JP2009040855A - Gas oil composition - Google Patents

Gas oil composition Download PDF

Info

Publication number
JP2009040855A
JP2009040855A JP2007206460A JP2007206460A JP2009040855A JP 2009040855 A JP2009040855 A JP 2009040855A JP 2007206460 A JP2007206460 A JP 2007206460A JP 2007206460 A JP2007206460 A JP 2007206460A JP 2009040855 A JP2009040855 A JP 2009040855A
Authority
JP
Japan
Prior art keywords
oil
less
mass
content
gas oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007206460A
Other languages
Japanese (ja)
Other versions
JP5288741B2 (en
Inventor
Shigeru Koyama
成 小山
Yasutoshi Iguchi
靖敏 井口
Suguru Iki
英 壱岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2007206460A priority Critical patent/JP5288741B2/en
Priority to PCT/JP2008/063823 priority patent/WO2009020056A1/en
Publication of JP2009040855A publication Critical patent/JP2009040855A/en
Application granted granted Critical
Publication of JP5288741B2 publication Critical patent/JP5288741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas oil composition comprising a low-environmental load type gas oil base material produced from a triglyceride-containing hydrocarbon which is a component derived from an animal and vegetable oil and fat as a raw material and exhibiting excellent life-cycle CO<SB>2</SB>emission characteristics and oxidation stability and further excellent member stability. <P>SOLUTION: The gas oil composition is produced by mixing 95-30 vol.% of a gas oil base material with 5-70 vol.% of a petroleum-based hydrotreated oil. The gas oil base material is obtained by mixing 10-90 vol.% of the low-environmental load type gas oil base material with 90-10 vol.% of a hydrocracked gas oil fraction. The low-environmental load type gas oil base material is produced by bringing an oil to be treated into contact with a catalyst comprising a prescribed porous inorganic oxide and an active metal in the presence of hydrogen under prescribed reaction conditions. The oil to be treated is prepared by mixing the animal and vegetable oil and fat and/or the component derived from the animal and vegetable oil and fat with a sulfur-containing hydrocarbon compound. The gas oil composition has ≤360°C 90% recovered temperature, ≤10 mass ppm sulfur content, ≤1 mass% oxygen content, ≤3.5 mass% content of a fatty acid alkyl ester, ≤0.13 mgKOH/g total acid value, ≤0.01 mass% methanol content, ≤0.01 mass% glyceride content and ≤-5°C cold filter plugging point. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材と原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(以降、原油等から精製された水素化分解軽油留分ともいう。)、および原油等から精製された軽油、灯油留分を有する石油系水素化処理油を混合することによって得られる、ライフサイクルCO排出特性および酸化安定性に優れ、且つ低温流動性に優れた軽油組成物に関するものである。 The present invention relates to an atmospheric low-residue oil obtained by treating an environmentally low load light oil base material and crude oil or the like produced using animal and vegetable oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable oils and fats with an atmospheric distillation apparatus. A hydrocracked gas oil fraction obtained by further hydrocracking a vacuum gas oil obtained by subsequent treatment with a vacuum distillation apparatus (hereinafter also referred to as a hydrocracked gas oil fraction purified from crude oil or the like), Oil composition obtained by mixing gas oil refined from crude oil, etc., and petroleum-based hydrotreated oil having a kerosene fraction, having excellent life cycle CO 2 emission characteristics and oxidation stability, and excellent low-temperature fluidity It is about things.

従来、軽油の基材としては、原油の常圧蒸留装置から得られる直留軽油に水素化処理や水素化脱硫処理を施したもの、原油の常圧蒸留装置から得られる直留灯油に水素化処理や水素化脱硫処理を施したもの等が知られている。従来の軽油組成物は上記軽油基材及び灯油基材を1種または2種以上配合することにより製造されている。また、これらの軽油組成物には、必要に応じてセタン価向上剤や清浄剤等の添加剤が配合される(例えば、非特許文献1参照。)。
特許文献1(特開2003−171670号公報)には、天然油脂類あるいはその誘導体及び食用廃油等を原料とする炭化水素類の製造方法を提供することを目的として、天然油脂、廃天然油脂またはその誘導体と、活性化した水素とを金属触媒、合金触媒、金属担持触媒および合金担持触媒からなる群より選ばれる触媒の存在下反応させることを特徴とする炭化水素類の製造方法が開示されている。
また特許文献2(特表2005−538204号公報)には、植物および/または動物および/または魚を起源とする生物学的原材料から調製される成分または成分の混合物を0.1〜99容量%および酸素を含む成分を0〜20容量%含むディーゼルエンジン用燃料組成物が開示されている。ここで両成分は、フィッシャー−トロプシュ工程からの粗油および/または画分に基づくディーゼル成分と混合されるとされている。
また、特許文献3(特開2004−189885号公報)には、脂肪酸を構成する炭素数が6から20までの飽和又は不飽和脂肪酸のメチルエステル又はエチルエステル、あるいはそれらの混合物からなる環境対応型ディーゼル燃料組成物が開示されている。
しかしながら、ライフサイクルCO排出特性、酸化安定性、低温性能といった要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困難であり、なおかつ市販燃料油として求められている諸性能を十分満たし、また現実的な製造方法については開示されていない。
特開2003−171670号公報 特表2005−538204号公報 特開2004−189885号公報 小西誠一著,「燃料工学概論」,裳華房,1991年3月,p.136−144
Conventionally, as the base material for light oil, hydrogenated straight-run kerosene obtained from crude oil atmospheric distillation equipment, hydrogenated or hydrodesulfurized straight-oil light oil obtained from crude oil atmospheric distillation equipment The thing etc. which performed the process and the hydrodesulfurization process are known. Conventional gas oil compositions are produced by blending one or more of the above gas oil base and kerosene base. Moreover, additives, such as a cetane number improver and a detergent, are mix | blended with these light oil compositions as needed (for example, refer nonpatent literature 1).
Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-171670) discloses natural fats and oils, waste natural fats and oils for the purpose of providing a method for producing hydrocarbons using natural fats and oils or derivatives thereof and edible waste oils as raw materials. Disclosed is a method for producing hydrocarbons, characterized by reacting the derivative with activated hydrogen in the presence of a catalyst selected from the group consisting of a metal catalyst, an alloy catalyst, a metal-supported catalyst, and an alloy-supported catalyst. Yes.
Patent Document 2 (Japanese Patent Publication No. 2005-538204) discloses 0.1 to 99% by volume of a component or a mixture of components prepared from biological raw materials originating from plants and / or animals and / or fish. And the fuel composition for diesel engines which contains 0-20 volume% of components containing oxygen is disclosed. Here both components are said to be mixed with diesel components based on crude oil and / or fractions from the Fischer-Tropsch process.
Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-189885) discloses an environment-friendly type comprising a methyl ester or ethyl ester of a saturated or unsaturated fatty acid having 6 to 20 carbon atoms, or a mixture thereof. A diesel fuel composition is disclosed.
However, it is very difficult to design a high-quality fuel that can simultaneously achieve the required performance such as life cycle CO 2 emission characteristics, oxidation stability, and low-temperature performance at a high level, and there are various demands for commercial fuel oil. It does not disclose a manufacturing method that satisfies the performance sufficiently and is realistic.
JP 2003-171670 A JP 2005-538204 A JP 2004-189885 A Seiichi Konishi, “Introduction to Fuel Engineering”, Saika Hanafusa, March 1991, p. 136-144

ところで、近年、早急な大気環境改善及び環境負荷低減を目指して、内燃機関用燃料である軽油中の硫黄分及び芳香族含有量の低減が求められている。また同時に地球温暖化問題に対応するため、一層の燃費向上に貢献しかつ二酸化炭素(CO)削減に効果的な燃料性状が求められており、その解決手段の1つとして合成燃料や再生可能エネルギーであるバイオディーゼル燃料(以降BDFとも表記する。)を代替燃料として用いることが検討されている。 By the way, in recent years, reduction of sulfur content and aromatic content in light oil, which is a fuel for internal combustion engines, has been demanded with the aim of promptly improving the air environment and reducing the environmental load. At the same time, in order to cope with the global warming problem, there is a demand for fuel properties that contribute to further improvement in fuel efficiency and reduce carbon dioxide (CO 2 ). Synthetic fuels and renewable energy are one of the solutions. The use of biodiesel fuel, which is energy (hereinafter also referred to as BDF), as an alternative fuel is being studied.

BDFは天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物が主であり、排出ガス中のすす生成寄与度が大きいとされている芳香族化合物分や排出ガス後処理触媒への被毒等の影響が大きいとされている硫黄分をほとんど含まず、またそれ自身が分子中に酸素を持った含酸素化合物であるため、代替燃料の有力な候補として着目されている。また、植物由来であることから再生可能エネルギーと位置づけられているため、1997年に締結された国際間での二酸化炭素削減プロトコル、いわゆる京都議定書においてはBDF起因の二酸化炭素は排出量として計上されないルールである点も、BDFは政策的なメリットを有している。   BDF is mainly a mixture of fatty acid alkyl esters made from natural animal and plant oils and fats. Influence of poisoning on aromatic compounds and exhaust gas aftertreatment catalysts that are considered to have a large contribution to soot formation in exhaust gas Since it is an oxygen-containing compound that has almost no sulfur content and has oxygen in the molecule, it has attracted attention as a promising candidate for alternative fuels. In addition, because it is plant-derived, it is positioned as renewable energy, so the international carbon dioxide reduction protocol signed in 1997, the so-called Kyoto Protocol, does not count carbon dioxide derived from BDF as an emission amount. The BDF also has a policy merit.

しかしながら、天然の動植物油脂を原料とした脂肪酸アルキルエステルは本来重質な成分が多く、エンジン燃焼等における燃え切り性が悪くなり、燃焼時の未燃炭化水素排出を増加させる懸念がある。また、脂肪酸アルキルエステルは含酸素化合物であるため、燃焼時のアルデヒド類の排出を増加させる懸念がある。飽和脂肪酸基を多く有する脂肪酸アルキルエステルを多く含有するBDFの場合は、常温でも固体であるために燃料としての取り扱いに劣り、また低温時の流動性能も確保することが困難である。不飽和脂肪酸基を多く含有するBDFの場合は、その化学組成上酸化安定性に劣り、色相の劣化やスラッジの生成およびエンジン部材への悪影響が懸念されている。更には、脂肪酸アルキルエステルを精製する際の原料である脂肪酸グリセライド、アルキルアルコール及び副生成物であるグリセリン混合物はエンジン部材や燃料噴射系への悪影響が極めて懸念されているものである。   However, fatty acid alkyl esters using natural animal and vegetable oils and fats as raw materials are inherently heavy, and there is a concern that unburned hydrocarbon emissions during combustion may increase due to poor burn-off in engine combustion and the like. In addition, since fatty acid alkyl esters are oxygen-containing compounds, there is a concern of increasing the emission of aldehydes during combustion. In the case of BDF containing a large amount of fatty acid alkyl ester having many saturated fatty acid groups, it is solid even at room temperature, so it is inferior in handling as a fuel, and it is difficult to ensure fluidity at low temperature. In the case of BDF containing a lot of unsaturated fatty acid groups, its chemical composition is inferior in oxidative stability, and there is concern about deterioration of hue, generation of sludge, and adverse effects on engine members. Furthermore, the fatty acid glyceride, the alkyl alcohol, and the glycerin mixture, which is a by-product, which are raw materials for purifying the fatty acid alkyl ester are extremely concerned about adverse effects on engine members and fuel injection systems.

これらの傾向は既存の軽油等には見られなかった傾向であり、そのためBDF単独で使用する場合だけでなく、既存の軽油等に混合して使用する場合においても同様に問題となっており、BDF自体の性状に留意するだけでなく、既存軽油との混合使用時においても酸化安定性や低温性能、燃焼性等に従来以上に留意する必要がある。
従って、有害排気成分の低減と共にライフサイクルCO排出特性および酸化安定性に優れ、良好な低温性能を有する軽油組成物の提供に関して、天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物であるBDFの使用では、これらの性能改善を同時に達成することはできない。さらに、これらのエンジン性能は他の燃料性状とも密接に関連するため、これらの要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困難であり、なおかつ市販燃料油として求められている諸性能を十分満たし、また現実的な製造方法の検討を踏まえた例、知見は存在していない。
These tendencies are not seen in the existing light oil, etc., so not only when using BDF alone, but also when mixing with existing light oil, etc. In addition to paying attention to the properties of the BDF itself, it is necessary to pay more attention to oxidation stability, low-temperature performance, combustibility, and the like even when mixed with existing light oil.
Therefore, regarding the provision of a light oil composition that has excellent life cycle CO 2 emission characteristics and oxidation stability as well as reduction of harmful exhaust components, and good low-temperature performance, BDF, which is a mixture of fatty acid alkyl esters made from natural animal and vegetable oils and fats, is used. In use, these performance improvements cannot be achieved simultaneously. Furthermore, because these engine performances are closely related to other fuel properties, it is very difficult to design high-quality fuels that can simultaneously achieve these required performances at a high level, and are required as commercial fuel oils. There are no examples or knowledge based on the examination of practical manufacturing methods that satisfy the various performances.

本発明は、かかる実状に鑑みてなされたものであり、その目的は、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材と原油等から精製された水素化分解軽油留分、および原油等から精製された軽油、灯油留分を有する石油系水素化処理油を混合することによって得られる、ライフサイクルCO排出特性および酸化安定性に優れ、且つ低温流動性に優れた軽油組成物を提供することにある。 The present invention has been made in view of such a situation, and the object thereof is an environmentally low load type light oil base material, crude oil, etc. produced from animal and vegetable oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable oils and fats. To life cycle CO 2 emission characteristics and oxidation stability obtained by mixing hydrocracked gas oil fraction refined from oil, gas oil refined from crude oil, etc. and petroleum hydrotreated oil having kerosene fraction An object of the present invention is to provide a light oil composition that is excellent and has excellent low-temperature fluidity.

本発明者らは、上記課題を解決するために鋭意研究した結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

すなわち、本発明の第1は、水素の存在下、動植物油脂および/または動植物油脂由来成分に含硫黄炭化水素化合物を硫黄分が1質量ppm〜2質量%となるように混合した被処理油と、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒とを、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/L、反応温度150〜480℃の条件下で接触させることによって製造される留分(環境低負荷型軽油基材)10〜90容量%と原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)90〜10容量%とを混合することで得られる軽油基材A95〜30容量%に、原油等から精製された軽油留分を水素化処理して得られる石油系水素化処理油(軽油基材B)を5〜70容量%混合することで得られる、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、全酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油基材AおよびBからなる軽油組成物に関するものである。 That is, the first of the present invention is an oil to be treated in which sulfur-containing hydrocarbon compounds are mixed with animal and vegetable oils and / or components derived from animal and vegetable oils and fats so that the sulfur content is 1 mass ppm to 2 mass% in the presence of hydrogen. Porous inorganic oxides containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium, and periodic groups 6A and 6C supported on the porous inorganic oxides A catalyst containing one or more metals selected from Group 8 elements, a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h −1 , a hydrogen / oil ratio of 150 to 1500 NL / L, a reaction temperature A normal pressure residue oil obtained by treating 10 to 90% by volume of a fraction (environmental low load gas oil base material) produced by contacting under conditions of 150 to 480 ° C. and crude oil etc. with an atmospheric distillation apparatus. Continued It is obtained by mixing 90 to 10% by volume of a hydrocracked gas oil fraction (boiling point range: 200 to 350 ° C.) obtained by further hydrocracking a vacuum gas oil obtained by treating with a vacuum distillation apparatus. Obtained by mixing 5-70 vol% of petroleum-based hydrotreated oil (light oil substrate B) obtained by hydrotreating gas oil fraction refined from crude oil etc. into light oil substrate A95-30 vol% 90% distillation temperature is 360 ° C. or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid alkyl ester content is 3.5 mass% or less, total acid value is 0.13 mg KOH / g or less, methanol content The present invention relates to a light oil composition comprising light oil base materials A and B, characterized by being 0.01% by mass or less, a glyceride content of 0.01% by mass or less, and a clogging point of −5 ° C. or less.

また、本発明の第2は、水素の存在下、動植物油脂および/または動植物油脂由来成分10〜90容量%と原油等から精製された軽油留分を有する石油系基材90〜10容量%とを混合した被処理油を、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒とを、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/L、反応温度150〜480℃の条件下で接触させることによって製造される留分(環境低負荷型軽油基材)10〜90容量%に、原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)を90〜10容量%混合することで得られる軽油基材A’95〜30容量%に、原油等から精製された灯油留分を水素化処理して得られる石油系水素化処理油(軽油基材B’)を5〜70容量%混合することで得られる、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、全酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油基材A’およびB’からなる軽油組成物に関するものである。 The second aspect of the present invention is a petroleum-based base material having 10 to 90% by volume of animal and vegetable oils and / or animal and vegetable oils and fat-derived components and a light oil fraction refined from crude oil and the like in the presence of hydrogen. A porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium, and a period carried on the porous inorganic oxide A catalyst containing one or more metals selected from the elements of Group 6A and Group 8 of the table, hydrogen pressure 2-13 MPa, liquid space velocity 0.1-3.0 h −1 , hydrogen / oil ratio 150 Crude oil or the like is treated with an atmospheric distillation apparatus to 10 to 90% by volume of a fraction (environmental low load type light oil base material) produced by contact under conditions of ˜1500 NL / L and reaction temperature of 150 to 480 ° C. Obtained 90 to 10% by volume of hydrocracked gas oil fraction (boiling range: 200 to 350 ° C.) obtained by further hydrocracking the vacuum gas oil obtained by subsequently treating the atmospheric residue with a vacuum distillation apparatus Gas oil base material A ′ obtained in the process of 95 to 30% by volume of petroleum-based hydrotreated oil (light oil base material B ′) obtained by hydrotreating kerosene fraction refined from crude oil or the like 90% distillation temperature obtained by mixing 70% by volume, 360 ° C. or less, sulfur content 10 mass ppm or less, oxygen content 1% by mass or less, fatty acid alkyl ester content 3.5% by mass or less, total acid value 0 A gas oil composition comprising gas oil bases A ′ and B ′, having a methanol content of 0.01 mass% or less, a glyceride content of 0.01 mass% or less, and a clogging point of −5 ° C. or less. It is about things.

本発明によれば、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型軽油基材と原油等から精製された水素化分解軽油留分、および原油等から精製された軽油、灯油留分を有する石油系水素化処理油を混合することによって、従来の軽油組成物では実現が困難であったライフサイクルCO排出特性および酸化安定性に優れ、良好な低温性能を有する軽油組成物が提供される。 According to the present invention, an environmentally low load gas oil base produced using animal and vegetable fats and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils, a hydrocracked gas oil fraction purified from crude oil, and the like, and crude oil By mixing gas-oil refined from oil, petroleum-based hydrotreated oil having kerosene fraction, it has excellent life cycle CO 2 emission characteristics and oxidation stability, which were difficult to realize with conventional gas oil compositions. A light oil composition having a low temperature performance is provided.

以下、本発明について詳細に説明する。
本発明にかかる環境低負荷型軽油基材は、所定の原料油を水素化処理して得られる低硫黄、低酸素の留分である。所定の原料油は、動植物油脂および/または動植物油脂由来成分に、含硫黄炭化水素化合物を硫黄分が1質量ppm〜2質量%となるように混合して得られる混合油(被処理油)、もしくは動植物油脂および/または動植物油脂由来成分10〜90容量%と原油等から精製された軽油留分を有する石油系基材90〜10容量%とを混合して得られる混合油(被処理油)である。
Hereinafter, the present invention will be described in detail.
The environmentally low load light oil base material according to the present invention is a low sulfur and low oxygen fraction obtained by hydrotreating a predetermined raw material oil. The predetermined raw material oil is a mixed oil (treated oil) obtained by mixing a sulfur-containing hydrocarbon compound with a component derived from animal and vegetable oils and / or animal and vegetable oils and fats so that the sulfur content is 1 mass ppm to 2 mass%, Alternatively, a mixed oil (treated oil) obtained by mixing 10 to 90% by volume of a component derived from animal and vegetable oils and / or animal and vegetable fats and oils and 90 to 10% by volume of a petroleum base material having a light oil fraction refined from crude oil or the like. It is.

本発明における動植物油脂および/または動植物油脂由来成分とは、天然もしくは人工的に生産、製造される動植物油脂および/またはこれらの油脂を由来して生産、製造される成分をいう。動物油脂および動物油の原料としては、牛脂、牛乳脂質(バター)、豚脂、羊脂、鯨油、魚油、肝油等が挙げられ、植物油脂および植物油原料としては、ココヤシ、パームヤシ、オリーブ、べにばな、菜種(菜の花)、米ぬか、ひまわり、綿実、とうもろこし、大豆、ごま、アマニ等の種子部及びその他の部分が挙げられるが、これ以外の油脂、油であっても使用に問題はない。これらの原料油に関してはその状態が固体、液体であることは問わないが、取り扱いの容易さおよび二酸化炭素吸収能や生産性の高さから植物油脂、植物油を原料とする方が好ましい。また、本発明においては、これらの動物油、植物油を民生用、産業用、食用等で使用した廃油も雑物等の除去工程を加えた後に原料とすることができる。   The animal and vegetable oil and / or animal and vegetable oil / fat-derived component in the present invention refers to an animal and vegetable oil and / or fat that is produced and / or produced naturally or artificially and / or a component that is produced and / or produced from these oil and fat. Examples of animal fats and animal oil materials include beef tallow, milk lipid (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, and the like. Examples include rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, and other parts of the linseed, but other fats and oils can be used without problems. These raw oils may be solid or liquid, but it is preferable to use vegetable oils and vegetable oils as raw materials because of ease of handling, high carbon dioxide absorption capacity and high productivity. Moreover, in this invention, the waste oil which used these animal oils and vegetable oils for consumer use, industrial use, food use etc. can also be used as a raw material after adding the removal process of miscellaneous matters.

動植物油脂および動植物油脂由来成分中に含有されるグリセライド化合物の脂肪酸部分の代表的な組成としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる。自然界の物質におけるこれら脂肪酸の炭化水素部は一般に直鎖であることが多いが、本発明において本発明で規定する性状を満たす限りで、側鎖を有する構造、すなわち異性体であっても使用することができる。また、不飽和脂肪酸における分子中の不飽和結合の位置も、本発明において本発明で規定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、化学合成によって任意の位置に設定されたものも使用することができる。
動植物油脂および動植物油脂由来成分はこれらの脂肪酸を1種または複数種有しており、原料によってその有する脂肪酸類は異なっている。例えば、ココヤシ油はラウリン酸、ミリスチン酸等の飽和脂肪酸を比較的多く有しているが、大豆油はオレイン酸、リノール酸等の不飽和脂肪酸を多く有している。
As a typical composition of the fatty acid part of the glyceride compound contained in the animal and vegetable oils and fats and components derived from animal and vegetable oils and fats, butyric acid (C 3 H 7 COOH) which is a fatty acid having no unsaturated bond in a molecular structure called saturated fatty acid , Caproic acid (C 5 H 11 COOH), caprylic acid (C 7 H 15 COOH), capric acid (C 9 H 19 COOH), lauric acid (C 11 H 23 COOH), myristic acid (C 13 H 27 COOH) , Palmitic acid (C 15 H 31 COOH), stearic acid (C 17 H 35 COOH), and oleic acid (C 17 H 33 COOH), an unsaturated fatty acid having one or more unsaturated bonds, linoleic acid (C 17 H 31 COOH), linolenic acid (C 17 H 29 COOH), ricinoleic acid (C 17 H 32 ( H) COOH) and the like. The hydrocarbon part of these fatty acids in natural substances is generally linear, but it is used in the present invention even if it has a structure having a side chain, that is, an isomer, as long as the properties defined in the present invention are satisfied. be able to. Further, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally found in nature as long as the properties defined in the present invention are satisfied in the present invention. The set one can also be used.
Animal and vegetable oils and fats and components derived from animal and vegetable oils have one or more of these fatty acids, and the fatty acids they have differ depending on the raw materials. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.

動植物油脂および/または動植物油脂由来成分に混合して被処理油を形成する含硫黄炭化水素化合物としては特に制限されないが、具体的には、スルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン及びこれらの誘導体などが挙げられる。被処理油に含まれる含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であってもよい。あるいはまた、前記の含硫黄炭化水素化合物の代わりに硫黄分を含有する石油系炭化水素留分を用いても良い。
含硫黄炭化水素化合物の配合割合は、被処理油の硫黄分が1質量ppm〜2質量%、好ましくは10質量ppm〜1質量%となるように配合する。
Although it does not restrict | limit especially as a sulfur-containing hydrocarbon compound which mixes with animal and vegetable fat and / or animal and vegetable fat origin components, and forms a to-be-processed oil, Specifically, sulfide, disulfide, polysulfide, thiol, thiophene, benzothiophene, dibenzo Examples include thiophene and derivatives thereof. The sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Alternatively, a petroleum hydrocarbon fraction containing a sulfur content may be used in place of the sulfur-containing hydrocarbon compound.
The mixing ratio of the sulfur-containing hydrocarbon compound is such that the sulfur content of the oil to be treated is 1 mass ppm to 2 mass%, preferably 10 mass ppm to 1 mass%.

原料油(被処理油)の水素化条件としては、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/Lの条件下で行われることが望ましく、水素圧力3〜12MPa、液空間速度0.2〜2.0h−1、水素/油比200〜1200NL/Lといった条件がより望ましく、水素圧力4〜10.5MPa、液空間速度0.25〜1.0h−1、水素油比300〜1000NL/Lといった条件がさらに望ましい。これらの条件はいずれも反応活性を左右する因子であり、例えば、水素圧力および水素/油比が前記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあり、水素圧力および水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、前記下限未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、前記上限を超えている場合は反応が十分進行しなくなる傾向にある。 The hydrogenation conditions of the raw material oil (the oil to be treated) are performed under the conditions of a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h −1 , and a hydrogen / oil ratio of 150 to 1500 NL / L. Desirably, conditions such as hydrogen pressure 3-12 MPa, liquid space velocity 0.2-2.0 h −1 , hydrogen / oil ratio 200-1200 NL / L are more desirable, hydrogen pressure 4-10.5 MPa, liquid space velocity 0.25. The conditions of -1.0 h < -1 > and hydrogen oil ratio 300-1000 NL / L are further desirable. All of these conditions are factors that influence the reaction activity. For example, when the hydrogen pressure and the hydrogen / oil ratio are less than the lower limit values, there is a risk of causing a decrease in reactivity or a rapid decrease in activity. When the pressure and the hydrogen / oil ratio exceed the upper limit values, there is a possibility that excessive equipment investment such as a compressor may be required. The lower the liquid space velocity, the more advantageous the reaction. However, if the liquid space velocity is less than the lower limit, a very large reaction tower volume is required, which tends to result in excessive capital investment. Tend not to progress sufficiently.

反応温度は目的とする原料油重質留分の分解率あるいは目的とする留分収率を得るため150〜480℃の範囲が好ましく、望ましくは220〜400℃、さらに望ましくは260〜360℃の範囲に設定する。反応温度が前記下限値に満たない場合には、反応が十分に進行しなくなる恐れがあり、前記上限値を超える場合には過度に分解が進行し、液生成物留率の低下を招く傾向にある。   The reaction temperature is preferably in the range of 150 to 480 ° C., preferably 220 to 400 ° C., more preferably 260 to 360 ° C., in order to obtain the decomposition rate of the target raw material heavy oil fraction or the target fraction yield. Set to range. When the reaction temperature is less than the lower limit, the reaction may not proceed sufficiently. When the reaction temperature exceeds the upper limit, decomposition proceeds excessively, and the liquid product fraction tends to decrease. is there.

水素化処理の反応器の形式は、固定床方式であってもよい。すなわち、水素は原料油に対して向流または並流のいずれの形式をとることもでき、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独または複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用しても良い。本発明において、反応器内で水素化処理された留出油は気液分離工程、精留工程等を経て所定の留分に分画される。このとき、反応に伴い生成する水分あるいは原料油に硫黄分が含まれている場合には硫化水素が発生する可能性があるが、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置しても良い。   The type of the hydrotreating reactor may be a fixed bed system. That is, hydrogen can take either a countercurrent or a cocurrent flow with respect to the raw material oil, or a combination of countercurrent and cocurrent flow having a plurality of reaction towers. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. In addition, the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted. In the present invention, the distillate oil hydrotreated in the reactor is fractionated into predetermined fractions through a gas-liquid separation step, a rectification step and the like. At this time, there is a possibility that hydrogen sulfide may be generated if the moisture or raw material oil produced by the reaction contains sulfur, but gas-liquid separation equipment is used between the reactors or in the product recovery process. And other by-product gas removal devices may be installed.

一般的に水素ガスは加熱炉を通過前あるいは通過後の原料油に随伴して最初の反応器の入口から導入するが、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に導入してもよい。このようにして導入される水素をクエンチ水素と呼称する。このとき、原料油に随伴して導入する水素に対するクエンチ水素との割合は望ましくは10〜60容量%、より望ましくは15〜50容量%である。クエンチ水素の割合が前記下限値より低い場合には後段反応部位での反応が十分進行しない恐れがあり、前記上限値を超える場合には反応器入口付近での反応が十分進行しない恐れがある。   In general, hydrogen gas is introduced from the inlet of the first reactor before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled and the reactor is as much as possible. It may be introduced between the catalyst beds or between a plurality of reactors in order to maintain the hydrogen pressure throughout. The hydrogen thus introduced is referred to as quench hydrogen. At this time, the ratio of quench hydrogen to hydrogen introduced accompanying the feedstock is desirably 10 to 60% by volume, more desirably 15 to 50% by volume. When the ratio of quench hydrogen is lower than the lower limit, the reaction at the subsequent reaction site may not proceed sufficiently, and when it exceeds the upper limit, the reaction near the reactor inlet may not proceed sufficiently.

水素化触媒の担体としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性の無機酸化物が用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、チタニア、ジルコニア、ボリア、マグネシアなどが挙げられる。望ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物である。また、このほかの成分として、リンを含んでいてもよい。アルミナ以外の成分の合計含有量は1〜20重量%であることが好ましく、2〜15重量%であることがより望ましい。アルミナ以外の成分の合計含有量が1重量%に満たない場合は、十分な触媒表面積を得ることが出来ず、活性が低くなる恐れがあり、また20重量%を超える場合は、担体の酸性質が上昇し、コーク生成による活性低下を招く恐れがある。リンを担体構成成分として含む場合には、その含有量は、酸化物換算で1〜5重量%であることが望ましく、2〜3.5重量%がさらに望ましい。   As a support for the hydrogenation catalyst, a porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used. Generally, it is a porous inorganic oxide containing alumina, and examples of other carrier constituents include silica, titania, zirconia, boria, magnesia and the like. Desirably, it is a complex oxide containing at least one selected from alumina and other constituent components. Moreover, phosphorus may be included as another component. The total content of components other than alumina is preferably 1 to 20% by weight, and more preferably 2 to 15% by weight. If the total content of components other than alumina is less than 1% by weight, a sufficient catalyst surface area cannot be obtained and the activity may be lowered. If it exceeds 20% by weight, the acidity of the support May increase, leading to a decrease in activity due to coke formation. When phosphorus is included as a carrier constituent, the content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.

アルミナ以外の担体構成成分である、シリカ、チタニア、ジルコニア、ボリア、マグネシアの前駆体となる原料は特に限定されず、一般的なケイ素、チタン、ジルコニウム、ボロン、マグネシウムを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸など、マグネシウムについては硝酸マグネシウムなどを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。   The raw material to be a precursor of silica, titania, zirconia, boria, magnesia, which is a carrier constituent other than alumina, is not particularly limited, and a solution containing general silicon, titanium, zirconium, boron, magnesium can be used. . For example, silicic acid, water glass and silica sol for silicon, titanium sulfate, titanium tetrachloride and various alkoxide salts for titanium, zirconium sulfate and various alkoxide salts for zirconium, boric acid for boron, magnesium for magnesium, etc. Magnesium nitrate or the like can be used. As phosphorus, phosphoric acid or an alkali metal salt of phosphoric acid can be used.

これらのアルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば、予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体表面積の増加や、活性金属となんらかの相互作用を生じることにより、活性に影響を及ぼしていることが考えられる。   It is desirable that the raw materials for the carrier constituents other than alumina be added in any step prior to the firing of the carrier. For example, an aluminum hydroxide gel containing these components may be added to an aluminum aqueous solution in advance, or may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder. May be added to the kneading step, but a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable. Although the mechanism of the effect of these carrier constituents other than alumina has not been elucidated, it is thought that they form a complex oxide state with aluminum, which increases the surface area of the carrier and some interaction with the active metal. It is considered that the activity is affected by producing the action.

水素化触媒の活性金属としては、周期律表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から選択される二種類以上の金属を含有している。例えば、Co−Mo、Ni−Mo、Ni−Co−Mo、Ni−Wなどが挙げられ、水素化に際しては、これらの金属を硫化物の状態に転換して使用することが好ましい。   The active metal of the hydrogenation catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, preferably two or more metals selected from Groups 6A and 8 Contains. For example, Co—Mo, Ni—Mo, Ni—Co—Mo, Ni—W, and the like can be mentioned. In hydrogenation, it is preferable to convert these metals into a sulfide state.

活性金属の含有量は、例えば、WとMoの合計担持量は、望ましくは酸化物換算で触媒重量に対して12〜35重量%、より望ましくは15〜30重量%である。WとMoの合計担持量が12重量%に満たない場合、活性点数の減少により活性が低下する可能性があり、35重量%を超える場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。また、CoとNiの合計担持量は、望ましくは酸化物換算で触媒重量に対して1.5〜10重量%、より望ましくは2〜8重量%である。CoとNiの合計担持量が1.5重量%未満の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、10重量%より多い場合には、金属が効果的に分散せず、同様に活性を招く可能性がある。   As for the content of the active metal, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide. If the total supported amount of W and Mo is less than 12% by weight, the activity may decrease due to a decrease in the number of active sites. If it exceeds 35% by weight, the metal is not effectively dispersed, and similarly It may cause a decrease in activity. The total supported amount of Co and Ni is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of Co and Ni is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced. If it is more than 10% by weight, the metal is effective. In the same manner, there is a possibility of causing activity.

水素化触媒のいずれの触媒において、活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。   In any catalyst of the hydrogenation catalyst, the method of incorporating the active metal into the catalyst is not particularly limited, and a known method applied when producing a normal desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Further, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.

上記のようにして、動植物油脂および/または動植物油脂由来成分に含硫黄炭化水素化合物を混合した被処理油を、所定条件下に水素化処理することにより環境低負荷型軽油基材が製造される。   As described above, an environment-friendly light oil base material is produced by hydrotreating an oil to be treated, in which a sulfur-containing hydrocarbon compound is mixed with a component derived from animal and vegetable fats and / or animal and plant fats and oils under predetermined conditions. .

本発明の第1の軽油組成物は、前記で製造された環境低負荷型軽油基材10〜90容量%と原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)90〜10容量%とを混合することにより得られる軽油基材A95〜30容量%に、原油等から精製された軽油留分を水素化処理して得られる石油系水素化処理油(軽油基材B)を5〜70容量%混合して所定の性能を満たした軽油基材AおよびBからなる。   The first light oil composition of the present invention is prepared by subjecting the atmospheric low-residue light oil base material produced above to 10 to 90% by volume and the atmospheric residual oil obtained by treating crude oil or the like with an atmospheric distillation apparatus, followed by decompression. A gas oil base obtained by mixing 90 to 10% by volume of a hydrocracked gas oil fraction (boiling point range: 200 to 350 ° C.) obtained by further hydrocracking a vacuum gas oil obtained by treating with a distillation apparatus. A predetermined performance is obtained by mixing 95 to 30% by volume of the material A with 5 to 70% by volume of a petroleum hydrotreated oil (light oil base material B) obtained by hydrotreating a light oil fraction refined from crude oil or the like. It consists of filled light oil bases A and B.

上記水素化分解軽油留分は、原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油等をさらに水素化分解処理して得られる沸点範囲が200〜350℃の留分である。
水素化分解処理方法としては、特に限定されるものではないが、減圧軽油等の重質な原料油を、高温高圧水素条件下で、分解と水素化の二元機能を持つ触媒上に通し、水素化分解と共に脱硫、脱窒素等を行う水素化分解する方法が挙げられる。触媒の分解能は、多孔性の固体酸担体に起因する傾向にある。固体酸担体としては、シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、シリカ−チタニア等のアモルファス系担体、各種の改質や変性が施されたゼオライト等の結晶系担体が用いられる。水素化能は、Ni、Co、Mo、W、Pd、Pt等の金属を2〜3種類組み合わせて担持されることにより発揮されるが、中でもCo−Mo、Ni−Mo、Ni−Wの組み合わせが好ましい。
水素化分解における水素圧力は、通常、5MPa以上20MPa以下、好ましくは8MPa以上15MPa以下である。また、反応温度は、通常、350℃以上430℃以下である。液空間速度は、通常、0.1/h以上1.0/h以下、好ましくは0.2/h以上0.4/h以下である。
The above hydrocracked gas oil fraction is obtained by further hydrocracking a vacuum gas oil obtained by treating a crude oil etc. with an atmospheric distillation apparatus and subsequently treating an atmospheric residue oil with a vacuum distillation apparatus. The boiling point range is 200 to 350 ° C.
The hydrocracking treatment method is not particularly limited, but a heavy feed oil such as vacuum gas oil is passed over a catalyst having a dual function of cracking and hydrogenation under high-temperature and high-pressure hydrogen conditions, Examples of the hydrocracking method include desulfurization and denitrogenation as well as hydrocracking. The resolution of the catalyst tends to be attributed to the porous solid acid support. As the solid acid carrier, amorphous carriers such as silica-alumina, silica-magnesia, silica-zirconia, and silica-titania, and crystalline carriers such as zeolite subjected to various modifications and modifications are used. The hydrogenating ability is exhibited by being supported by combining two or three kinds of metals such as Ni, Co, Mo, W, Pd, and Pt. Among them, a combination of Co-Mo, Ni-Mo, and Ni-W Is preferred.
The hydrogen pressure in hydrocracking is usually 5 MPa or more and 20 MPa or less, preferably 8 MPa or more and 15 MPa or less. Moreover, reaction temperature is 350 degreeC or more and 430 degrees C or less normally. The liquid space velocity is usually from 0.1 / h to 1.0 / h, preferably from 0.2 / h to 0.4 / h.

軽油基材Aにおける環境低負荷型軽油基材と水素化分解軽油留分の混合割合は、20〜80容量%:80〜20容量%が好ましく、40〜60容量%:60〜40容量%がより好ましい。   The mixing ratio of the environmentally low load type light oil base and the hydrocracked light oil fraction in the light oil base A is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40% by volume. More preferred.

原油等から精製された軽油留分を有する石油系水素化処理油(軽油基材B)としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油または水素化分解軽油等の石油系炭化水素(軽油留分を有する石油系炭化水素)を水素化処理して得られる水素化処理軽油若しくは水素化脱硫軽油等が挙げられる。
これらの石油系水素化処理油は、所定の条件を満たす範囲で、複数の軽油留分基材及び灯油留分基材を配合して構成することができる。
Petroleum hydrotreated oil (light oil base material B) having a gas oil fraction refined from crude oil, etc., is a straight-run gas oil obtained from a crude oil atmospheric distillation device, and a straight-run heavy oil obtained from an atmospheric distillation device Petroleum hydrocarbons such as catalytic cracked light oil or hydrocracked diesel oil obtained by catalytic cracking or hydrocracking of vacuum gas oil, vacuum heavy gas oil or desulfurized heavy oil obtained by treating oil and residual oil with a vacuum distillation unit Examples include hydrotreated gas oil or hydrodesulfurized gas oil obtained by hydrotreating (petroleum hydrocarbon having a light oil fraction).
These petroleum-based hydrotreated oils can be configured by blending a plurality of light oil fraction base materials and kerosene fraction base materials within a range that satisfies a predetermined condition.

上述の原料油(軽油留分を有する石油系炭化水素)の水素化処理条件は、通常、反応温度170〜320℃、水素圧力2〜10MPa、LHSV0.1〜2h−1、水素/油比100〜800NL/Lである。好ましくは反応温度175℃〜300℃、水素圧力2.5〜8MPa、LHSV0.2〜1.5h−1、水素/油比150〜600NL/Lであり、さらに好ましくは反応温度180℃〜280℃、水素圧力3〜7MPa、LHSV0.3〜1.2h−1、水素/油比150〜500NL/Lである。反応温度は低温ほど水素化反応には有利であるが、脱硫反応には好ましくない。水素圧力、水素/油比は高いほど脱硫、水素化反応とも促進されるが、経済的に最適点が存在する。LHSVは低いほど反応に有利であるが、低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので不利である。 The hydrotreating conditions of the above-mentioned feedstock oil (petroleum hydrocarbon having a light oil fraction) are usually a reaction temperature of 170 to 320 ° C., a hydrogen pressure of 2 to 10 MPa, LHSV of 0.1 to 2 h −1 , and a hydrogen / oil ratio of 100. -800 NL / L. The reaction temperature is preferably 175 ° C to 300 ° C, the hydrogen pressure is 2.5 to 8 MPa, the LHSV is 0.2 to 1.5 h -1 , and the hydrogen / oil ratio is 150 to 600 NL / L, more preferably the reaction temperature is 180 ° C to 280 ° C. The hydrogen pressure is 3 to 7 MPa, the LHSV is 0.3 to 1.2 h −1 , and the hydrogen / oil ratio is 150 to 500 NL / L. The lower the reaction temperature, the more advantageous for the hydrogenation reaction, but not for the desulfurization reaction. The higher the hydrogen pressure and the hydrogen / oil ratio, the more the desulfurization and hydrogenation reactions are promoted, but there is an optimal point economically. The lower the LHSV, the more advantageous for the reaction. However, if the LHSV is too low, a very large reaction tower volume is required, resulting in an excessive capital investment.

原料油を水素化処理する装置はいかなる構成でもよく、反応塔は単独でもまたは複数を組み合わせてもよく、複数の反応塔の間に水素を追加注入してもよく、気液分離操作や硫化水素除去設備を有していてもよい。
水素化処理装置の反応形式は、固定床方式が好ましく採用される。水素は原料油に対して、向流または並流のいずれの形式をとることができ、また、複数の反応塔を有し、向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式が好ましい。反応塔の中段には反応熱の除去、あるいは水素分圧を上げる目的で水素ガスをクエンチとして注入してもよい。
The apparatus for hydrotreating the feedstock may be of any configuration, the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers, gas-liquid separation operation or hydrogen sulfide. You may have the removal equipment.
A fixed bed system is preferably employed as the reaction mode of the hydrotreating apparatus. Hydrogen can take either a countercurrent or cocurrent flow with respect to the feedstock, and may have a plurality of reaction towers and a combination of countercurrent and cocurrent. As a general format, it is a down flow, and a gas-liquid twin parallel flow format is preferable. Hydrogen gas may be injected into the middle stage of the reaction tower as a quench for the purpose of removing reaction heat or increasing the hydrogen partial pressure.

水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。多孔質担体としては無機酸化物が挙げられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトがあり、本発明ではこのうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものがよい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取り得るが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下である。   The catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier. An inorganic oxide is mentioned as a porous support | carrier. Specific inorganic oxides include alumina, titania, zirconia, boria, silica, or zeolite. In the present invention, at least one of titania, zirconia, boria, silica, and zeolite is composed of alumina. Things are good. The production method is not particularly limited, but any preparation method can be adopted using raw materials in a state of various sols, salt compounds, etc. corresponding to each element. Furthermore, after preparing a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, alumina boria, etc., the preparation process in the state of alumina gel and other hydroxides or in a suitable solution state It may be prepared by adding at any step. The ratio of alumina to other oxides can be any ratio with respect to the porous carrier, but preferably alumina is 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass or less. .

ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイトなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20〜100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。   Zeolite is a crystalline aluminosilicate, such as faujasite, pentasil, mordenite, etc., which is ultra-stabilized by a predetermined hydrothermal treatment and / or acid treatment, or one whose alumina content in the zeolite is adjusted is used. be able to. Preferably, faujasite and mordenite, particularly preferably Y type and beta type are used. The Y-type is preferably ultra-stabilized, and the ultra-stabilized zeolite by hydrothermal treatment forms new pores in the range of 20 to 100% in addition to the original pore structure called micropores of 20 cm or less. . Known conditions can be used for the hydrothermal treatment conditions.

水素化処理に用いる触媒の活性金属としては周期律表第6A族金属から選ばれる少なくとも1種類の金属である。好ましくはMoおよびWから選ばれる少なくとも1種類である。活性金属としては第6A族金属と第8族金属を組み合わせたものでよく、具体的にはMoまたはWと、CoまたはNiの組み合わせであり、例えばCo−Mo、Co−W、Ni−Mo、Ni−W、Co−Ni−Mo、Co−Ni−Wなどの組み合わせを採用することができる。金属源としては一般的な無機塩、錯塩化合物を用いることができ、担持方法としては含浸法、イオン交換法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることができる。また、複数の金属を担持する場合には混合溶液を用いて同時に担持してもよく、または単独溶液を用いて逐次担持してもよい。金属溶液は水溶液でもよく有機溶剤を用いてもよい。   The active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W. The active metal may be a combination of a Group 6A metal and a Group 8 metal, specifically, a combination of Mo or W and Co or Ni. For example, Co—Mo, Co—W, Ni—Mo, Combinations such as Ni-W, Co-Ni-Mo, and Co-Ni-W can be employed. As the metal source, a general inorganic salt or a complex salt compound can be used, and as a supporting method, any method of a supporting method used in an ordinary hydrogenation catalyst such as an impregnation method or an ion exchange method can be used. When a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution. The metal solution may be an aqueous solution or an organic solvent.

金属担持は、構成されている多孔質担体の調製全工程終了後に行ってもよく、多孔質担体調製中間工程における適当な酸化物、複合酸化物、ゼオライトに予め担持した後に更なるゲル調合工程あるいは加熱濃縮、混練を行ってもよい。
活性金属の担持量は特に限定されないが、触媒質量に対し金属量合計で0.1〜10質量%、好ましくは0.15〜5質量%、さらに好ましくは0.2〜3質量%である。
触媒は、水素気流下において予備還元処理を施した後に用いるのが好ましい。一般的には水素を含むガスを流通し、200℃以上の熱を所定の手順に従って与えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。
Metal loading may be performed after the completion of the entire preparation process of the porous support, or after further preloading on an appropriate oxide, composite oxide, zeolite in the intermediate process of porous support preparation, Heat concentration and kneading may be performed.
The amount of the active metal supported is not particularly limited, but is 0.1 to 10% by mass, preferably 0.15 to 5% by mass, and more preferably 0.2 to 3% by mass with respect to the catalyst mass.
The catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.

上記のようにして、原油等から精製された軽油留分を水素化処理して石油系水素化処理油(軽油基材B)が製造される。
本発明の第1の軽油組成物は、前記軽油基材Aと前記軽油基材Bからなり、その混合割合は、軽油基材A:軽油基材Bが95〜30容量%:5〜70容量%であり、好ましくは90〜35容量%:10〜65容量%であり、より好ましくは85〜40容量%:15〜60容量%である。
As described above, a petroleum oil hydrotreated oil (light oil base material B) is produced by hydrotreating a gas oil fraction refined from crude oil or the like.
The 1st light oil composition of this invention consists of the said light oil base material A and the said light oil base material B, and the mixing ratio is 95-30 volume%: light oil base material A: light oil base material B: 5-70 volume. %, Preferably 90-35% by volume: 10-65% by volume, more preferably 85-40% by volume: 15-60% by volume.

また本発明の第2の軽油組成物は、前述の植物油脂および/または動植物油脂由来成分10〜90容量%に、前述の原油等から精製された軽油留分を有する石油系炭化水素(石油系基材)90〜10容量%とを混合した被処理油を、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒とを、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/L、反応温度150〜480℃の条件下で接触させることによって製造される留分(環境低負荷型軽油基材)10〜90容量%に、原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)を90〜10容量%混合することで得られる軽油基材A’95〜30容量%に原油等から精製された灯油留分を水素化処理して得られる石油系水素化処理油(軽油基材B’)5〜70容量%混合し、所定の性能を満たした軽油基材A’およびB’からなる。 Further, the second light oil composition of the present invention comprises a petroleum hydrocarbon (petroleum-based hydrocarbon) having a light oil fraction refined from the aforementioned crude oil or the like in 10 to 90% by volume of the aforementioned vegetable oil and / or animal and vegetable oil-derived component. Substrate) A porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium, and an oil to be treated mixed with 90 to 10% by volume, and the porous material A catalyst containing one or more metals selected from Group 6A and Group 8 elements of the periodic table supported on a porous inorganic oxide, a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3. 0h −1 , hydrogen / oil ratio 150-1500 NL / L, fraction produced by contacting under conditions of reaction temperature 150-480 ° C. (environmental low load type light oil base material) Etc. A hydrocracked gas oil fraction (boiling point range: 200 to 350 ° C.) obtained by further hydrocracking a vacuum gas oil obtained by subsequently treating a normal pressure residue oil obtained by treating with a distillation device with a vacuum distillation device. ) Is obtained by hydrotreating a kerosene fraction refined from crude oil or the like into a light oil base A'95-30 volume% obtained by mixing 90-10 volume%) The material B ′) is composed of light oil bases A ′ and B ′ mixed in an amount of 5 to 70% by volume and satisfying a predetermined performance.

前述の植物油脂および/または動植物油脂由来成分10〜90容量%に、前述の原油等から精製された軽油留分を有する石油系炭化水素(石油系基材)90〜10容量%とを混合した被処理油を、水素化処理して環境低負荷型軽油基材を製造する際の水素化条件は、本発明の第1における動植物油脂および/または動植物油脂由来成分に含硫黄炭化水素化合物を混合した被処理油を、水素化処理する際の条件と同様の条件が採用される。
植物油脂および/または動植物油脂由来成分と原油等から精製された軽油留分を有する石油系炭化水素(石油系基材)の混合割合は、好ましくは20〜80容量%:80〜20容量%であり、より好ましくは40〜60容量%:60〜40容量%である。
The above-mentioned vegetable oil and / or animal and vegetable oil-derived component 10 to 90% by volume was mixed with 90 to 10% by volume of a petroleum hydrocarbon (petroleum base material) having a light oil fraction refined from the above crude oil or the like. The hydrogenation conditions for producing an environmentally low load type light oil base material by hydrotreating the oil to be treated include mixing the sulfur-containing hydrocarbon compound with the animal and vegetable oil and / or animal and vegetable oil-derived component in the first aspect of the present invention. The same conditions as those used when hydrotreating the treated oil are employed.
The mixing ratio of the petroleum-based hydrocarbon (petroleum-based substrate) having a light oil fraction refined from vegetable oil and / or animal and vegetable oil-derived components and crude oil or the like is preferably 20 to 80% by volume: 80 to 20% by volume. Yes, more preferably 40 to 60% by volume: 60 to 40% by volume.

軽油基材A’における環境低負荷型軽油基材と水素化分解軽油留分の混合割合は、20〜80容量%:80〜20容量%が好ましく、40〜60容量%:60〜40容量%がより好ましい。   The mixing ratio of the environmentally low load light oil base and the hydrocracked light oil fraction in the light oil base A ′ is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40% by volume. Is more preferable.

原油等から精製された灯油留分を有する石油系水素化処理油(軽油基材B’)としては、原油の常圧蒸留により得られる直留灯油、水素化分解軽油と共に製造される水素化分解灯油等の石油系炭化水素(灯油留分を有する石油系炭化水素)を水素化処理して得られる水素化処理灯油などが挙げられる。   Petroleum hydrotreated oil (gas oil base material B ') having kerosene fraction refined from crude oil, etc., hydrocracked together with straight-run kerosene and hydrocracked gas oil obtained by atmospheric distillation of crude oil Examples thereof include hydrotreated kerosene obtained by hydrotreating petroleum hydrocarbons such as kerosene (petroleum hydrocarbons having a kerosene fraction).

上述の原料油(灯油留分を有する石油系炭化水素)の水素化処理条件は、通常、反応温度220〜350℃、水素圧力1〜6MPa、LHSV0.1〜10h−1、水素/油比10〜300NL/Lである。好ましくは反応温度250℃〜340℃、水素圧力2〜5MPa、LHSV1〜10h−1、水素/油比30〜200NL/Lであり、さらに好ましくは反応温度270℃〜330℃、水素圧力2〜4MPa、LHSV2〜10h−1、水素/油比50〜200NL/Lである。反応温度は低温ほど水素化反応には有利であるが、脱硫反応には好ましくない。水素圧力、水素/油比は高いほど脱硫、水素化反応とも促進されるが、経済的に最適点が存在する。LHSVは低いほど反応に有利であるが、低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備投資となるので不利である。 The hydrotreating conditions of the above-mentioned raw material oil (petroleum hydrocarbon having a kerosene fraction) are usually as follows: reaction temperature 220 to 350 ° C., hydrogen pressure 1 to 6 MPa, LHSV 0.1 to 10 h −1 , hydrogen / oil ratio 10 ~ 300NL / L. Preferably, the reaction temperature is 250 ° C. to 340 ° C., the hydrogen pressure is 2 to 5 MPa, LHSV 1 to 10 h −1 , and the hydrogen / oil ratio is 30 to 200 NL / L, more preferably the reaction temperature is 270 ° C. to 330 ° C., and the hydrogen pressure is 2 to 4 MPa. , LHSV 2 to 10 h −1 , hydrogen / oil ratio 50 to 200 NL / L. The lower the reaction temperature, the more advantageous for the hydrogenation reaction, but not for the desulfurization reaction. The higher the hydrogen pressure and the hydrogen / oil ratio, the more the desulfurization and hydrogenation reactions are promoted, but there is an optimal point economically. The lower the LHSV, the more advantageous for the reaction. However, if the LHSV is too low, a very large reaction tower volume is required, resulting in an excessive capital investment.

原料油を水素化処理する装置はいかなる構成でもよく、反応塔は単独でもまたは複数を組み合わせてもよく、複数の反応塔の間に水素を追加注入してもよく、気液分離操作や硫化水素除去設備を有していてもよい。
水素化処理装置の反応形式は、固定床方式が好ましく採用される。水素は原料油に対して、向流または並流のいずれの形式をとることができ、また、複数の反応塔を有し、向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式が好ましい。反応塔の中段には反応熱の除去、あるいは水素分圧を上げる目的で水素ガスをクエンチとして注入してもよい。
The apparatus for hydrotreating the feedstock may be of any configuration, the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers, gas-liquid separation operation or hydrogen sulfide. You may have the removal equipment.
A fixed bed system is preferably employed as the reaction mode of the hydrotreating apparatus. Hydrogen can take either a countercurrent or cocurrent flow with respect to the feedstock, and may have a plurality of reaction towers and a combination of countercurrent and cocurrent. As a general format, it is a down flow, and a gas-liquid twin parallel flow format is preferable. Hydrogen gas may be injected into the middle stage of the reaction tower as a quench for the purpose of removing reaction heat or increasing the hydrogen partial pressure.

水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。多孔質担体としては無機酸化物が用いられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトがあり、本発明ではこのうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものがよい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取りうるが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下である。これらの条件、触媒は原料油の性状を満たす限りにおいて特に限定されるものではない。   The catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier. An inorganic oxide is used as the porous carrier. Specific inorganic oxides include alumina, titania, zirconia, boria, silica, or zeolite. In the present invention, at least one of titania, zirconia, boria, silica, and zeolite is composed of alumina. Things are good. The production method is not particularly limited, but any preparation method can be adopted using raw materials in a state of various sols, salt compounds, etc. corresponding to each element. Furthermore, after preparing a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, alumina boria, etc., the preparation process in the state of alumina gel and other hydroxides or in a suitable solution state It may be prepared by adding at any step. The ratio of alumina to other oxides can be any ratio with respect to the porous carrier, but preferably alumina is 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass or less. . These conditions and the catalyst are not particularly limited as long as the properties of the raw material oil are satisfied.

ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイトなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20〜100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。   Zeolite is a crystalline aluminosilicate, such as faujasite, pentasil, mordenite, etc., which is ultra-stabilized by a predetermined hydrothermal treatment and / or acid treatment, or one whose alumina content in the zeolite is adjusted is used. be able to. Preferably, faujasite and mordenite, particularly preferably Y type and beta type are used. The Y-type is preferably ultra-stabilized, and the ultra-stabilized zeolite by hydrothermal treatment forms new pores in the range of 20 to 100% in addition to the original pore structure called micropores of 20 cm or less. . Known conditions can be used for the hydrothermal treatment conditions.

水素化処理に用いる触媒の活性金属としては周期律表第6A族金属から選ばれる少なくとも1種類の金属である。好ましくはMoおよびWから選ばれる少なくとも1種類である。活性金属としては第6A族金属と第8族金属を組み合わせたものでよく、具体的にはMoまたはWと、CoまたはNiの組み合わせであり、例えばCo−Mo、Co−W、Ni−Mo、Ni−W、Co−Ni−Mo、Co−Ni−Wなどの組み合わせを採用することができる。金属源としては一般的な無機塩、錯塩化合物を用いることができ、担持方法としては含浸法、イオン交換法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることができる。また、複数の金属を担持する場合には混合溶液を用いて同時に担持してもよく、または単独溶液を用いて逐次担持してもよい。金属溶液は水溶液でもよく有機溶剤を用いてもよい。   The active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W. The active metal may be a combination of a Group 6A metal and a Group 8 metal, specifically, a combination of Mo or W and Co or Ni. For example, Co—Mo, Co—W, Ni—Mo, Combinations such as Ni-W, Co-Ni-Mo, and Co-Ni-W can be employed. As the metal source, a general inorganic salt or a complex salt compound can be used, and as a supporting method, any method of a supporting method used in an ordinary hydrogenation catalyst such as an impregnation method or an ion exchange method can be used. When a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution. The metal solution may be an aqueous solution or an organic solvent.

金属担持は、構成されている多孔質担体の調製全工程終了後に行ってもよく、多孔質担体調製中間工程における適当な酸化物、複合酸化物、ゼオライトに予め担持した後に更なるゲル調合工程あるいは加熱濃縮、混練を行ってもよい。
活性金属の担持量は特に限定されないが、触媒質量に対し金属量合計で0.1〜10質量%、好ましくは0.15〜5質量%、さらに好ましくは0.2〜3質量%である。
触媒は、水素気流下において予備還元処理を施した後に用いるのが好ましい。一般的には水素を含むガスを流通し、200℃以上の熱を所定の手順に従って与えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。
Metal loading may be performed after the completion of the entire preparation process of the porous support, or after further preloading on an appropriate oxide, composite oxide, zeolite in the intermediate process of porous support preparation, Heat concentration and kneading may be performed.
The amount of the active metal supported is not particularly limited, but is 0.1 to 10% by mass, preferably 0.15 to 5% by mass, and more preferably 0.2 to 3% by mass with respect to the catalyst mass.
The catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is applied according to a predetermined procedure, the active metal on the catalyst is reduced, and hydrogenation activity is exhibited.

上記のようにして、原油等から精製された灯油留分を水素化処理して石油系水素化処理油(軽油基材B’)が製造される。
本発明の第2の軽油組成物は、前記軽油基材A’と前記軽油基材B’からなり、その混合割合は、軽油基材A’:軽油基材B’が95〜30容量%:5〜70容量%であり、好ましくは90〜35容量%:10〜65容量%であり、より好ましくは85〜40容量%:15〜60容量%である。
As described above, a kerosene fraction refined from crude oil or the like is hydrotreated to produce a petroleum hydrotreated oil (light oil base material B ′).
The 2nd light oil composition of this invention consists of the said light oil base material A 'and the said light oil base material B', The mixing ratio is light oil base material A ': Light oil base material B' is 95-30 volume%: It is 5-70 volume%, Preferably it is 90-35 volume%: 10-65 volume%, More preferably, it is 85-40 volume%: 15-60 volume%.

本発明の軽油組成物は、前述の基材から構成され、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、全酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下である軽油組成物である。   The gas oil composition of the present invention is composed of the above-mentioned base material, 90% distillation temperature is 360 ° C. or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid alkyl ester content is 3.5 mass%. The light oil composition has a total acid value of 0.13 mg KOH / g or less, a methanol content of 0.01% by mass or less, a glyceride content of 0.01% by mass or less, and a clogging point of −5 ° C. or less.

本発明の軽油組成物の目詰まり点(CFPP)は、JIS2号軽油規格である−5℃以下を満たすことが必要であり、さらに、ディーゼル車のプレフィルタ閉塞防止の点から、−6℃以下であることが好ましく、−7℃以下であることがより好ましい。ここで目詰まり点とは、JIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。   The clogging point (CFPP) of the light oil composition of the present invention must satisfy −5 ° C. or less which is JIS No. 2 diesel oil standard, and further −6 ° C. or less from the viewpoint of preventing the prefilter blockage of a diesel vehicle. It is preferable that it is -7 degreeC or less. Here, the clogging point refers to a clogging point measured by JIS K 2288 “Light oil—clogging point test method”.

また、本発明の軽油組成物の流動点は、JIS2号軽油規格である−7.5℃以下を満たす必要がある。さらに、低温始動性ないしは低温運転性の観点、並びに電子制御式燃料噴射ポンプにおける噴射性能維持の観点から、−10℃以下であることが好ましい。ここで流動点とは、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される流動点を意味する。   Moreover, the pour point of the light oil composition of this invention needs to satisfy | fill -7.5 degrees C or less which is a JIS2 light oil specification. Furthermore, from the viewpoint of low temperature startability or low temperature drivability, and from the viewpoint of maintaining injection performance in the electronically controlled fuel injection pump, it is preferably −10 ° C. or lower. Here, the pour point means a pour point measured by JIS K 2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.

本発明の軽油組成物の硫黄分は、エンジンから排出される有害排気成分低減と排ガス後処理装置の性能向上の点から10質量ppm以下であることが必要であり、好ましくは5質量ppm以下、より好ましくは3質量ppm以下、さらに好ましくは1質量ppm以下である。なお、ここでいう硫黄分とは、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。   The sulfur content of the light oil composition of the present invention needs to be 10 mass ppm or less from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device, preferably 5 mass ppm or less, More preferably, it is 3 mass ppm or less, More preferably, it is 1 mass ppm or less. In addition, the sulfur content here means the mass content of the sulfur content based on the total amount of the light oil composition measured by JIS K 2541 “Sulfur Content Test Method”.

本発明の軽油組成物の酸素分は、酸化安定性向上の観点から1質量%以下であることが必要であり、好ましくは0.8質量%以下、より好ましくは0.6質量%以下、さらに好ましくは0.4質量%以下、最も好ましくは0.2質量%以下である。なお、酸素分は一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上でCOに転換し、あるいはさらにCOに転換した後に熱伝導度検出器を用いて測定することもできる。 The oxygen content of the light oil composition of the present invention is required to be 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.6% by mass or less, from the viewpoint of improving oxidation stability. Preferably it is 0.4 mass% or less, Most preferably, it is 0.2 mass% or less. The oxygen content can be measured with a general elemental analyzer. For example, the sample is converted to CO on platinum carbon, or further converted to CO 2 and then measured using a thermal conductivity detector. You can also.

本発明の軽油組成物の引火点は、45℃以上であることが好ましい。引火点が45℃に満たない場合には、安全上の理由により軽油組成物として取り扱うことができない。同様の理由により、引火点は54℃以上であることが好ましく、58℃以上であることがより好ましい。なお、本発明でいう引火点はJIS K 2265「原油及び石油製品引火点
試験方法」で測定される値を示す。
The flash point of the light oil composition of the present invention is preferably 45 ° C. or higher. When the flash point is less than 45 ° C., it cannot be handled as a light oil composition for safety reasons. For the same reason, the flash point is preferably 54 ° C. or higher, more preferably 58 ° C. or higher. The flash point in the present invention is a value measured by JIS K 2265 “Crude oil and petroleum product flash point test method”.

本発明の軽油組成物のセタン指数は、45以上であることが好ましい。セタン指数が45に満たない場合には、排出ガス中のPM、アルデヒド類、あるいはさらにNOxの濃度が高くなる傾向にある。また、同様の理由により、セタン指数は48以上であることが好ましく、51以上であることが最も好ましい。なお、本発明でいうセタン指数とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出される価を意味する。ここで、上記JIS規格におけるセタン指数は、一般的にはセタン価向上剤を添加していない軽油に対して適用されるが、本発明ではセタン価向上剤を添加した軽油組成物についても上記「8.4変数方程式を用いたセタン指数の算出方法」を適用し、当該算出方法により算出される値をセタン指数として表す。   The cetane index of the light oil composition of the present invention is preferably 45 or more. When the cetane index is less than 45, the concentration of PM, aldehydes, or NOx in the exhaust gas tends to increase. For the same reason, the cetane index is preferably 48 or more, and most preferably 51 or more. The cetane index referred to in the present invention is defined by “Calculation method of cetane index using 8.4 variable equations” in JIS K 2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method”. It means the calculated value. Here, the cetane index in the JIS standard is generally applied to light oil to which a cetane number improver is not added, but in the present invention, the above-mentioned " Applying “8.4 Calculation Method of Cetane Index Using Variable Equation”, a value calculated by the calculation method is expressed as a cetane index.

本発明の軽油組成物におけるセタン価は、好ましくは52以上であり、より好ましくは54以上であり、さらに好ましくは55以上である。セタン価が52に満たない場合には、排出ガス中のNOx、PM及びアルデヒド類の濃度が高くなりやすい。また、排ガス中の黒煙低減の観点から、セタン価は90以下であることが好ましく、88以下であることがより好ましく、85以下であることがさらに好ましい。また本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。なお、ここでいうセタン価とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。   The cetane number in the light oil composition of the present invention is preferably 52 or more, more preferably 54 or more, and further preferably 55 or more. When the cetane number is less than 52, the concentrations of NOx, PM and aldehydes in the exhaust gas tend to be high. Further, from the viewpoint of reducing black smoke in the exhaust gas, the cetane number is preferably 90 or less, more preferably 88 or less, and even more preferably 85 or less. Moreover, in the light oil composition of this invention, a cetane number improver can be mix | blended with an appropriate quantity as needed, and the cetane number of the light oil composition obtained can be improved. The cetane number referred to here is a cetane number measured in accordance with “7. Cetane number test method” in JIS K 2280 “Petroleum products—Fuel oil—Octane number and cetane number test method and cetane index calculation method”. Means.

本発明の軽油組成物の15℃における密度は、発熱量確保の点から、750kg/m以上であることが好ましく、760kg/m以上がより好ましく、770kg/m以上がさらに好ましい。また、当該密度は、NOx、PMの排出量を低減する点から、850kg/m以下であることが好ましく、845kg/m以下であることがより好ましく、840kg/m以下がさらに好ましい。なお、ここでいう密度とは、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を意味する。 Density at 15 ℃ of the gas oil composition of the present invention, in terms of calorific value ensuring, is preferably 750 kg / m 3 or more, more preferably 760 kg / m 3 or more, more preferably 770 kg / m 3 or more. Further, the density, NOx, from the viewpoint of reducing the emission of PM, it is preferably 850 kg / m 3 or less, more preferably 845 kg / m 3 or less, more preferably 840 kg / m 3 or less. In addition, the density here means the density measured by JIS K 2249 “Density test method and density / mass / capacity conversion table of crude oil and petroleum products”.

本発明の軽油組成物は、HFRR摩耗痕径(WS1.4)が好ましくは460μm以下、より好ましくは430μm以下、さらに好ましくは410μm以下となる潤滑性能を有することが望ましい。HFRR摩耗痕径(WS1.4)が460μmを超える場合は、特に分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増、ポンプ各部の摩耗増を引き起こし、排ガス性能、微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。また、高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、摺動面等の摩耗が懸念される。
なお、本発明でいうHFRR摩耗痕径(WS1.4)とは、社団法人石油学会から発行されている石油学会規格JPI−5S−50−98「軽油−潤滑性試験方法」により測定される値を意味する。
The light oil composition of the present invention desirably has a lubricating performance such that the HFRR wear scar diameter (WS1.4) is preferably 460 μm or less, more preferably 430 μm or less, and even more preferably 410 μm or less. When the HFRR wear scar diameter (WS1.4) exceeds 460 μm, especially in a diesel engine equipped with a distribution type injection pump, it causes an increase in driving torque of the pump during operation and an increase in wear of each part of the pump. The engine itself may be destroyed as well as the performance deterioration. In addition, in an electronically controlled fuel injection pump capable of high-pressure injection, there is a concern about wear on the sliding surface.
The HFRR wear scar diameter (WS1.4) as used in the present invention is a value measured by the Petroleum Institute Standard JPI-5S-50-98 “Diesel Oil-Lubricity Test Method” issued by the Japan Petroleum Institute. Means.

本発明の軽油組成物における芳香族分には特に制限はないが、環境負荷低減効果を高め、NOx及びPM低減の観点から、20容量%以下であることが好ましく、より好ましくは19容量%以下、さらに好ましくは18容量%以下である。なお、本発明でいう芳香族分とは、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族分の容量百分率(容量%)を意味する。   Although there is no restriction | limiting in particular in the aromatic content in the light oil composition of this invention, it is preferable that it is 20 volume% or less from a viewpoint of improving an environmental impact reduction effect and NOx and PM reduction, More preferably, it is 19 volume% or less. More preferably, it is 18 volume% or less. The aromatic content in the present invention was measured in accordance with the Petroleum Institute Method JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. It means the volume percentage (volume%) of aromatic content.

本発明の軽油組成物の水分は、燃料タンク等への部材への悪影響、及びエステル化合物の加水分解抑制の観点から、300容量ppm以下であることが好ましく、250容量ppm以下であることがより好ましく、200容量ppm以下であることがさらに好ましい。なお、ここでいう水分とは、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分である。   The water content of the light oil composition of the present invention is preferably 300 ppm by volume or less, more preferably 250 ppm by volume or less, from the viewpoint of adverse effects on members to fuel tanks and the like and suppression of hydrolysis of ester compounds. Preferably, it is 200 volume ppm or less. In addition, the water | moisture content here is the water prescribed | regulated by JISK2275 "moisture test method (crude oil and petroleum products)."

本発明の軽油組成物における蒸留性状としては、90容量%留出温度が360℃以下であることが必要であり、好ましくは340℃以下、より好ましくは330℃以下、さらに好ましくは320℃以下である。90容量%留出温度が360℃を超えると、PMや微小粒子の排出量が増加する傾向にある。また、90容量%留出温度は、好ましくは280℃以上、より好ましくは285℃以上、さらに好ましくは290℃以上、さらにより好ましくは295℃以上である。90容量%留出温度が280℃に満たないと、燃費向上効果が不十分となり、エンジン出力が低下する傾向にある。なお、ここでいう90容量%留出温度とは、JIS K 2254「石油製品−蒸留試験方法−常圧法」に準拠して測定される値を意味する。   As the distillation property in the light oil composition of the present invention, the 90% by volume distillation temperature needs to be 360 ° C. or less, preferably 340 ° C. or less, more preferably 330 ° C. or less, and further preferably 320 ° C. or less. is there. When the 90 vol% distillation temperature exceeds 360 ° C, the amount of PM and fine particles discharged tends to increase. The 90% by volume distillation temperature is preferably 280 ° C. or higher, more preferably 285 ° C. or higher, further preferably 290 ° C. or higher, and even more preferably 295 ° C. or higher. If the 90% by volume distillation temperature is less than 280 ° C., the fuel efficiency improvement effect becomes insufficient and the engine output tends to decrease. In addition, 90 volume% distillation temperature here means the value measured based on JISK2254 "petroleum product-distillation test method-normal pressure method".

本発明の軽油組成物の30℃における動粘度については特に制限はないが、2.5mm/s以上であることが好ましく、2.7mm/s以上であることがより好ましく、2.9mm/s以上であることがさらに好ましい。当該動粘度が2.5mm/sに満たない場合は、燃料噴射ポンプ側の燃料噴射時期制御が困難となる傾向にあり、またエンジンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。また、本発明の軽油組成物の30℃における動粘度は5mm/s以下であることが好ましく、4.7mm/s以下であることがより好ましく、4.5mm/s以下であることがさらに好ましい。当該動粘度が5mm/sを超えると、燃料噴射システム内部の抵抗が増加して噴射系が不安定化し、排出ガス中のNOx、PMの濃度が高くなってしまう。なお、ここでいう動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を意味する。 The kinematic viscosity at 30 ° C. of the light oil composition of the present invention is not particularly limited, but is preferably 2.5 mm 2 / s or more, more preferably 2.7 mm 2 / s or more, and 2.9 mm. More preferably, it is 2 / s or more. If the kinematic viscosity is less than 2.5 mm 2 / s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is impaired. There is a fear. Moreover, kinematic viscosity at 30 ° C. of the gas oil compositions of the present invention is preferably at most 5 mm 2 / s, more preferably not more than 4.7 mm 2 / s, or less 4.5 mm 2 / s Is more preferable. If the kinematic viscosity exceeds 5 mm 2 / s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NOx and PM in the exhaust gas increase. In addition, kinematic viscosity here means kinematic viscosity measured by JISK2283 "crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method".

本発明の軽油組成物における10%残油の残留炭素分については特に制限はないが、微小粒子やPM低減の観点、並びにエンジンに搭載される排ガス後処理装置の性能維持の観点から、0.1質量%以下であることが好ましく、0.08質量%以下であることがより好ましく、0.06質量%以下であることがさらに好ましい。なお、ここでいう10%残油の残留炭素分とは、JIS K 2270「原油及び石油製品−残留炭素分試験方法」により測定される10%残油の残留炭素分を意味する。   Although there is no restriction | limiting in particular about the residual carbon content of 10% residual oil in the light oil composition of this invention, From a viewpoint of fine particle and PM reduction viewpoint, and a viewpoint of the performance maintenance of the exhaust gas aftertreatment apparatus mounted in an engine, it is 0. It is preferably 1% by mass or less, more preferably 0.08% by mass or less, and further preferably 0.06% by mass or less. The residual carbon content of 10% residual oil here means the residual carbon content of 10% residual oil measured by JIS K 2270 “Crude oil and petroleum products—residual carbon content test method”.

本発明の軽油組成物においては、エンジン部材への悪影響の観点から、全酸価は0.13mgKOH/g以下であることが必要である。全酸価は混合物内の遊離脂肪酸量を示しているため、この値が大きいと酸性化合物による部材への悪影響が懸念される。そのため、全酸価は0.10mgKOH/g以下であることが好ましく、0.08mgKOH/g以下であることがより好ましく、0.05mgKOH/g以下であることがさらに好ましい。なお、ここでいう全酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される全酸価を意味する。   In the light oil composition of the present invention, the total acid value needs to be 0.13 mgKOH / g or less from the viewpoint of adverse effects on engine members. Since the total acid value indicates the amount of free fatty acid in the mixture, if this value is large, there is a concern that the acidic compound may adversely affect the member. Therefore, the total acid value is preferably 0.10 mgKOH / g or less, more preferably 0.08 mgKOH / g or less, and even more preferably 0.05 mgKOH / g or less. The total acid value referred to here means the total acid value measured by JIS K 2501 “Petroleum products and lubricating oils—neutralization number test method”.

本発明の軽油組成物においては、エンジン燃焼等における燃え切り性の悪化の観点から脂肪酸アルキルエステル分は3.5質量%以下であることが必要である。好ましくは2.0質量%以下、より好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下である。なお、ここでいう脂肪酸アルキルエステル分とはEN 14103に準拠して測定される脂肪酸アルキルエステル分を意味する。   In the light oil composition of the present invention, the fatty acid alkyl ester content is required to be 3.5% by mass or less from the viewpoint of deterioration of burnout in engine combustion or the like. Preferably it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less, More preferably, it is 0.5 mass% or less. The fatty acid alkyl ester content here means the fatty acid alkyl ester content measured in accordance with EN 14103.

本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、メタノール分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうメタノール分とはJIS K 2536およびEN 14110に準拠して測定されるメタノール分を意味する。   In the light oil composition of the present invention, the methanol content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. The methanol content here means a methanol content measured according to JIS K 2536 and EN 14110.

本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、グリセライド分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうグリセライド分とはEN 14105に準拠して測定されるグリセライド分を意味する。   In the light oil composition of the present invention, the glyceride content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. The glyceride content here means a glyceride content measured in accordance with EN 14105.

本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。
セタン価向上剤としては、軽油のセタン価向上剤として知られる各種の化合物を任意に使用することができ、例えば、硝酸エステルや有機過酸化物等が挙げられる。これらのセタン価向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。
In the light oil composition of the present invention, if necessary, an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting light oil composition.
As the cetane number improver, various compounds known as light oil cetane number improvers can be arbitrarily used, and examples thereof include nitrate esters and organic peroxides. These cetane number improvers may be used alone or in combination of two or more.

本発明においては、上述のセタン価向上剤の中でも硝酸エステルを用いることが好ましい。かかる硝酸エステルには、2−クロロエチルナイトレート、2−エトキシエチルナイトレート、イソプロピルナイトレート、ブチルナイトレート、第一アミルナイトレート、第二アミルナイトレート、イソアミルナイトレート、第一ヘキシルナイトレート、第二ヘキシルナイトレート、n−ヘプチルナイトレート、n−オクチルナイトレート、2−エチルヘキシルナイトレート、シクロヘキシルナイトレート、エチレングリコールジナイトレートなどの種々のナイトレート等が包含されるが、特に炭素数6〜8のアルキルナイトレートが好ましい。   In the present invention, it is preferable to use a nitrate ester among the cetane number improvers described above. Such nitrate esters include 2-chloroethyl nitrate, 2-ethoxyethyl nitrate, isopropyl nitrate, butyl nitrate, primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, primary hexyl nitrate, Various nitrates such as secondary hexyl nitrate, n-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, cyclohexyl nitrate, and ethylene glycol dinitrate are included. An alkyl nitrate of ˜8 is preferred.

セタン価向上剤の含有量は、組成物全量基準で500質量ppm以上であることが好ましく、600質量ppm以上であることがより好ましく、700質量ppm以上であることがさらに好ましく、800質量ppm以上であることが特に好ましく、900質量ppm以上であることが最も好ましい。セタン価向上剤の含有量が500質量ppmに満たない場合は、十分なセタン価向上効果が得られず、ディーゼルエンジン排出ガスのPM、アルデヒド類、さらにはNOxが十分に低減されない傾向にある。また、セタン価向上剤の含有量の上限値は特に限定されないが、軽油組成物全量基準で、1400質量ppm以下であることが好ましく、1250質量ppm以下であることがより好ましく、1100質量ppm以下であることがさらに好ましく、1000質量ppm以下であることが最も好ましい。   The content of the cetane improver is preferably 500 ppm by mass or more based on the total amount of the composition, more preferably 600 ppm by mass or more, further preferably 700 ppm by mass or more, and 800 ppm by mass or more. It is particularly preferable that it is 900 mass ppm or more. When the content of the cetane number improver is less than 500 ppm by mass, a sufficient cetane number improving effect cannot be obtained, and PM, aldehydes, and further NOx in diesel engine exhaust gas tend not to be sufficiently reduced. Further, the upper limit of the content of the cetane number improver is not particularly limited, but is preferably 1400 mass ppm or less, more preferably 1250 mass ppm or less, based on the total amount of the light oil composition, and 1100 mass ppm or less. It is more preferable that it is 1000 mass ppm or less.

セタン価向上剤は、常法に従い合成したものを用いてもよく、また、市販品を用いてもよい。なお、セタン価向上剤と称して市販されているものは、セタン価向上に寄与する有効成分(すなわちセタン価向上剤自体)を適当な溶剤で希釈した状態で入手されるのが通例である。このような市販品を使用して本発明の軽油組成物を調製する場合には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。   As the cetane number improver, one synthesized according to a conventional method may be used, or a commercially available product may be used. In addition, what is marketed as a cetane number improver is usually obtained in a state where an active ingredient contributing to cetane number improvement (that is, cetane number improver itself) is diluted with an appropriate solvent. When preparing the light oil composition of this invention using such a commercial item, it is preferable that content of the said active ingredient in a light oil composition becomes in the above-mentioned range.

本発明の軽油組成物においては、上記セタン価向上剤以外の添加剤を必要に応じて配合することができ、特に、潤滑性向上剤および/または清浄剤が好ましく配合される。   In the light oil composition of the present invention, additives other than the cetane number improver can be blended as necessary, and in particular, a lubricity improver and / or a detergent is preferably blended.

潤滑性向上剤としては、例えば、カルボン酸系、エステル系、アルコール系およびフェノール系の各潤滑性向上剤の1種又は2種以上が任意に使用可能である。これらの中でも、カルボン酸系及びエステル系の潤滑性向上剤が好ましい。
カルボン酸系の潤滑性向上剤としては、例えば、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸及び上記カルボン酸の2種以上の混合物が例示できる。
エステル系の潤滑性向上剤としては、グリセリンのカルボン酸エステルが挙げられる。カルボン酸エステルを構成するカルボン酸は、1種であっても2種以上であってもよく、その具体例としては、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸等がある。
As the lubricity improver, for example, one or more of carboxylic acid-based, ester-based, alcohol-based, and phenol-based lubricity improvers can be arbitrarily used. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable.
Examples of the carboxylic acid-based lubricity improver include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids.
Examples of ester-based lubricity improvers include carboxylic acid esters of glycerin. The carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds, and specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and the like. There is.

潤滑性向上剤の配合量は、HFRR摩耗痕径(WS1.4)が前述の好ましい範囲内であれば特に制限されないが、組成物全量基準で35質量ppm以上であることが好ましく、50質量ppm以上であることがより好ましい。潤滑性向上剤の配合量が前記の範囲内であると、配合された潤滑性向上剤の効能を有効に引き出すことができ、例えば分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増を抑制し、ポンプの摩耗を低減させることができる。また、配合量の上限値は、それ以上加えても添加量に見合う効果が得られないことから、組成物全量基準で150質量ppm以下であることが好ましく、105質量ppm以下であることがより好ましい。   The blending amount of the lubricity improver is not particularly limited as long as the HFRR wear scar diameter (WS1.4) is within the above-mentioned preferable range, but is preferably 35 ppm by mass or more based on the total amount of the composition, and 50 ppm by mass. More preferably. When the blending amount of the lubricity improver is within the above range, the effectiveness of the blended lubricity improving agent can be effectively extracted. For example, in a diesel engine equipped with a distributed injection pump, An increase in driving torque can be suppressed and pump wear can be reduced. Further, the upper limit of the blending amount is preferably 150 mass ppm or less on the basis of the total amount of the composition, and more preferably 105 mass ppm or less because an effect commensurate with the addition amount cannot be obtained even if it is added more. preferable.

清浄剤としては、例えば、イミド系化合物;ポリブテニルコハク酸無水物とエチレンポリアミン類とから合成されるポリブテニルコハク酸イミドなどのアルケニルコハク酸イミド;ペンタエリスリトールなどの多価アルコールとポリブテニルコハク酸無水物から合成されるポリブテニルコハク酸エステルなどのコハク酸エステル;ジアルキルアミノエチルメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドンなどとアルキルメタクリレートとのコポリマーなどの共重合系ポリマー、カルボン酸とアミンの反応生成物等の無灰清浄剤等が挙げられ、中でもアルケニルコハク酸イミド及びカルボン酸とアミンとの反応生成物が好ましい。これらの清浄剤は、1種を単独で又は2種以上を組み合わせて使用することができる。   Examples of the detergent include imide compounds; alkenyl succinimides such as polybutenyl succinimides synthesized from polybutenyl succinic anhydrides and ethylene polyamines; polyhydric alcohols such as pentaerythritol and polybutyls. Succinic acid esters such as polybutenyl succinic acid ester synthesized from tenyl succinic anhydride; copolymer polymers such as dialkylaminoethyl methacrylate, polyethylene glycol methacrylate, vinyl pyrrolidone and alkyl methacrylate copolymers, carboxylic acids and amines Ashless detergents such as reaction products of alkenyl succinic acid imide and reaction products of carboxylic acid and amine are preferred. These detergents can be used alone or in combination of two or more.

アルケニルコハク酸イミドを使用する例としては、分子量1000〜3000程度のアルケニルコハク酸イミドを単独使用する場合と、分子量700〜2000程度のアルケニルコハク酸イミドと分子量10000〜20000程度のアルケニルコハク酸イミドとを混合して使用する場合とがある。
カルボン酸とアミンとの反応生成物を構成するカルボン酸は1種であっても2種以上であってもよく、その具体例としては、炭素数12〜24の脂肪酸および炭素数7〜24の芳香族カルボン酸等が挙げられる。炭素数12〜24の脂肪酸としては、リノール酸、オレイン酸、パルミチン酸、ミリスチン酸等が挙げられるが、これらに限定されるものではない。また、炭素数7〜24の芳香族カルボン酸としては、安息香酸、サリチル酸等が挙げられるが、これらに限定されるものではない。また、カルボン酸とアミンとの反応生成物を構成するアミンは、1種であっても2種以上であってもよい。ここで用いられるアミンとしては、オレイルアミンが代表的であるが、これに限定されるものではなく、各種アミンが使用可能である。
Examples of using an alkenyl succinimide include a case where an alkenyl succinimide having a molecular weight of about 1000 to 3000 is used alone, an alkenyl succinimide having a molecular weight of about 700 to 2000, and an alkenyl succinimide having a molecular weight of about 10,000 to 20000. May be used in combination.
The carboxylic acid constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. Specific examples thereof include fatty acids having 12 to 24 carbon atoms and carbon atoms having 7 to 24 carbon atoms. An aromatic carboxylic acid etc. are mentioned. Examples of the fatty acid having 12 to 24 carbon atoms include linoleic acid, oleic acid, palmitic acid, myristic acid and the like, but are not limited thereto. In addition, examples of the aromatic carboxylic acid having 7 to 24 carbon atoms include benzoic acid and salicylic acid, but are not limited thereto. Moreover, the amine which comprises the reaction product of carboxylic acid and an amine may be 1 type, or may be 2 or more types. The amine used here is typically oleylamine, but is not limited thereto, and various amines can be used.

清浄剤の配合量は特に制限されないが、清浄剤を配合した効果、具体的には、燃料噴射ノズルの閉塞抑制効果を引き出すためには、清浄剤の配合量を組成物全量基準で30質量ppm以上とすることが好ましく、60質量ppm以上とすることがより好ましく、80質量ppm以上とすることがさらに好ましい。30質量ppmに満たない量を添加しても効果が現れない可能性がある。一方、配合量が多すぎても、それに見合う効果が期待できず、逆にディーゼルエンジン排出ガス中のNOx、PM、アルデヒド類等を増加させる恐れがあることから、清浄剤の配合量は300質量ppm以下であることが好ましく、180質量ppm以下であることがより好ましい。   The blending amount of the cleaning agent is not particularly limited, but in order to bring out the effect of blending the cleaning agent, specifically, the effect of suppressing clogging of the fuel injection nozzle, the blending amount of the cleaning agent is 30 mass ppm based on the total amount of the composition. It is preferable to set it as the above, It is more preferable to set it as 60 mass ppm or more, It is further more preferable to set it as 80 mass ppm or more. Even if an amount less than 30 ppm by mass is added, the effect may not appear. On the other hand, if the amount is too large, an effect commensurate with that cannot be expected, and conversely, NOx, PM, aldehydes, etc. in the diesel engine exhaust gas may increase, so the amount of detergent contained is 300 mass. It is preferably not more than ppm, and more preferably not more than 180 mass ppm.

なお、先のセタン価向上剤の場合と同様、潤滑性向上剤又は清浄剤と称して市販されているものは、それぞれ潤滑性向上または清浄に寄与する有効成分が適当な溶剤で希釈された状態で入手されるのが通例である。このような市販品を本発明の軽油組成物に配合する際には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。   As in the case of the above cetane improver, those commercially available as lubricity improvers or detergents are in a state where the active ingredients contributing to lubricity improvement or cleaning are diluted with an appropriate solvent, respectively. It is usually obtained at When such a commercial product is blended in the light oil composition of the present invention, the content of the active ingredient in the light oil composition is preferably within the above range.

また、本発明における軽油組成物の性能をさらに高める目的で、後述するその他の公知の燃料油添加剤(以下、便宜上「その他の添加剤」という。)を単独で、または数種類組み合わせて添加することもできる。その他の添加剤としては、例えば、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミドなどの低温流動性向上剤;フェノール系、アミン系などの酸化防止剤;サリチリデン誘導体などの金属不活性化剤;ポリグリコールエーテルなどの氷結防止剤;脂肪族アミン、アルケニルコハク酸エステルなどの腐食防止剤;アニオン系、カチオン系、両性系界面活性剤などの帯電防止剤;アゾ染料などの着色剤;シリコン系などの消泡剤等が挙げられる。
その他の添加剤の添加量は任意に決めることができるが、添加剤個々の添加量は、軽油組成物全量基準でそれぞれ好ましくは0.5質量%以下、より好ましくは0.2質量%以下である。
Further, for the purpose of further improving the performance of the light oil composition in the present invention, other known fuel oil additives (hereinafter referred to as “other additives” for convenience) to be described later are added alone or in combination of several kinds. You can also. Other additives include, for example, low-temperature fluidity improvers such as ethylene-vinyl acetate copolymer and alkenyl succinic acid amide; antioxidants such as phenols and amines; metal deactivators such as salicylidene derivatives; Anti-icing agents such as polyglycol ethers; corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; antistatic agents such as anionic, cationic and amphoteric surfactants; colorants such as azo dyes; Antifoaming agents and the like.
The addition amount of other additives can be arbitrarily determined, but the addition amount of each additive is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the total amount of the light oil composition. is there.

以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these Examples at all.

(実施例1〜3および比較例1〜3)
表1に示す性状を有する植物油脂に含硫黄炭化水素化合物としてジメチルジサルファィド(DMDS)を5質量ppm添加した被処理油を表2に示す反応条件で反応させ、表3に示す環境低負荷型軽油基材を調製した。
また、表1に示す性状を有する植物油脂80容量%に表1に示す性状を有する石油系軽油基材20容量%を混合した被処理油を表2に示す反応条件で反応させ、表3に示す環境低負荷型軽油基材を調製した。
また、表1に示す植物油脂をエステル化して得た脂肪酸アルキルエステルの性状を表3に示す。これらの脂肪酸アルキルエステルはメタノールとの反応により得られたメチルエステル化合物であり、ここではアルカリ触媒(ナトリウムメチラート)の存在下で70℃、1時間程度の撹拌を行い、アルキルアルコールと直接反応させてエステル化合物を得るエステル交換反応を用いた。
表3に示した環境低負荷型軽油基材、植物油脂のメチルエステル化物および石油系基材である石油系水素化精製油、水素化分解軽油を調合して軽油組成物を製造した(実施例1〜3および比較例1〜3)。
(Examples 1-3 and Comparative Examples 1-3)
A treated oil obtained by adding 5 mass ppm of dimethyl disulfide (DMDS) as a sulfur-containing hydrocarbon compound to a vegetable oil having the properties shown in Table 1 is reacted under the reaction conditions shown in Table 2, and the environmental conditions shown in Table 3 are reduced. A loaded light oil base was prepared.
Moreover, the to-be-processed oil which mixed 20 volume% of petroleum-based light oil base materials which have the property shown in Table 1 with 80 volume% of vegetable fats and oils which have the property shown in Table 1 is made to react on the reaction conditions shown in Table 2, and The environmentally low load light oil base material shown was prepared.
Table 3 shows the properties of the fatty acid alkyl ester obtained by esterifying the vegetable oil shown in Table 1. These fatty acid alkyl esters are methyl ester compounds obtained by reaction with methanol. Here, they are stirred at 70 ° C. for about 1 hour in the presence of an alkali catalyst (sodium methylate) to directly react with alkyl alcohol. Thus, an ester exchange reaction for obtaining an ester compound was used.
A light oil composition was produced by blending the low-environment light oil base material, the methyl esterified product of vegetable oil and fat, the petroleum hydrorefined oil and hydrocracked light oil shown in Table 3 (Examples) 1-3 and Comparative Examples 1-3).

調合した軽油組成物の調合比率、及びこの調合した軽油組成物に対して、15℃における密度、30℃における動粘度、引火点、硫黄分、酸素分、蒸留性状、芳香族分、セタン価及びセタン指数、10%残油の残留炭素分、水分、目詰まり点、酸化安定性試験(加速試験前後の酸価)を測定した結果、またライフサイクルCO排出量の計算結果を表4に示す。 The blending ratio of the blended diesel oil composition, and the blended diesel oil composition, density at 15 ° C., kinematic viscosity at 30 ° C., flash point, sulfur content, oxygen content, distillation properties, aromatic content, cetane number and Table 4 shows the results of measurement of residual carbon content of 10% residual oil, moisture, clogging point, oxidation stability test (acid value before and after acceleration test), and calculation results of life cycle CO 2 emissions. .

なお、燃料油の性状は以下の方法により測定した。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を指す。
硫黄分は、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を指す。
酸素分は元素分析法により測定した。
蒸留性状は、全てJIS K 2254「石油製品−蒸留試験方法」によって測定される値である。
芳香族分は、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族含有量の容量百分率(容量%)を意味する。
The properties of the fuel oil were measured by the following method.
The density refers to a density measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
The kinematic viscosity refers to a kinematic viscosity measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
The sulfur content refers to the mass content of the sulfur content based on the total amount of the gas oil composition measured by JIS K2541 “Sulfur content test method”.
The oxygen content was measured by elemental analysis.
All the distillation properties are values measured by JIS K 2254 "Petroleum products-Distillation test method".
The aromatic content is the volume percentage of the aromatic content measured according to the Petroleum Institute Method JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. (Capacity%).

水分は、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分を意味する。
引火点はJIS K 2265「原油及び石油製品引火点試験方法」で測定される値を
示す。
全酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される全酸価を意味する。
目詰まり点とはJIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
セタン指数は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出した価を指す。なお、セタン価は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。
Moisture means the moisture specified by JIS K 2275 “Moisture test method (crude oil and petroleum products)”.
The flash point indicates a value measured according to JIS K 2265 “Crude oil and petroleum product flash point test method”.
The total acid value means the total acid value measured according to JIS K 2501 “Petroleum products and lubricating oils—neutralization number test method”.
The clogging point refers to a clogging point measured by JIS K 2288 “Light oil—clogging point test method”.
The cetane index refers to a value calculated according to “Method for calculating cetane index using 8.4 variable equation” in JIS K 2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”. The cetane number means a cetane number measured according to “7. Cetane number test method” in JIS K 2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.

(ライフサイクルCO算出)
ライフサイクルCOは、ディーゼルエンジン搭載車両における軽油組成物の燃焼に伴い発生したCOと、採掘から車両タンクへの燃料給油までに発生したCOと分けて算出した。
燃焼に伴い発生したCO(以下、「Tank to Wheel CO」という。)は、上記車両試験を行ったときのCO排出量、走行燃費及び燃料密度に基づいて、各軽油組成物単位発熱量当たりの排出量として算出した。
また、採掘から車両タンクへの燃料給油までに発生したCO(以下、「Well to Tank CO」という。)は、原料及び原油ソースの採掘、輸送、加工、配送、車両への給油までの一連の流れにおけるCO排出量の総和として算出した。なお、「Well to Tank CO」の算出にあたっては、下記(1B)〜(5B)に示す二酸化炭素の排出量を加味して演算を行った。かかる演算に必要となるデータとしては、本発明者らが有する製油所運転実績データを用いた。
(Life cycle CO 2 calculation)
Life Cycle CO 2 includes a CO 2 generated due to combustion of the gas oil compositions in a vehicle equipped with a diesel engine, is calculated by dividing the CO 2 generated from mining to the fuel oil supply to the vehicle tank.
CO 2 generated by combustion (hereinafter referred to as “Tank to Wheel CO 2 ”) is the unit heat generation of each light oil composition based on the CO 2 emission amount, the travel fuel consumption, and the fuel density when the vehicle test is performed. Calculated as emissions per unit.
In addition, CO 2 generated from mining to fueling the vehicle tank (hereinafter referred to as “Well to Tank CO 2 ”) is used for mining, transporting, processing, distributing, and refueling the vehicle. It was calculated as the sum of CO 2 emissions in a series of flows. In calculating “Well to Tank CO 2 ”, calculation was performed in consideration of the carbon dioxide emission shown in the following (1B) to (5B). As data necessary for such calculation, refinery operation performance data possessed by the present inventors was used.

(1B)各種処理装置、ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。
(2B)水素を使用する処理においては、水素製造装置における改質反応に伴う二酸化炭素の排出量。
(3B)接触分解装置等の連続触媒再生を伴う装置を経由する場合は、触媒再生に伴う二酸化炭素の排出量。
(4B)軽油組成物を、横浜で製造又は陸揚げし、横浜から仙台まで配送し、仙台で車両に給油したときの二酸化炭素の排出量。
(5B)動植物油脂および動植物油脂由来の成分は原産地をマレーシアおよびその周辺地域とし、製造を横浜で行うとした際の二酸化炭素の排出量。
(1B) Carbon dioxide emissions associated with the use of fuel in various processing equipment, boilers and other facilities.
(2B) In the treatment using hydrogen, the amount of carbon dioxide emission accompanying the reforming reaction in the hydrogen production apparatus.
(3B) Carbon dioxide emission associated with catalyst regeneration when passing through an apparatus with continuous catalyst regeneration, such as a catalytic cracker.
(4B) Carbon dioxide emissions when a light oil composition is manufactured or unloaded in Yokohama, delivered from Yokohama to Sendai, and refueled in Sendai.
(5B) The amount of carbon dioxide emitted when animal and vegetable oils and fats and components derived from animal and vegetable oils and fats are produced in Malaysia and the surrounding area and manufactured in Yokohama.

なお、動植物油脂および動植物油脂由来の成分を使用した場合、いわゆる京都議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されないルールが適用される。本計算においては、燃焼時に発生する「Tank to Wheel CO」に対してこれを適用させた。
このようにして算出した「Tank to Wheel CO」と「Well to
Tank CO」、並びにこれらの総和であるライフサイクルCO(LC)の各排出量をそれぞれ表4に示す。なお、比較例1を100とし、各結果を相対的に比較、定量化した数値もあわせて示す。
In addition, when using animal and vegetable oils and fats and components derived from animal and vegetable oils and fats, the so-called Kyoto Protocol applies the rule that carbon dioxide resulting from these fuels is not counted as emissions. In this calculation, this was applied to “Tank to Wheel CO 2 ” generated during combustion.
Thus calculated “Tank to Wheel CO 2 ” and “Well to
Each emission amount of “Tank CO 2 ” and life cycle CO 2 (LC) which is the sum of these is shown in Table 4, respectively. In addition, the comparative example 1 is set to 100, and the numerical value which comparatively compared and quantified each result is also shown collectively.

(酸化安定性試験)
115℃、酸素バブリング下、16時間の条件で燃料を加速劣化させ、試験前後での酸化を測定した。なお、ここでいう全酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される全酸価を意味する。
(Oxidation stability test)
The fuel was accelerated and deteriorated at 115 ° C. under oxygen bubbling for 16 hours, and the oxidation before and after the test was measured. The total acid value referred to here means the total acid value measured by JIS K 2501 “Petroleum products and lubricating oils—neutralization number test method”.

実施例および比較例で使用した軽油組成物は、表4に示すとおり、水環境低負荷型軽油基材、植物油脂のメチルエステル化物および石油系基材である石油系水素化処理油を特定の割合で調合して製造したものである。   As shown in Table 4, the light oil compositions used in the examples and comparative examples specified a water environment low load type light oil base, a methyl esterified vegetable oil and a petroleum hydrotreated oil which is a petroleum base. It is manufactured by mixing at a ratio.

表4から明らかなように、環境低負荷型軽油基材、および環境低負荷型軽油基材と石油系水素化処理油とを混合して使用し、本発明で規定される範囲内で配合した実施例1〜3においては、95%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸メチルエステル分3.5質量%以下、全酸価増加量0.13mgKOH/g以下、メタノール分0.01質量%以下、かつグリセライド分0.01質量%以下、目詰まり点−5℃以下という性状を満足し、且つライフサイクルでの二酸化炭素排出量が少ない軽油組成物を容易にかつ確実に得ることができた。一方、上記特定の環境低負荷型軽油基材を用いずに軽油組成物を調製した比較例1〜3においては、本発明の目的とする軽油組成物は必ずしも得られない。   As is clear from Table 4, the environmentally low load type light oil base material, and the environmentally low load type light oil base material and petroleum hydrotreated oil were mixed and used within the range defined in the present invention. In Examples 1 to 3, the 95% distillation temperature is 360 ° C. or less, the sulfur content is 10 mass ppm or less, the oxygen content is 1 mass% or less, the fatty acid methyl ester content is 3.5 mass% or less, and the total acid value increase is 0. Gas oil that satisfies the properties of .13 mg KOH / g or less, methanol content of 0.01% by mass or less, glyceride content of 0.01% by mass or less, and clogging point of -5 ° C. or less, and has low carbon dioxide emission in the life cycle. The composition could be obtained easily and reliably. On the other hand, in Comparative Examples 1 to 3 in which a light oil composition was prepared without using the above specific environment-friendly light oil base material, the light oil composition targeted by the present invention was not necessarily obtained.

Figure 2009040855
Figure 2009040855
Figure 2009040855
Figure 2009040855
Figure 2009040855
Figure 2009040855
Figure 2009040855
Figure 2009040855

Claims (2)

水素の存在下、動植物油脂および/または動植物油脂由来成分に含硫黄炭化水素化合物を硫黄分が1質量ppm〜2質量%となるように混合した被処理油と、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒とを、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/L、反応温度150〜480℃の条件下で接触させることによって製造される留分(環境低負荷型軽油基材)10〜90容量%と原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)90〜10容量%とを混合することで得られる軽油基材A95〜30容量%に、原油等から精製された軽油留分を水素化処理して得られる石油系水素化処理油(軽油基材B)を5〜70容量%混合することで得られる、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、全酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油基材AおよびBからなる軽油組成物。 In the presence of hydrogen, to-be-treated oil in which a sulfur-containing hydrocarbon compound is mixed with animal and vegetable oils and / or components derived from animal and vegetable oils so that the sulfur content is 1 mass ppm to 2 mass%, and aluminum, silicon, zirconium, boron, A porous inorganic oxide comprising two or more elements selected from titanium and magnesium, and one kind selected from elements of Group 6A and Group 8 of the periodic table supported by the porous inorganic oxide The catalyst containing the above metal is contacted under conditions of a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h −1 , a hydrogen / oil ratio of 150 to 1500 NL / L, and a reaction temperature of 150 to 480 ° C. 10% to 90% by volume of a fraction (environmental low load gas oil base material) produced by treating the crude oil and the like with an atmospheric distillation apparatus, and then treating with an atmospheric distillation apparatus. Gas oil base A 95 to 30% by volume obtained by mixing 90 to 10% by volume of a hydrocracked gas oil fraction (boiling range: 200 to 350 ° C.) obtained by further hydrocracking the vacuum gas oil obtained The 90% distillation temperature is 360% obtained by mixing 5-70 vol% of petroleum hydrotreated oil (light oil base B) obtained by hydrotreating a gas oil fraction refined from crude oil or the like. ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid alkyl ester content is 3.5 mass% or less, total acid value is 0.13 mgKOH / g or less, methanol content is 0.01 mass% or less, glyceride content A gas oil composition comprising gas oil base materials A and B, having a mass point of 0.01 mass% or less and a clogging point of -5 ° C or less. 水素の存在下、動植物油脂および/または動植物油脂由来成分10〜90容量%と原油等から精製された軽油留分を有する石油系基材90〜10容量%とを混合した被処理油を、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒とを、水素圧力2〜13MPa、液空間速度0.1〜3.0h−1、水素/油比150〜1500NL/L、反応温度150〜480℃の条件下で接触させることによって製造される留分(環境低負荷型軽油基材)10〜90容量%に、原油等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(沸点範囲:200〜350℃)を90〜10容量%混合することで得られる軽油基材A’95〜30容量%に、原油等から精製された灯油留分を水素化処理して得られる石油系水素化処理油(軽油基材B’)を5〜70容量%混合することで得られる、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、全酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油基材A’およびB’からなる軽油組成物。 In the presence of hydrogen, an oil to be treated is prepared by mixing 10 to 90% by volume of a component derived from animal and vegetable oils and / or animal and vegetable oils and 90 to 10% by volume of a petroleum-based base material having a light oil fraction refined from crude oil or the like. , Porous inorganic oxides containing two or more elements selected from silicon, zirconium, boron, titanium and magnesium, and groups 6A and 8 of the periodic table carried on the porous inorganic oxides A catalyst containing one or more metals selected from the above elements, a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h −1 , a hydrogen / oil ratio of 150 to 1500 NL / L, a reaction temperature of 150 to 10% to 90% by volume of a fraction (environmental low load gas oil base material) produced by contacting under conditions of 480 ° C., followed by atmospheric pressure residue oil obtained by treating crude oil etc. with an atmospheric distillation device Decrease A gas oil base material obtained by mixing 90 to 10% by volume of a hydrocracked gas oil fraction (boiling range: 200 to 350 ° C.) obtained by further hydrocracking a vacuum gas oil obtained by treating with a distillation apparatus. Obtained by mixing 5-70 vol% petroleum hydrotreated oil (light oil base material B ') obtained by hydrotreating kerosene fraction refined from crude oil etc. with A'95-30 vol% 90% distillation temperature is 360 ° C. or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid alkyl ester content is 3.5 mass% or less, total acid value is 0.13 mg KOH / g or less, methanol content A light oil composition comprising light oil bases A ′ and B ′ having a content of 0.01% by mass or less, a glyceride content of 0.01% by mass or less and a clogging point of −5 ° C. or less.
JP2007206460A 2007-08-08 2007-08-08 Method for producing light oil composition Active JP5288741B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007206460A JP5288741B2 (en) 2007-08-08 2007-08-08 Method for producing light oil composition
PCT/JP2008/063823 WO2009020056A1 (en) 2007-08-08 2008-07-25 Gas oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206460A JP5288741B2 (en) 2007-08-08 2007-08-08 Method for producing light oil composition

Publications (2)

Publication Number Publication Date
JP2009040855A true JP2009040855A (en) 2009-02-26
JP5288741B2 JP5288741B2 (en) 2013-09-11

Family

ID=40441958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206460A Active JP5288741B2 (en) 2007-08-08 2007-08-08 Method for producing light oil composition

Country Status (1)

Country Link
JP (1) JP5288741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073529A1 (en) 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 Method for producing fuel oil
WO2013073528A1 (en) 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 Method for producing fuel oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538204A (en) * 2002-09-06 2005-12-15 フォータム オイル オサケ ユキチュア Diesel fuel composition containing components based on biological raw materials obtained by hydrogenating and decomposing fatty acids
WO2007064015A1 (en) * 2005-11-30 2007-06-07 Nippon Oil Corporation Gas oil composition
JP2007153927A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Hydro-refining method and hydro-refined oil
JP2007153928A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Method for producing low environmental load type fuel and low environmental load type fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538204A (en) * 2002-09-06 2005-12-15 フォータム オイル オサケ ユキチュア Diesel fuel composition containing components based on biological raw materials obtained by hydrogenating and decomposing fatty acids
WO2007064015A1 (en) * 2005-11-30 2007-06-07 Nippon Oil Corporation Gas oil composition
JP2007153927A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Hydro-refining method and hydro-refined oil
JP2007153928A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Method for producing low environmental load type fuel and low environmental load type fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073529A1 (en) 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 Method for producing fuel oil
WO2013073528A1 (en) 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 Method for producing fuel oil

Also Published As

Publication number Publication date
JP5288741B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288740B2 (en) Method for producing light oil composition
WO2007064015A1 (en) Gas oil composition
JP5072008B2 (en) Method for producing light oil composition
JP5121137B2 (en) Light oil composition
WO2008117856A1 (en) Gas oil composition
JP5117089B2 (en) Method for producing light oil composition
JP5072430B2 (en) Method for producing light oil composition
KR101371788B1 (en) Gas-oil composition
JP5072444B2 (en) Method for producing light oil composition
JP5072010B2 (en) Light oil composition
JP5121138B2 (en) Light oil composition
JP5288742B2 (en) Method for producing light oil composition
JP5072007B2 (en) Method for producing light oil composition
JP5072609B2 (en) Method for producing light oil composition
JP5288741B2 (en) Method for producing light oil composition
JP4979269B2 (en) Method for producing A heavy oil composition
JP5072006B2 (en) Method for producing light oil composition
JP2007270035A (en) Fuel composition
JP5091762B2 (en) Gas oil base and gas oil composition
JP5072009B2 (en) Light oil composition
JP5117088B2 (en) Method for producing light oil composition
WO2009020056A1 (en) Gas oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250