JP2007139434A - Method and device for estimating high-voltage capacitor current - Google Patents

Method and device for estimating high-voltage capacitor current Download PDF

Info

Publication number
JP2007139434A
JP2007139434A JP2005329741A JP2005329741A JP2007139434A JP 2007139434 A JP2007139434 A JP 2007139434A JP 2005329741 A JP2005329741 A JP 2005329741A JP 2005329741 A JP2005329741 A JP 2005329741A JP 2007139434 A JP2007139434 A JP 2007139434A
Authority
JP
Japan
Prior art keywords
voltage
voltage capacitor
current
capacitor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005329741A
Other languages
Japanese (ja)
Inventor
Atsushi Higashichi
篤 東地
Hidefumi Abe
英文 阿部
Osamu Naito
督 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muroran Institute of Technology NUC
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Muroran Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Muroran Institute of Technology NUC filed Critical Tokyo Electric Power Co Inc
Priority to JP2005329741A priority Critical patent/JP2007139434A/en
Publication of JP2007139434A publication Critical patent/JP2007139434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for estimating high-voltage capacitor current capable of estimating current of a high-voltage capacitor safely and accurately. <P>SOLUTION: The voltage of the high-voltage capacitor of three-phase high-voltage power distribution system is measured at a predetermined sampling period; the measured voltage waveform for one cycle of the voltage of the measured high-voltage capacitor is Fourier-transformed; differentiation is performed for every order of each harmonic included in the measured voltage waveform; then inverse Fourier transformation is performed; and the capacity of the high-voltage capacitor is multiplied to estimate the current of the high-voltage capacitor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、三相高圧配電系統に接続される力率改善用コンデンサ等の高圧コンデンサの電流を推定する高圧コンデンサ電流推定方法及びその装置に関する。   The present invention relates to a high voltage capacitor current estimation method and apparatus for estimating the current of a high voltage capacitor such as a power factor correction capacitor connected to a three-phase high voltage distribution system.

一般に、三相高圧配電系統には力率改善用コンデンサ等の高圧コンデンサが数多く散在しており、これらは配電線インピーダンスとともにLRC閉回路を構成している。このLRC閉回路の近傍に整流器負荷が存在し、整流器の転流等により周期的な過渡動揺が発生すると、LRC閉回路の固有周波数による振動が誘起される。これにより、高圧コンデンサに過電流が流れ電磁騒音や過熱などが生じる。従って、電磁騒音や過熱の発生時には、実態把握のため高圧コンデンサの電流の測定が必要となる。   Generally, many high-voltage capacitors such as a power factor improving capacitor are scattered in a three-phase high-voltage distribution system, and these constitute an LRC closed circuit together with a distribution line impedance. When a rectifier load is present in the vicinity of the LRC closed circuit and periodic transient fluctuation occurs due to commutation of the rectifier or the like, vibration due to the natural frequency of the LRC closed circuit is induced. As a result, overcurrent flows through the high-voltage capacitor, causing electromagnetic noise, overheating, and the like. Therefore, when electromagnetic noise or overheating occurs, it is necessary to measure the current of the high-voltage capacitor in order to grasp the actual situation.

高圧コンデンサの電流の測定は、高圧測定用の変流器により直接測定している。例えば、需要家の変電設備内に設置されている力率改善用コンデンサ(SC)のうちの1つに変流器を挿入して充電電流を計測し、これを周波数分析して共振周波数とその強度を求め、配電系統内の障害となる高調波を発生する整流器負荷を短時間で高精度かつ確実に特定するようにしたものがある(例えば、特許文献1参照)。
特開平5−64372号公報
The current of the high-voltage capacitor is directly measured by a high-voltage current transformer. For example, a current transformer is inserted into one of the power factor improving capacitors (SC) installed in the substation equipment of the customer, and the charging current is measured. There is one in which the strength is obtained and a rectifier load that generates a harmonic wave that becomes an obstacle in the distribution system is identified with high accuracy and reliability in a short time (for example, see Patent Document 1).
JP-A-5-64372

しかし、高圧コンデンサの電流の測定を高圧測定用の変流器により直接測定するには、需要家の変電設備内に設置されている力率改善用コンデンサのうちの1つに変流器を挿入することになり、高圧活線作業となるため安全性に十分注意を払わなければならない。また、狭いキュービクル内に高圧の変流器を設置することが難しい。   However, in order to measure the current of the high-voltage capacitor directly with a current transformer for high-voltage measurement, a current transformer is inserted into one of the power factor improving capacitors installed in the customer's substation equipment. Therefore, it is necessary to pay sufficient attention to safety because it is a high-pressure hot-wire operation. In addition, it is difficult to install a high-voltage current transformer in a narrow cubicle.

本発明の目的は、安全にしかも精度良く高圧コンデンサの電流を推定できる高圧コンデンサ電流推定方法及びその装置を提供することである。   An object of the present invention is to provide a high voltage capacitor current estimation method and apparatus capable of estimating the current of a high voltage capacitor safely and accurately.

請求項1の発明に係わる高圧コンデンサ電流推定方法は、三相高圧配電系統の高圧コンデンサの電圧を測定し、測定した高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換し、測定電圧波形に含まれる各高調波の次数毎に微分を行った後に逆フーリェ変換し、高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする。   The high voltage capacitor current estimation method according to the invention of claim 1 measures the voltage of the high voltage capacitor of the three-phase high voltage distribution system, Fourier transforms the measured voltage waveform of one cycle of the measured voltage of the high voltage capacitor, and measures the measured voltage waveform. Is differentiated for each order of each harmonic included in the signal, and then subjected to inverse Fourier transform and multiplied by the capacity of the high-voltage capacitor to estimate the current of the high-voltage capacitor.

請求項2の発明に係わる高圧コンデンサ電流推定方法は、三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定し、測定した2つの線間電圧の差電圧から測定ノイズを抑制した高圧コンデンサの電圧を求め、求めた高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換し、測定電圧波形に含まれる各高調波の次数毎に微分を行った後に逆フーリェ変換し、高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする。   The method for estimating the high-voltage capacitor current according to the invention of claim 2 measures the voltage between two lines connected to the high-voltage capacitor of a three-phase high-voltage distribution system, and suppresses measurement noise from the difference voltage between the two measured line voltages. The voltage of the obtained high voltage capacitor is obtained, and the measured voltage waveform for one cycle of the obtained voltage of the high voltage capacitor is subjected to Fourier transform, and after differentiation for each order of each harmonic included in the measured voltage waveform, inverse Fourier transform is performed, The current of the high voltage capacitor is estimated by multiplying the capacity of the high voltage capacitor.

請求項3の発明に係わる高圧コンデンサ電流推定方法は、三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期で測定し、あるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求め、求めた微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする。   According to a third aspect of the present invention, there is provided a method for estimating a high-voltage capacitor current by measuring a voltage of a high-voltage capacitor of a three-phase high-voltage distribution system at a predetermined sampling period, and a sampling value at a certain sampling time and one sampling before or after the sampling time A differential value of the measured voltage is obtained by approximating the difference with the difference from the sampling value, and a current of the high voltage capacitor is estimated by multiplying the obtained differential value by the capacity of the high voltage capacitor.

請求項4の発明に係わる高圧コンデンサ電流推定方法は、三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定し、測定した2つの線間電圧の差電圧から測定ノイズを抑制した高圧コンデンサの電圧を所定のサンプリング周期で測定し、あるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求め、求めた微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする。   The method of estimating the high voltage capacitor current according to the invention of claim 4 measures the voltage between two lines connected to a high voltage capacitor of a three-phase high voltage distribution system, and suppresses measurement noise from the difference voltage between the two measured line voltages. The voltage of the high-voltage capacitor is measured at a predetermined sampling period, and the differential value of the measured voltage is obtained by approximating the difference by the difference between the sampling value at a certain sampling time and the sampling value before or after the sampling at one sampling time. The differential value is multiplied by the capacity of the high voltage capacitor to estimate the current of the high voltage capacitor.

請求項5の発明に係わる高圧コンデンサ電流推定方法は、請求項3または請求項4の発明において、前記差分近似して推定された高圧コンデンサの電流に対し、含有率の最も高い高調波成分の補正係数で対周波数誤差を補正することを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for estimating a high-voltage capacitor current according to the third or fourth aspect, wherein the harmonic component having the highest content is corrected with respect to the high-voltage capacitor current estimated by the difference approximation. It is characterized in that the error with respect to frequency is corrected by a coefficient.

請求項6の発明に係わる高圧コンデンサ電流推定装置は、三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期でA/D変換するA/D変換器と、A/D変換器で得られた高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換するフーリェ変換手段と、測定電圧波形に含まれる各高調波の次数毎に微分を行う微分演算手段と、微分演算手段で得られた演算結果を逆フーリェ変換し微分された測定電圧波形を求める逆フーリェ変換手段と、逆フーリェ変換手段で得られた微分された測定電圧波形に高圧コンデンサの容量を乗算して高圧コンデンサの電流を求める電流算出手段とを備えたことを特徴とする。   A high voltage capacitor current estimation apparatus according to the invention of claim 6 is obtained by an A / D converter for A / D converting the voltage of a high voltage capacitor of a three-phase high voltage distribution system at a predetermined sampling period, and an A / D converter. Obtained by a Fourier transform means for performing Fourier transform on the measured voltage waveform for one cycle of the voltage of the high-voltage capacitor, a differential operation means for performing differentiation for each order of each harmonic included in the measured voltage waveform, and a differential operation means. The inverse Fourier transform means for obtaining a differentiated measurement voltage waveform by inverse Fourier transform of the calculation result, and the current of the high voltage capacitor is obtained by multiplying the differentiated measurement voltage waveform obtained by the inverse Fourier transform means by the capacity of the high voltage capacitor. And a current calculation means.

請求項7の発明に係わる高圧コンデンサ電流推定装置は、三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期でA/D変換するA/D変換器と、A/D変換器で得られた高圧コンデンサの電圧のあるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求める電圧微分値演算手段と、電圧微分値演算手段で求めた測定電圧の微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を求める電流算出手段とを備えたことを特徴とする。   A high voltage capacitor current estimating apparatus according to the invention of claim 7 is obtained by an A / D converter for A / D converting the voltage of a high voltage capacitor of a three-phase high voltage distribution system at a predetermined sampling period, and an A / D converter. Voltage differential value calculating means for obtaining a differential value of a measured voltage by approximating a difference by a difference between a sampling value at a certain sampling time of the voltage of the high voltage capacitor and a sampling value before or after one sampling at the sampling time, and a voltage differential value Current calculation means for obtaining the current of the high voltage capacitor by multiplying the differential value of the measured voltage obtained by the calculation means by the capacity of the high voltage capacitor.

本発明によれば、直接高圧コンデンサの電流を測定するのではなく、電力量計などで測定している高圧コンデンサの電圧波形から電流波形を推定演算して求めるので、高圧コンデンサの接続線に変流器を挿入する高圧活線作業が不要となり安全性が確保される。また、電流推定に用いる電圧として2つの線間電圧の差電圧を用いるので、測定ノイズを抑制でき、精度良く高圧コンデンサの電流を推定できる。   According to the present invention, instead of directly measuring the current of the high voltage capacitor, the current waveform is estimated and calculated from the voltage waveform of the high voltage capacitor measured by a watt hour meter or the like. Safety is ensured by eliminating the need for high-pressure hot-wire work to insert the flow device. Further, since the voltage difference between the two line voltages is used as the voltage used for current estimation, measurement noise can be suppressed and the current of the high-voltage capacitor can be estimated with high accuracy.

(第1の実施の形態)
まず、本発明で高圧コンデンサの電流を求める原理について説明する。高圧コンデンサの電流を変流器を設置して直接測定するのではなく、高圧コンデンサの電圧波形から電流波形を推定演算して求める。例えば、三相の高圧コンデンサのV相電流ivは、V相電圧vv、高圧コンデンサ容量をCとしたとき下記の(1)式で示されるので、三相の高圧コンデンサのV相電圧vvを電圧変成器で測定し、時間tで微分して高圧コンデンサ容量Cを乗算してV相電流ivを求める。U相電流およびW相電流についても同様に求められるが、三相平衡である場合には、U相電流およびW相電流はV相電流ivと大きさは同じで位相が120°、240°ずれた電流となる。

Figure 2007139434
(First embodiment)
First, the principle of obtaining the current of the high voltage capacitor according to the present invention will be described. Rather than directly measuring the current of a high-voltage capacitor by installing a current transformer, the current waveform is estimated and calculated from the voltage waveform of the high-voltage capacitor. For example, the V-phase current iv of the three-phase high-voltage capacitor is expressed by the following equation (1) when the V-phase voltage vv and the high-voltage capacitor capacity is C. A V-phase current iv is obtained by measuring with a transformer, differentiating with time t and multiplying by the high-voltage capacitor capacity C. The U-phase current and the W-phase current are obtained in the same manner. However, in the case of three-phase equilibrium, the U-phase current and the W-phase current have the same magnitude as the V-phase current iv, and the phases are shifted by 120 ° and 240 ° Current.
Figure 2007139434

図1は本発明の第1の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャートである。まず、三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期で測定する(S1)。例えば、三相の高圧コンデンサのV相電圧vvを所定のサンプリング周期で測定する。これにより、所定のサンプリング周期ごとにV相電圧vvの時系列データが得られる。   FIG. 1 is a flowchart showing the steps of a high-voltage capacitor current estimation method according to the first embodiment of the present invention. First, the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system is measured at a predetermined sampling period (S1). For example, the V-phase voltage vv of a three-phase high-voltage capacitor is measured at a predetermined sampling period. Thereby, time-series data of the V-phase voltage vv is obtained for each predetermined sampling period.

そして、測定した高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換する(S2)。すなわち、三相の高圧コンデンサのV相電圧vv(t)の電圧波形データをフーリェ変換により、(2)式のフーリェ級数に変換する。これにより、測定電圧波形に含まれる各高調波が次数毎に得られる。(2)式中、Nはサンプリング数/サイクル、nは高調波次数、ω0は商用周波数、vr,n、vi,nはcos、sinの係数である。

Figure 2007139434
Then, the measured voltage waveform for one cycle of the measured voltage of the high voltage capacitor is subjected to Fourier transform (S2). That is, the voltage waveform data of the V-phase voltage vv (t) of the three-phase high-voltage capacitor is converted into a Fourier series of equation (2) by Fourier conversion. Thereby, each harmonic contained in the measurement voltage waveform is obtained for each order. In the equation (2), N is the sampling number / cycle, n is the harmonic order, ω 0 is the commercial frequency, and v r, n and v i, n are the coefficients of cos and sin.
Figure 2007139434

次に、三相の高圧コンデンサのV相電圧vv(t)の測定電圧波形に含まれる各高調波の次数毎に時間tで微分を行う(S3)。つまり、(2)式の両辺を時間tで微分して(3)式を求める。

Figure 2007139434
Next, differentiation is performed at time t for each order of each harmonic included in the measured voltage waveform of the V-phase voltage vv (t) of the three-phase high-voltage capacitor (S3). That is, both sides of equation (2) are differentiated by time t to obtain equation (3).
Figure 2007139434

ここで、(3)式のVr,n、Vi,nを新たなフーリェ級数の係数と見なし、逆フーリェ変換により波形合成する(S4)。   Here, Vr, n and Vi, n in the equation (3) are regarded as coefficients of a new Fourier series, and waveform synthesis is performed by inverse Fourier transform (S4).

逆フーリェ変換により波形合成した三相の高圧コンデンサのV相電圧vv(t)の微分値に、高圧コンデンサ容量Cを乗算して、高圧コンデンサ電流を求める(S5)。   A high voltage capacitor current is obtained by multiplying the differential value of the V phase voltage vv (t) of the three-phase high voltage capacitor synthesized by inverse Fourier transform and the high voltage capacitor capacity C (S5).

第1の実施の形態によれば、直接高圧コンデンサの電流を測定するのではなく、高圧コンデンサの電圧波形から電流波形を推定演算して求めるので、高圧コンデンサの接続線に変流器を挿入する高圧活線作業が不要となり安全性が確保される。なお、第1の実施の形態では、高圧コンデンサの電圧波形に含まれる高調波に対応してサンプリング定理に従いサンプリング数を定めておくので、対周波数誤差は生じない。また、離散フーリェ変換・逆フーリェ変換(DFT・IDFT)を必要とするので演算量が増すが、パソコン等の演算処理装置の演算高速化と高速フーリェ変換・逆フーリェ変換(FFT・IFFT)の適用を考慮すれば負担は重くなく、かつ、オフライン処理とすれば演算時間の制約はない。   According to the first embodiment, since the current waveform is estimated and calculated from the voltage waveform of the high voltage capacitor instead of directly measuring the current of the high voltage capacitor, a current transformer is inserted into the connection line of the high voltage capacitor. High-pressure hot-wire work is not required, ensuring safety. In the first embodiment, since the number of samplings is determined according to the sampling theorem corresponding to the harmonics included in the voltage waveform of the high-voltage capacitor, no error against frequency occurs. In addition, it requires discrete Fourier transform / inverse Fourier transform (DFT / IDFT), which increases the amount of computation, but increases the computation speed of arithmetic processing devices such as personal computers and the application of high-speed Fourier transform / inverse Fourier transform (FFT / IFFT). If this is taken into consideration, the burden is not heavy, and if it is an off-line process, there is no restriction on the computation time.

(第2の実施の形態)
図2は本発明の第2の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャートである。この第2の実施の形態は、図1に示した第1の実施の形態に対し、ステップS0を追加して設け、ステップS1’で測定ノイズを抑制した高圧コンデンサの電圧を所定のサンプリング周期で測定するようにしたものである。図2と同一処理内容を示すステップには同一符号(S2〜S5)を付し重複する説明は省略する。
(Second Embodiment)
FIG. 2 is a flowchart showing the steps of the high voltage capacitor current estimation method according to the second embodiment of the present invention. In the second embodiment, step S0 is added to the first embodiment shown in FIG. 1, and the voltage of the high voltage capacitor in which measurement noise is suppressed in step S1 ′ is set at a predetermined sampling period. It is to be measured. Steps indicating the same processing contents as those in FIG.

まず、三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定する(S0)。2つの線間電圧としては、電力量計で得られる2つの線間電圧を用いる。図3は計器用変成器11により三相高圧配電線12の三相uvwの2つの線間電圧vuv、vvwの測定回路図である。三相uvwのうちv相を基準として(接地して)、線間電圧vuv、vvwを測定する。   First, two line voltages to which a high-voltage capacitor of a three-phase high-voltage distribution system is connected are measured (S0). As the two line voltages, two line voltages obtained by a watt hour meter are used. FIG. 3 is a measurement circuit diagram of two line voltages vuv and vvw of the three-phase uvw of the three-phase high-voltage distribution line 12 by the instrument transformer 11. The line voltages vuv and vvw are measured using the v phase of the three phases uvw as a reference (grounded).

そして、測定した2つの線間電圧vuv、vvwの差電圧(vvw−vuv)から測定ノイズを抑制した高圧コンデンサの電圧を求め所定のサンプリング周期でサンプリングして測定する(S1’)。ここで、測定ノイズは2つの線間電圧vuv、vvwで同時同量の性質を持つことが多いので、2つの線間電圧vuv、vvwの差電圧(vvw−vuv)は測定ノイズが抑制された電圧である。従って、電流推定に用いる電圧は、測定ノイズを抑制した(4)式に示すV相電圧vvを使用する。ただし、零相電圧は零と仮定している。

Figure 2007139434
Then, the voltage of the high voltage capacitor that suppresses the measurement noise is obtained from the difference voltage (vvw−vuv) between the two measured line voltages vuv and vvw, and is measured by sampling at a predetermined sampling period (S1 ′). Here, since the measurement noise often has the same amount of property at the same time between the two line voltages vuv and vvw, the measurement noise is suppressed for the difference voltage (vvw−vuv) between the two line voltages vuv and vvw. Voltage. Therefore, the voltage used for current estimation uses the V-phase voltage vv shown in the equation (4) in which measurement noise is suppressed. However, the zero phase voltage is assumed to be zero.
Figure 2007139434

なお、ステップS0にて三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を所定のサンプリング周期で測定し、ステップS1’で測定ノイズを抑制した高圧コンデンサの電圧を求めるようにしてもよい。   In step S0, two line voltages to which the high-voltage capacitors of the three-phase high-voltage distribution system are connected are measured at a predetermined sampling period, and the voltage of the high-voltage capacitor in which measurement noise is suppressed is obtained in step S1 ′. Also good.

次に、第1の実施の形態と同様に、測定した高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換し(S2)、三相の高圧コンデンサのV相電圧vv(t)の測定電圧波形に含まれる各高調波の次数毎に時間tで微分を行い(S3)、逆フーリェ変換により波形合成し(S4)、高圧コンデンサ容量Cを乗算して高圧コンデンサ電流を求める(S5)。   Next, as in the first embodiment, the measured voltage waveform for one cycle of the measured voltage of the high-voltage capacitor is Fourier-transformed (S2), and the V-phase voltage vv (t) of the three-phase high-voltage capacitor is measured. Differentiation is performed at time t for each harmonic order included in the voltage waveform (S3), waveform synthesis is performed by inverse Fourier transform (S4), and high voltage capacitor capacity C is multiplied to obtain a high voltage capacitor current (S5).

図4は、変流器を用いて実測した高圧コンデンサ電流と第2の実施の形態のフーリェ変換で推定した高圧コンデンサ電流とを対比して示した特性図であり、図4(a1)は実測高圧コンデンサ電流の波形図、図4(a2)は実測高圧コンデンサ電流の周波数スペクトル図、図4(b1)は第2の実施の形態によるフーリェ変換推定高圧コンデンサ電流の波形図、図4(b2)は第2の実施の形態によるフーリェ変換推定高圧コンデンサ電流の周波数スペクトル図である。   FIG. 4 is a characteristic diagram showing a comparison between the high-voltage capacitor current measured using a current transformer and the high-voltage capacitor current estimated by the Fourier transform of the second embodiment, and FIG. FIG. 4 (a2) is a frequency spectrum diagram of the actually measured high voltage capacitor current, FIG. 4 (b1) is a waveform diagram of the Fourier transform estimated high voltage capacitor current according to the second embodiment, and FIG. 4 (b2). These are frequency spectrum diagrams of Fourier transform estimated high-voltage capacitor current according to the second embodiment.

図4(a2)と図4(b2)とを対比すると、含有率の最も高い高調波成分が5[kHz]で一致し、その含有率は、第2の実施の形態によるフーリェ変換推定高圧コンデンサ電流が実測高圧コンデンサ電流よりも若干小さいがほぼ一致する。   When comparing FIG. 4 (a2) and FIG. 4 (b2), the harmonic component with the highest content rate matches at 5 [kHz], and the content rate is the Fourier transform estimated high-voltage capacitor according to the second embodiment. Although the current is slightly smaller than the actually measured high-voltage capacitor current, they are almost the same.

第2の実施の形態によれば、第1の実施の形態の効果に加え、電流推定に用いる電圧として2つの線間電圧vuv、vvwの差電圧(vvw−vuv)を用いるので測定ノイズを抑制でき、精度良く高圧コンデンサの電流を推定できる。   According to the second embodiment, in addition to the effects of the first embodiment, the measurement noise is suppressed because the difference voltage (vvw−vuv) between the two line voltages vuv and vvw is used as the voltage used for current estimation. It is possible to accurately estimate the current of the high-voltage capacitor.

(第3の実施の形態)
図5は本発明の第3の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャートである。この第3の実施の形態は、第1の実施の形態または第2の実施の形態の離散フーリェ変換・逆フーリェ変換に代えて、時系列の二つのサンプリング値との差分により差分近似して測定電圧の微分値を求めるようにしたものである。この差分近似の方法はアルゴリズムがシンプルで高速演算が可能であるが周波数に比例して誤差が増すので、誤差を無視できないときはその誤差を補正することになる。
(Third embodiment)
FIG. 5 is a flowchart showing the steps of the high-voltage capacitor current estimation method according to the third embodiment of the present invention. In this third embodiment, instead of the discrete Fourier transform / inverse Fourier transform of the first embodiment or the second embodiment, a difference approximation with a difference between two time-series sampling values is performed. The differential value of the voltage is obtained. This difference approximation method has a simple algorithm and is capable of high-speed calculation. However, since the error increases in proportion to the frequency, when the error cannot be ignored, the error is corrected.

図5において、まず、三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期で測定する(S11)。例えば、三相の高圧コンデンサのV相電圧vvを所定のサンプリング周期で測定する。これにより、所定のサンプリング周期ごとにV相電圧vvの時系列データが得られる。   In FIG. 5, first, the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system is measured at a predetermined sampling period (S11). For example, the V-phase voltage vv of a three-phase high-voltage capacitor is measured at a predetermined sampling period. Thereby, time-series data of the V-phase voltage vv is obtained for each predetermined sampling period.

そして、(5)式に示すように、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング前(k−1)のサンプリング値vv,k-1との差分により差分近似して測定電圧の微分値を求め(S12)、求めた微分値に高圧コンデンサの容量Cを乗算してサンプリングk時点での高圧コンデンサの電流iv,kを推定する(S13)。

Figure 2007139434
Then, as shown in the equation (5), the difference approximation is performed by the difference between the sampling value vv, k at a certain sampling time k and the sampling value vv, k-1 one sampling before the sampling time k (k-1). Then, the differential value of the measured voltage is obtained (S12), and the obtained differential value is multiplied by the capacity C of the high voltage capacitor to estimate the current iv, k of the high voltage capacitor at the time of sampling k (S13).
Figure 2007139434

(5)式の右辺のGは一定なので、各時間ステップ(サンプリング時点)kでの演算は差のみであるので、フーリェ変換に比較し演算量は極めて少ない。従って、オンラインの測定中に高圧コンデンサの電流実効値を1サンプリング/サイクルと密に演算でき高速演算が可能である。   Since G on the right side of the equation (5) is constant, the calculation at each time step (sampling point) k is only a difference, so the amount of calculation is very small compared to the Fourier transform. Therefore, the current effective value of the high-voltage capacitor can be calculated as densely as 1 sampling / cycle during online measurement, and high-speed calculation is possible.

以上の説明では、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング前(k−1)のサンプリング値vv,k-1との差分により差分近似する場合について説明したが、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング後(k+1)のサンプリング値vv,k+1との差分により差分近似するようにしてもよい。   In the above description, the case where the difference approximation is performed by the difference between the sampling value vv, k at a certain sampling time point k and the sampling value vv, k-1 one sampling before the sampling time point k (k−1) has been described. The difference approximation may be performed by the difference between the sampling value vv, k at a certain sampling time k and the sampling value vv, k + 1 after one sampling (k + 1) at that sampling time k.

次に、差分近似による対周波数誤差を検討する。いま、V相電圧vvを波高値1の正弦波であるとすると、(5)式は(6)式で示される。

Figure 2007139434
Next, the error with respect to frequency due to the difference approximation is examined. Assuming that the V-phase voltage vv is a sine wave having a peak value 1, Equation (5) is expressed by Equation (6).
Figure 2007139434

一方、差分近似によらない理論値は(7)式で示される。

Figure 2007139434
On the other hand, a theoretical value that does not depend on the difference approximation is expressed by equation (7).
Figure 2007139434

従って、差分近似と理論値との絶対値誤差ε(f)は(8)式で示される。

Figure 2007139434
Accordingly, the absolute value error ε (f) between the difference approximation and the theoretical value is expressed by equation (8).
Figure 2007139434

いま、(8)式のΔt=39.0625[μs]とした場合の絶対値誤差ε(f)の対周波数特性を表1に示す。

Figure 2007139434
Table 1 shows the frequency characteristic of the absolute value error ε (f) when Δt = 39.0625 [μs] in the equation (8).
Figure 2007139434

表1より差分近似のもつ低域フィルタの性質から、高い周波数では誤差が拡大するため補正が必要となることが分かる。ただし、測定時には演算時間が長くかかるフーリェ変換は困難なので、測定終了後にオフラインにより高圧コンデンサの電流実効値を少なくとも含有率の最も高い高調波成分の補正係数で補正を行うようにする。なお、すべての高調波成分の周波数の補正を行わなくても、含有率の最も高い高調波成分のみの補正係数による補正で実用的には十分である。   From Table 1, it can be seen from the nature of the low-pass filter that the difference approximation has, correction is necessary because the error increases at high frequencies. However, since Fourier transform, which takes a long calculation time during measurement, is difficult, the current effective value of the high-voltage capacitor is corrected off-line at least with the correction coefficient of the harmonic component having the highest content rate after the measurement is completed. In addition, even if it does not correct | amend the frequency of all the harmonic components, the correction | amendment by the correction coefficient of only the harmonic component with the highest content rate is practically enough.

また、差分近似の方法として、2点のデータを用い1次式で区間近似する方法を説明したが、これに限らず、3点のデータを用い2次式で区間近似する方法や4点のデータを用い3次式で区間近似する方法など、多点データを用いた区間近似方法を適用することも可能である。   Further, as a method of difference approximation, a method of approximating a section by a linear expression using two points of data has been described. However, the present invention is not limited to this, and a method of approximating a section by a quadratic expression using three points of data or four points It is also possible to apply a section approximation method using multipoint data, such as a section approximation method using data and a cubic equation.

第3の実施の形態によれば、第1の実施の形態と同様に、直接高圧コンデンサの電流を測定するのではなく、高圧コンデンサの電圧波形から電流波形を推定演算して求めるので、高圧コンデンサの接続線に変流器を挿入する高圧活線作業が不要となり安全性が確保される。また、フーリェ変換ではなく差分近似で微分値を求めるので、アルゴリズムがシンプルで高速演算が可能である。なお、周波数に比例して誤差が大きくなるが、高圧コンデンサの電流実効値を補正係数で補正するので、実用的には問題はない。   According to the third embodiment, as in the first embodiment, since the current of the high-voltage capacitor is not directly measured but is obtained by estimating and calculating the current waveform from the voltage waveform of the high-voltage capacitor. This eliminates the need for high-voltage hot-wire work that inserts a current transformer into the connection line, ensuring safety. In addition, since the differential value is obtained by differential approximation rather than Fourier transform, the algorithm is simple and high-speed calculation is possible. Although the error increases in proportion to the frequency, there is no practical problem because the effective current value of the high-voltage capacitor is corrected by the correction coefficient.

(第4の実施の形態)
図6は本発明の第4の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャートである。この第4の実施の形態は、図5に示した第3の実施の形態に対し、ステップS10を追加して設け、ステップS11’で測定ノイズを抑制した高圧コンデンサの電圧を所定のサンプリング周期で測定するようにしたものである。図5と同一処理内容を示すステップには同一符号(S12、S13)を付し重複する説明は省略する。
(Fourth embodiment)
FIG. 6 is a flowchart showing the steps of the high-voltage capacitor current estimation method according to the fourth embodiment of the present invention. In the fourth embodiment, step S10 is added to the third embodiment shown in FIG. 5, and the voltage of the high voltage capacitor in which the measurement noise is suppressed in step S11 ′ is set at a predetermined sampling period. It is to be measured. Steps indicating the same processing contents as those in FIG. 5 are denoted by the same reference numerals (S12, S13), and redundant description is omitted.

まず、三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定する(S0)。2つの線間電圧としては、電力量計で得られる2つの線間電圧vuv、vvwを用いる。測定した2つの線間電圧vuv、vvwの差電圧(vvw−vuv)から測定ノイズを抑制した高圧コンデンサの電圧を求め所定のサンプリング周期でサンプリングして測定する(S11’)。つまり、電流推定に用いる電圧として、測定ノイズを抑制した(4)式に示すV相電圧vvを使用する。   First, two line voltages to which a high-voltage capacitor of a three-phase high-voltage distribution system is connected are measured (S0). As the two line voltages, two line voltages vuv and vvw obtained by a watt hour meter are used. The voltage of the high voltage capacitor in which measurement noise is suppressed is obtained from the difference voltage (vvw−vuv) between the two measured line voltages vuv and vvw, and is measured by sampling at a predetermined sampling period (S11 ′). That is, as the voltage used for current estimation, the V-phase voltage vv shown in Equation (4) with suppressed measurement noise is used.

なお、ステップS0にて三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を所定のサンプリング周期で測定し、ステップS1'で測定ノイズを抑制した高圧コンデンサの電圧を求めるようにしてもよい。   In step S0, two line voltages to which the high-voltage capacitors of the three-phase high-voltage distribution system are connected are measured at a predetermined sampling period, and the voltage of the high-voltage capacitor in which measurement noise is suppressed is obtained in step S1 ′. Also good.

次に、第3の実施の形態と同様に、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング前(k−1)のサンプリング値vv,k-1との差分により差分近似して測定電圧の微分値を求め(S12)、求めた微分値に高圧コンデンサの容量Cを乗算してサンプリングk時点での高圧コンデンサの電流iv,kを推定する(S13)。この場合、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング後(k+1)のサンプリング値vv,k+1との差分により差分近似するようにしてもよい。   Next, as in the third embodiment, a difference is obtained by the difference between the sampling value vv, k at a certain sampling time k and the sampling value vv, k-1 one sampling before the sampling time k (k−1). A differential value of the measured voltage is obtained by approximation (S12), and the obtained differential value is multiplied by the capacitance C of the high-voltage capacitor to estimate the current iv, k of the high-voltage capacitor at the time point of sampling k (S13). In this case, the difference approximation may be performed by the difference between the sampling value vv, k at a certain sampling time k and the sampling value vv, k + 1 after one sampling (k + 1) at that sampling time k.

また、2点のデータを用い1次式で区間近似する方法に限らず、3点のデータを用い2次式で区間近似する方法や4点のデータを用い3次式で区間近似する方法など、多点データを用いた区間近似方法を適用することも可能である。   Further, the method is not limited to the method of approximating a section with a linear expression using two points of data, the method of approximating a section with a quadratic expression using three points of data, the method of approximating a section with a cubic expression using four points of data, etc. It is also possible to apply an interval approximation method using multipoint data.

図7は、変流器を用いて実測した高圧コンデンサ電流と第4の実施の形態の差分近似で推定した高圧コンデンサ電流とを対比して示した特性図であり、図7(a1)は実測高圧コンデンサ電流の波形図、図7(a2)は実測高圧コンデンサ電流の周波数スペクトル図、図7(b1)は第4の実施の形態による差分近似推定高圧コンデンサ電流の波形図、図7(b2)は第4の実施の形態による差分近似推定高圧コンデンサ電流の周波数スペクトル図である。   FIG. 7 is a characteristic diagram showing a comparison between the high-voltage capacitor current measured using the current transformer and the high-voltage capacitor current estimated by the difference approximation of the fourth embodiment, and FIG. FIG. 7 (a2) is a frequency spectrum diagram of the actually measured high-voltage capacitor current, FIG. 7 (b1) is a waveform diagram of the differential approximation estimated high-voltage capacitor current according to the fourth embodiment, and FIG. 7 (b2). These are the frequency spectrum figures of the difference approximate estimation high voltage capacitor current by a 4th embodiment.

図7(a2)と図7(b2)とを対比すると、含有率の最も高い高調波成分が5[kHz]で一致し、その含有率は、第4の実施の形態による差分近似推定高圧コンデンサ電流が実測高圧コンデンサ電流よりも小さい。そこで、第3の実施の形態の場合と同様に、少なくとも高圧コンデンサの電流実効値を含有率の最も高い高調波成分の補正係数で補正を行う。   When comparing FIG. 7 (a2) and FIG. 7 (b2), the harmonic component with the highest content rate matches at 5 [kHz], and the content rate is the difference approximation estimated high-voltage capacitor according to the fourth embodiment. The current is smaller than the measured high voltage capacitor current. Therefore, as in the case of the third embodiment, at least the effective current value of the high-voltage capacitor is corrected with the correction coefficient of the harmonic component having the highest content rate.

第4の実施の形態によれば、第3の実施の形態の効果に加え、電流推定に用いる電圧として2つの線間電圧vuv、vvwの差電圧(vvw−vuv)を用いるので測定ノイズを抑制でき、精度良く高圧コンデンサの電流を推定できる。   According to the fourth embodiment, in addition to the effects of the third embodiment, the measurement noise is suppressed because the difference voltage (vvw−vuv) between the two line voltages vuv and vvw is used as the voltage used for current estimation. It is possible to accurately estimate the current of the high-voltage capacitor.

(第5の実施の形態)
図8は本発明の第5の実施の形態に係わる高圧コンデンサ電流推定装置の一例を示すブロック構成図である。この第5の実施の形態は、第1の実施の形態や第2の実施の形態の高圧コンデンサ電流推定方法を実現するための高圧コンデンサ電流推定装置の一例を示したものである。
(Fifth embodiment)
FIG. 8 is a block diagram showing an example of a high-voltage capacitor current estimating apparatus according to the fifth embodiment of the present invention. The fifth embodiment shows an example of a high-voltage capacitor current estimation device for realizing the high-voltage capacitor current estimation method of the first embodiment or the second embodiment.

図8において、三相高圧配電系統の高圧コンデンサの電圧、例えば、三相の高圧コンデンサのV相電圧vvは計器用変成器11で検出され、A/D変換器13に入力される。A/D変換器13は所定のサンプリング周期で電圧検出器11で検出されたアナログ信号の高圧コンデンサ電圧をデジタル信号に変換し記憶装置14に記憶する。これにより、所定のサンプリング周期ごとにV相電圧vvの時系列データが得られる。   In FIG. 8, the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system, for example, the V-phase voltage vv of the three-phase high-voltage capacitor is detected by the instrument transformer 11 and input to the A / D converter 13. The A / D converter 13 converts the high voltage capacitor voltage of the analog signal detected by the voltage detector 11 at a predetermined sampling period into a digital signal and stores it in the storage device 14. Thereby, time-series data of the V-phase voltage vv is obtained for each predetermined sampling period.

演算処理装置15のフーリェ変換手段16は記憶装置14に記憶されたV相電圧vvの時系列データのうち1サイクル分の測定電圧波形をフーリェ変換する。三相の高圧コンデンサのV相電圧vv(t)の電圧波形データをフーリェ変換手段16により、前述の(2)式のフーリェ級数に変換する。これにより、測定電圧波形に含まれる各高調波が次数毎に得られる。   The Fourier transform means 16 of the arithmetic processing unit 15 Fourier transforms the measured voltage waveform for one cycle in the time-series data of the V-phase voltage vv stored in the storage device 14. The voltage waveform data of the V-phase voltage vv (t) of the three-phase high-voltage capacitor is converted by the Fourier transform means 16 into the Fourier series of the above-described equation (2). Thereby, each harmonic contained in the measurement voltage waveform is obtained for each order.

微分演算手段17は、フーリェ変換手段16で得られた三相の高圧コンデンサのV相電圧vv(t)の測定電圧波形に含まれる各高調波の次数毎に時間tで微分を行う。微分演算手段17で得られた演算結果は逆フーリェ変換手段18に入力され、逆フーリェ変換手段18は微分演算手段17で得られた演算結果を逆フーリェ変換して、微分された測定電圧波形を求める。   The differential calculation means 17 performs differentiation at time t for each order of each harmonic included in the measured voltage waveform of the V-phase voltage vv (t) of the three-phase high-voltage capacitor obtained by the Fourier transform means 16. The calculation result obtained by the differential calculation means 17 is input to the inverse Fourier transform means 18, and the inverse Fourier transform means 18 performs inverse Fourier transform on the calculation result obtained by the differentiation calculation means 17 to obtain a differentiated measurement voltage waveform. Ask.

逆フーリェ変換により波形合成した三相の高圧コンデンサのV相電圧vv(t)の微分値は電流算出手段19に入力され、高圧コンデンサのV相電圧vv(t)の微分値に高圧コンデンサ容量Cが乗算されて高圧コンデンサ電流が求められる。電流算出手段19で算出された高圧コンデンサ電流は、電流推定値として出力装置20に出力される。   The differential value of the V-phase voltage vv (t) of the three-phase high-voltage capacitor synthesized by inverse Fourier transform is input to the current calculation means 19, and the high-voltage capacitor capacitance C is added to the differential value of the V-phase voltage vv (t) of the high-voltage capacitor. Is multiplied to obtain the high voltage capacitor current. The high-voltage capacitor current calculated by the current calculation means 19 is output to the output device 20 as an estimated current value.

ここで、第5の実施の形態では、第1の実施の形態と同様に、高圧コンデンサの電圧波形に含まれる高調波に対応してサンプリング定理に従いサンプリング数を定めておくので、対周波数誤差は生じない。また、離散フーリェ変換・逆フーリェ変換(DFT・IDFT)を必要とするので演算量が増すが、パソコン等の演算処理装置の演算高速化と高速フーリェ変換・逆フーリェ変換(FFT・IFFT)の適用を考慮すれば負担は重くなく、かつ、オフライン処理とすれば演算時間の制約はない。   Here, in the fifth embodiment, as in the first embodiment, the number of samples is determined according to the sampling theorem corresponding to the harmonics included in the voltage waveform of the high-voltage capacitor. Does not occur. In addition, it requires discrete Fourier transform / inverse Fourier transform (DFT / IDFT), which increases the amount of computation, but increases the computation speed of arithmetic processing devices such as personal computers and the application of high-speed Fourier transform / inverse Fourier transform (FFT / IFFT). If this is taken into consideration, the burden is not heavy, and if it is an off-line process, there is no restriction on the computation time.

また、第2の実施の形態と同様に、測定ノイズを抑制した高圧コンデンサの電圧を計器用変成器11から得るようにしてもよい。すなわち、図3に示すように、三相高圧配電電12の三相uvwのうちv相を基準として(接地して)、線間電圧vuv、vvwを測定する。そして、測定した2つの線間電圧vuv、vvwの差電圧(vvw−vuv)から測定ノイズを抑制した高圧コンデンサの電圧を求めA/D変換器13により所定のサンプリング周期でサンプリングする。   Further, as in the second embodiment, the voltage of the high-voltage capacitor that suppresses the measurement noise may be obtained from the instrument transformer 11. That is, as shown in FIG. 3, the line voltages vuv and vvw are measured using the v phase of the three phase uvw of the three-phase high-voltage distribution 12 as a reference (grounded). Then, the voltage of the high voltage capacitor that suppresses the measurement noise is obtained from the difference voltage (vvw−vuv) between the two measured line voltages vuv and vvw, and is sampled by the A / D converter 13 at a predetermined sampling period.

第5の実施の形態によれば、第1の実施の形態及び第2の実施の形態と同様の効果が得られる。すなわち、直接高圧コンデンサの電流を測定するのではなく、高圧コンデンサの電圧波形から電流波形を推定演算して求めるので、高圧コンデンサの接続線に変流器を挿入する高圧活線作業が不要となり安全性が確保される。また、電流推定に用いる電圧として2つの線間電圧vuv、vvwの差電圧(vvw−vuv)を用いた場合には、測定ノイズを抑制できるので精度良く高圧コンデンサの電流を推定できる。   According to the fifth embodiment, the same effect as in the first embodiment and the second embodiment can be obtained. That is, instead of directly measuring the current of the high-voltage capacitor, the current waveform is estimated and calculated from the voltage waveform of the high-voltage capacitor, which eliminates the need for high-voltage hot-wire work that inserts a current transformer into the connection line of the high-voltage capacitor. Sex is secured. Further, when the voltage difference (vvw−vuv) between the two line voltages vuv and vvw is used as the voltage used for current estimation, the measurement noise can be suppressed, so that the current of the high voltage capacitor can be estimated with high accuracy.

(第6の実施の形態)
図9は本発明の第6の実施の形態に係わる高圧コンデンサ電流推定装置の一例を示すブロック構成図、図10は本発明の第6の実施の形態に係わる高圧コンデンサ電流推定装置の他の一例のブロック構成図である。この第6の実施の形態は、第3の実施の形態や第4の実施の形態の高圧コンデンサ電流推定方法を実現するための高圧コンデンサ電流推定装置の一例を示したものである。
(Sixth embodiment)
FIG. 9 is a block diagram showing an example of a high-voltage capacitor current estimation apparatus according to the sixth embodiment of the present invention, and FIG. 10 shows another example of the high-voltage capacitor current estimation apparatus according to the sixth embodiment of the present invention. FIG. The sixth embodiment shows an example of a high-voltage capacitor current estimation device for realizing the high-voltage capacitor current estimation method of the third embodiment or the fourth embodiment.

図9において、三相高圧配電系統の高圧コンデンサの電圧、例えば、三相の高圧コンデンサのV相電圧vvは計器用変成器11で検出され、A/D変換器13に入力される。A/D変換器13は所定のサンプリング周期で電圧検出器11で検出されたアナログ信号の高圧コンデンサ電圧をデジタル信号に変換し記憶装置14に記憶する。これにより、所定のサンプリング周期ごとにV相電圧vvの時系列データが得られる。   In FIG. 9, the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system, for example, the V-phase voltage vv of the three-phase high-voltage capacitor is detected by the instrument transformer 11 and input to the A / D converter 13. The A / D converter 13 converts the high voltage capacitor voltage of the analog signal detected by the voltage detector 11 at a predetermined sampling period into a digital signal and stores it in the storage device 14. Thereby, time-series data of the V-phase voltage vv is obtained for each predetermined sampling period.

演算処理装置15の電圧微分値演算手段21は記憶装置14に記憶された時系列データのうち、あるサンプリング時点kのサンプリング値vv,kとそのサンプリング時点kの1サンプリング前(k−1)のサンプリング値vv,k-1(またはそのサンプリング時点kの1サンプリング後(k+1)のサンプリング値vv,k+1)との差分により差分近似して測定電圧の微分値を求める。   The voltage differential value calculation means 21 of the arithmetic processing unit 15 includes the sampling value vv, k at a certain sampling time point k of the time series data stored in the storage device 14 and (k-1) one sampling before the sampling time point k. The differential value of the measured voltage is obtained by approximating the difference with the sampling value vv, k-1 (or the sampling value vv, k + 1 after one sampling (k + 1) of the sampling time point k).

電圧微分値演算手段21で求められた測定電圧の微分値は電流算出手段19に入力され、その測定電圧の微分値に高圧コンデンサの容量Cを乗算して高圧コンデンサの電流iv,kを求める。そして、電流算出手段19で算出された高圧コンデンサ電流を電流推定値として出力装置20に出力する。   The differential value of the measured voltage obtained by the voltage differential value calculating means 21 is input to the current calculating means 19, and the high voltage capacitor current iv, k is obtained by multiplying the differential value of the measured voltage by the capacitance C of the high voltage capacitor. Then, the high-voltage capacitor current calculated by the current calculation means 19 is output to the output device 20 as a current estimated value.

ここで、前述したように、差分近似の場合には対周波数誤差が生じるので、図10に示すように、対周波数誤差補正手段22を設けて高圧コンデンサの電流実効値を少なくとも含有率の最も高い高調波成分の補正係数で補正を行うようにする。この場合、すべての高調波成分の周波数の補正を行わなくても、含有率の最も高い高調波成分のみの補正係数による補正で実用的には十分である。   Here, as described above, in the case of difference approximation, an error with respect to frequency occurs. Therefore, as shown in FIG. 10, the anti-frequency error correction means 22 is provided to make the current effective value of the high-voltage capacitor at least the highest in content. Correction is performed with the correction coefficient of the harmonic component. In this case, it is practically sufficient to correct only the harmonic component having the highest content rate without correcting the frequencies of all the harmonic components.

また、第4の実施の形態と同様に、測定ノイズを抑制した高圧コンデンサの電圧を計器用変成器11から得るようにしてもよい。この場合は、図3に示すように、三相高圧配電電12の三相uvwのうちv相を基準として(接地して)、線間電圧vuv、vvwを測定する。そして、測定した2つの線間電圧vuv、vvwの差電圧(vvw−vuv)から測定ノイズを抑制した高圧コンデンサの電圧を求めA/D変換器13により所定のサンプリング周期でサンプリングする。   Further, as in the fourth embodiment, the voltage of the high-voltage capacitor that suppresses the measurement noise may be obtained from the instrument transformer 11. In this case, as shown in FIG. 3, the line voltages vuv and vvw are measured using the v phase of the three phase uvw of the three-phase high-voltage distribution 12 as a reference (grounded). Then, the voltage of the high voltage capacitor that suppresses the measurement noise is obtained from the difference voltage (vvw−vuv) between the two measured line voltages vuv and vvw, and is sampled by the A / D converter 13 at a predetermined sampling period.

第6の実施の形態によれば、第4の実施の形態及び第5の実施の形態と同様の効果が得られる。すなわち、直接高圧コンデンサの電流を測定するのではなく、高圧コンデンサの電圧波形から電流波形を推定演算して求めるので、高圧コンデンサの接続線に変流器を挿入する高圧活線作業が不要となり安全性が確保される。また、フーリェ変換ではなく差分近似で微分値を求めるので、アルゴリズムがシンプルで高速演算が可能である。なお、周波数に比例して誤差が大きくなるが、高圧コンデンサの電流実効値を補正係数で補正するので、実用的には問題はない。また、電流推定に用いる電圧として2つの線間電圧vuv、vvwの差電圧(vvw−vuv)を用いた場合には測定ノイズを抑制できるので、精度良く高圧コンデンサの電流を推定できる。   According to the sixth embodiment, the same effects as in the fourth and fifth embodiments can be obtained. That is, instead of directly measuring the current of the high-voltage capacitor, the current waveform is estimated and calculated from the voltage waveform of the high-voltage capacitor, which eliminates the need for high-voltage hot-wire work that inserts a current transformer into the connection line of the high-voltage capacitor. Sex is secured. In addition, since the differential value is obtained by differential approximation rather than Fourier transform, the algorithm is simple and high-speed calculation is possible. Although the error increases in proportion to the frequency, there is no practical problem because the effective current value of the high-voltage capacitor is corrected by the correction coefficient. Further, when a voltage difference (vvw−vuv) between two line voltages vuv and vvw is used as a voltage used for current estimation, measurement noise can be suppressed, so that the current of the high voltage capacitor can be estimated with high accuracy.

本発明の第1の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャート。The flowchart which shows the process of the high voltage | pressure capacitor | condenser current estimation method concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャート。The flowchart which shows the process of the high voltage | pressure capacitor | condenser current estimation method concerning the 2nd Embodiment of this invention. 三相uvwの2つの線間電圧vuv、vvwの測定回路図。FIG. 3 is a measurement circuit diagram of two line voltages vuv and vvw of a three-phase uvw. 変流器を用いて実測した高圧コンデンサ電流と第2の実施の形態のフーリェ変換で推定した高圧コンデンサ電流とを対比して示した特性図。The characteristic view which contrasted and showed the high voltage capacitor current measured using the current transformer, and the high voltage capacitor current estimated by the Fourier transform of 2nd Embodiment. 本発明の第3の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャート。The flowchart which shows the process of the high voltage | pressure capacitor | condenser current estimation method concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わる高圧コンデンサ電流推定方法の工程を示すフローチャート。The flowchart which shows the process of the high voltage | pressure capacitor | condenser current estimation method concerning the 4th Embodiment of this invention. 変流器を用いて実測した高圧コンデンサ電流と第6の実施の形態の差分近似で推定した高圧コンデンサ電流とを対比して示した特性図。The characteristic view which contrasted and showed the high voltage capacitor current measured using the current transformer and the high voltage capacitor current estimated by the difference approximation of 6th Embodiment. 本発明の第5の実施の形態に係わる高圧コンデンサ電流推定装置の一例を示すブロック構成図。The block block diagram which shows an example of the high voltage | pressure capacitor current estimation apparatus concerning the 5th Embodiment of this invention. 本発明の第6の実施の形態に係わる高圧コンデンサ電流推定装置の一例を示すブロック構成図。The block block diagram which shows an example of the high voltage | pressure capacitor current estimation apparatus concerning the 6th Embodiment of this invention. 本発明の第6の実施の形態に係わる高圧コンデンサ電流推定装置の他の一例のブロック構成図。The block block diagram of the other example of the high voltage | pressure capacitor current estimation apparatus concerning the 6th Embodiment of this invention.

符号の説明Explanation of symbols

11…計器用変成器、12…三相高圧配電線、13…A/D変換器、14…記憶装置、15…演算処理装置、16…フーリェ変換手段、17…微分演算手段、18…逆フーリェ変換手段、19…電流算出手段、20…出力装置、21…電圧微分値演算手段、22…対周波数誤差補正手段
DESCRIPTION OF SYMBOLS 11 ... Instrument transformer, 12 ... Three-phase high voltage distribution line, 13 ... A / D converter, 14 ... Memory | storage device, 15 ... Arithmetic processing device, 16 ... Fourier transform means, 17 ... Differential operation means, 18 ... Reverse Fourier Conversion means, 19 ... current calculation means, 20 ... output device, 21 ... voltage differential value calculation means, 22 ... anti-frequency error correction means

Claims (7)

三相高圧配電系統の高圧コンデンサの電圧を測定し、測定した高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換し、測定電圧波形に含まれる各高調波の次数毎に微分を行った後に逆フーリェ変換し、高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする高圧コンデンサ電流推定方法。 The voltage of the high-voltage capacitor of the three-phase high-voltage distribution system was measured, the measured voltage waveform for one cycle of the measured voltage of the high-voltage capacitor was Fourier transformed, and differentiation was performed for each order of each harmonic contained in the measured voltage waveform. A method for estimating a high voltage capacitor current, comprising performing inverse Fourier transform later and multiplying the capacity of the high voltage capacitor to estimate a current of the high voltage capacitor. 三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定し、測定した2つの線間電圧の差電圧から測定ノイズを抑制した高圧コンデンサの電圧を求め、求めた高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換し、測定電圧波形に含まれる各高調波の次数毎に微分を行った後に逆フーリェ変換し、高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする高圧コンデンサ電流推定方法。 Measure the voltage between the two lines connected to the high-voltage capacitor of the three-phase high-voltage distribution system, find the voltage of the high-voltage capacitor that suppresses the measurement noise from the difference voltage of the two measured line voltages, and calculate the voltage of the high-voltage capacitor The measured voltage waveform for one cycle is Fourier transformed, differentiated for each harmonic order contained in the measured voltage waveform, then inverse Fourier transformed, and multiplied by the capacity of the high voltage capacitor to estimate the current of the high voltage capacitor A method for estimating a high-voltage capacitor current. 三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期で測定し、あるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求め、求めた微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする高圧コンデンサ電流推定方法。 The voltage of the high-voltage capacitor of the three-phase high-voltage distribution system is measured at a predetermined sampling cycle, and the measured voltage is differentiated by approximating the difference by the difference between the sampling value at a certain sampling time and the sampling value one sampling before or after that sampling time. A method for estimating a high voltage capacitor current, comprising: obtaining a value and multiplying the obtained differential value by a capacity of the high voltage capacitor to estimate a current of the high voltage capacitor. 三相高圧配電系統の高圧コンデンサが接続された2つの線間電圧を測定し、測定した2つの線間電圧の差電圧から測定ノイズを抑制した高圧コンデンサの電圧を所定のサンプリング周期で測定し、あるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求め、求めた微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を推定することを特徴とする高圧コンデンサ電流推定方法。 Measure the voltage between two lines to which the high-voltage capacitor of the three-phase high-voltage distribution system is connected, measure the voltage of the high-voltage capacitor that suppresses measurement noise from the measured voltage difference between the two line voltages, at a predetermined sampling period, A differential value of the measured voltage is obtained by approximating the difference between the sampling value at a certain sampling time and the sampling value one sampling before or after that sampling time, and the obtained differential value is multiplied by the capacity of the high voltage capacitor. A method for estimating the current of a high-voltage capacitor, characterized in that the current is estimated. 前記差分近似して推定された高圧コンデンサの電流に対し、少なくとも含有率の最も高い高調波成分の補正係数で対周波数誤差を補正することを特徴とする請求項3または4記載の高圧コンデンサ電流推定方法。 5. The high-voltage capacitor current estimation according to claim 3, wherein the error with respect to the frequency is corrected with a correction coefficient of a harmonic component having the highest content ratio with respect to the current of the high-voltage capacitor estimated by the difference approximation. Method. 三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期でA/D変換するA/D変換器と、A/D変換器で得られた高圧コンデンサの電圧の1サイクル分の測定電圧波形をフーリェ変換するフーリェ変換手段と、測定電圧波形に含まれる各高調波の次数毎に微分を行う微分演算手段と、微分演算手段で得られた演算結果を逆フーリェ変換し微分された測定電圧波形を求める逆フーリェ変換手段と、逆フーリェ変換手段で得られた微分された測定電圧波形に高圧コンデンサの容量を乗算して高圧コンデンサの電流を求める電流算出手段とを備えたことを特徴とする高圧コンデンサ電流推定装置。 An A / D converter that A / D converts the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system at a predetermined sampling period, and a measured voltage waveform for one cycle of the voltage of the high-voltage capacitor obtained by the A / D converter Fourier transform means for performing Fourier transform, differential operation means for differentiating each order of each harmonic included in the measured voltage waveform, and inverse measurement result obtained by performing inverse Fourier transform on the operation result obtained by the differential operation means, A high voltage capacitor comprising: an inverse Fourier transform means to be obtained; and a current calculation means for obtaining a current of the high voltage capacitor by multiplying the differentiated measurement voltage waveform obtained by the inverse Fourier transform means by the capacity of the high voltage capacitor. Current estimation device. 三相高圧配電系統の高圧コンデンサの電圧を所定のサンプリング周期でA/D変換するA/D変換器と、A/D変換器で得られた高圧コンデンサの電圧のあるサンプリング時点のサンプリング値とそのサンプリング時点の1サンプリング前または後のサンプリング値との差分により差分近似して測定電圧の微分値を求める電圧微分値演算手段と、電圧微分値演算手段で求めた測定電圧の微分値に高圧コンデンサの容量を乗算して高圧コンデンサの電流を求める電流算出手段とを備えたことを特徴とする高圧コンデンサ電流推定装置。
An A / D converter that A / D converts the voltage of the high-voltage capacitor of the three-phase high-voltage distribution system at a predetermined sampling period, a sampling value at a sampling time when the voltage of the high-voltage capacitor obtained by the A / D converter is A voltage differential value calculating means for obtaining a differential value of the measured voltage by approximating the difference with the sampling value one sampling before or after the sampling time, and a differential value of the high voltage capacitor obtained by the voltage differential value calculating means. A high voltage capacitor current estimation device comprising: current calculation means for multiplying a capacity to obtain a current of a high voltage capacitor.
JP2005329741A 2005-11-15 2005-11-15 Method and device for estimating high-voltage capacitor current Pending JP2007139434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329741A JP2007139434A (en) 2005-11-15 2005-11-15 Method and device for estimating high-voltage capacitor current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329741A JP2007139434A (en) 2005-11-15 2005-11-15 Method and device for estimating high-voltage capacitor current

Publications (1)

Publication Number Publication Date
JP2007139434A true JP2007139434A (en) 2007-06-07

Family

ID=38202507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329741A Pending JP2007139434A (en) 2005-11-15 2005-11-15 Method and device for estimating high-voltage capacitor current

Country Status (1)

Country Link
JP (1) JP2007139434A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050112A (en) * 2007-08-21 2009-03-05 Fuji Electric Systems Co Ltd Control system of reactive power compensator
JP2009050111A (en) * 2007-08-21 2009-03-05 Fuji Electric Systems Co Ltd Control system of reactive power compensator
JP2009229184A (en) * 2008-03-21 2009-10-08 Kansai Electric Power Co Inc:The Harmonic probing method and device
CN103954859A (en) * 2014-04-16 2014-07-30 国网上海市电力公司 Harmonic current characteristic analysis method based on given voltage of harmonic source model
CN114778924A (en) * 2022-06-21 2022-07-22 华中科技大学 Three-phase voltage non-contact measurement method and system, electronic device and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274374A (en) * 1986-04-22 1988-11-11 Mitsubishi Electric Corp Converter control circuit
JPH06335154A (en) * 1993-05-21 1994-12-02 Toshiba Corp Open-phase detecting device
JPH08275377A (en) * 1995-03-30 1996-10-18 Nichicon Corp Phase-advancing capacitor facility higher harmonic protector
JPH09182294A (en) * 1995-12-27 1997-07-11 Fuji Electric Co Ltd Power factor regulator
JP2001286150A (en) * 2000-04-03 2001-10-12 Toshiba Corp Power-converter unit
JP2002062317A (en) * 2000-08-23 2002-02-28 Toshiba Corp Capacitor-current measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274374A (en) * 1986-04-22 1988-11-11 Mitsubishi Electric Corp Converter control circuit
JPH06335154A (en) * 1993-05-21 1994-12-02 Toshiba Corp Open-phase detecting device
JPH08275377A (en) * 1995-03-30 1996-10-18 Nichicon Corp Phase-advancing capacitor facility higher harmonic protector
JPH09182294A (en) * 1995-12-27 1997-07-11 Fuji Electric Co Ltd Power factor regulator
JP2001286150A (en) * 2000-04-03 2001-10-12 Toshiba Corp Power-converter unit
JP2002062317A (en) * 2000-08-23 2002-02-28 Toshiba Corp Capacitor-current measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050112A (en) * 2007-08-21 2009-03-05 Fuji Electric Systems Co Ltd Control system of reactive power compensator
JP2009050111A (en) * 2007-08-21 2009-03-05 Fuji Electric Systems Co Ltd Control system of reactive power compensator
JP2009229184A (en) * 2008-03-21 2009-10-08 Kansai Electric Power Co Inc:The Harmonic probing method and device
CN103954859A (en) * 2014-04-16 2014-07-30 国网上海市电力公司 Harmonic current characteristic analysis method based on given voltage of harmonic source model
CN103954859B (en) * 2014-04-16 2017-09-12 国网上海市电力公司 The harmonic current characteristic analysis method of given voltage based on Harmonic source model
CN114778924A (en) * 2022-06-21 2022-07-22 华中科技大学 Three-phase voltage non-contact measurement method and system, electronic device and storage medium

Similar Documents

Publication Publication Date Title
US7834643B2 (en) Systems and methods for reducing distortion in a power source using an active harmonics filter
JP6503418B2 (en) Frequency analysis device, signal processing device using the frequency analysis device, and high frequency measurement device using the signal processing device
JP4987068B2 (en) AC electric quantity measuring device
JP5855886B2 (en) Frequency detector
JP4679525B2 (en) Active filter
CN103069679A (en) Harmonic current suppression method and harmonic current suppression device of power conversion device
US9651592B2 (en) Impedance detector apparatus and method
US8868364B2 (en) Apparatus and method for real time harmonic spectral analyzer
US20090168474A1 (en) Power converting device and method for controlling the same
JP2010190645A (en) Method for detecting leakage current, leakage current detector, and system monitor
JP2007139434A (en) Method and device for estimating high-voltage capacitor current
Diahovchenko et al. Effect of harmonic distortion on electric energy meters of different metrological principles
KR20140130629A (en) Inverter device and inverter generator
Salor Spectral correction-based method for interharmonics analysis of power signals with fundamental frequency deviation
JP2008058114A (en) Power meter
Cataliotti et al. A time-domain strategy for the measurement of IEEE Standard 1459-2000 power quantities in nonsinusoidal three-phase and single-phase systems
JP5850709B2 (en) Single operation detection device for grid-connected inverter device
Repak et al. Design of power quality analyzer
Slosarcik FFT-based algorithm for metering applications
JP5517723B2 (en) Harmonic current compensation apparatus and harmonic current compensation method
CN110007129B (en) A kind of three-phase voltage real-time estimation method applied to dynamic electric energy metering
Kezunovic et al. Modeling of digital relay and power system signals
Sarkar et al. On-line tracking of single phase reactive power in non-sinusoidal conditions using S-ADALINE networks
Abdul Khalid et al. An improved Walsh function algorithm for use in sinusoidal and nonsinusoidal power components measurement
US20230194584A1 (en) Processing sinewave signals of variable frequency in a device with fixed processing rates

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080623

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101029

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018