JP2009050111A - Control system of reactive power compensator - Google Patents

Control system of reactive power compensator Download PDF

Info

Publication number
JP2009050111A
JP2009050111A JP2007215089A JP2007215089A JP2009050111A JP 2009050111 A JP2009050111 A JP 2009050111A JP 2007215089 A JP2007215089 A JP 2007215089A JP 2007215089 A JP2007215089 A JP 2007215089A JP 2009050111 A JP2009050111 A JP 2009050111A
Authority
JP
Japan
Prior art keywords
reactive power
voltage
load current
load
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007215089A
Other languages
Japanese (ja)
Other versions
JP4840290B2 (en
Inventor
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007215089A priority Critical patent/JP4840290B2/en
Publication of JP2009050111A publication Critical patent/JP2009050111A/en
Application granted granted Critical
Publication of JP4840290B2 publication Critical patent/JP4840290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To enable compactly and inexpensively obtaining reactive power of a load without increasing a circuit scale. <P>SOLUTION: In the reactive power compensator interlocked with a power system and controlling voltage fluctuation of the power system, in order to compensate the reactive power of the load, a multiplier 15 obtains a reactive power instantaneous value q from the product of a voltage v2 delayed by 90° from a system voltage v1 and a load current if, while a multiplier 16 obtains the product q of a differential value obtained by averaging the load current for a predetermined period and the system voltage, and the values are added to obtain the reactive power. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、半導体装置を用いて電力系統に連系し、電力系統の電圧変動を抑制する無効電力補償装置の制御方式に関する。   The present invention relates to a control method for a reactive power compensator that is connected to a power system using a semiconductor device and suppresses voltage fluctuations of the power system.

図2に、無効電力補償装置の一般的な例を示す。
すなわち、図2の無効電力補償装置1は、電力系統2から系統インピーダンス3を介して負荷4が接続された系統の、上記系統インピーダンス3と負荷4との間に設置され、負荷4によって発生する無効電力を補償する。
FIG. 2 shows a general example of a reactive power compensator.
That is, the reactive power compensator 1 in FIG. 2 is installed between the system impedance 3 and the load 4 in the system in which the load 4 is connected from the power system 2 through the system impedance 3, and is generated by the load 4. Compensate for reactive power.

無効電力補償装置1はサイリスタ5、リアクトル6、コンデンサ7、制御装置13などから構成される。その動作としては、電圧フリッカを補償するために、負荷4が発生する無効電力を補償する。負荷4が発生する無効電力をQf、無効電力補償装置1の無効電力をQt、系統の無効電力をQsとすると、Qt=Qfとなるように、無効電力補償装置1を制御することで系統の無効電力をQs=0とし、その結果、系統電圧の電圧変動を抑制でき、電圧フリッカを抑制することができる。   The reactive power compensator 1 includes a thyristor 5, a reactor 6, a capacitor 7, a control device 13, and the like. As the operation, in order to compensate for the voltage flicker, the reactive power generated by the load 4 is compensated. If the reactive power generated by the load 4 is Qf, the reactive power of the reactive power compensator 1 is Qt, and the reactive power of the system is Qs, the reactive power compensator 1 is controlled so that Qt = Qf. The reactive power is set to Qs = 0, and as a result, voltage fluctuation of the system voltage can be suppressed and voltage flicker can be suppressed.

制御装置13の具体例を図3に示す。ここでは、PTやCTにより系統電圧,90°位相遅れの系統電圧や負荷電流ifを検出し、無効電力検出器10により無効電力Qを演算する。検出した無効電力Qにゲイン要素11からのゲインを乗算した結果を、点弧角制御回路12に入力し、この点弧角制御回路12でサイリスタを点弧するための点弧角指令αを演算するものである。   A specific example of the control device 13 is shown in FIG. Here, the system voltage, the system voltage of 90 ° phase lag and the load current if are detected by PT and CT, and the reactive power detector 10 calculates the reactive power Q. The result of multiplying the detected reactive power Q by the gain from the gain element 11 is input to the firing angle control circuit 12, and the firing angle control circuit 12 calculates a firing angle command α for firing the thyristor. To do.

図4に、例えば特許文献1に開示された無効電力検出器10の具体例を示す。
同図では、以下のように無効電力Qを演算する。
(イ)系統電圧v1と、系統電圧v1に対し90°遅れた電圧v2と負荷電流ifを検出し、図5に示すオールパスフィルタ21で負荷電流ifを90°進めた電流if’を演算する。ここに、v1,v2およびifは次式のように示される。
FIG. 4 shows a specific example of the reactive power detector 10 disclosed in Patent Document 1, for example.
In the figure, the reactive power Q is calculated as follows.
(A) The system voltage v1, the voltage v2 delayed by 90 ° with respect to the system voltage v1, and the load current if are detected, and the current if ′ obtained by advancing the load current if by 90 ° is calculated by the all-pass filter 21 shown in FIG. Here, v1, v2, and if are expressed as follows.

v1=√2Esinωt −(1)
v2=−√2Ecosωt −(2)
if=√2Isin(ωt−φ) −(3)
v1 = √2Esinωt− (1)
v2 = −√2Ecosωt− (2)
if = √2I sin (ωt−φ) − (3)

(ロ)v2とifを乗算することで、無効電力瞬時値qを演算する。
q=v2×if=E・I{sinφ−sin(2ωt−φ)} −(4)
(ハ)v1とifを90°進めた電流if’ を乗算することで、仮想無効電力瞬時値q’を演算する。
q’=v1×if’=E・I{sinφ+sin(2ωt−φ)} −(5)
(B) The reactive power instantaneous value q is calculated by multiplying v2 and if.
q = v2 × if = E · I {sinφ−sin (2ωt−φ)} − (4)
(C) The virtual reactive power instantaneous value q ′ is calculated by multiplying v1 and the current if ′ obtained by advancing if by 90 °.
q ′ = v1 × if ′ = E · I {sin φ + sin (2ωt−φ)} − (5)

(ニ)無効電力瞬時値qと仮想無効電力瞬時値q’を加算する。
q+q’=2E・I・sinφ −(6)
(ホ)上記(6)式に1/2を乗じることで、無効電力Qを演算する。
Q=(q+q’)/2= E・I・sinφ −(7)
(D) The reactive power instantaneous value q and the virtual reactive power instantaneous value q ′ are added.
q + q '= 2E · I · sinφ-(6)
(E) The reactive power Q is calculated by multiplying the above equation (6) by 1/2.
Q = (q + q ') / 2 = E · I · sinφ-(7)

特開平08−140268号公報Japanese Patent Laid-Open No. 08-140268

特許文献1のようにすると、無効電力Qを演算するためには、系統電圧に対して90°位相遅れの電圧を検出する変圧器(PT)や、オールパスフィルタが必要になる。特に、オールパスフィルタは図5のようにオペアンプ等を用いて作るので、90°位相を進めるための調整が必要になる。このため、回路が複雑かつ規模が大きくなり、フィルタの調整に時間が必要になるなど、コストアップの要因になる。また、オールパスフィルタは瞬時,
瞬時の値を移相するため、急峻な負荷電流の変化によっては、演算誤差が大きくなる可能性がある。
According to Patent Document 1, in order to calculate the reactive power Q, a transformer (PT) that detects a voltage 90 degrees behind the system voltage and an all-pass filter are required. In particular, since the all-pass filter is made using an operational amplifier or the like as shown in FIG. 5, adjustment to advance the phase by 90 ° is required. For this reason, the circuit is complicated and large, and it takes time to adjust the filter. The all-pass filter is instantaneous,
Since the instantaneous value is phase-shifted, there is a possibility that a calculation error becomes large depending on a sudden load current change.

したがって、この発明の課題は、回路を複雑かつ大規模化することなく、演算誤差も小さな無効電力の演算方式を提供することにある。   Accordingly, an object of the present invention is to provide a reactive power calculation method with a small calculation error and without making a circuit complicated and large-scale.

このような課題を解決するため、請求項1の発明では、電力系統に接続されて電力系統の電圧変動を抑制する無効電力補償装置によって負荷の無効電力を補償するに当たり、
前記電力系統の電圧より90°遅れた電圧と負荷電流との積によって演算される無効電力瞬時値に、負荷電流を一定期間平均した微分値と系統電圧との積を加算して無効電力値を演算し、この演算値により負荷の無効電力を補償することを特徴とする。
この請求項1の発明においては、前記負荷電流を一定期間平均した微分値は、n(2以上の自然数)サンプリング前まで負荷電流を微分したものが、1サンプリング前の負荷電流を微分したものと同一位相,同一振幅となるように移相し、振幅をそろえて演算することができる(請求項2の発明)。
In order to solve such a problem, the invention of claim 1 compensates the reactive power of the load by the reactive power compensator that is connected to the power system and suppresses voltage fluctuations of the power system.
The reactive power value is obtained by adding the product of the derivative value obtained by averaging the load current for a certain period and the system voltage to the reactive power instantaneous value calculated by the product of the voltage delayed by 90 ° from the voltage of the power system and the load current. The calculation is performed, and the reactive power of the load is compensated by the calculated value.
In the invention of claim 1, the differential value obtained by averaging the load current for a certain period is obtained by differentiating the load current before n (natural number of 2 or more) sampling is obtained by differentiating the load current before one sampling. The phase can be shifted so that they have the same phase and the same amplitude, and the operations can be performed with the same amplitude (invention of claim 2).

従来のように、負荷電流を90°進めた電流を系統電圧に乗算して求めた仮想無効電力瞬時値と、無効電力瞬時値とを加算して無効電力を求めるようにすると、オールパスフィルタ等が必要となって演算誤差も大きくなるので、この発明によれば、上記仮想無効電力瞬時値を、負荷電流を一定期間平均した微分値と系統電圧との積から求められるようにすることで、演算誤差を抑制できるようになる。   When the reactive power is obtained by adding the virtual reactive power instantaneous value obtained by multiplying the system voltage by the current obtained by advancing the load current by 90 ° and the reactive power instantaneous value as in the conventional case, an all-pass filter or the like According to the present invention, the virtual reactive power instantaneous value is calculated from the product of the differential value obtained by averaging the load current for a certain period and the system voltage. Error can be suppressed.

図1はこの発明の実施の形態を示すブロック図である。
これは、図4に示す無効電力演算検出器10に、移相器19、n(2以上の自然数)個平均微分器22、ゲイン(要素)23,24、設定器25、減算器26、除算器27などを付加したものである。その演算方式は、無効電力瞬時値qを演算するところまでは図4と同じなので、以下は相違について主として説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This is because the reactive power calculation detector 10 shown in FIG. 4 includes a phase shifter 19, n (natural number of 2 or more) average differentiator 22, gains (elements) 23 and 24, a setter 25, a subtractor 26, a division. A device 27 and the like are added. Since the calculation method is the same as that in FIG. 4 until the reactive power instantaneous value q is calculated, the difference will be mainly described below.

まず、ifをωで除算して微分すると、数1で示す(8)式となる。

Figure 2009050111
First, if is divided by ω and differentiated, the following equation (8) is obtained.
Figure 2009050111

また、ifをωで除算し、n個平均微分演算器22で微分演算すると、数2で示す(9)式となる。同式のNsは1周期あたりのサンプル数(サンプル数/周期)を示す。

Figure 2009050111
Further, if is divided by ω, and differential calculation is performed by n average differential calculator 22, Equation (9) shown in Formula 2 is obtained. Ns in the equation represents the number of samples per cycle (number of samples / cycle).
Figure 2009050111

(9)式は、数3の(10)式のように表わすことができる。

Figure 2009050111
Equation (9) can be expressed as Equation (10) in Equation 3.
Figure 2009050111

上記(10)式の中括弧({})内を合成すると、数4で示す(11)式のように変形できる。

Figure 2009050111
By synthesizing the curly braces ({}) in the above expression (10), it can be transformed as the expression (11) shown in equation 4.
Figure 2009050111

(11)式から、次の数5で示す(12)式のように、rとcosαが求められる。

Figure 2009050111
From equation (11), r and cos α are obtained as in equation (12) shown by the following equation (5).
Figure 2009050111

先の数4の(11)式は、数1の(8)式と比べて、振幅比と位相差αについて、数6の(13)式のような違いがある。

Figure 2009050111
The previous equation (11) is different from the equation (8) in equation 1 with respect to the amplitude ratio and the phase difference α as in equation (13) in equation 6.
Figure 2009050111

また、位相差αを移相するためには、数7の(14)式のようにすれば良い。

Figure 2009050111
Further, in order to shift the phase difference α, the following equation (14) may be used.
Figure 2009050111

(11)式の関係から、数8の(15)式が得られる。

Figure 2009050111
From the relationship of the equation (11), the equation (15) of the equation 8 is obtained.
Figure 2009050111

(15)式と上記(14)式から、数9の(16)が得られる。

Figure 2009050111
From Equation (15) and Equation (14) above, Equation (16) in Equation 9 is obtained.
Figure 2009050111

すなわち、図1の乗算器16における一方の入力(if’相当)を求める演算が、上記(16)式で示されることになる。この演算には、n個平均微分器22、ゲイン(要素)23,24、設定器25、減算器26および除算器27が用いられることから、ゲイン23には上記(13)式の振幅比が、ゲイン24にはsinαが、また、設定器25には(13)式のcosαが、それぞれ設定されることになる。   That is, the operation for obtaining one input (corresponding to if ′) in the multiplier 16 of FIG. 1 is expressed by the above equation (16). In this calculation, n average differentiators 22, gains (elements) 23 and 24, a setter 25, a subtractor 26, and a divider 27 are used. Therefore, the gain 23 has an amplitude ratio of the above equation (13). , Sin α is set in the gain 24, and cos α in the equation (13) is set in the setting unit 25, respectively.

乗算器16からは、上記(5)式と同様の演算によりq’( 仮想無効電力瞬時値)が求められ、加算器17で無効電力瞬時値qと仮想無効電力瞬時値q’とを加算して2E・I・sinφなる量が得られるので、これに1/2を乗じることで、無効電力Q(=E・I・sinφ)が演算されるのは、従来の場合と同様である。
因みに、Ns=192、n=16とすると、23のゲインは“1.0115”、24のゲインは“0.2588”、25の設定値は“0.9659”となる。
The multiplier 16 obtains q ′ (virtual reactive power instantaneous value) by the same calculation as the above equation (5), and the adder 17 adds the reactive power instantaneous value q and the virtual reactive power instantaneous value q ′. Therefore, the reactive power Q (= E · I · sinφ) is calculated by multiplying this by 1/2 as in the conventional case.
Incidentally, when Ns = 192 and n = 16, the gain of 23 is “1.0115”, the gain of 24 is “0.2588”, and the set value of 25 is “0.9659”.

以上のように、従来は系統電圧に対して90°位相遅れの電圧を検出するPTや、オールパスフィルタが必要になり、回路規模が複雑で大規模になっていたが、この発明によれば、PTやオールパスフィルタの代わりにNs個分のデータを保持できるメモリを用意することで、無効電力の演算が可能になることから、回路が小型化されコストダウンが可能となる。負荷電流を一定期間平均した微分を行なうことで、急激な負荷電流の変化に対しても演算誤差を抑制することができる。   As described above, conventionally, a PT that detects a voltage 90 degrees behind the system voltage and an all-pass filter are required, and the circuit scale is complicated and large. By preparing a memory that can hold Ns data instead of the PT and the all-pass filter, the reactive power can be calculated. Therefore, the circuit can be reduced in size and the cost can be reduced. By performing differentiation by averaging the load current for a certain period, it is possible to suppress calculation errors even for a sudden change in load current.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 従来例を示すシステム構成図System configuration diagram showing a conventional example 図2の制御装置の構成を示すブロック図The block diagram which shows the structure of the control apparatus of FIG. 図3の無効電力検出器の具体例を示すブロック図The block diagram which shows the specific example of the reactive power detector of FIG. 図4のオールパスフィルタの具体例を示す回路図Circuit diagram showing a specific example of the all-pass filter of FIG.

符号の説明Explanation of symbols

10…無効電力検出器、15,16…乗算器、17…加算器、18,23,24…ゲイン(要素)、19…移相器、25…設定器、26…減算器、27…除算器。   DESCRIPTION OF SYMBOLS 10 ... Reactive power detector, 15, 16 ... Multiplier, 17 ... Adder, 18, 23, 24 ... Gain (element), 19 ... Phase shifter, 25 ... Setter, 26 ... Subtractor, 27 ... Divider .

Claims (2)

電力系統に接続されて電力系統の電圧変動を抑制する無効電力補償装置によって負荷の
無効電力を補償するに当たり、
前記電力系統の電圧より90°遅れた電圧と負荷電流との積によって演算される無効電力瞬時値に、負荷電流を一定期間平均した微分値と系統電圧との積を加算して無効電力値を演算し、この演算値により負荷の無効電力を補償することを特徴とする無効電力補償装置の制御方式。
When compensating the reactive power of the load by the reactive power compensator connected to the power system and suppressing the voltage fluctuation of the power system,
The reactive power value is obtained by adding the product of the derivative value obtained by averaging the load current for a certain period and the system voltage to the reactive power instantaneous value calculated by the product of the voltage delayed by 90 ° from the voltage of the power system and the load current. A control method for a reactive power compensator, characterized in that the reactive power of a load is compensated by the calculated value.
前記負荷電流を一定期間平均した微分値は、n(2以上の自然数)サンプリング前まで負荷電流を微分したものが、1サンプリング前の負荷電流を微分したものと同一位相,同一振幅となるように移相し、振幅をそろえて演算することを特徴とする請求項1に記載の無効電力補償装置の制御方式。   The differential value obtained by averaging the load current for a certain period is such that the load current differentiated before n (natural number of 2 or more) sampling has the same phase and the same amplitude as those obtained by differentiating the load current before one sampling. 2. The reactive power compensator control method according to claim 1, wherein the calculation is performed by shifting the phase and aligning the amplitudes.
JP2007215089A 2007-08-21 2007-08-21 Control method for reactive power compensator Active JP4840290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215089A JP4840290B2 (en) 2007-08-21 2007-08-21 Control method for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215089A JP4840290B2 (en) 2007-08-21 2007-08-21 Control method for reactive power compensator

Publications (2)

Publication Number Publication Date
JP2009050111A true JP2009050111A (en) 2009-03-05
JP4840290B2 JP4840290B2 (en) 2011-12-21

Family

ID=40501800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215089A Active JP4840290B2 (en) 2007-08-21 2007-08-21 Control method for reactive power compensator

Country Status (1)

Country Link
JP (1) JP4840290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720591A (en) * 2016-05-03 2016-06-29 武汉大学 Reactive optimization method and system of power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207955A (en) * 1992-11-18 1994-07-26 Mitsubishi Electric Corp Pi/2 phase shift circuit, reactive energy meter and composite meter employing it
JPH08140268A (en) * 1994-11-07 1996-05-31 Nissin Electric Co Ltd Controller of reactive power compensator
JP2000329804A (en) * 1999-05-20 2000-11-30 Osaki Electric Co Ltd Electronic reactive power measuring device
JP2007139434A (en) * 2005-11-15 2007-06-07 Tokyo Electric Power Co Inc:The Method and device for estimating high-voltage capacitor current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207955A (en) * 1992-11-18 1994-07-26 Mitsubishi Electric Corp Pi/2 phase shift circuit, reactive energy meter and composite meter employing it
JPH08140268A (en) * 1994-11-07 1996-05-31 Nissin Electric Co Ltd Controller of reactive power compensator
JP2000329804A (en) * 1999-05-20 2000-11-30 Osaki Electric Co Ltd Electronic reactive power measuring device
JP2007139434A (en) * 2005-11-15 2007-06-07 Tokyo Electric Power Co Inc:The Method and device for estimating high-voltage capacitor current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720591A (en) * 2016-05-03 2016-06-29 武汉大学 Reactive optimization method and system of power system

Also Published As

Publication number Publication date
JP4840290B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
CN105940353B (en) Periodical external disturbance inhibits control device
WO2015029427A1 (en) Angular position detection device
JP2009171813A (en) Parallel operation inverter device
US7791391B2 (en) Quadrature phase correction circuit
CN104300541B (en) Dynamic prediction compensation method for controlling time delay through active power filter
JP5025295B2 (en) Semiconductor power converter
JP4840290B2 (en) Control method for reactive power compensator
JP2010145149A (en) Electromagnetic induction type position detection device and method
CN102761281A (en) Phase-locked control system for inverter and phase locking method thereof
JP4840291B2 (en) Control method for reactive power compensator
JP4788656B2 (en) Power test system
JP6901911B2 (en) Control device for static power compensator
JP5017984B2 (en) Servo control device and speed tracking control method thereof
Ko et al. A new PLL system using full order observer and PLL system modeling in a single phase grid-connected inverter
KR20130032429A (en) Phase locked loop circuit
JP6226833B2 (en) Power converter
JP2007195380A (en) Operation system in reactive power compensator
JP2009195059A (en) Power conversion method and power conversion apparatus
JP2005003530A (en) Phase detector
JP5018205B2 (en) Calculation method in reactive power compensator
JP6283791B2 (en) Method and apparatus for digital conversion of synchro signal
JP4341625B2 (en) Calculation method in reactive power compensator
JP2008211912A (en) Control method of power conversion system, and power conversion system using this control method
KR101975441B1 (en) Modified single phase-locked loop control method using moving average filter
JP2011197738A (en) Full-closed position control device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4840290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250