塵装置1は、空気浄化用に用いられる場合と異なり規模が大きく、粒子が滞留する時間が長く、粒子濃度も高い。空気浄化用の電気集塵装置1において、低濃度の粒子を短い滞留時間で通過させると、第1放電極5からのイオン風によって生じるガス循環による効果で、粒子を集塵極4に捕集できない。
 そこで、集塵極4と第2放電極6間のガス流れGの上流側において、ガス遮断板7が設置されるとよい。ガス遮断板7によってガス流れGが妨げられることにより、集塵極4と第2放電極6間に流れるガス流れの流量が低減し、粒子の滞在時間を長くして、集塵極4を通り抜けた捕集性能を高めることができる。
 集塵極4が平板状集塵極である場合、図13に示すように、パンチングメタルや金網等の平板材をガス流れG方向に交互に規則的に折り返した折れ板状集塵極としても良い。この場合、第1放電極5及び第2放電極6は、対向する折れ板の凹凸に応じてオフセットされる。
1 電気集塵装置
4 集塵極
5 第1放電極
5a 突起部(第1コロナ放電部)
5b 突起部(第2コロナ放電部)
5c 本体部
5d 取付枠
6 第2放電極
6a 本体部
6b 取付枠
7 ガス遮断板
C1 (集塵極の)中心
C2 (第1放電極の)中心
C3 (第2放電極の)中心
CL 中央位置
 

Claims (5)

  1.  本体部と、該本体部から突出するコロナ放電用の第1コロナ放電部を有する第1放電極と、
     突起部が形成されない面を有する第2放電極と、
     前記第1放電極及び前記第2放電極の間に位置し、前記第1放電極側は前記第1コロナ放電部に対向している集塵極と、
    を備え、
     前記集塵極は、前記第1放電極と前記第2放電極との間の中央位置よりも前記第1放電極から遠ざかる方向に位置されている電気集塵装置。
  2.  前記第1放電極と前記集塵極との間の距離をD1、前記第2放電極と前記集塵極との間の距離をD2とした場合、
     1.1 ≦ D1/D2 ≦ 2.0
    とされている請求項1に記載の電気集塵装置。
  3.  前記集塵極は、一方向に沿って配列され、
     前記D1は、前記第1放電極と前記集塵極の配列位置との間の距離であり、
     前記D2は、前記第2放電極と前記集塵極の配列位置との間の距離である請求項2に記載の電気集塵装置。
  4.  前記第1放電極と前記集塵極との間の電界強度と、前記第2放電極と前記集塵極との間の電界強度とが同等とされている請求項1から3のいずれかに記載の電気集塵装置。
  5.  前記第1放電極は、前記本体部を間に挟んで前記第1コロナ放電部とは反対側に前記本体部から突出するコロナ放電用の第2コロナ放電部を有し、前記第2コロナ放電部に対向するように前記集塵極とは別の集塵極が位置する請求項1から4のいずれかに記載の電気集塵装置。
     
PCT/JP2019/037158 2019-04-24 2019-09-24 電気集塵装置 WO2020217566A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082948 2019-04-24
JP2019082948A JP7225019B2 (ja) 2019-04-24 2019-04-24 電気集塵装置

Publications (1)

Publication Number Publication Date
WO2020217566A1 true WO2020217566A1 (ja) 2020-10-29

Family

ID=72942367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037158 WO2020217566A1 (ja) 2019-04-24 2019-09-24 電気集塵装置

Country Status (3)

Country Link
JP (1) JP7225019B2 (ja)
TW (1) TWI722567B (ja)
WO (1) WO2020217566A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114050U (ja) * 1987-01-20 1988-07-22
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置
JP2018126712A (ja) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 電気集塵装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114050U (ja) * 1988-01-28 1989-08-01
JP2006224054A (ja) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd 電気集塵ユニット
JP2014161784A (ja) * 2013-02-25 2014-09-08 Midori Anzen Co Ltd 静電式集塵機
TWI579052B (zh) * 2013-06-20 2017-04-21 Electrostatic dust collector and air cleaning equipment to prevent contamination of the electrode
CN203648705U (zh) * 2014-01-08 2014-06-18 北京玄路海科技有限公司 设有金属网片的静电除尘器
WO2016105045A1 (ko) * 2014-12-22 2016-06-30 삼성전자주식회사 전기 집진기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114050U (ja) * 1987-01-20 1988-07-22
JP2016073954A (ja) * 2014-10-08 2016-05-12 三菱日立パワーシステムズ環境ソリューション株式会社 電気集じん装置
JP2018126712A (ja) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 電気集塵装置

Also Published As

Publication number Publication date
TW202039086A (zh) 2020-11-01
JP2020179328A (ja) 2020-11-05
TWI722567B (zh) 2021-03-21
JP7225019B2 (ja) 2023-02-20

Similar Documents

Publication Publication Date Title
JP2009178626A (ja) 電気集塵装置
JP6953605B2 (ja) 電気集塵装置
US20230140445A1 (en) Electrostatic separator
US11484890B2 (en) Electrostatic precipitator
WO2020217566A1 (ja) 電気集塵装置
JP2018126713A (ja) 電気集塵装置
WO2020026370A1 (ja) 電気集塵装置
WO2020026369A1 (ja) 電気集塵装置
JP7358216B2 (ja) 電気集塵装置
JP7139120B2 (ja) 電気集塵装置
WO2020036185A1 (ja) 電気集塵装置
KR20110133079A (ko) 멀티힐릭스핀 이오나이저를 갖는 허니컴 집진부를 포함한 전기집진장치
JP2978481B1 (ja) 電気集塵装置
CN111905929B (zh) 宽比电阻及微细粉尘静电除尘器及其除尘电极的分布方法
JP2009061444A (ja) 静電式集塵装置及び荷電装置
JP2007069118A (ja) 電気集塵機
JPS61136453A (ja) イオン風発生器
JP2018167137A (ja) 電気集塵装置
JP2005185911A (ja) 電気集じん機の電極構造
JPH01151956A (ja) 電気集じん装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925781

Country of ref document: EP

Kind code of ref document: A1