JP2009049812A - 画像処理装置、画像記録装置、及びプログラム - Google Patents

画像処理装置、画像記録装置、及びプログラム Download PDF

Info

Publication number
JP2009049812A
JP2009049812A JP2007215289A JP2007215289A JP2009049812A JP 2009049812 A JP2009049812 A JP 2009049812A JP 2007215289 A JP2007215289 A JP 2007215289A JP 2007215289 A JP2007215289 A JP 2007215289A JP 2009049812 A JP2009049812 A JP 2009049812A
Authority
JP
Japan
Prior art keywords
value
image
error
processing apparatus
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007215289A
Other languages
English (en)
Inventor
Takeshi Ogawa
武士 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007215289A priority Critical patent/JP2009049812A/ja
Publication of JP2009049812A publication Critical patent/JP2009049812A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】ドットゲインによる画質劣化問題を解決できる画像処理装置、画像記録装置及びプログラムを提供すること。
【解決手段】多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置は、入力データの濃度と注目画素周辺の量子状態に応じて、量子化誤差の値を決める。
【選択図】図1

Description

本発明は、多値画像データを高精細かつ高階調に印刷処理するための画像処理装置、画像記録装置(画像形成装置)、及びプログラムに関する。
スキャナやディジタルカメラ等の入力装置で読み取った多値画像データをプリンタやディスプレイ等の出力装置に出力する画像入出力システムが存在する。その際に、入力装置で読み取った多値(例えば8ビット精度ならば256階調)の画像データを出力装置が出力可能な階調数の画像データに変換し、擬似的に連続階調を表現する方法として、擬似中間調処理というものが存在する。中でも出力装置がドットのON/OFFのみの2値しか表現できないときには2値化処理が従来から行われている。この2値化処理の中で解像性と階調性に共に優れたものとして誤差拡散処理や平均誤差最小法が存在する。誤差拡散法と平均誤差最小法は、誤差の拡散作業をいつ行うかが異なるだけであり、論理的には等価なものである。さらにこの誤差拡散処理を2値だけでなく、3値以上の階調数にも適応したものとして、多値誤差拡散処理が存在する。2値誤差拡散処理と同様に、階調性と解像性に優れた処理が可能である。
出力装置における3値以上の階調数を確保するために各種の方式がある。インクジェットプリンタにおいては吐出するインク量を制御することにより大中小ドットとドット径を変化させることや、ドットの重ね打ちや濃度を異なったインク・濃淡インクを用いて3値化以上の階調数を再現している。一般的には淡インクの濃度を濃インクの1/2〜1/6に希釈してある。またグラビア印刷のような凹版印刷において版に掘り込む深さを変化させることで紙に転写するインク量を制御し、3値以上の階調数を確保する方式がある。
ところで、印刷機・インクジェットプリンタや電子写真で印刷したとき、インクのにじみ・広がりにより得られる網点が元の網点に比べ大きく太る現象、いわゆるドットゲインがある。誤差拡散処理では局所的に発生した誤差を近傍画素に拡散して濃度を保存するようにフィードバックをかけている。しかしながら、このドットゲインがあるため、高濃度部において元の入力値に対して網点が大きくなり、高濃度部において濃度飽和が生じやすい。図9に示すように256階調の入力値に対して明度リニア(図9中の点線)に出力したいのだが、実際には図9中の実線のようになってしまう。
ドットゲインがあるため一般的なプリンタで誤差拡散処理を用いるにはγ変換した画像を誤差拡散処理する。γ変換を行うと入力値256階調に対して、出力値 200 〜 240 階調と階調数が少なくなってしまい、画像本来の持つ階調性を表現しきれないという課題がある。
γ変換を併用した誤差拡散処理では本来の階調を表現しきれないので、誤差を100%分配することでなくすこともある。誤差を拡散する係数の合計を1未満とすることで、濃度保存しないようにすることもある。これにより高濃度部では濃度飽和しにくいという特性がある。高濃度部では濃度飽和しにくくても、一律に誤差を100%未満の値で分配するということでハイライト部ではドットの生成が遅れてしまう。さらにハイライト部において誤差を100%分配したときよりもドットが少なく出力されるので、ハイライト部が飛んだ感じの画像となってしまう。さらに、注目画素周辺の量子状態を考慮していないために、エッジ部に生じるドットゲインを抑制することが難しい。
注目画素周辺の量子状態を参照する誤差拡散として特許文献1がある。特許文献1は入力値に周辺誤差を加算した補正値と、注目画素周辺の量子化誤差と注目画素周辺の量子状態に応じた閾値で量子化を行う誤差拡散である。注目画素周辺の量子状態に応じた閾値で量子化を行うことでドットが隣接したクラスターを形成しやすくなるが、閾値を操作するだけなので、入力画像の濃度は保存することとなり、高濃度部では濃度飽和を抑制することはできない。
特開2005―198067号公報
画像本来の階調性を損なうことなく高濃度部において濃度飽和を抑制する明度リニアな誤差拡散処理が求められてきた。
本発明は、かかる問題点に鑑みてなされたものであり、ドットゲインによる画質劣化問題を解決できる画像処理装置、画像記録装置及びプログラムを提供することを目的とする。
上記課題を解決するため、本発明にかかる画像処理装置、画像記録装置及びプログラムでは、誤差拡散において、入力値と注目画素近傍の重み付けした出力値により仮想濃度値を求め、仮想濃度値を元に誤差を計算することで、ドットゲインによる画質劣化問題を解決し、良好な画質の出力画像結果を出力するものである。
かかる目的を達成するために、請求項1記載の発明は、入力データの濃度と注目画素周辺の量子状態に応じて、量子化誤差の値を決めることを特徴としている。
請求項2記載の発明は、入力データの濃度と注目画素周辺の量子状態と、入力値の画素位置に応じて、量子化誤差の値を決めることを特徴としている。
請求項3記載の発明は、多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、前記補正値と閾値とを比較して、N値の出力値を出力する手段と、注目画素周辺の量子状態を記憶する手段と、注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、前記重み付け量子と入力値に応じて仮想濃度値を求め、前記仮想濃度値より減算値を算出する手段と、前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段と、を備えたことを特徴としている。
請求項4記載の発明は、多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、前記補正値と閾値とを比較して、N値の出力値を出力する手段と、注目画素周辺の量子状態を記憶する手段と、注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、前記重み付け量子と入力値に応じて仮想濃度値を求め、前記仮想濃度値と入力値の画素位置より減算値を算出する手段と、前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段と、を備えたことを特徴としている。
請求項5記載の発明は、減算値は仮想濃度値とともに増加していく値であることを特徴としている。
請求項6記載の発明は、仮想濃度値を記載したLUTまたは逐次計算手段を複数保持し、入力画素位置応じて複数の前記仮想濃度値を選択することを特徴としている。
本発明によれば、誤差拡散において、入力値と注目画素近傍の重み付けした出力値により仮想濃度値を求め、仮想濃度値を元に誤差を計算することで、ドットゲインによる画質劣化問題を解決し、良好な画質の出力画像結果を得ることができる。
〔実施形態1〕
以下、本発明の好適な実施の形態を添付図面を参照しながら詳細に説明する。構成要素には記号を付与して区別する。図1は、本発明の実施の形態における画像処理装置のブロック構成を示す図である(特に本発明に特徴的な画像処理を行う画像処理部のブロック構成を示す)。また、図2は、本発明の実施の形態における画像記録装置の構成を示す図である。
図3は、本発明の実施の形態の画像処理装置を用いて構成される画像入出力システムの構成を示す。画像入力装置301はスキャナやディジタルカメラ等の入力デバイスを示し、入力画像について例えば8ビット精度ならば256階調の画像データとして取り込まれる。この多値画像データが本実施形態の画像処理装置302に入力される。
画像処理装置(画像処理部)302では、画像入力装置301から入力された256階調の画像データに対し、この後段の画像出力装置303で出力可能な階調数に変換する処理を行う。この階調数変換処理では多値誤差拡散や多値平均誤差最小法を用いてもよい。画像処理装置302で量子化した画像データが図2に構成を示すような画像記録装置(画像形成装置、画像出力装置)303に送られる。
図2において、画像出力装置303は、フレーム201に横架したガイドレール202,203に移動可能に載設されたキャリッジ204にインクジェット記録ヘッド205(以下、単に「記録ヘッド」と称す)を搭載し、図示しないモータ等の駆動源によってキャリッジをガイドレール方向に移動して走査(主走査)可能とするとともに、ガイド板206にセットされる用紙207を、図示しない駆動源によってドライブギヤ208及びスプロケットギヤ209を介して回動される送りノブ210aを備えたプラテン210にて取込み、プラテン210周面とこれに圧接するプレッシャローラ211とによって搬送し、記録ヘッド205によって用紙207に印字記録する。
記録ヘッド205は、図4に示すブラック(K)、イエロー(Y)、マゼンタ(M)及びシアン(C)の各インクをそれぞれ吐出するための4個のインクジェットヘッド{4K、4Y、4M、4C}や、図5に示すブラック(K)、イエロー(Y)、マゼンタ(M)、シアン(C)、ライトイエロー(LY)、ライトマゼンタ(LM)及びライトシアン(LC)の各インクをそれぞれ吐出するための7個のインクジェットヘッド{5K、5Y、5M、5C、5LY、5LM、5LM}を主走査方向の同一線上に配置して構成している。商品構成によってはインクの数を増減させても何ら構わない。具体的にはハイライト部でイエローのドットは目視し難い特性を持つのでライトイエローを省いてコストダウンを行った構成としても良いし、また、ライトブラックや、シアン・マゼンタ・イエロー・ブラックの各色の濃度を3段・4段に分けた構成にして高画質を実現した記録ヘッドとしてもよい。
上記の各インクジェットヘッドは、例えば圧電素子、気泡発生用ヒータ等のエネルギー発生手段であるアクチュエータを選択的に駆動して、液室内のインクに圧力を与えることによって、この液室に連通するノズルからインク滴を吐出飛翔させて、用紙7に付着させることで画像記録(画像形成)する。画像記録装置303は電子写真を用いて画像記録(画像形成)する場合等でも本発明にかかる処理方法が適用可能である。
また、図3のシステム構成図では、処理に応じてそれぞれの装置を独立したものとして示したが、この限りではなく、画像処理装置302の機能が画像入力装置301中に存在する形態や、画像出力装置303中に存在する形態等もある。
図1は、図3に示す本実施形態の画像処理装置302の構成を示すブロック図である。入力端子101は画像入力装置301より多値画像データが入力される。ここで、2次元の画像データを表わすために、In(x, y) として表わす(xは画像の主走査方向のアドレス、yは副走査方向のアドレスを示す)。
次に、この入力データ In(x, y) が仮想濃度計算部111と加算器102へ入力される。加算器102は入力データ In(x, y) と誤差メモリ108から入力される誤差成分 E(x, y) を加算し補正データ C(x, y) を計算し、補正データ C(x, y) を比較判定部103と減算部106へ出力する。
比較判定部103は、加算器102から入力される補正データ C(x, y) と閾値Tに基づいて下記のように出力値 Out(x, y) を決定する。ここで閾値Tはドットon・ドットoffの出力判定をする閾値であり、ドットon(255)とドットoff(0)の中間値である 127 とする。
If( C(x, y) < T )
then Out(x, y)= 0
Else
then Out(x, y)= 255 (1)
この Out(x, y) が出力端子104から画像出力装置303に対して出力される。
また、出力値 Out(x, y) は量子メモリ105と減算部106に入力される。量子メモリ105は量子参照部で必要となる複数の画素位置における出力値をまとめた複合量子 q(x, y) を量子参照部107へ出力する。ここで例えば参照係数として図6に示したような係数を用いた場合、下記に示すような画素位置における出力値をまとめて複合量子 q(x, y) とする。
q(x, y) ={ Out(x-1, y), Out(x, y-1), Out(x+1, y-1), Out(x-1, y) }(2)
量子参照部107では量子メモリが入力される複合量子 q(x, y) を予め設定された参照係数に基づいて、重み付け量子 Q(x, y) を仮想濃度計算部111へ出力する。ここで例えば参照係数として図6に示したような係数を用いた場合、量子参照部107では下記のような処理を行う。
Q(x, y) = Out(x-1, y-1) ×1/8 + Out(x, y-1) ×1/4
+ Out(x+1, y-1) ×1/8 + Out(x-1, y) ×1/4 (3)
仮想濃度計算分111は入力端子101から入力される入力データ In(x, y) と量子参照部107から入力される重み付け量子 Q(x, y) より下記のように仮想濃度値 G(x, y) を計算し、仮想濃度値 G(x, y) を減算値決定部110へ出力する。
G(x, y) = In(x, y) + Q(x, y) (4)
減算値決定部110は仮想濃度計算部111より入力される仮想濃度値 G(x, y) を用いて、図8のように仮想濃度値 G(x, y) に基づく減算値 D(x, y) を決定し、減算値 D(x, y) を減算部106へ出力する。
減算部106は加算器102から入力される補正データ C(x, y)、比較判定部103より入力される出力値 Out(x, y) と減算値決定部110より入力される減算値 D(x, y) より次式に示すように減算し、現画素で発生した誤差 e(x, y) が算出される。
If( Out(x, y)= 0 )
e(x, y) = C(x, y)
Else
e(x, y) = C(x, y) − Out(x, y) − D(x, y) (5)
次に誤差拡散部109では予め設定された拡散係数に基づいて、誤差 e(x, y) を配分して誤差メモリ108に蓄積されている誤差データ E(x, y) に加算していく。ここで例えば拡散係数として図7に示したような係数を用いた場合、誤差拡散部113では下記のような処理を行う。
E(x+1, y) = E(x+1, y) + e(x, y)×7/16 (6)
E(x-1, y+1) = E(x-1, y+1) + e(x, y)×5/16 (7)
E(x, y+1) = E(x, y+1) + e(x, y)×3/16 (8)
E(x+1, y+1) = E(x+1, y+1) + e(x, y)×1/16 (9)
以上のように図1の構成によって、画像処理部における多値誤差拡散処理が行われる。
次に、このような処理によりなぜこの誤差拡散処理で高濃度部における濃度飽和に対して効果があるかを説明する。
ドットゲインはインクのにじみ・広がりにより得られる網点が元の網点に比べ大きく太る現象である。通常の2値誤差拡散であれば1ドット出力すると補正値から 255 減算するが、実際のインクは紙面などで広がるため明度としては差異が生じる。このため差異が生じる階調やドットパターンが出力されたときに広がるインクに相当する値、本方式でいうところの仮想濃度値を用いて誤差を計算した誤差拡散処理ならば明度リニアとなる。
ハイライト部であれば、図9に示すように理想的な明度リニアな値から大きくずれていないので通常の誤差拡散のように誤差を計算して問題はない階調である。ハイライト部のパッチ画像であれば、誤差拡散処理を用いることで各ドット間の距離は濃度に応じ、分散した画像となる。このような分散した画像において式(4)により仮想濃度値を求めると、ドットが分散しているので注目画素近傍の重み付けした出力値は0となり、入力値が仮想濃度値となる。
また、中濃度部のパッチ画像であれば、濃度に応じてドットが分散しているが、一部の画素においてドットが隣接することとなる。このような階調においてはドットが隣接している箇所とそうでない箇所があり、局所的にはドットゲインの効果が異なる。そのため、仮想濃度値を求めるときに注目画素近傍の重み付けした出力値を加えることで局所的に異なるドットゲインの効果を均一にすることができる。
パッチ画像のドットゲインを補正するならば図9を見れば入力値に応じて明度が下がっていくので、入力値のみでドットゲインを制御可能のように思われる。しかしながら、どのような画像を処理するかわからないため、入力値だけでなく注目画素近傍の重み付けした出力値も用いて仮想濃度値を求める必要がある。具体的に図10のような画像を2値誤差拡散で処理したときを考える。
図10の画素位置1001における階調値は192であり、画素位置1001と同じパターンで描画した画素位置における階調値は192である。同様に、画素位置1002における階調値は64であり、画素位置1002と同じパターンで描画した画素位置における階調値は64である。図10のような画像全体で平均すると階調値は128であり、2値誤差拡散で処理すれば2画素に1画素ドットが出力され、市松模様を形成することが理想的である。
このような画像を2値誤差拡散すれば、図11のような画素位置1001と同パターンで描画した画素位置でドットが出力される市松模様となる。しかしながら、図11のような画像が他の画像中にある場合、周辺画素の影響により画素位置1001に出力されないで、図12のような画素位置1002と同パターンで描画した画素位置でドットが出力される市松模様となる可能性もある。今、入力値だけでドットゲインを補正する誤差拡散であれば、図11と図12の各ドットが出力された画素位置における階調値がことなるため、ドットゲインの補正が異なってくることになる。このように誤差拡散であるため周辺の誤差の影響により量子結果が異なることがあるため、周辺画素の出力された状態も参照しなければならない。
今、図6に示すような画素位置と係数を用いて説明をしてきたが、これ以外の値にしてもかまわない。参照画素位置を増やせばより細かくドットゲインに対して制御が可能となる。また、係数は0以上であればよい。本来の誤差拡散は入力画像の濃度を保存するように量子化誤差をフィードバックしていたが、高濃度部においてドットゲインがあるためγ変換により入力原稿の階調数を減らし、濃度を保存していない。γ変換で階調を削り、誤差拡散処理で濃度を保存するか、γ変換なしで誤差拡散処理にて濃度を保存しないかの違いである。パッチ画像で両方式を比較すれば、いずれの方式も大差はないが、鮮鋭性を比較したところ、本方式のほうがγ変換で階調が削られていないことにより優れていた。
このように入力値と注目画素近傍の重み付けした出力値により仮想濃度値を求め、仮想濃度値を元に誤差を計算すれば明度リニアな誤差拡散処理を行うことでとなる。
〔実施形態2〕
本発明は上記の実施形態1にとらわれることなく、種々の変形実施が可能である。実施形態1を説明する画像処理装置のブロックである図1を図13に変えて説明する。
図13は図1のブロック図と異なり、入力端子1301より出力される入力データ In(x, y) が加算器1302と仮想濃度計算部1311だけでなく、減算値決定部1310にも出力することである。
減算値決定部1310は仮想濃度計算部1311より入力される仮想濃度値 G(x, y) と入力データ In(x, y) を用いて、減算値 D(x, y) を決定し、減算値 D(x, y) を減算部1306へ出力する。
ここで減算値決定部1310は図14に示すように4種類の仮想濃度値と減算値の曲線を保持している。図14に示す仮想濃度値と減算値の曲線は、図8に示す仮想濃度値と減算値の曲線と大局的には傾向は同じであるが、図14の図中の拡大部分にあるように局所的には異なるものである。減算値決定部1310は画素位置図15に示すように入力データの主走査方向のアドレスxが奇数・偶数、副走査方向のアドレスyが奇数・偶数のそれぞれ、合計4種に応じて図14のように4種類の仮想濃度値と減算値のラインを選択し、選択した曲線と仮想濃度値 G(x, y) より減算値 D(x, y) を決定する。
図9に示すようなハイライト部とダーク部において明度差が十分にある場合においては実施形態1のようなほうがシンプルで好ましい。ハイライト部とダーク部において明度差が十分ないような出力機において実施形態1のような構成をとると階調数が不足してしまいグラデーション画像において擬似輪郭が発生することがある。
この現象は明度差が十分にあるところで256階調を表現しようとする、すなわち256種の明度差のあるパターンを生成できるならば容易である。しかしながら、明度差が十分にない場合、重み付け量子 Q(x, y) の参照係数と仮想濃度値と減算値の曲線にもよるが、次のような場合があるためである。仮想濃度値 G1 とその減算値 Dg1 とし、仮想濃度値 G1 の次の階調、G2(G2=G1+1) とその減算値を Dg2 とする。今、階調値 G1 と G2 は1階調しか異ならない。このとき、減算値 Dg1 と Dg2 が大きく異なればよいが、Dg2 = Dg1+1であれば、減算して得られる誤差は同一となってしまう。具体的にハイライト部のパッチ画像のように各ドットが孤立しているような状況で、仮想濃度値が入力値となる。このような状況で、階調値が1上昇したとき、減算値も1上昇してしまっては減算される誤差の平均は同一となってしまい、同一面積に出力されるドット数が同一となってしまい。グラデーション画像においてはこのような誤差の平均が同一となる箇所に擬似輪郭が発生する。
よって、図14に示すように複数の仮想濃度値と減算値の曲線を随時切り替えて使用することで画素にゆらぎが生じ、誤差の平均が同一となることを抑制でき、グラデーション画像中の擬似輪郭発生を抑制することができる。
図15に示すような画素位置に応じて規則的に仮想濃度値と減算値の曲線を切り替えるだけでなくランダムに仮想濃度値と減算値の曲線を選択してもよい。
〔実施形態3〕
本構成において多値誤差拡散においても利用可能である。図2に示す画像記録装置に図5に示すような濃淡インクを使用する構成で3値誤差拡散をする場合で説明する。
このような場合は実施形態1で使用した図8に示す仮想濃度値と減算値の曲線を図17に示すようなものに変えることで可能である。
今、図18に示すように淡インクの階調値を127、濃インクの階調値を255とする。このようなインクを用いて3値誤差拡散を行って得られる画像の入力値と明度のグラフを図16に示す。3値誤差拡散ではまず淡インクとドットoffの混成で階調表現を行い、淡インクのべた部を形成した後に、淡インクと濃インクの混成で階調表現をしていく。このとき、淡インクでべた部となる階調(図16では入力値127)より低い階調においてドットゲインによる濃度飽和が生じる。よってこのように濃度飽和が生じる階調より低い階調で減算値を大きくすればよい。淡インクでべたとなった後は濃インクが出力されるので濃度飽和することはなく明度は入力値に応じて変化していくことになるので、このような階調では大きく減算しなくてもよい。淡インクべた部と同様に濃インクべた部近傍においてもドットゲインによる濃度飽和が生じるので仮想濃度値に応じて減算していけばよい。
図6のような参照係数を用いて淡インクでべたとなる階調の仮想濃度値 G(x, y) は 224 であるため、この仮想濃度値で大きく減算するようにすればよい。同様に濃インクでべたとなる階調の仮想濃度値 G(x, y) は 448 であるため、この仮想濃度値で大きく減算するようにすればよい。
実施形態1から3において仮想濃度値と減算値の曲線は逐次計算でもよいし、LUTでもかまわない。
また、本発明は誤差拡散処理に対するものであったが、同じように平均誤差最小法にも適用できる。
なお、本発明は、複数の機器(例えばホストコンピュータ,インタフェース機器,リーダ,プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機,ファクシミリ装置など)に適用してもよい。
また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(CPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。この場合、記憶媒体から読出されたプログラムコード自体が前述した実施形態の機能を実現することになる。
プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク,ハードディスク,光ディスク,光磁気ディスク,磁気テープ,不揮発性のメモリカード,ROMなどを用いることができる。
また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
なお、特に請求項1記載の発明は、入力データの濃度と注目画素周辺の量子状態に応じて、量子化誤差の値を決めることを目的とする。
また請求項2記載の発明は、入力データの濃度と注目画素周辺の量子状態と、入力値の画素位置に応じて、量子化誤差の値を決めることを目的とする。
また請求項3記載の発明は多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、前記補正値と閾値とを比較して、N値の出力値を出力する手段と、注目画素周辺の量子状態を記憶する手段と、注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、前記重み付け量子と入力値に応じて仮想濃度値を求め、前記仮想濃度値より減算値を算出する手段と、前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段とを備えたことを目的とする。
また請求項4記載の発明は多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、前記補正値と閾値とを比較して、N値の出力値を出力する手段と、注目画素周辺の量子状態を記憶する手段と、注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、前記重み付け量子と入力値に応じて仮想濃度値を求め、前記仮想濃度値と入力値の画素位置より減算値を算出する手段と、前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段と、を備えたことを目的とする。
また請求項5記載の発明は、減算値は仮想濃度値とともに増加していく値であることを目的とする。
また請求項6記載の発明は、仮想濃度値を記載したLUTまたは逐次計算手段を複数保持し、入力画素位置応じて複数の前記仮想濃度値を選択することを目的とする。
以上により本発明の実施の形態について説明した。なお、上述した実施形態は、本発明の好適な実施形態の一例を示すものであり、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲内において、種々変形実施が可能である。
本発明の実施の形態1における画像処理装置のブロック構成を示す図である。 本発明の実施の形態における画像記録装置の構成を示す図である。 本発明の実施の形態の画像処理装置を用いて構成される画像入出力システムの構成を示すである。 記録ヘッドの構成を示す図である。 記録ヘッドの構成を示す図である。 参照係数を示す図である。 拡散係数を示す図である。 仮想濃度値 G(x, y) に基づく減算値 D(x, y) の決定を示す図である。 入力値に対する出力を示す図である。 画像を2値誤差拡散で処理したときを示す図である。 画素位置と同パターンで描画した画素位置でドットが出力される市松模様を示す図である。 画素位置と同パターンで描画した画素位置でドットが出力される市松模様を示す図である。 本発明の実施の形態2における画像処理装置のブロック構成を示す図である。 減算値決定部が保持する4種類の仮想濃度値と減算値の曲線を示す図である。 画素位置を示す図である。 3値誤差拡散を行って得られる画像の入力値と明度のグラフを示す図である。 仮想濃度値と減算値の曲線を示す図である。 淡インクの階調値を127、濃インクの階調値を255とすることを示す図である。
符号の説明
101 入力端子
102 加算器
103 比較判定部
104 出力端子
105 量子メモリ
106 減算部
107 量子参照部
108 誤差メモリ
109 誤差拡散部
110 減算値決定部
111 仮想濃度計算部

Claims (8)

  1. 多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、入力データの濃度と注目画素周辺の量子状態に応じて、量子化誤差の値を決めることを特徴とする画像処理装置。
  2. 多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、
    入力データの濃度と注目画素周辺の量子状態と、入力値の画素位置に応じて、量子化誤差の値を決めることを特徴とする画像処理装置。
  3. 多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、
    周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、
    前記補正値と閾値とを比較して、N値の出力値を出力する手段と、
    注目画素周辺の量子状態を記憶する手段と、
    注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、
    前記重み付け量子と入力値に応じて仮想濃度値を求め、
    前記仮想濃度値より減算値を算出する手段と、
    前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段と、
    を備えたことを特徴とする画像処理装置。
  4. 多値(M値)画像データを、多値誤差拡散または多値平均誤差最小法を用いてN値(M>N≧2)に量子化する画像処理装置であって、
    周辺の既に量子化済みの画素から重み付け積和された誤差を加えた補正値を出力する手段と、
    前記補正値と閾値とを比較して、N値の出力値を出力する手段と、
    注目画素周辺の量子状態を記憶する手段と、
    注目画素周辺の既に量子化済みの画素から重み付け積和された重み付け量子を出力する手段と、
    前記重み付け量子と入力値に応じて仮想濃度値を求め、
    前記仮想濃度値と入力値の画素位置より減算値を算出する手段と、
    前記N値画像データの生成に伴って発生する誤差を補正値と出力値と減算値より算出する手段と、
    を備えたことを特徴とする画像処理装置。
  5. 前記減算値は仮想濃度値とともに増加していく値であることを特徴とする請求項3または4記載の画像処理装置。
  6. 仮想濃度値を記載したLUTまたは逐次計算手段を複数保持し、入力画素位置応じて複数の前記仮想濃度値を選択することを特徴とする請求項4記載の画像処理装置。
  7. 請求項1乃至9のいずれか1項記載の画像処理装置の各手段の機能を有する画像記録装置。
  8. 請求項1乃至9のいずれか1項記載の画像処理装置の各手段の機能をコンピュータに実現させるためのプログラム。
JP2007215289A 2007-08-21 2007-08-21 画像処理装置、画像記録装置、及びプログラム Withdrawn JP2009049812A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215289A JP2009049812A (ja) 2007-08-21 2007-08-21 画像処理装置、画像記録装置、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215289A JP2009049812A (ja) 2007-08-21 2007-08-21 画像処理装置、画像記録装置、及びプログラム

Publications (1)

Publication Number Publication Date
JP2009049812A true JP2009049812A (ja) 2009-03-05

Family

ID=40501572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215289A Withdrawn JP2009049812A (ja) 2007-08-21 2007-08-21 画像処理装置、画像記録装置、及びプログラム

Country Status (1)

Country Link
JP (1) JP2009049812A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208751B2 (en) 2008-11-27 2012-06-26 Ricoh Company, Limited Image processing apparatus, image processing method, and program
US8559082B2 (en) 2008-08-22 2013-10-15 Ricoh Company, Ltd. Image processing apparatus for gamma conversion of image data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559082B2 (en) 2008-08-22 2013-10-15 Ricoh Company, Ltd. Image processing apparatus for gamma conversion of image data
US8208751B2 (en) 2008-11-27 2012-06-26 Ricoh Company, Limited Image processing apparatus, image processing method, and program

Similar Documents

Publication Publication Date Title
JP5290614B2 (ja) 画像形成装置、印字データ生成方法及びコンピュータプログラム
US7798589B2 (en) Image forming apparatus, image processing apparatus, and control method therefor
JP5053903B2 (ja) 画像処理装置およびその方法
JP6193594B2 (ja) 画像処理装置、画像処理方法、画像処理システムおよびプログラム
JP6012425B2 (ja) 画像処理装置および画像処理方法
US8208751B2 (en) Image processing apparatus, image processing method, and program
JP5843503B2 (ja) 画像記録システムおよび画像記録方法
JP5237215B2 (ja) 画像処理装置及び方法
JP3732470B2 (ja) 画像処理装置、画像記録装置、及びプログラム
JP2006115431A (ja) 中間階調処理装置、印刷装置、情報処理装置、中間階調処理方法及びプログラム
JP2009049812A (ja) 画像処理装置、画像記録装置、及びプログラム
JP2010050850A (ja) 画像処理装置、画像処理方法、画像形成装置、プログラム、及び記録媒体
JP5213508B2 (ja) 画像形成装置及び画像形成方法
JP2010120185A (ja) 画像処理装置及び画像処理方法
JP4251492B2 (ja) 画像処理装置、画像記録装置、プログラムおよび記録媒体
JP5068243B2 (ja) 画像処理装置と画像記録装置とプログラム
JP5834672B2 (ja) 画像処理装置、画像処理方法、画像形成装置、プログラムおよび記録媒体
JP5066509B2 (ja) 画像処理装置、画像記録装置、画像処理方法、画像記録方法、プログラム、及び記憶媒体
JP2005184085A (ja) 画像処理装置、画像記録装置およびプログラム
JP5341420B2 (ja) 画像処理装置及び画像処理方法
JP5015695B2 (ja) 画像処理装置、画像記録装置、及びプログラム
JP2010017975A (ja) 画像形成装置、その制御手段及びコンピュータプログラム
JP2012126040A (ja) 画像形成装置
JP2009017133A (ja) 画像処理方法、及び記録装置
JP2009005246A (ja) 画像処理装置、画像記録装置、画像処理方法、プログラムおよび記録媒体

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102