JP2009043502A - Method of repairing defective portion in organic electroluminescent panel - Google Patents

Method of repairing defective portion in organic electroluminescent panel Download PDF

Info

Publication number
JP2009043502A
JP2009043502A JP2007206111A JP2007206111A JP2009043502A JP 2009043502 A JP2009043502 A JP 2009043502A JP 2007206111 A JP2007206111 A JP 2007206111A JP 2007206111 A JP2007206111 A JP 2007206111A JP 2009043502 A JP2009043502 A JP 2009043502A
Authority
JP
Japan
Prior art keywords
organic
panel
repairing
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007206111A
Other languages
Japanese (ja)
Other versions
JP2009043502A5 (en
Inventor
Katsunori Oya
克典 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007206111A priority Critical patent/JP2009043502A/en
Publication of JP2009043502A publication Critical patent/JP2009043502A/en
Publication of JP2009043502A5 publication Critical patent/JP2009043502A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently carry out repair of defective pixels due to particles or the like without damaging a protective film, in an organic EL panel of a film-sealing structure. <P>SOLUTION: Red, green, and blue light-emitting pixels are formed by organic layers 106 separated by pixel separation films 105 on a glass substrate 101 with a first electrode 104 formed, on which, a second electrode 107 and a protective layer 108 are laminated. Defective parts (non-lit pixels) due to particles or the like of the organic EL panel are detected, on which laser light is irradiated to repair the defects. Here, intensity of the laser light is changed for each emission color for controlling to make it an optimum value to prevent the protective layer 108 from damage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機ELパネルの製造工程において、有機ELパネルの歩留まりを向上させるための有機ELパネルの欠陥部修復方法に関するものである。   The present invention relates to a method for repairing a defective portion of an organic EL panel for improving the yield of the organic EL panel in the manufacturing process of the organic EL panel.

有機ELパネルは自発光型の表示デバイスであり、液晶ディスプレイの非自発光型に比べて、広視野角、応答速度の高速度化、薄型化が可能である。そのため、近年、CRTディスプレイや液晶ディスプレイに変わるものとして注目され、一部実用化されている。   The organic EL panel is a self-luminous display device, and can have a wider viewing angle, a higher response speed, and a thinner thickness than a non-self-luminous liquid crystal display. Therefore, in recent years, it has attracted attention as a change to a CRT display or a liquid crystal display and has been partially put into practical use.

一般的な有機EL素子の膜構成は、陽極と、有機化合物からなる積層有機層と、陰極との積層を基本とし、ガラス板などを用いた基板上に透明陽極を形成し、発光を基板側から取り出すことが行われている。また積層有機層の発光は所定のスペクトルを発するよう設計され、カラー化を実現している。   The film configuration of a general organic EL element is basically a laminate of an anode, a laminated organic layer made of an organic compound, and a cathode. A transparent anode is formed on a substrate using a glass plate or the like to emit light on the substrate side. It has been taken out of. The light emission of the laminated organic layer is designed to emit a predetermined spectrum, and colorization is realized.

ところで有機ELパネルの特性上の課題として、有機EL素子は水分に対して耐性がないことが知られている。すなわち有機ELに用いられる有機材料は水分に対して分解や変質がしやすく、ダークスポットや画素エッジ付近の輝度低下、高温保存時の輝度低下といった問題が発生する。   By the way, it is known that the organic EL element has no resistance to moisture as a problem in the characteristics of the organic EL panel. That is, the organic material used for the organic EL is easily decomposed or deteriorated with respect to moisture, and problems such as a decrease in luminance near dark spots or pixel edges, and a decrease in luminance when stored at high temperatures occur.

有機EL素子の水分遮断技術としては、ガラスや金属などにより封止空間を形成する技術や、透湿性の低い保護膜により封止する膜封止技術がある。前者技術は、ガラスまたは金属などにより形成する封止空間に吸湿剤を内包するために封止空間が厚くなり、パネルの薄型化が困難であるという課題がある。一方、後者の膜封止技術は、低透湿性の保護膜で封止するために吸湿剤が不要であり、パネルの薄型化の観点からも非常に有効な水分遮断技術である。   As a moisture blocking technique for the organic EL element, there are a technique for forming a sealing space with glass or metal, and a film sealing technique for sealing with a protective film having low moisture permeability. The former technique has a problem in that it is difficult to reduce the thickness of the panel because the hygroscopic agent is contained in the sealing space formed of glass or metal, so that the sealing space becomes thick. On the other hand, the latter film sealing technique does not require a hygroscopic agent for sealing with a low moisture-permeable protective film, and is a very effective moisture blocking technique from the viewpoint of thinning the panel.

さらに有機EL素子はパーティクルに起因する構造的欠陥に対して脆弱であることが知られている。有機EL素子の陽極と陰極を実質的に隔てる積層有機層は数100nm程度と薄いために、陽極と陰極間にパーティクル等の構造欠陥が存在すると電界集中によって短絡し、非点灯画素(欠陥部)が発生する。この構造欠陥を回避するためには、マイクロメーター以下のパーティクルを低減・管理することが必要である。しかしながら、このような極小の構造的欠陥の解消は現状技術では非常に困難であるため、有機ELパネルの歩留まり向上の観点からは欠陥部の修復方法が期待されている。   Furthermore, it is known that organic EL elements are vulnerable to structural defects caused by particles. The laminated organic layer that substantially separates the anode and the cathode of the organic EL element is as thin as about several hundreds of nanometers. Therefore, if there is a structural defect such as a particle between the anode and the cathode, the organic EL element is short-circuited due to electric field concentration. Will occur. In order to avoid this structural defect, it is necessary to reduce and manage particles below the micrometer. However, since it is extremely difficult to eliminate such a small structural defect with the current technology, a defect repair method is expected from the viewpoint of improving the yield of the organic EL panel.

欠陥部の修復方法としては、非点灯画素の陽極と陰極間の短絡部分にYAGレーザー等を照射することでパーティクルを含めて有機層や電極を焼失させて短絡部分を開放することにより、非点灯画素を点灯画素に修復する提案がなされている(特許文献1参照)。   As a method for repairing the defective part, non-lighting is performed by irradiating the short circuit part between the anode and the cathode of the non-lighting pixel by irradiating the organic layer and the electrode including the particles by irradiating the YAG laser etc. A proposal has been made to restore a pixel to a lit pixel (see Patent Document 1).

特許文献1に開示された技術は、封止空間形成技術においては有効な手段であり、封止空間にダメージを与えることなく欠陥部の修復が可能である。   The technique disclosed in Patent Document 1 is an effective means in the sealed space forming technique, and can repair a defective portion without damaging the sealed space.

特開2000−208252号公報JP 2000-208252 A

一方、膜封止技術では、特許文献1のように電極が焼失するほどの出力でYAGレーザー等を欠陥部に照射すると、水分防止のための保護膜に膜割れが生じ、結果として水分遮断機能が失われダークスポットが発生する。   On the other hand, in the film sealing technique, when a defective portion is irradiated with a YAG laser or the like with an output that causes the electrode to be burned out as in Patent Document 1, film breakage occurs in the protective film for preventing moisture, resulting in a moisture blocking function. Is lost and dark spots occur.

本発明はこのような点に鑑みてなされたものであり、保護膜による膜封止構造の有機ELパネルの非点灯画素(欠陥部)を効率的に修復することのできる有機ELパネルの欠陥部修復方法を提供することを目的とする。   The present invention has been made in view of such points, and a defective portion of an organic EL panel capable of efficiently repairing a non-lighting pixel (defective portion) of an organic EL panel having a film sealing structure by a protective film. The object is to provide a repair method.

本発明の有機ELパネルの欠陥部修復方法は、複数の発光色画素を形成する有機層を有する有機ELパネルの欠陥部修復方法において、前記有機層の欠陥部に、前記複数の発光色画素の発光色毎に制御された強度の光を照射する工程を有することを特徴とする。   According to another aspect of the present invention, there is provided a method for repairing a defective portion of an organic EL panel, wherein the defect portion repairing method for an organic EL panel includes an organic layer that forms a plurality of light emitting color pixels. It has the process of irradiating the light of the intensity | strength controlled for every luminescent color.

保護膜による膜封止構造を有する有機ELパネルの非点灯画素(欠陥部)に対して、発光色毎に、修復用の光の強度を変えて照射することにより、保護膜にダメージを与えることなく非点灯画素を点灯画素に転じることが可能となる。   Damage to the protective film by irradiating non-lighting pixels (defects) of an organic EL panel having a film sealing structure with a protective film by changing the intensity of the repairing light for each emission color It is possible to turn a non-lighted pixel into a lighted pixel.

その結果、膜封止構造を有する有機ELパネルの生産歩留まりを大幅に向上させることができる。   As a result, the production yield of the organic EL panel having a film sealing structure can be greatly improved.

本発明の有機ELパネルの欠陥部修復方法は、複数の発光色画素の発光色毎に、画素を修復するための光の強度を変えることを特徴とする。すなわち、各発光色の非点灯画素欠陥部に、陰極と陽極間の短絡部を開放するための最適の強度で修復用の光を照射する。これによって、保護膜にダメージを与えることなく有機ELパネルの欠陥部の修復を行うことができる。   The defect repairing method of an organic EL panel according to the present invention is characterized in that the intensity of light for repairing a pixel is changed for each emission color of a plurality of emission color pixels. That is, the non-lighting pixel defect portion of each emission color is irradiated with repairing light with an optimum intensity for opening the short-circuit portion between the cathode and the anode. As a result, the defective portion of the organic EL panel can be repaired without damaging the protective film.

各発光色の欠陥部に対して光の強度が同じであれば、発光色によっては陰極と陽極間の短絡部を開放することができない場合がある。あるいは開放するだけでなく保護膜にもダメージを与える場合がある。つまり、膜封止構造を有する有機ELパネルの欠陥部修復のための光の強度には、発光色毎に緻密な制御が必要である。   If the intensity of light is the same for each emission color defect, the short circuit between the cathode and the anode may not be opened depending on the emission color. Alternatively, the protective film may be damaged as well as being opened. That is, the light intensity for repairing the defective portion of the organic EL panel having the film sealing structure needs to be finely controlled for each emission color.

さらに、それぞれの発光色画素に対応して光の強度を変える際に、各発光色画素の有機層の総膜厚t1、t2、t3・・・と各画素に照射する光の強度比P1、P2、P3・・・とが、以下の式(1)を満たす関係であることが好ましい。   Further, when changing the light intensity corresponding to each light emitting color pixel, the total film thickness t1, t2, t3... Of the organic layer of each light emitting color pixel and the light intensity ratio P1, It is preferable that P2, P3,... Satisfy the following formula (1).

t1:t2:t3・・・=P1:P2:P3・・・(1)
修復用の光には、可視領域以上の波長の光、例えば一般的に使用されるレーザー光を用いるとよい。好ましくはYAGレーザーである。
t1: t2: t3 ... = P1: P2: P3 (1)
As the repairing light, light having a wavelength in the visible region or more, for example, generally used laser light may be used. A YAG laser is preferable.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1〜3は、実施例1に係る有機ELパネルの欠陥部修復方法を説明するもので、図1は、有機EL素子の構成を示す概略図である。図1に示すように、アクティブマトリックス基板であるガラス基板101上に有機EL素子を駆動するためのトランジスタ102を形成し、トランジスタ102の起伏を平坦化するための平坦化膜103としてアクリル樹脂をスピンコートにより被覆した。その直上には第1電極104としてCrを70nm、DCマグネトロンスパッタ法により成膜し、さらにその上には画素分離膜105としてポリイミド樹脂をスピンコートにより被覆した。これらの膜には通常のフォトリソグラフィー法によりコンタクトホール、第1電極104間の分離などを随時、各工程においてパターニングされる。この時、形成したパターンは画素数160×120ドット、画素ピッチ0.25×0.25mmである。   1 to 3 illustrate a method for repairing a defective portion of an organic EL panel according to Example 1, and FIG. 1 is a schematic diagram illustrating a configuration of an organic EL element. As shown in FIG. 1, a transistor 102 for driving an organic EL element is formed on a glass substrate 101 which is an active matrix substrate, and acrylic resin is spun as a planarizing film 103 for planarizing the undulation of the transistor 102. Covered with a coat. Directly thereon, Cr was deposited as a first electrode 104 by 70 nm and DC magnetron sputtering, and a polyimide resin as a pixel separation film 105 was further coated thereon by spin coating. These films are patterned in each step at any time by contact holes, separation between the first electrodes 104, and the like by a normal photolithography method. At this time, the formed pattern has a pixel number of 160 × 120 dots and a pixel pitch of 0.25 × 0.25 mm.

本実施例においては本発明の効果を明確にするため、第1電極104の表面上にパーティクルを想定して直径0.5μmの標準粒子を散布した。   In this example, in order to clarify the effect of the present invention, standard particles having a diameter of 0.5 μm were dispersed on the surface of the first electrode 104 assuming particles.

ガラス基板101は、画素数160×120(デルタ配列)、画素ピッチ0.25×0.25mmのアクティブマトリックス基板を使用した。   As the glass substrate 101, an active matrix substrate having 160 × 120 pixels (delta arrangement) and a pixel pitch of 0.25 × 0.25 mm was used.

以上の工程後に真空高温炉において脱水処理を施した。脱水処理条件は減圧下10Pa、炉内温度200℃にて処理時間0.5〜3hrの範囲で施した。次にドライエア雰囲気下において紫外光を10分程度照射した。   After the above steps, dehydration treatment was performed in a vacuum high-temperature furnace. The dehydration conditions were 10 Pa under reduced pressure and a furnace temperature of 200 ° C. for a treatment time of 0.5 to 3 hours. Next, ultraviolet light was irradiated for about 10 minutes in a dry air atmosphere.

さらに作成したアクティブマトリックス基板を真空層に移し、以下のように有機EL素子を作製する。   Furthermore, the created active matrix substrate is moved to a vacuum layer, and an organic EL element is produced as follows.

正孔注入層、発光層、電子輸送層、電子注入層からなる有機層106を抵抗加熱式蒸着法にて成膜した。この時の、赤色発光画素、緑色発光画素、青色発光画素の各有機層の膜厚を、図4の表1に示す。発光層のみ膜厚に変化を与えており、光の取り出し効率を考慮して表1のような構成となっている。続いて、第2電極107としてITOをDCマグネトロンスパッタ法によって70nm成膜した。次に、素子への水分防止のための保護層(保護膜)108として化学気相成長法(CVD)によりSiNxを3μm成膜した。このような工程により実施例1の有機ELパネルを作製した。   An organic layer 106 including a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer was formed by a resistance heating vapor deposition method. Table 1 in FIG. 4 shows the film thicknesses of the organic layers of the red light emitting pixel, the green light emitting pixel, and the blue light emitting pixel at this time. Only the light emitting layer changes the film thickness, and the structure shown in Table 1 is adopted in consideration of the light extraction efficiency. Subsequently, ITO was deposited to a thickness of 70 nm as the second electrode 107 by DC magnetron sputtering. Next, 3 μm of SiNx was formed as a protective layer (protective film) 108 for preventing moisture on the element by chemical vapor deposition (CVD). The organic EL panel of Example 1 was produced through such steps.

実施例1の有機ELパネルは、光取り出し方向がガラス面とは反対のトップエミッション型の有機ELパネルである。   The organic EL panel of Example 1 is a top emission type organic EL panel whose light extraction direction is opposite to the glass surface.

このように作製した有機ELパネルを駆動し、点灯状態を確認し、非点灯画素を詳細に観察した。第1電極104の表面上に散布した直径0.5umの標準粒子が短絡部となり発生した非点灯画素は、1000画素程度であった。   The organic EL panel produced in this way was driven, the lighting state was confirmed, and non-lighting pixels were observed in detail. The number of non-lighted pixels generated by the standard particles having a diameter of 0.5 μm dispersed on the surface of the first electrode 104 serving as a short-circuit portion was about 1000 pixels.

次に有機ELパネルを図2に示す欠陥部修復装置に移し、レーザー光による欠陥部修復処理を行った。この欠陥部修復装置は、レーザー発振機202、レーザー光学系203、ステージ204、パネル駆動系205を備え、レーザー光学系付随のCCDカメラ206を介して画素の拡大像を別のモニター207により確認できる。レーザー発振機202はHOYA製、YAGレーザー波長1064nm及び532nm可変、最大出力20mJ、1パルス6nsecを使用した。出力はダイヤルによって200分割に制御される。またレーザーを減衰させるための不図示の1/2フィルターを挿入して過度のエネルギー入射を抑制するとともに、不図示のアパーチャ−によりレーザー光の照射面積を減少することが可能である。レーザー光学系は対物レンズ208、不図示の結像レンズを有し、CCDカメラ206を介して欠陥箇所の拡大像を視認するとともに、レーザー照射を可能にする機構となっている。   Next, the organic EL panel was moved to the defect repair apparatus shown in FIG. 2, and a defect repair process using a laser beam was performed. This defect repair apparatus includes a laser oscillator 202, a laser optical system 203, a stage 204, and a panel drive system 205, and an enlarged image of a pixel can be confirmed by another monitor 207 via a CCD camera 206 associated with the laser optical system. . The laser oscillator 202 manufactured by HOYA, YAG laser wavelength 1064 nm and 532 nm variable, maximum output 20 mJ, 1 pulse 6 nsec was used. The output is controlled to 200 divisions by a dial. In addition, a ½ filter (not shown) for attenuating the laser can be inserted to suppress excessive energy incidence, and the irradiation area of the laser beam can be reduced by an aperture (not shown). The laser optical system has an objective lens 208 and an imaging lens (not shown), and has a mechanism that enables laser irradiation while visually recognizing an enlarged image of a defective portion via the CCD camera 206.

処理手順は、有機ELパネルを表面が上になるようにステージ204に積載し、非点灯画素上に対物レンズ208が位置するようステージを粗動させる。モニター207により、有機ELパネルの短絡部と思われる欠陥部にレーザー光の照準が合うようさらにステージを微調整し照射する。この時、非点灯画素位置はパネル駆動系205により点灯させて、ステージ204を動かしながらモニターで確認することも可能である。また別の観察手段によって前もって非点灯画素座標を記録しておきステージ204を粗動させることも可能である。   In the processing procedure, the organic EL panel is mounted on the stage 204 so that the surface is on the surface, and the stage is coarsely moved so that the objective lens 208 is positioned on the non-lighted pixels. Using the monitor 207, the stage is further finely adjusted and irradiated so that the laser beam is aimed at a defective portion that seems to be a short-circuit portion of the organic EL panel. At this time, the non-lighted pixel position can be turned on by the panel drive system 205 and confirmed on the monitor while moving the stage 204. It is also possible to record the non-illuminated pixel coordinates in advance by another observation means and coarsely move the stage 204.

欠陥部修復の確認はパネル駆動系205により常に駆動状態にしておき、レーザー照射により点灯に切り替わるのをモニター207で確認することが可能である。またレーザー照射時には非駆動状態でレーザー照射後駆動させ点灯に切り替わるのを確認することも可能である。   It is possible to confirm that the defective portion is repaired by constantly driving the panel drive system 205 and switching to lighting by laser irradiation on the monitor 207. It is also possible to confirm that the laser is driven after laser irradiation in a non-driven state and switched to lighting during laser irradiation.

図3のグラフに示すようにレーザー出力を変化させて欠陥修復率を確認した。横軸のレーザー出力値は装置上のダイヤル値であり2ダイヤル値ずつ上昇した。縦軸の欠陥修復率は各レーザー出力ダイヤル値に対する欠陥修復率であり、各ダイヤル値に対する母数は50箇所である。また使用した波長は1064nmである。図3には赤色発光画素、緑色発光画素、青色発光画素のそれぞれの欠陥修復率を併記している。   As shown in the graph of FIG. 3, the defect repair rate was confirmed by changing the laser output. The laser output value on the horizontal axis is the dial value on the device, and increased by 2 dial values. The defect repair rate on the vertical axis is the defect repair rate for each laser output dial value, and the number of parameters for each dial value is 50. The wavelength used is 1064 nm. FIG. 3 also shows the defect repair rates of the red, green, and blue light emitting pixels.

図4の表1には得られた各発光色での最も欠陥修復率の高いレーザー出力ダイヤル値の強度比(最適レーザー強度比)を、赤色発光画素を基準にして示した。表1に示されるように各発光色の有機層の総膜厚の膜厚比とレーザー出力強度比の比率はほぼ一致し、式(1)と良く適合している。結果の考察として、各色の発光層材料のレーザー光吸収率は異なるものの支配的ではなく、有機層の総膜厚が持つ熱容量が支配的であると考える。   Table 1 in FIG. 4 shows the intensity ratio (optimum laser intensity ratio) of the laser output dial value with the highest defect repair rate in each emission color obtained, with the red light emitting pixel as a reference. As shown in Table 1, the ratio of the film thickness ratio of the total thickness of the organic layers of the respective emission colors and the ratio of the laser output intensity ratio are almost the same, and is well matched with the formula (1). As a consideration of the results, it is considered that the light absorption layer materials of the respective colors have different laser light absorptances but are not dominant, but the heat capacity of the total thickness of the organic layer is dominant.

各発光色の最適レーザー出力ダイヤル値を中心値にして±10%のダイヤル値範囲では各最大欠陥修復率から5%低下以内に入っていた。さらに膜厚比より算出する最適レーザー出力ダイヤル値はその範囲に入っていた。このように膜厚比よりレーザー強度を他色の発光画素に算出しても充分に耐えうる結果であり、各発光色の最適レーザー出力ダイヤル値を中心値にして±10%範囲内では欠陥部の修復に充分耐えうる。   Within the dial value range of ± 10% centered on the optimum laser output dial value of each luminescent color, it was within 5% of each maximum defect repair rate. Furthermore, the optimum laser output dial value calculated from the film thickness ratio was within that range. Thus, even if the laser intensity is calculated for the light emitting pixels of other colors based on the film thickness ratio, the results can be sufficiently tolerated, and the defect portion is within ± 10% range with the optimum laser output dial value of each light emitting color as the center value. Can withstand the repair of

上記のように実施例1で作成した有機ELパネルを高温炉にて大気圧・温度60℃・湿度90%の条件で10時間保持した。その後、駆動・発光させ、欠陥修復箇所を顕微鏡により観察したが、いずれの箇所もダークスポットの発生及び成長は見られず保護膜の損傷は見られなかった。また保護膜の損傷が発生し始めるレーザー出力のダイヤル値は100以上であり、上記の各色のレーザー出力強度は保護膜の損傷にはいたらず、充分に製品として耐えうることがわかる。   As described above, the organic EL panel prepared in Example 1 was held in a high-temperature furnace for 10 hours under conditions of atmospheric pressure, temperature 60 ° C., and humidity 90%. Thereafter, driving and light emission were performed, and defect repaired portions were observed with a microscope, but no dark spots were generated and grown in any of the portions, and no damage to the protective film was observed. Further, the dial value of the laser output at which damage to the protective film begins to occur is 100 or more, and it can be seen that the laser output intensity of each of the above colors does not cause damage to the protective film, and can sufficiently withstand the product.

以上のように各発光色でレーザー出力の強度比は各発光色の有機層の総膜厚比で表され、良く式(1)に適合する。また一色のレーザー出力条件をだすことにより、他色のレーザー出力条件を簡易的に算出することが可能である。このようなレーザー出力条件下で有機ELパネルの欠陥部の修復を行なうことにより、高歩留まりのトップエミッション型有機ELパネルの製造方法を実現できる。   As described above, the intensity ratio of the laser output for each emission color is represented by the total film thickness ratio of the organic layers of each emission color, and well fits equation (1). In addition, by determining the laser output conditions for one color, it is possible to easily calculate the laser output conditions for the other colors. By repairing the defective portion of the organic EL panel under such laser output conditions, a method for producing a high-emission top emission organic EL panel can be realized.

第1電極の材料としてITO120nmをDCスパッタリング法により成膜したこと以外は実施例1と同様にアクティブマトリックス基板を作成し、実施例1と同様に第1電極の表面上に標準粒子を散布した。さらに実施例1と同様に脱水処理及び紫外線による表面処理を行った。   An active matrix substrate was prepared in the same manner as in Example 1 except that ITO 120 nm was formed by DC sputtering as a material for the first electrode, and standard particles were dispersed on the surface of the first electrode in the same manner as in Example 1. Further, as in Example 1, dehydration treatment and surface treatment with ultraviolet rays were performed.

また、有機層についても実施例1と同様の積層順で抵抗加熱式蒸着法により成膜し、各発光色の各層の膜厚は図5に示す表2のように作成した。第2電極は実施例1と異なり、抵抗加熱式蒸着法によりAlを100nm成膜した。次に素子への水分防止のための保護層として化学気相成長法(CVD)によりSiNxを3μm成膜した。このような形態により実施例2の有機ELパネルを作製した。実施例2の有機ELパネルは光取り出し方向がガラス面より取り出すボトムエミッション型の有機ELパネルである。   Also, the organic layer was formed by resistance heating vapor deposition in the same stacking order as in Example 1, and the film thickness of each layer of each emission color was prepared as shown in Table 2 shown in FIG. Unlike Example 1, the second electrode was formed by depositing Al with a thickness of 100 nm by resistance heating vapor deposition. Next, 3 μm of SiNx was formed by chemical vapor deposition (CVD) as a protective layer for preventing moisture on the device. The organic EL panel of Example 2 was produced according to such a form. The organic EL panel of Example 2 is a bottom emission type organic EL panel whose light extraction direction is extracted from the glass surface.

次に実施例1と同様の評価方法でレーザー出力を可変させて各発光色での欠陥修復率を確認した。この時実施例1とは異なりレーザー光は基板面より入射した。最適のレーザー出力ダイヤル値と赤色発光画素を基準にした強度比を図5の表2に併せて示した。表2に示される強度比と各色の有機層の総膜厚の膜厚比との比率はほぼ一致し、式(1)と良く適合している。   Next, the laser output was varied by the same evaluation method as in Example 1, and the defect repair rate in each emission color was confirmed. At this time, unlike Example 1, the laser light was incident from the substrate surface. The optimum laser output dial value and the intensity ratio based on the red light emitting pixel are also shown in Table 2 of FIG. The ratios of the intensity ratios shown in Table 2 and the film thickness ratios of the total film thicknesses of the organic layers of the respective colors almost coincide with each other and are well matched with the formula (1).

各発光色の最適レーザー出力ダイヤル値を中心値にして±10%のダイヤル値範囲では各最大欠陥修復率から5%低下以内に入っていた。さらに膜厚比より算出する最適レーザー出力ダイヤル値はその範囲に入っていた。このように膜厚比よりレーザー強度を他色の発光画素に算出しても充分に耐えうる結果であり、各発光色の最適レーザー出力ダイヤル値を中心値にして±10%範囲内では欠陥部の修復に充分耐えうる。   Within the dial value range of ± 10% centered on the optimum laser output dial value of each luminescent color, it was within 5% of each maximum defect repair rate. Furthermore, the optimum laser output dial value calculated from the film thickness ratio was within that range. Thus, even if the laser intensity is calculated for the light emitting pixels of other colors based on the film thickness ratio, the results can be sufficiently tolerated, and the defect portion is within ± 10% range with the optimum laser output dial value of each light emitting color as the center value. Can withstand the repair of

また、実施例1と同様に欠陥修復処理を施して作成した実施例2の有機ELパネルを高温炉にて大気圧・60℃・湿度90%の条件で10時間保持した。その後、駆動・発光させて欠陥処理箇所を顕微鏡で確認したところ、いずれの箇所もダークスポットが発生しておらず保護膜の損傷は発生していない。   In addition, the organic EL panel of Example 2 prepared by performing defect repair processing in the same manner as in Example 1 was held in a high-temperature furnace for 10 hours under conditions of atmospheric pressure, 60 ° C., and humidity of 90%. After that, when the defect processing portion was confirmed with a microscope by driving and emitting light, no dark spot was generated in any portion, and the protective film was not damaged.

以上のように各発光色でレーザー出力の強度比は各発光色の有機層の総膜厚比で表され、良く式(1)と適合している。また一色のレーザー出力条件をだすことにより、他色のレーザー出力条件を簡易的に算出することが可能である。このようなレーザー出力条件下で有機ELパネルの欠陥部の修復を行うことにより、高歩留まりのボトムエミッション型有機ELパネルの製造方法を実現できる。   As described above, the intensity ratio of the laser output for each emission color is expressed by the total film thickness ratio of the organic layers of each emission color, and is well matched with the formula (1). In addition, by determining the laser output conditions for one color, it is possible to easily calculate the laser output conditions for the other colors. By repairing the defective portion of the organic EL panel under such laser output conditions, a method for manufacturing a high-emission bottom emission organic EL panel can be realized.

(比較例1)
実施例1と同じ条件で作製した有機ELパネルについて、一色の最適レーザー出力ダイヤル値で統一し、欠陥修復処理を行った場合の欠陥修復率を図6の表3に示した。いずれの出力でも高確率で欠陥修復が出来ないことがわかり、各色の有機層の総膜厚比によってレーザー出力を可変(制御)する本発明の方法が欠陥画素の修復に優れていることを示している。
(Comparative Example 1)
Table 3 in FIG. 6 shows the defect repair rate when the organic EL panel manufactured under the same conditions as in Example 1 is unified with the optimum laser output dial value of one color and the defect repair process is performed. It can be seen that defect output cannot be repaired with high probability at any output, and that the method of the present invention that varies (controls) the laser output according to the total film thickness ratio of each color organic layer is excellent in repairing defective pixels. ing.

(比較例2)
実施例2と同じ条件で作製した有機ELパネルについて、一色の最適レーザー出力ダイヤル値で統一し、欠陥修復処理を行った場合の欠陥修復率を図7の表4に示した。いずれの出力でも高確率で欠陥修復が出来ないことがわかり、各色の有機層の総膜厚比によってレーザー出力を可変(制御)する本発明の方法が欠陥画素の修復に優れていることを示している。
(Comparative Example 2)
Table 4 in FIG. 7 shows the defect repair rate when the organic EL panel manufactured under the same conditions as in Example 2 was unified with the optimum laser output dial value of one color and the defect repair process was performed. It can be seen that defect output cannot be repaired with high probability at any output, and that the method of the present invention that varies (controls) the laser output according to the total film thickness ratio of each color organic layer is excellent in repairing defective pixels. ing.

実施例1に係る有機ELパネルの構成を示す断面模式図である。1 is a schematic cross-sectional view illustrating a configuration of an organic EL panel according to Example 1. FIG. 欠陥部修復装置を示す図である。It is a figure which shows a defect repair apparatus. 実施例1の評価結果を示すグラフである。3 is a graph showing the evaluation results of Example 1. 実施例1による有機層の膜構成及び欠陥部修復用のレーザー強度比等の表1を示す。Table 1 shows the film configuration of the organic layer according to Example 1 and the laser intensity ratio for repairing the defective portion. 実施例2による有機層の膜構成及び欠陥部修復用のレーザー強度比等の表2を示す。Table 2 shows the film configuration of the organic layer according to Example 2 and the laser intensity ratio for repairing the defective portion. 比較例1における各発光色画素の欠陥修復率の表3を示す。Table 3 shows a defect repair rate of each light emitting color pixel in Comparative Example 1. 比較例2における各発光色画素の欠陥修復率の表4を示す。Table 4 shows a defect repair rate of each light emitting color pixel in Comparative Example 2.

符号の説明Explanation of symbols

101 ガラス基板
102 トランジスタ
103 平坦化膜
104 第1電極
105 画素分離膜
106 有機層
107 第2電極
108 保護層
202 レーザー発振機
203 レーザー光学系
204 ステージ
205 パネル駆動系
206 CCDカメラ
207 モニター
DESCRIPTION OF SYMBOLS 101 Glass substrate 102 Transistor 103 Flattening film 104 1st electrode 105 Pixel separation film 106 Organic layer 107 2nd electrode 108 Protective layer 202 Laser oscillator 203 Laser optical system 204 Stage 205 Panel drive system 206 CCD camera 207 Monitor

Claims (4)

複数の発光色画素を形成する有機層を有する有機ELパネルの欠陥部修復方法において、
前記有機層の欠陥部に、前記複数の発光色画素の発光色毎に制御された強度の光を照射する工程を有することを特徴とする有機ELパネルの欠陥部修復方法。
In the method for repairing a defective portion of an organic EL panel having an organic layer for forming a plurality of light emitting color pixels,
A method for repairing a defect portion of an organic EL panel, comprising: irradiating a defect portion of the organic layer with light having a controlled intensity for each emission color of the plurality of emission color pixels.
各発光色画素の前記有機層の総膜厚t1、t2、t3・・・と、各発光色画素に照射する光の強度比P1、P2、P3・・・とが、以下の式によって表わされる関係を満たすことを特徴とする請求項1記載の有機ELパネルの欠陥部修復方法。
t1:t2:t3・・・=P1:P2:P3・・・
The total film thickness t1, t2, t3... Of the organic layer of each luminescent color pixel and the intensity ratio P1, P2, P3. 2. The defect repairing method for an organic EL panel according to claim 1, wherein the relationship is satisfied.
t1: t2: t3 ... = P1: P2: P3 ...
前記光の波長は可視領域以上であることを特徴とする請求項1又は2記載の有機ELパネルの欠陥部修復方法。   3. The method for repairing a defective portion of an organic EL panel according to claim 1, wherein the wavelength of the light is not less than a visible region. 基板上に、第1電極と、複数の発光色画素を形成する有機層と、第2電極及び保護膜と、を積層した有機ELパネルを作成する工程と、
前記有機層の欠陥部に、前記複数の発光色画素の発光色毎に制御された強度の光を照射する工程と、を有することを特徴とする有機ELパネルの製造方法。
Forming an organic EL panel in which a first electrode, an organic layer for forming a plurality of light emitting color pixels, a second electrode and a protective film are laminated on a substrate;
Irradiating the defect portion of the organic layer with light having a controlled intensity for each emission color of the plurality of emission color pixels.
JP2007206111A 2007-08-08 2007-08-08 Method of repairing defective portion in organic electroluminescent panel Pending JP2009043502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206111A JP2009043502A (en) 2007-08-08 2007-08-08 Method of repairing defective portion in organic electroluminescent panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206111A JP2009043502A (en) 2007-08-08 2007-08-08 Method of repairing defective portion in organic electroluminescent panel

Publications (2)

Publication Number Publication Date
JP2009043502A true JP2009043502A (en) 2009-02-26
JP2009043502A5 JP2009043502A5 (en) 2010-09-16

Family

ID=40444046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206111A Pending JP2009043502A (en) 2007-08-08 2007-08-08 Method of repairing defective portion in organic electroluminescent panel

Country Status (1)

Country Link
JP (1) JP2009043502A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249657A (en) * 1992-03-05 1993-09-28 Nec Corp Photomask correcting device and method
JPH0982803A (en) * 1995-09-20 1997-03-28 Nec Corp Method and device for formation of via hole
JP2000208252A (en) * 1999-01-14 2000-07-28 Tdk Corp Organic electroluminescent element
JP2002260857A (en) * 2000-12-28 2002-09-13 Semiconductor Energy Lab Co Ltd Forming method of light-emitting device and thin film forming device
JP2003217852A (en) * 2002-01-28 2003-07-31 Toyota Industries Corp Organic el color display
JP2004279639A (en) * 2003-03-14 2004-10-07 Hitachi Displays Ltd Display device and its manufacturing method
JP2005019818A (en) * 2003-06-27 2005-01-20 Mitsubishi Heavy Ind Ltd Thin film processing apparatus and processing method
JP2007047576A (en) * 2005-08-11 2007-02-22 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device and its pixel section

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249657A (en) * 1992-03-05 1993-09-28 Nec Corp Photomask correcting device and method
JPH0982803A (en) * 1995-09-20 1997-03-28 Nec Corp Method and device for formation of via hole
JP2000208252A (en) * 1999-01-14 2000-07-28 Tdk Corp Organic electroluminescent element
JP2002260857A (en) * 2000-12-28 2002-09-13 Semiconductor Energy Lab Co Ltd Forming method of light-emitting device and thin film forming device
JP2003217852A (en) * 2002-01-28 2003-07-31 Toyota Industries Corp Organic el color display
JP2004279639A (en) * 2003-03-14 2004-10-07 Hitachi Displays Ltd Display device and its manufacturing method
JP2005019818A (en) * 2003-06-27 2005-01-20 Mitsubishi Heavy Ind Ltd Thin film processing apparatus and processing method
JP2007047576A (en) * 2005-08-11 2007-02-22 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device and its pixel section

Similar Documents

Publication Publication Date Title
US7141517B2 (en) Method of repairing and apparatus for repairing multi-color organic light-emitting display device
EP2378841B1 (en) Organic el display and method for manufacturing same
JP2008235178A (en) Organic el display and manufacturing method therefor
KR101775177B1 (en) Method of manufacturing organic el device and method of setting laser focusing position
JP2010093068A (en) Organic el display device and method of manufacturing the same
JP2000012220A (en) Manufacture of organic el display panel
JP2005166635A (en) Organic electroluminescent display device and thermal transfer donor film used for production of the same
US8062085B2 (en) Method of producing organic light emitting device
JP2008235177A (en) Manufacturing method of organic el display, and organic el display
JP2008108482A (en) Organic el display device
KR20040034417A (en) Organic electroluminescent device, method for manufacturing the organic electroluminescent device, and organic electroluminescent display apparatus
JP2002252087A (en) Organic light emission display device
JP2001176672A (en) Organic electroluminescent element and its manufacturing method
JP6086333B2 (en) Method for manufacturing organic electroluminescence display device and organic electroluminescence display device
US20110186819A1 (en) Organic electroluminescence display apparatus and manufacturing method therefor
US9112187B2 (en) Organic el device and method of manufacturing organic EL device
JPWO2016079957A1 (en) Method for manufacturing organic electroluminescent element and organic electroluminescent element
JP5095224B2 (en) Color organic EL display and manufacturing method thereof
JP2008268880A (en) Method of producing organic light emitting device
JP2003264073A (en) Manufacturing method of organic el display
JP2008108590A (en) Organic el element and its manufacturing method
JP2009043502A (en) Method of repairing defective portion in organic electroluminescent panel
JP4635488B2 (en) ORGANIC LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
JP2011183249A (en) Cleaning device for vapor deposition mask
JP2010244866A (en) Organic el display device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626