JP2009040630A - Method for producing metal fluoride single crystal using metal fluoride single crystal pulling apparatus - Google Patents

Method for producing metal fluoride single crystal using metal fluoride single crystal pulling apparatus Download PDF

Info

Publication number
JP2009040630A
JP2009040630A JP2007206490A JP2007206490A JP2009040630A JP 2009040630 A JP2009040630 A JP 2009040630A JP 2007206490 A JP2007206490 A JP 2007206490A JP 2007206490 A JP2007206490 A JP 2007206490A JP 2009040630 A JP2009040630 A JP 2009040630A
Authority
JP
Japan
Prior art keywords
crucible
metal fluoride
scavenger
single crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007206490A
Other languages
Japanese (ja)
Other versions
JP4859785B2 (en
Inventor
Takeshi Yasumura
健 安村
Teruhiko Nawata
輝彦 縄田
Tsunetoshi Sugimura
恒俊 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2007206490A priority Critical patent/JP4859785B2/en
Publication of JP2009040630A publication Critical patent/JP2009040630A/en
Application granted granted Critical
Publication of JP4859785B2 publication Critical patent/JP4859785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing intake or remnant of a metal component constituting a solid scavenger into or in a crystal, that is one factor deteriorating the internal transmittance of a metal fluoride single crystal used in an optical member or the like. <P>SOLUTION: A scavenging reaction, and melting and crystallization of a raw material are performed so that a solid scavenger or its melt are not brought into contact with a raw material metal fluoride 19 or its melt 23. For example, a double-structure crucible is used, and the solid scavenger is accommodated in a member 22 having a recessed part, which is provided below an opening part shielding member 15 attached to the outer wall of an inner crucible 2. Thereby, the scavenger is not directly brought into contact with the raw material metal fluoride 19 accommodated in an outer crucible 1 and a semi-closed space formed by the outer crucible 1, the inner crucible 2 and the opening part shielding member 15 is filled with the gasified scavenger and the gasified scavenger stays in the space for a long period of time. Accordingly, the efficiency of the scavenging reaction is not lowered. Further, the scavenger is not brought into contact with the melt 23 of the raw material metal fluoride 19 even in melting and crystallization processes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学材料等に用いられるフッ化金属単結晶体を製造するために用いる引上げ装置を用いたフッ化金属単結晶体の製造方法に関する。   The present invention relates to a method for producing a metal fluoride single crystal using a pulling apparatus used for producing a metal fluoride single crystal used for an optical material or the like.

フッ化カルシウムやフッ化バリウム等のフッ化金属の単結晶体は、広範囲の波長帯域にわたって高い透過率を有し、低分散で化学的安定性にも優れることから、紫外波長または真空紫外波長のレーザーを用いた各種機器、カメラ、CVD装置等のレンズ、窓材等の光学材料として需要が広がってきている。とりわけ、フッ化カルシウム単結晶体は、光リソグラフィー技術において次世代の短波長光源として開発が進められているArFレーザ(193nm)やFレーザ(157nm)での光源の窓材、光源系レンズ、投影系レンズとして期待が寄せられている。 Single crystal of metal fluoride such as calcium fluoride and barium fluoride has high transmittance over a wide wavelength band, low dispersion and excellent chemical stability. Demand is expanding as optical materials such as various devices using lasers, lenses for cameras, CVD devices, and window materials. In particular, a calcium fluoride single crystal is a light source window material, a light source lens, an ArF laser (193 nm) or an F 2 laser (157 nm), which is being developed as a next-generation short wavelength light source in the photolithography technology. Expectation is expected as a projection system lens.

従来、こうしたフッ化金属の単結晶体は、ブリッジマン法(坩堝降下法)やチョクラルスキー法(単結晶引上げ法)により製造するのが一般的である。ここで、ブリッジマン法とは、坩堝中の単結晶製造原料の溶融液を、坩堝ごと徐々に下降させながら冷却することにより、坩堝中に単結晶を成長させる方法である。一方、チョクラルスキー法とは、坩堝中の単結晶製造原料の溶融液面に、目的とする単結晶からなる種結晶を接触させ、次いで、その種結晶を坩堝の加熱域から徐々に引上げて冷却することにより、該種結晶の下方に単結晶を成長させる方法である。   Conventionally, such a single crystal of a metal fluoride is generally produced by the Bridgeman method (crucible descent method) or the Czochralski method (single crystal pulling method). Here, the Bridgman method is a method of growing a single crystal in a crucible by cooling the molten liquid of the single crystal production raw material in the crucible while gradually lowering the whole crucible. On the other hand, the Czochralski method is a method in which a seed crystal made of a target single crystal is brought into contact with the melt surface of the single crystal production raw material in the crucible, and then the seed crystal is gradually pulled up from the heating region of the crucible. In this method, a single crystal is grown under the seed crystal by cooling.

チョクラルスキー法は、製造される単結晶体が坩堝壁に接触することなく育成できる(成長する)ため、多結晶化してしまう可能性が低く、また大型で歪の少ない単結晶体を効率よく製造することができる優れた方法である(例えば、特許文献1、2参照)。   In the Czochralski method, the produced single crystal can be grown (grown) without contacting the crucible wall, so there is a low possibility that it will be polycrystallized, and a large single crystal with little strain is efficiently produced. It is an excellent method that can be manufactured (for example, see Patent Documents 1 and 2).

ところで、フッ化金属単結晶中に不純物として酸素が存在すると短波長側に吸収を生じる。特に真空紫外域で使用する場合には、単に透過率が低下するのみならず、レーザー光の照射によりこの透過率そのものが徐々に低下していく(レーザー耐性に劣る)という問題がある。   By the way, when oxygen is present as an impurity in the metal fluoride single crystal, absorption occurs on the short wavelength side. In particular, when used in the vacuum ultraviolet region, there is a problem that not only the transmittance is lowered, but also the transmittance itself is gradually lowered (inferior in laser resistance) by laser light irradiation.

そのため、通常はスカベンジャーと呼ばれる酸素除去剤を用いることが行われる。このスカベンジャーとしては、CF等のフッ素化炭化水素からなる気体スカベンジャー(常温で気体のスカベンジャー)や、PbF、ZnF等の固体スカベンジャー(常温で固体のスカベンジャー)が用いられている(例えば、特許文献1〜9参照)。 Therefore, an oxygen scavenger called a scavenger is usually used. As this scavenger, a gas scavenger made of fluorinated hydrocarbon such as CF 4 (gas scavenger at room temperature), or a solid scavenger such as PbF 2 or ZnF 2 (solid scavenger at room temperature) is used (for example, (See Patent Documents 1 to 9).

固体スカベンジャーを用いる場合には、原料フッ化金属とよく混ぜ合わせて坩堝に収容し、スカベンジ反応が生じる温度(フッ化金属の融点よりも低い)まで昇温して脱酸素を行い、その後さらに昇温して原料フッ化金属を溶融、ついで単結晶化が行われる。   When using a solid scavenger, mix well with the raw metal fluoride and place it in a crucible, raise the temperature to the point where the scavenge reaction takes place (lower than the melting point of the metal fluoride), and then deoxygenate. The raw material metal fluoride is melted by heating, followed by single crystallization.

この場合、スカベンジ反応により生じた生成物を除去するために、昇温開始から単結晶化開始までは、断続的に系内を排気することが通常行われる。さらには、ブリッジマン法で単結晶を製造する場合には、結晶成長中も高真空排気下に行われる場合が多い。   In this case, in order to remove the product generated by the scavenge reaction, the system is usually evacuated intermittently from the start of temperature rise to the start of single crystallization. Furthermore, when a single crystal is manufactured by the Bridgman method, it is often performed under high vacuum exhaust during crystal growth.

他方、チョクラルスキー法でフッ化金属単結晶を製造する場合、高真空下で結晶成長を行わせようとすると様々な問題が生じる可能性が高くなるため、常圧もしくは0.5kPa程度までの減圧下で行われる(例えば、特許文献8参照)。   On the other hand, when a metal fluoride single crystal is produced by the Czochralski method, there is a high possibility that various problems occur when crystal growth is performed under a high vacuum. This is performed under reduced pressure (see, for example, Patent Document 8).

特開2004−182588号公報JP 2004-182588 A 特開2005−029455号公報JP 2005-029455 A 特開2003−221297号公報Japanese Patent Laid-Open No. 2003-221297 特開平11−157982号公報Japanese Patent Laid-Open No. 11-157982 特開2004−315255号公報JP 2004-315255 A 特開2001−19586号公報Japanese Patent Laid-Open No. 2001-19586 特開2006−199577号公報JP 2006-199577 A 特開2006−347792号公報JP 2006-347792 A 特開2007−106662号公報JP 2007-106662 A

上述のように酸素不純物を除去するためにスカベンジャーが使用されるが、該スカベンジャーを構成する金属元素が製造されたフッ化金属中に取り込まれても、やはり様々な吸収を生じる場合があり、初期透過率やレーザー耐性を悪化させる要因となる。このような取り込みを防止するための手法としては、スカベンジャーの使用量を少なくすることが考えられるが、原料フッ化金属の有する酸素不純物量は一定でないのが通常であり、また結晶成長炉内の部材に付着している水分や酸素成分、リークによる外気混入の問題もある。そのため、スカベンジャーの使用量を多めにせざるを得ないのが現状である。   As described above, scavengers are used to remove oxygen impurities. However, even if the metal elements constituting the scavengers are incorporated into the produced metal fluoride, they may still cause various absorptions. It becomes a factor to deteriorate the transmittance and laser resistance. As a method for preventing such uptake, it is conceivable to reduce the amount of scavenger used, but the amount of oxygen impurities contained in the raw metal fluoride is usually not constant, There is also a problem of contamination of outside air due to moisture and oxygen components adhering to the member and leakage. Therefore, the current situation is that a large amount of scavenger must be used.

ブリッジマン法によるフッ化金属単結晶製造では、結晶成長中も高真空にすることが容易であるため、部材付着やリークに起因する水分や酸素成分が拡散により原料に混入することがなく、また、この高真空保持により、余剰の固体スカベンジャーや反応生成物が除去されやすいため固体スカベンジャーを多めに用いても上記問題は生じ難い。しかしながら、高真空下での結晶成長が困難なチョクラルスキー法では、部材付着やリークに起因する水分や酸素成分の拡散混入に対応するため多量のスカベンジャーを使用せざるを得ないうえ、余剰の固体スカベンジャーや反応生成物の除去が困難であるため、固体スカベンジャーを構成する金属元素の単結晶中への取り込みという問題がしばしば生じてしまう。   In metal fluoride single crystal production by the Bridgman method, it is easy to make a high vacuum even during crystal growth, so that moisture and oxygen components due to adhesion and leakage of members do not enter the raw material due to diffusion, and Because of this high vacuum holding, excess solid scavengers and reaction products are easily removed, so that the above problem is unlikely to occur even when a large amount of solid scavenger is used. However, in the Czochralski method, where crystal growth under high vacuum is difficult, it is necessary to use a large amount of scavenger in order to cope with diffusion and mixing of moisture and oxygen components due to adhesion and leakage of members. Since it is difficult to remove the solid scavenger and the reaction product, a problem of incorporation of the metal element constituting the solid scavenger into the single crystal often occurs.

一方、金属元素を有さないスカベンジャー、即ちフッ素化炭化水素からなる気体スカベンジャーを用いた場合には、このような金属元素の取り込みという問題は生じない。しかしながらフッ素化炭化水素は高温で分解して炭素ポリマーを生じるため、原料溶融液の上方から単結晶成長を行わせるチョクラルスキー法では、該炭素ポリマーが溶融液上に付着(浮遊)などして単結晶成長を阻害するという問題が起きやすい。なおブリッジマン法で単結晶製造を行う場合には、単結晶は坩堝の下方から成長させるため、炭素ポリマーが生じても実質的に問題は生じない。   On the other hand, when a scavenger having no metal element, that is, a gas scavenger made of fluorinated hydrocarbon is used, such a problem of incorporation of the metal element does not occur. However, since fluorinated hydrocarbons decompose at high temperatures to produce carbon polymers, the Czochralski method in which single crystal growth is performed from above the raw material melt causes the carbon polymer to adhere (float) to the melt. The problem of inhibiting single crystal growth is likely to occur. In the case of producing a single crystal by the Bridgman method, since the single crystal is grown from below the crucible, there is substantially no problem even if a carbon polymer is formed.

したがって本発明は、特にチョクラルスキー法でフッ化金属単結晶を製造するに際して、十分に酸素が除去されており、かつ固体スカベンジャー由来の金属元素も単結晶中に取り込まれにくく、よって真空紫外域での吸収が小さくレーザー照射によるダメージが小さい単結晶を安定的に製造できる製造方法を提供することを目的とする。   Therefore, in the present invention, particularly when producing a metal fluoride single crystal by the Czochralski method, oxygen is sufficiently removed, and a metal element derived from a solid scavenger is also difficult to be taken into the single crystal. It is an object of the present invention to provide a production method capable of stably producing a single crystal with small absorption at the surface and small damage by laser irradiation.

本発明者らは、上記課題に鑑み鋭意検討を行った。そして、上記のような問題は、スカベンジ工程においてフッ化金属原料と接触している固体スカベンジャーの一部が揮発しきらず、その後さらに昇温を行って原料フッ化金属を溶融した際に、該固体スカベンジャーが溶融した原料フッ化金属中に取り込まれてしまい、これによりさらに揮発しにくくなって、最終的に得た結晶中に残存してしまうのではないかと考え、さらに検討を進めた結果、本発明を完成した。   The present inventors have conducted intensive studies in view of the above problems. The above problem is that when a part of the solid scavenger in contact with the metal fluoride raw material does not completely volatilize in the scavenging process, and then the temperature is further raised to melt the raw metal fluoride, As a result of further investigation, the scavenger is taken into the molten raw material metal fluoride, which makes it more difficult to volatilize and remains in the finally obtained crystal. Completed the invention.

即ち本発明は、加熱炉のホットゾーンに、固体スカベンジャーとフッ化金属とを収容した後、ホットゾーンの昇温を行って該原料フッ化金属を溶融させる工程、次いで溶融したフッ化金属を結晶化させる工程を有するフッ化金属結晶の製造方法であって、
前記ホットゾーンにおける固体スカベンジャーの収容位置を、結晶化工程の終了までは、該固体スカベンジャー及びその溶融液が、原料フッ化金属及びその溶融液とは接触しない位置とすることを特徴とする前記フッ化金属結晶の製造方法である。
That is, the present invention includes a step of storing a solid scavenger and a metal fluoride in a hot zone of a heating furnace and then heating the hot zone to melt the raw metal fluoride, and then crystallizing the molten metal fluoride. A method for producing a metal fluoride crystal having a step of forming a crystal,
The storage position of the solid scavenger in the hot zone is a position where the solid scavenger and its molten liquid are not in contact with the raw metal fluoride and its molten liquid until the end of the crystallization step. This is a method for producing metal halide crystals.

本発明のフッ化金属結晶の製造方法を用いて単結晶の製造を行うと、結晶中に取り込まれる固体スカベンジャー由来の金属元素が大幅に減少し、かつ酸素除去も十分に行うことができるため、得られるフッ化金属結晶の内部透過率を向上させることができる。   When a single crystal is produced using the method for producing a metal fluoride crystal of the present invention, the metal element derived from a solid scavenger incorporated into the crystal is greatly reduced, and oxygen can be sufficiently removed. The internal transmittance of the resulting metal fluoride crystal can be improved.

本発明の製造方法は、固体スカベンジャーにより酸素除去の可能な公知の如何なるフッ化金属に対しても適用できる。具体的には、フッ化カルシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、フッ化リチウム、フッ化アルミニウム、フッ化セリウム、フッ化ランタン、およびBaLiF、KMgF、LiCaAlF、LiSrAlF等の2種類以上のカチオン元素を含むフッ化金属等が挙げられる。このうち特にフッ化アルカリ土類金属、なかでもフッ化カルシウム及びフッ化バリウムにおいて最も顕著に効果が発揮され、また、目的物の工業的価値も高い。 The production method of the present invention can be applied to any known metal fluoride capable of removing oxygen by a solid scavenger. Specifically, calcium fluoride, magnesium fluoride, strontium fluoride, barium fluoride, lithium fluoride, aluminum fluoride, cerium fluoride, lanthanum fluoride, BaLiF 3 , KMgF 3 , LiCaAlF 6 , LiSrAlF 6, etc. And metal fluorides containing two or more kinds of cationic elements. Of these, the effects are most prominent particularly in alkaline earth metal fluorides, especially calcium fluoride and barium fluoride, and the industrial value of the object is also high.

本発明において使用される固体スカベンジャー(即ち、常温で固体のスカベンジャー)は製造対象であるフッ化金属に合わせて公知の固体スカベンジャーを適宜選択すればよい。例えば、フッ化金属がフッ化カルシウムやフッ化マグネシウムである場合には、固体スカベンジャーとしてはフッ化亜鉛(PbF)、フッ化鉛(ZnF)、フッ化銀(AgF)、フッ化銅(CuF)等が挙げられる。なかでも酸素の除去能力や取り扱い性の点でフッ化鉛またはフッ化亜鉛が好ましく、特にフッ化亜鉛が好ましい。なお本発明においては、固体スカベンジャーは2種以上を併用することも可能である。 The solid scavenger used in the present invention (that is, a scavenger that is solid at room temperature) may be appropriately selected from known solid scavengers according to the metal fluoride to be produced. For example, when the metal fluoride is calcium fluoride or magnesium fluoride, the solid scavenger includes zinc fluoride (PbF 2 ), lead fluoride (ZnF 2 ), silver fluoride (AgF), copper fluoride ( CuF 2 ) and the like. Of these, lead fluoride or zinc fluoride is preferable from the viewpoint of oxygen removal ability and handling properties, and zinc fluoride is particularly preferable. In the present invention, two or more solid scavengers can be used in combination.

本発明は、上記の如き固体スカベンジャーの存在下で原料フッ化金属を溶融させ、ついで結晶化させる。この過程において前述したようなスカベンジ反応が起き、フッ化金属から酸素不純物が除去される。フッ化金属結晶の製造においては当該溶融及び結晶化を行う工程として、原料の精製工程、及び単結晶化工程があり、本発明はいずれの工程に適用してもよいが、従来より固体スカベンジャー成分の除去が困難であったという点で、単結晶化工程に適用することが好ましい。また原料の溶融及び結晶化を伴う単結晶化の方法としては、チョクラルスキー法、ブリッジマン法等があるが、前述した如く、従来技術では固体スカベンジャー由来の成分の除去がより困難であるという点で、チョクラルスキー法に本発明の製造方法を適用することが好ましい。   In the present invention, the raw metal fluoride is melted in the presence of the solid scavenger as described above, and then crystallized. In this process, the scavenging reaction as described above occurs, and oxygen impurities are removed from the metal fluoride. In the production of metal fluoride crystals, there are a raw material refining step and a single crystallization step as the steps of melting and crystallization, and the present invention may be applied to any step. It is preferable to apply it to the single crystallization step in that it was difficult to remove. In addition, as a single crystallization method involving melting and crystallization of raw materials, there are the Czochralski method, the Bridgeman method, etc., but as described above, it is more difficult to remove the components derived from the solid scavenger by the conventional technology. In this respect, it is preferable to apply the production method of the present invention to the Czochralski method.

以下、本発明をチョクラルスキー法に適用する場合を例にし、図面を参照してより具体的に説明する。なお本発明においては、単に「固体スカベンジャー」あるいは「原料フッ化金属」という場合には、溶融やガス化していない固体状態のものを指す。   Hereinafter, the case where the present invention is applied to the Czochralski method will be described as an example with reference to the drawings. In the present invention, the term “solid scavenger” or “raw metal fluoride” simply refers to a solid state that is not melted or gasified.

図1はチョクラルスキー法で単結晶を製造するための炉(加熱炉)を示す断面模式図である(結晶引き上げ中の状態を示す)。図1に示す炉では、原料フッ化金属を溶融させる坩堝が外坩堝(1)と内坩堝(2)からなる二重構造坩堝であり、該内坩堝(2)の壁部(底壁及び/又は側壁)には、該壁部を貫通して内坩堝内と外坩堝内とで原料フッ化金属溶融液の流通可能な貫通孔(3)が設けられている。結晶を引き上げると、引き上げた結晶量に相当する分だけ、坩堝内の原料溶融液が減少、即ち、坩堝内における原料溶融液面が低下する。図示した態様では内坩堝は所定の位置(高さ)に固定されており、原料溶融液面の相対的な下降分に相当するだけ外坩堝を上昇させる。これにより内坩堝内の原料溶融液を一定とし、原料溶融液面(=結晶成長界面)位置が変化しないようにすることが可能である。   FIG. 1 is a schematic cross-sectional view showing a furnace (heating furnace) for producing a single crystal by the Czochralski method (showing a state during crystal pulling). In the furnace shown in FIG. 1, the crucible for melting the raw material metal fluoride is a double structure crucible comprising an outer crucible (1) and an inner crucible (2), and the wall portion (bottom wall and / or / (Or the side wall) is provided with a through hole (3) through which the raw metal fluoride metal melt can flow in the inner crucible and the outer crucible through the wall portion. When the crystal is pulled up, the raw material melt in the crucible is reduced by the amount corresponding to the amount of crystal pulled up, that is, the raw material melt level in the crucible is lowered. In the illustrated embodiment, the inner crucible is fixed at a predetermined position (height), and the outer crucible is raised by an amount corresponding to the relative lowering of the raw material melt surface. As a result, the raw material melt in the inner crucible can be kept constant, and the position of the raw material melt surface (= crystal growth interface) can be prevented from changing.

外坩堝の上昇は、上下動及び回転が可能な外坩堝支持軸(4)により行われる(該上下動及び回転を可能とする機構は図示しない)。なお図1においては、外坩堝(1)は受け台(5)上に設置されており、外坩堝支持軸(4)は、直接には該受け台(5)を上下動及び回転させる。   The outer crucible is raised by an outer crucible support shaft (4) capable of moving up and down (the mechanism enabling the up and down movement and rotation is not shown). In FIG. 1, the outer crucible (1) is installed on a cradle (5), and the outer crucible support shaft (4) directly moves and rotates the cradle (5).

坩堝の加熱は、ヒーター(6)により行われる。通常、結晶引き上げ炉のチャンバー(7)と該ヒーター(6)の間には、断熱材壁(8)が、ヒーター(6)を環囲するように配置され、さらに通常は、断熱材壁は坩堝の下方にも設けられ、また上方には天井板が設けられる。   The crucible is heated by a heater (6). Usually, a heat insulating wall (8) is arranged between the chamber (7) of the crystal pulling furnace and the heater (6) so as to surround the heater (6). It is also provided below the crucible, and a ceiling plate is provided above.

図1の引き上げ装置においては、外坩堝(1)の外壁面とヒーター(6)の間には、ヒーターからの輻射熱を均一化する目的で、隔離壁(9)が周設されている。そして、該ヒーター(6)の熱が上方に逃失するのを防止するために、隔離壁(9)の上端をヒーター(6)の上端よりも高くし、該上端と断熱材壁(8)との間に、隔離壁(9)と断熱材壁(8)との間隙を閉塞するリッド材(10)を横架して、この間隙を閉塞させている。   In the pulling device of FIG. 1, an isolation wall (9) is provided between the outer wall surface of the outer crucible (1) and the heater (6) for the purpose of uniformizing the radiant heat from the heater. In order to prevent the heat of the heater (6) from escaping upward, the upper end of the isolation wall (9) is made higher than the upper end of the heater (6), and the upper end and the heat insulating wall (8) The lid member (10) that closes the gap between the isolation wall (9) and the heat insulating material wall (8) is horizontally placed between the two and the gap.

坩堝の中心軸上には、種結晶(11)を保持する種結晶保持具(12)と、該保持具を上下動かつ回転可能に支持する結晶引き上げ軸(13)が配置されている。チョクラルスキー法では通常、坩堝内の十分に溶融した原料に、該保持具(12)に保持された種結晶(11)を接触させた後、回転させながら徐々に引き上げて単結晶体(14)を成長させる。   On the center axis of the crucible, a seed crystal holder (12) for holding the seed crystal (11) and a crystal pulling shaft (13) for supporting the holder so as to move up and down and rotate are arranged. In the Czochralski method, the seed crystal (11) held in the holder (12) is usually brought into contact with a sufficiently melted raw material in the crucible, and then gradually pulled up while rotating to obtain a single crystal (14 ) Grow.

上述のようにしてチョクラルスキー法でフッ化金属単結晶を製造する場合には、まず坩堝内に原料フッ化金属を装入・配置し、該原料フッ化金属をヒーター(6)で加熱して原料フッ化金属溶融液とするが、酸素不純物を除去するため、該原料フッ化金属に加えて固体スカベンジャーも炉内に装入される。   In the case of producing a metal fluoride single crystal by the Czochralski method as described above, first, a raw material metal fluoride is charged and placed in a crucible, and the raw material metal fluoride is heated by a heater (6). In order to remove oxygen impurities, a solid scavenger is also charged into the furnace in addition to the raw metal fluoride.

従来、固体スカベンジャー(20)を用いる場合には、原料フッ化金属(19)と混合して用いられてきた(図2)。また混合しない場合でも坩堝底に置き、揮発したスカベンジャーガスが原料フッ化金属と接触しやすいようにしていた(図3)。坩堝底に置いた場合には、原料フッ化金属が溶融する温度まで昇温した時点で固体スカベンジャーが揮発しきっていない(通常は溶融状態にある)と、溶融した原料フッ化金属が底部まで流入してくるために残存している固体スカベンジャー(の溶融液)と接触してしまう。   Conventionally, when a solid scavenger (20) is used, it has been used by mixing with a raw material metal fluoride (19) (FIG. 2). Even when not mixed, it was placed on the bottom of the crucible so that the volatilized scavenger gas could easily come into contact with the raw metal fluoride (FIG. 3). When placed at the bottom of the crucible, if the solid scavenger has not completely volatilized (normally in a molten state) when the temperature is raised to the temperature at which the raw metal fluoride melts, the molten raw material fluoride flows into the bottom. As a result, the remaining solid scavenger (the melt thereof) comes into contact.

このように従来の固体スカベンジャーの使用方法では、固体スカベンジャー又はその溶融液と、原料フッ化金属又はその溶融液とが接触する状態で用いられているため、得られたフッ化金属単結晶中に固体スカベンジャーを構成していた金属元素が取り込まれてしまうという問題を生じやすい。   Thus, in the conventional method of using a solid scavenger, the solid scavenger or its molten liquid is used in a state where the raw material metal fluoride or its molten liquid is in contact with each other. It is easy to cause a problem that the metal element constituting the solid scavenger is taken in.

それに対し本発明においては、固体スカベンジャー又はその溶融液と、原料フッ化金属又はその溶融液とが接触しない状態で行うため上記問題は生ぜず、よって高品質のフッ化金属結晶を得ることが容易となる。   On the other hand, in the present invention, the above-mentioned problem does not occur because the solid scavenger or its melt and the raw material metal fluoride or its melt are not in contact with each other, and thus it is easy to obtain a high-quality metal fluoride crystal. It becomes.

上記「接触しない状態」とするための方法は特に限定されるものではないが、代表的には、図4〜6に示すような坩堝上方に凹部又は凹部を有する部材を備えた坩堝を用い、該凹部に固体スカベンジャーを収容してフッ化金属の製造を行う方法が挙げられる。   Although the method for making the above "not in contact" is not particularly limited, typically, a crucible provided with a recess or a member having a recess above the crucible as shown in Figs. A method of producing a metal fluoride by containing a solid scavenger in the recess is mentioned.

図4は外坩堝の上端に凹部(21)を設けた例を示す模式図である。なお図4において右側は凹部に固体スカベンジャーを収容した状態、左側は未収容の状態を示している。このような凹部(21)に固体スカベンジャー(20)を収容しておくことにより、加熱によってスカベンジャー成分が揮発し、そのガスが坩堝(1)内の原料フッ化金属(19)と接触して酸素除去反応(スカベンジ反応)を生じる。さらに昇温すると原料フッ化金属(19)は溶融するが、スカベンジャーは坩堝上端の凹部に収容されているため、溶融した原料フッ化金属と固体スカベンジャーとが接触することはない。なお通常、原料フッ化金属が溶融する温度では、固体スカベンジャー(20)も溶融する。したがって凹部を設ける場合には、固体スカベンジャーの溶融液が流れ出して原料フッ化金属と接触してしまわない構造にする必要がある。   FIG. 4 is a schematic view showing an example in which a recess (21) is provided at the upper end of the outer crucible. In FIG. 4, the right side shows a state where the solid scavenger is accommodated in the recess, and the left side shows the state where the solid scavenger is not accommodated. By storing the solid scavenger (20) in such a recess (21), the scavenger component is volatilized by heating, and the gas comes into contact with the raw material metal fluoride (19) in the crucible (1) to generate oxygen. A removal reaction (scavenge reaction) occurs. When the temperature is further raised, the raw metal fluoride (19) is melted, but the scavenger is accommodated in the recess at the upper end of the crucible, so that the molten raw metal fluoride and the solid scavenger do not come into contact with each other. Normally, the solid scavenger (20) is also melted at the temperature at which the raw metal fluoride is melted. Therefore, when providing a recessed part, it is necessary to make it the structure which the melt of a solid scavenger flows out and does not contact with a raw material metal fluoride.

図5は、外坩堝の内側壁の上方に、凹部(21)を生じるように穴(又は溝)を開けた例を示す図であり、図6は、外坩堝の上方内側に凹部を有する部材(22)を設けた例を示す図である(いずれも固体スカベンジャーは図示していない)。このような態様とする場合には、該凹部の開口部は坩堝の上方、より具体的には、溶融した原料フッ化金属が到達する最も高い位置よりも上方に設ける必要がある。   FIG. 5 is a view showing an example in which a hole (or groove) is formed above the inner wall of the outer crucible so as to form a recess (21), and FIG. 6 is a member having a recess on the upper inner side of the outer crucible. It is a figure which shows the example which provided (22) (all do not show the solid scavenger). In the case of such an embodiment, the opening of the concave portion needs to be provided above the crucible, more specifically, above the highest position where the molten raw material metal fluoride reaches.

上記図4〜6では、二重構造坩堝における外坩堝の上方に凹部(21)又は凹部を有する部材(22)を設けているが、内坩堝上方に設けてもよい。しかしながら、後述する開口部遮蔽部材を設けた場合には、ガス化した固体スカベンジャーと原料フッ化金属とが接触しやすく、スカベンジ反応を効率的に行わせやすい点で外坩堝の上方に凹部又は凹部を有する部材を設けることが好ましい。また外坩堝に設ける場合でも、外側壁側よりも上端又は内側壁側に設けることが好ましい。   4 to 6, the concave portion (21) or the member (22) having the concave portion is provided above the outer crucible in the double structure crucible, but may be provided above the inner crucible. However, when the opening shielding member described later is provided, the gasified solid scavenger and the raw material metal fluoride are easily brought into contact with each other, and a recess or a recess is formed above the outer crucible in that the scavenging reaction is easily performed. It is preferable to provide a member having Moreover, even when providing in an outer crucible, it is preferable to provide in an upper end or an inner wall side rather than an outer side wall side.

二重構造坩堝とする場合、外坩堝と内坩堝との間の開口部を閉塞するために、内坩堝外側壁及び/又は外坩堝内側壁に開口部遮蔽部材(15)を設けることが好ましい。当該開口部遮蔽部材については特開2007−106662号公報等に詳細に記載されている。具体的には、結晶引き上げ中のフッ化金属の揮発を抑制し、また落下物の影響を低減する。さらに当該開口部遮蔽部材(15)は、従来法である固体スカベンジャーと原料フッ化金属を混合する方法(図2)、あるいは固体スカベンジャーを坩堝底に収容する方法(図3)においては、スカベンジャーガスと原料フッ化金属の接触効率を高くする効果を有しているが、本発明においても固体スカベンジャーの収容位置を適切に設定することにより、同様の効果を得ることができる。   In the case of a dual structure crucible, it is preferable to provide an opening shielding member (15) on the outer wall of the inner crucible and / or the inner wall of the outer crucible in order to close the opening between the outer crucible and the inner crucible. The opening shielding member is described in detail in Japanese Unexamined Patent Application Publication No. 2007-106662. Specifically, the volatilization of the metal fluoride during crystal pulling is suppressed and the influence of falling objects is reduced. Further, the opening shielding member (15) is a scavenger gas in a conventional method of mixing a solid scavenger and a raw metal fluoride (FIG. 2) or a method of housing a solid scavenger in the crucible bottom (FIG. 3). In the present invention, the same effect can be obtained by appropriately setting the housing position of the solid scavenger.

即ち、例えば図5又は図6における溶融前の状態に示すように、固体スカベンジャーを収容する凹部(21)又は凹部を有する部材(22)(以下、併せて単に「凹部等」と称す)が、開口部遮蔽部材(15)よりも下方となる状態とし、外坩堝内側壁、内坩堝外側壁及び開口部遮蔽部材によって形成される半密閉空間(このなかに原料フッ化金属も収容されている)内に凹部等の開口部が存在するようにする。これにより凹部等の開口部から揮発してきたスカベンジャーガスが該半密閉空間内で長時間滞留するため、原料フッ化金属との接触を効率的にすることが可能である。   That is, for example, as shown in the state before melting in FIG. 5 or FIG. 6, a recess (21) or a member (22) having a recess (hereinafter, simply referred to as “a recess or the like”) that accommodates the solid scavenger is A semi-enclosed space formed by the inner wall of the outer crucible, the outer wall of the inner crucible, and the opening shielding member (which also contains the raw material metal fluoride). An opening such as a recess is present inside. As a result, the scavenger gas that has volatilized from the opening such as the concave portion stays in the semi-enclosed space for a long time, so that the contact with the raw material metal fluoride can be made efficient.

なお図4に示すように凹部を、坩堝上端に開口部を上方に向けて設けた場合にも、フッ化金属溶融まで開口部遮蔽部材の位置を該凹部よりも上方にすることが好ましい。   In addition, as shown in FIG. 4, even when the recess is provided at the upper end of the crucible with the opening facing upward, it is preferable that the position of the opening shielding member is higher than the recess until the metal fluoride is melted.

坩堝上方に固体スカベンジャーを収容するための凹部を有する部材を設ける場合、該部材は坩堝から容易に着脱可能な部材とすることが好ましい。容易に着脱可能な部材とすることにより、予め該部材の凹部に固体スカベンジャーを収容した後、該部材を炉内に装入・設置することが可能となり、炉内の所定位置(凹部)に固体スカベンジャーを収容する作業が著しく容易になる。特に、図7に示すように、坩堝上端を着脱自在な部材とすることが作業性の向上という点で特に有利である(図7においても、凹部に収容される固体スカベンジャーは図示していない)。   When providing the member which has a recessed part for accommodating a solid scavenger above a crucible, it is preferable to make this member the member which can be easily attached or detached from a crucible. By making it an easily removable member, it becomes possible to charge and install the solid scavenger in the concave portion of the member in advance, and then place the solid member in a predetermined position (recessed portion) in the furnace. The operation of housing the scavenger is significantly facilitated. In particular, as shown in FIG. 7, it is particularly advantageous in terms of improving workability that the upper end of the crucible is a detachable member (also in FIG. 7, the solid scavenger accommodated in the recess is not shown). .

前述のように原料フッ化金属とスカベンジャーガスとの反応を効率的にするために、開口部遮蔽部材を設ける場合には、固体スカベンジャーを収容する凹部等は、その開口部が開口部遮蔽部材よりも下方に有するように設けることが好ましい。外坩堝と内坩堝の相対的な位置の変化を生じさせた場合でも、常に凹部等の開口部が開口部遮蔽部材よりも下方にすることができるという点で、該開口部遮蔽部材の下面及び/又は該下面より下方であって開口部遮蔽部材が設けられた側の坩堝の側壁に凹部等を設けることが好ましい。   As described above, in order to make the reaction between the metal fluoride metal and the scavenger gas efficient, when the opening shielding member is provided, the opening of the recess for housing the solid scavenger is more than the opening shielding member. Is preferably provided so as to have a lower portion. Even when the relative position of the outer crucible and the inner crucible is changed, the lower surface of the opening shielding member and the opening shielding member can be always lower than the opening shielding member. It is preferable to provide a recess or the like on the side wall of the crucible on the side below the lower surface and provided with the opening shielding member.

この態様を図示したのが図8、図9である。図8に示す態様では、内坩堝(2)外側壁に設けられた開口部遮蔽部材(15)の下面に固体スカベンジャーを収容するための凹部を有する部材(22)が設けられており、図9に示す態様では、内坩堝(2)外側壁であって開口部遮蔽部材(15)の下面よりも下方の位置に凹部を有する部材(22)が設けられている。これら図8、9では固体スカベンジャーを収容させるための部材を坩堝本体とは別部材としているが、前記図5の如く、坩堝本体に穴や溝を設けても構わない。図6に示した態様の如く、凹部を有する部材を開口部遮蔽部材を取り付けた坩堝とは反対の坩堝に突出した状態で設ける場合には、外坩堝を上下動させる場合に、該凹部を有する部材と開口部遮蔽部材との干渉を考慮して設計や上下動をする必要があるが、図8、9の態様の如く、開口部遮蔽部材を設けた側に凹部等を設ける場合には、この干渉を考慮する必要がない(むろん、フッ化金属原料の溶融液面の高さは考慮する必要がある)。そのため、この態様では坩堝本体に穴等を開けて凹部を設けるよりも、凹部を有する部材を設けた方が、坩堝の耐久性や補修の容易性、固体スカベンジャーの収容のし易さ等の点で好ましい。   FIG. 8 and FIG. 9 illustrate this aspect. In the embodiment shown in FIG. 8, a member (22) having a recess for accommodating the solid scavenger is provided on the lower surface of the opening shielding member (15) provided on the outer wall of the inner crucible (2). The member (22) which has a recessed part in the position below the lower surface of the opening part shielding member (15) which is an inner wall of a crucible (2) is provided. In FIGS. 8 and 9, the member for housing the solid scavenger is a separate member from the crucible body. However, as shown in FIG. 5, holes and grooves may be provided in the crucible body. As shown in FIG. 6, when a member having a recess is provided in a state protruding from the crucible opposite to the crucible to which the opening shielding member is attached, the recess is provided when the outer crucible is moved up and down. Although it is necessary to design and move up and down in consideration of interference between the member and the opening shielding member, as shown in FIGS. 8 and 9, when providing a recess or the like on the side where the opening shielding member is provided, There is no need to consider this interference (of course, it is necessary to consider the height of the melt surface of the metal fluoride raw material). Therefore, in this aspect, rather than opening a hole or the like in the crucible body and providing a recess, providing a member having a recess makes the crucible durable, easy to repair, and easy to accommodate a solid scavenger. Is preferable.

ガス化したスカベンジャーが原料フッ化金属表面の酸素を取り除くためにはできるだけ原料に近い位置に固体スカベンジャーを配置する方が好ましいため、上記いずれの態様においても、凹部の位置はなるべく下方(但し、原料フッ化金属の溶融液が到達する最も高い位置より上方)に設けることが好ましく、またその凹部の開口部は広い方が好ましい。   In order for the gasified scavenger to remove oxygen on the surface of the raw material metal fluoride, it is preferable to dispose the solid scavenger as close to the raw material as possible. Therefore, in any of the above embodiments, the position of the recess is as low as possible (however, the raw material It is preferably provided above the highest position where the molten metal fluoride reaches, and the opening of the recess is preferably wide.

また上述したような坩堝に凹部等を設ける方法に限らず、如何なる方法を採用してもよい。しかしながら固体スカベンジャーが高温で揮発し、生じたガスがスカベンジ反応を起こすため、該固体スカベンジャーは炉内のホットゾーンに収容する必要がある。なおここで本発明におけるホットゾーンとは、溶融させたフッ化金属の結晶化に際して、該結晶化を開始する時点での炉内温度構成において、[該フッ化金属の結晶化温度(融点)−500]℃よりも高い温度となる空間をいう。好ましくはホットゾーンのなかでも、結晶化を開始する時点での炉内温度構成において、[該フッ化金属の結晶化温度(融点)−200]℃よりも高い温度となる場所に固体スカベンジャーを収容する。   Moreover, not only the method of providing a concave part etc. in a crucible as mentioned above but what kind of method may be employ | adopted. However, since the solid scavenger volatilizes at a high temperature and the generated gas causes a scavenge reaction, the solid scavenger needs to be accommodated in a hot zone in the furnace. Here, the hot zone in the present invention refers to the temperature configuration in the furnace at the time of starting the crystallization in the crystallization of the molten metal fluoride [the crystallization temperature (melting point) of the metal fluoride] 500] A space having a temperature higher than ° C. Preferably, in the hot zone, the solid scavenger is housed in a place where the temperature is higher than [crystallization temperature (melting point) -200] ° C. of the metal fluoride in the furnace temperature configuration at the start of crystallization. To do.

上記のようなチョクラルスキー法単結晶製造炉を構成する部材は、フッ化金属製造に際して用いられる公知の材質のものを適宜選択して使用すればよい。具体的にはフッ素系ガスに対する耐久性、耐熱性、フッ化金属への不純物の混入の可能性等を考慮して選択すればよい。このような材料としては黒鉛やダイヤモンド等の炭素系材料や白金、白金−ロジウム合金、イリジウム等の高融点金属が挙げられる。なかでも安価な点で、主に黒鉛系の材料で炉を構成することが好ましい。   The members constituting the Czochralski method single crystal production furnace as described above may be appropriately selected from known materials used in the production of metal fluoride. Specifically, the selection may be made in consideration of durability against fluorine-based gas, heat resistance, possibility of impurities being mixed into the metal fluoride, and the like. Examples of such materials include carbon-based materials such as graphite and diamond, and refractory metals such as platinum, platinum-rhodium alloys, and iridium. In particular, it is preferable that the furnace is mainly composed of a graphite-based material because of its low cost.

上記例のようなチョクラルスキー法単結晶引き上げ装置(炉)を用いてフッ化金属単結晶を製造する方法は、固体スカベンジャーの収容位置を除けば公知の方法を適用すればよい。以下、簡単にその代表的な製造方法を述べる。   As a method for producing a metal fluoride single crystal using the Czochralski method single crystal pulling apparatus (furnace) as in the above example, a known method may be applied except for the position where the solid scavenger is accommodated. The typical manufacturing method will be briefly described below.

単結晶製造に際しては、炉内に原料フッ化金属と固体スカベンジャーを装入するが、これに先立って、炉内を高真空下に高温で空焼きして清浄化しておくことが好ましい。この空焼きは、固体又は気体スカベンジャーの存在下に行ってもよい。   In the production of a single crystal, a raw material metal fluoride and a solid scavenger are charged in the furnace. Prior to this, it is preferable to clean the furnace by empty baking at a high temperature under high vacuum. This baking may be performed in the presence of a solid or gaseous scavenger.

原料フッ化金属としては、できる限り不純物の少ないものが好ましく、各種スカベンジャー存在下に加熱溶融して酸化物や水分等の不純物の大部分を除去しておくことが望ましい。   The raw material metal fluoride is preferably one having as few impurities as possible, and it is desirable to remove most of impurities such as oxides and moisture by heating and melting in the presence of various scavengers.

このような原料フッ化金属と固体スカベンジャーとを前述したような位置関係で炉内に収容する。用いる固体スカベンジャーの量は、通常、原料フッ化金属100質量部に対して、0.01〜1質量部程度である。   Such a raw material metal fluoride and a solid scavenger are accommodated in the furnace in the positional relationship as described above. The amount of the solid scavenger to be used is usually about 0.01 to 1 part by mass with respect to 100 parts by mass of the raw metal fluoride.

上記原料フッ化金属を坩堝に収容した後に昇温を行う。この昇温過程においては、炉内を排気減圧下におくことが好ましい。これによりスカベンジ反応を生じる温度までは原料フッ化金属表面や炉内に存在する吸着水等を除去し、またスカベンジ反応が生じる温度以上では、ガス化したスカベンャーと残存水分等とが反応して生じた反応生成物等を装置外に排出させることができる。   The raw material metal fluoride is heated in the crucible after it is contained. In this temperature raising process, it is preferable to keep the inside of the furnace under reduced pressure. This removes the surface of the raw metal fluoride or adsorbed water in the furnace up to the temperature at which the scavenge reaction takes place, and above the temperature at which the scavenge reaction takes place, the gasified scavenger reacts with the residual moisture. Reaction products and the like can be discharged out of the apparatus.

溶融した原料フッ化金属の溶融液面に種結晶を接触させ、徐々に引上げて単結晶を成長させる。結晶引上げ中の雰囲気はアルゴンなどの不活性ガスであることが好ましい。単結晶引上げは常圧〜減圧下に行うことができる。   A seed crystal is brought into contact with the molten liquid surface of the molten raw material metal fluoride, and gradually pulled up to grow a single crystal. The atmosphere during crystal pulling is preferably an inert gas such as argon. Single crystal pulling can be performed under normal pressure to reduced pressure.

種結晶および成長中の結晶は、引上げ軸を中心として回転させることが好ましく、回転速度は5〜30回/分であることが好ましい。また、上記種結晶の回転に併せて、坩堝も反対方向に同様の回転速度で回転させても良い。好適な結晶の引上げ速度は、1〜10mm/時間である。   The seed crystal and the growing crystal are preferably rotated about the pulling axis, and the rotation speed is preferably 5 to 30 times / minute. In addition to the rotation of the seed crystal, the crucible may be rotated in the opposite direction at the same rotation speed. A suitable crystal pulling speed is 1 to 10 mm / hour.

結晶引上げの終了後、単結晶体を炉から取り出すまでの冷却は通常、10℃/min以下の降温速度で行われるが、得られたアズグロウン単結晶体を加工する際にクラックが入ったり欠けたりすることを防止しやすい点で、0.5℃/min以下、好ましくは0.1〜0.3℃/min程度の降温速度で冷却するとよい。また、微細ボイドの発生を抑制しやすい点で、降温中は炉内圧が10−3〜10−5Pa程度となる真空排気下で行うことがより好ましい。 After the completion of the crystal pulling, the cooling until the single crystal is taken out from the furnace is usually performed at a temperature lowering rate of 10 ° C./min or less. However, when the obtained as-grown single crystal is processed, cracking or chipping occurs. It is preferable to cool at a temperature lowering rate of 0.5 ° C./min or less, preferably about 0.1 to 0.3 ° C./min. Moreover, it is more preferable to carry out under vacuum evacuation in which the furnace pressure is about 10 −3 to 10 −5 Pa during the temperature drop because it is easy to suppress the generation of fine voids.

単結晶引上げに用いる種結晶は、成長するフッ化金属と同材質の単結晶体を用いるのが好ましい。種結晶の成長面は任意に選択することができるが、フッ化カルシウムの種結晶を用いる場合は、{111}面、{100}面、または{110}面及びこれらの等価面を好適に用いることができる。   The seed crystal used for pulling the single crystal is preferably a single crystal of the same material as the growing metal fluoride. The growth surface of the seed crystal can be arbitrarily selected, but when using a calcium fluoride seed crystal, the {111} plane, the {100} plane, the {110} plane, and their equivalent planes are preferably used. be able to.

以下、本発明を、実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.

実施例1
図1に示すような二重構造坩堝の単結晶体製造用引上げ装置を用いて、フッ化カルシウム単結晶体の製造を行った。
Example 1
A calcium fluoride single crystal was manufactured using a pulling apparatus for manufacturing a single crystal of a double structure crucible as shown in FIG.

二重構造坩堝(6)は、外坩堝(4)が深さ30cm、内径50cmであり、内坩堝(5)が深さ150cm、内径36cm、坩堝底は中心に向かって内角120°で傾斜するV字状(すり鉢状)である。この内坩堝の外壁には上端から2cmの位置に、厚さ6mmで、外坩堝内壁との間隙が1.5mmとなるドーナツ板状の開口部遮蔽部材が取り付けられている。内坩堝は、その下端部に一個と、その上方に25mmの高さの位置の円周上に均等間隔で8個、口径が4mmの円筒状の連通孔(14)が形成されている。   In the double structure crucible (6), the outer crucible (4) has a depth of 30 cm and an inner diameter of 50 cm, the inner crucible (5) has a depth of 150 cm and an inner diameter of 36 cm, and the crucible bottom is inclined at an inner angle of 120 ° toward the center. V-shaped (mortar shape). A donut plate-shaped opening shielding member having a thickness of 6 mm and a gap of 1.5 mm from the inner wall of the outer crucible is attached to the outer wall of the inner crucible at a position 2 cm from the upper end. The inner crucible is formed with a cylindrical communication hole (14) with one piece at the lower end and eight pieces above the circumference at a height of 25 mm at equal intervals and a diameter of 4 mm.

また断熱材壁(6)は、ピッチ系グラファイト成型断熱材であり、厚み方向の放熱能力は9W/m・Kのものであり、他方、天井板(14)は、グラファイト製であり、厚み方向の放熱能力は5000W/m・Kのものであった。 The heat insulating wall (6) is a pitch-based graphite molded heat insulating material and has a heat dissipation capability in the thickness direction of 9 W / m 2 · K, while the ceiling plate (14) is made of graphite and has a thickness of The heat dissipation capability in the direction was 5000 W / m 2 · K.

外坩堝位置を低下させ、外坩堝中にフッ化カルシウム原料70kgと図8に示すようにドーナツ状の開口部遮蔽部材の下面に取り付けたグラファイト製容器にフッ化亜鉛(固体スカベンジャー)70gをセットし、該間隙空間の開口部が、開口部遮蔽部材で閉塞される位置まで外坩堝位置を上昇させた。   The outer crucible position is lowered, 70 kg of calcium fluoride raw material is placed in the outer crucible, and 70 g of zinc fluoride (solid scavenger) is set in the graphite container attached to the lower surface of the donut-shaped opening shielding member as shown in FIG. The position of the outer crucible was raised to the position where the opening of the gap space was closed by the opening shielding member.

チャンバー内を真空引きし、5×10−3Pa以下に達した時点で、真空引きを継続しながらヒーターに通電し原料の加熱を開始した。約50℃/Hrで坩堝底部の温度が250℃になるまで昇温し、この温度で24時間保持した。そのときのチャンバー内の真空度は5×10−4Paであった。その後、約50℃/Hrで再び昇温を開始し、600℃に達した後、さらに12時間保持し、その後に真空排気ラインを遮断して高純度アルゴンをチャンバー内に供給し、内圧(炉内雰囲気圧力)を50kPa(abs)まで復圧して、引上げが終了して室温付近に降温するまでガスの導入を行わなかった。 The chamber was evacuated, and when the pressure reached 5 × 10 −3 Pa or less, the heater was energized while starting the evacuation, and the heating of the raw material was started. The temperature was raised at about 50 ° C./Hr until the temperature at the bottom of the crucible reached 250 ° C., and this temperature was maintained for 24 hours. The degree of vacuum in the chamber at that time was 5 × 10 −4 Pa. Thereafter, the temperature was raised again at about 50 ° C./Hr, and after reaching 600 ° C., the temperature was further maintained for 12 hours. Thereafter, the vacuum exhaust line was shut off, and high-purity argon was supplied into the chamber. The gas was not introduced until the internal pressure was reduced to 50 kPa (abs) and the pulling was completed and the temperature was lowered to around room temperature.

50kPaへの復圧後、1500℃付近まで昇温して3時間保持して原料を溶融させた。この状態で外坩堝の位置を上昇させて溶融液の一部を内坩堝の内空部に流入させ、外坩堝(4)および内坩堝(5)内にフッ化カルシウム原料の溶融液(7)が収容された状態とした。   After returning to 50 kPa, the temperature was raised to around 1500 ° C. and held for 3 hours to melt the raw material. In this state, the position of the outer crucible is raised so that a part of the melt flows into the inner space of the inner crucible, and the calcium fluoride raw material melt (7) enters the outer crucible (4) and the inner crucible (5). Was in a housed state.

融液の温度を育成できる状態まで下げて、種結晶を溶融液表面に接触させ、4mm/Hrでシード棒(13)を引き上げて育成を行った。直胴部の直径250mm、長さが150mmの単結晶体を育成し、結晶を融液から切り離し、常温まで降温した。   The temperature of the melt was lowered to a state where it could be grown, the seed crystal was brought into contact with the surface of the melt, and the seed rod (13) was pulled up at 4 mm / Hr for growth. A single crystal body having a diameter of 250 mm and a length of 150 mm of the straight body portion was grown, the crystal was separated from the melt, and the temperature was lowered to room temperature.

上記の条件で製造した単結晶から、直径20mm厚さ30mmの柱状の試験片を切り出し、両端を研磨した後、波長193nmにおける内部透過率を測定したところ99.9%/cmと非常に良好であった。   From a single crystal produced under the above conditions, a columnar test piece having a diameter of 20 mm and a thickness of 30 mm was cut out, both ends were polished, and the internal transmittance at a wavelength of 193 nm was measured. As a result, it was very good at 99.9% / cm. there were.

また、この試験片に30mJ/cmのArFレーザー(波長193nm)を10ショット照射し、照射前後の可視・紫外光波長領域(190〜800nm)の透過率を比較したところ、270nm付近で若干透過率の低下が見られたがその他の領域は透過率に変化が殆どなかった。 Further, when 10 5 shots of 30 mJ / cm 2 ArF laser (wavelength 193 nm) were irradiated on this test piece and the transmittance in the visible / ultraviolet wavelength region (190 to 800 nm) before and after the irradiation was compared, it was slightly near 270 nm. Although a decrease in transmittance was observed, there was almost no change in transmittance in other regions.

このように30mJ/cm程度の比較的高強度のArFレーザーの照射前後における可視・紫外波長領域の透過率の低下が小さいフッ化カルシウムの結晶は、比較的低強度のArFレーザーを高回数(10ショット程度)照射した後の193nmの波長における透過率の低下が非常に小さいことを確認しており、すなわち、本実施例で製造した単結晶はレーザー耐性に優れていると評価できる。 As described above, the calcium fluoride crystal having a small decrease in transmittance in the visible / ultraviolet wavelength region before and after irradiation with a relatively high intensity ArF laser of about 30 mJ / cm 2 uses a relatively low intensity ArF laser many times ( 10 about 9 shots) has confirmed that the decrease of the transmittance at the wavelength of 193nm after irradiation is very small, i.e., single crystal produced in this example can be evaluated to be excellent in laser resistance.

実施例2
図4に示すようにスカベンジャー70gを坩堝上端の凹部に充填し、開口部遮蔽部材と外坩堝上端が閉塞しない位置で外坩堝の上昇を止めた。運転条件は実施例1と全く同様とした。
Example 2
As shown in FIG. 4, 70 g of scavenger was filled in the recess at the upper end of the crucible, and the rise of the outer crucible was stopped at a position where the opening shielding member and the upper end of the outer crucible were not closed. The operating conditions were exactly the same as in Example 1.

上記の条件で製造した単結晶から、直径20mm厚さ30mmの柱状の試験片を切り出し、両端を研磨した後、波長193nmにおける内部透過率を測定したところ99.8%/cmと非常に良好であった。   From a single crystal produced under the above conditions, a columnar test piece having a diameter of 20 mm and a thickness of 30 mm was cut out, both ends were polished, and the internal transmittance at a wavelength of 193 nm was measured. As a result, it was very good at 99.8% / cm. there were.

また、この試験片に30mJ/cmのArFレーザ(波長193nm)を10ショット照射し、照射前後の可視・紫外光波長領域(190〜800nm)の透過率を比較したところ、270nm付近で若干透過率の低下が見られたがその他の領域は透過率に変化が殆どなかった。 Further, when 10 5 shots of 30 mJ / cm ArF laser (wavelength 193 nm) were irradiated on this test piece and the transmittance in the visible / ultraviolet wavelength region (190 to 800 nm) before and after irradiation was compared, it was slightly transmitted at around 270 nm. A decrease in the rate was observed, but the transmittance in the other regions was almost unchanged.

比較例1
外坩堝の中心底にスカベンジャー70gをセットして、開口部遮蔽部材と外坩堝上端が閉塞しない位置で外坩堝の上昇を止めた。運転条件は実施例1と全く同様とした。
Comparative Example 1
A scavenger 70g was set at the center bottom of the outer crucible, and the rising of the outer crucible was stopped at a position where the opening shielding member and the upper end of the outer crucible were not closed. The operating conditions were exactly the same as in Example 1.

上記の条件で製造した単結晶から、直径20mm厚さ30mmの柱状の試験片を切り出し、両端を研磨した後、波長193nmにおける内部透過率を測定したところ99.6%/cmであった。   A columnar test piece having a diameter of 20 mm and a thickness of 30 mm was cut out from the single crystal produced under the above conditions, both ends were polished, and the internal transmittance at a wavelength of 193 nm was measured to be 99.6% / cm.

また、この試験片に30mJ/cmのArFレーザ(波長193nm)を10ショット照射し、照射前後の可視・紫外光波長領域(190〜800nm)の透過率を比較したところ、270nm付近で透過率の大幅な低下が見られ、その他の領域も僅かな透過率の低下が見られた。 Further, when 10 5 shots of 30 mJ / cm ArF laser (wavelength 193 nm) were irradiated on this test piece, and the transmittance in the visible / ultraviolet wavelength region (190 to 800 nm) before and after irradiation was compared, the transmittance was around 270 nm. In other areas, a slight decrease in transmittance was observed.

比較例2
外坩堝の中心底にスカベンジャー70gをセットして、開口部遮蔽部材と外坩堝上端が閉塞しない位置で外坩堝の上昇を止めた。運転条件は600℃で保持のところをフッ化亜鉛が十分に昇華する温度の800℃で保持した以外は実施例1と全く同様とした。
Comparative Example 2
A scavenger 70g was set at the center bottom of the outer crucible, and the rising of the outer crucible was stopped at a position where the opening shielding member and the upper end of the outer crucible were not closed. The operating conditions were exactly the same as in Example 1 except that the temperature at 600 ° C. was maintained at 800 ° C., the temperature at which zinc fluoride was sufficiently sublimated.

上記の条件で製造した単結晶から、直径20mm厚さ30mmの柱状の試験片を切り出し、両端を研磨した後、波長193nmにおける内部透過率を測定したところ99.7%/cmであった。   A columnar test piece having a diameter of 20 mm and a thickness of 30 mm was cut out from the single crystal produced under the above conditions, both ends were polished, and the internal transmittance at a wavelength of 193 nm was measured to be 99.7% / cm.

また、この試験片に30mJ/cmのArFレーザ(波長193nm)を10ショット照射し、照射前後の可視・紫外光波長領域(190〜800nm)の透過率を比較したところ、殆どの波長領域で透過率の低下が見られた。 Further, when 10 5 shots of 30 mJ / cm ArF laser (wavelength 193 nm) were irradiated on this test piece and the transmittance in the visible / ultraviolet wavelength region (190 to 800 nm) before and after irradiation was compared, in most wavelength regions A decrease in transmittance was observed.

本発明のフッ化物単結晶の製造方法に使用する引上げ装置の代表的態様を示す模式図である。It is a schematic diagram which shows the typical aspect of the pulling apparatus used for the manufacturing method of the fluoride single crystal of this invention. 従来の代表的な固体スカベンジャーの使用方法の例を示す模式図である。It is a schematic diagram which shows the example of the usage method of the conventional typical solid scavenger. 従来の固体スカベンジャーの使用方法の他の例を示す模式図である。It is a schematic diagram which shows the other example of the usage method of the conventional solid scavenger. 二重構造坩堝の外坩堝上端部に、固体スカベンジャーを収容する凹部を設けた場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the recessed part which accommodates a solid scavenger in the outer crucible upper end part of a double structure crucible. 二重構造坩堝の外坩堝上方の内側壁部に、固体スカベンジャーを収容する凹部を設けた場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the recessed part which accommodates a solid scavenger in the inner wall part above the outer crucible of a double structure crucible. 二重構造坩堝の外坩堝上方の内側壁部に、固体スカベンジャーを収容する凹部を有する部材を設けた場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the member which has a recessed part which accommodates a solid scavenger in the inner wall part above the outer crucible of a double structure crucible. 二重構造坩堝の外坩堝上端部に、固体スカベンジャーを収容する凹部を有する部材を設け、この部材を着脱可能とした場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the member which has a recessed part which accommodates a solid scavenger in the outer crucible upper end part of a double structure crucible, and making this member removable. 二重構造坩堝の内坩堝外側壁に設けた開口部遮蔽部材の下面に、固体スカベンジャーを収容する凹部を有する部材を設けた場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the member which has a recessed part which accommodates a solid scavenger in the lower surface of the opening part shielding member provided in the inner crucible outer side wall of a double structure crucible. 内坩堝外側壁の開口部遮蔽部材の下面より下方の位置に、固体スカベンジャーを収容する凹部を有する部材を設けた場合の一例を示す模式図である。It is a schematic diagram which shows an example at the time of providing the member which has a recessed part which accommodates a solid scavenger in the position below the lower surface of the opening part shielding member of an inner crucible outer wall.

符号の説明Explanation of symbols

1.外坩堝
2.内坩堝
3.貫通孔
4.外坩堝支持軸
5.受け台
6.ヒーター
7.チャンバー
8.断熱材壁
9.隔離壁
10.リッド材
11.種結晶
12.種結晶保持具
13.結晶引き上げ軸
14.単結晶体
15.開口部遮蔽部材
16.鉤部
17.内坩堝吊り下げ棒
18.連結部材
19.原料フッ化金属
20.固体スカベンジャー
21.坩堝に設けられた凹部
22.凹部を有する部材
23.原料フッ化金属の溶融液
1. Outer crucible2. 2. Inner crucible Through hole 4. 4. Outer crucible support shaft 5. cradle 6. Heater Chamber 8. 8. Insulation wall Isolation wall 10. Lid material11. Seed crystal 12. Seed crystal holder 13. Crystal pulling shaft 14. Single crystal 15. Opening shielding member 16. Buttocks 17. Inner crucible hanging rod 18. Connecting member 19. Raw metal fluoride 20. Solid scavenger 21. Concave part 22 provided in the crucible. Member having a recess 23. Raw material fluoride metal melt

Claims (5)

炉内のホットゾーンに、原料フッ化金属と固体スカベンジャーとを収容した後、ホットゾーンの昇温を行って該原料フッ化金属を溶融させる工程、次いで溶融したフッ化金属を結晶化させる工程を有するフッ化金属結晶の製造方法であって、
前記ホットゾーンにおける固体スカベンジャーの収容位置を、結晶化工程の終了までは、該固体スカベンジャー及びその溶融液が、原料フッ化金属及びその溶融液とは接触しない位置とすることを特徴とする前記フッ化金属結晶の製造方法。
After the raw metal fluoride and the solid scavenger are accommodated in the hot zone in the furnace, the hot zone is heated to melt the raw metal fluoride, and then the molten metal fluoride is crystallized. A method for producing a metal fluoride crystal having:
The storage position of the solid scavenger in the hot zone is a position where the solid scavenger and its molten liquid are not in contact with the raw metal fluoride and its molten liquid until the end of the crystallization step. A method for producing metal halide crystals.
請求項1記載の製造方法で使用される、フッ化金属を収容するための坩堝であって、該坩堝上方には、固体スカベンジャーを収容する凹部及び/又は凹部を有する部材が設けられていることを特徴とする坩堝。   A crucible for containing a metal fluoride used in the manufacturing method according to claim 1, wherein a recess and / or a member having a recess for receiving a solid scavenger is provided above the crucible. A crucible characterized by. 請求項1記載の製造方法で使用されるチョクラルスキー法単結晶引き上げ装置であって、該チョクラルスキー法単結晶引き上げ装置は壁部に貫通孔を有する内坩堝と外坩堝とからなる二重構造坩堝を備え、かつ該内坩堝及び/又は外坩堝の上方には、固体スカベンジャーが収容される凹部及び/又は凹部を有する部材が設けられていることを特徴とする、チョクラルスキー法単結晶引き上げ装置。   A Czochralski method single crystal pulling apparatus used in the manufacturing method according to claim 1, wherein the Czochralski method single crystal pulling apparatus is a double unit comprising an inner crucible having a through hole in a wall portion and an outer crucible. A Czochralski method single crystal comprising a structural crucible and provided with a recess and / or a member having a recess in which a solid scavenger is accommodated above the inner crucible and / or the outer crucible Lifting device. 坩堝上方の凹部を有する部材が坩堝本体から着脱可能である請求項3記載のチョクラルスキー法単結晶引き上げ装置。   4. The Czochralski method single crystal pulling apparatus according to claim 3, wherein a member having a recess above the crucible is detachable from the crucible body. 請求項1記載の製造方法で使用される、外坩堝及び壁部に貫通孔を有する内坩堝からなる二重構造坩堝を備えるフッ化金属単結晶体製造用のチョクラルスキー法単結晶引き上げ装置であって、
前記内坩堝外側壁及び/又は外坩堝内側壁には、外坩堝と内坩堝との間の開口部を閉塞するための開口部遮蔽部材が設けられており、該開口部遮蔽部材の下面及び/又は該下面より下方であって開口部遮蔽部材が設けられた側の坩堝の側壁に、固体スカベンジャー収容部材が設置されていることを特徴とするチョクラルスキー法単結晶引き上げ装置。
A Czochralski method single crystal pulling apparatus for producing a metal fluoride single crystal comprising a double structure crucible comprising an outer crucible and an inner crucible having a through hole in a wall portion, which is used in the production method according to claim 1. There,
An opening shielding member for closing the opening between the outer crucible and the inner crucible is provided on the outer wall of the inner crucible and / or the inner wall of the outer crucible, and the lower surface of the opening shielding member and / or Alternatively, the Czochralski method single crystal pulling apparatus, wherein a solid scavenger housing member is installed on the side wall of the crucible on the side below the lower surface and provided with the opening shielding member.
JP2007206490A 2007-08-08 2007-08-08 Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal Expired - Fee Related JP4859785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206490A JP4859785B2 (en) 2007-08-08 2007-08-08 Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206490A JP4859785B2 (en) 2007-08-08 2007-08-08 Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal

Publications (2)

Publication Number Publication Date
JP2009040630A true JP2009040630A (en) 2009-02-26
JP4859785B2 JP4859785B2 (en) 2012-01-25

Family

ID=40441782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206490A Expired - Fee Related JP4859785B2 (en) 2007-08-08 2007-08-08 Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal

Country Status (1)

Country Link
JP (1) JP4859785B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034193A (en) * 1998-07-16 2000-02-02 Nikon Corp Heat treatment and production of fluoride single crystal
JP2005145727A (en) * 2003-11-11 2005-06-09 Nikon Corp Method for removing cloudiness from fluorite, optical fluorite, optical system and aligner
JP2005330145A (en) * 2004-05-19 2005-12-02 Canon Inc Fluoride crystal production method
JP2006199577A (en) * 2004-12-22 2006-08-03 Tokuyama Corp Pulling apparatus for manufacturing metal fluoride single crystal and method of manufacturing metal fluoride single crystal using the apparatus
JP2006347834A (en) * 2005-06-17 2006-12-28 Tokuyama Corp Method for producing metal fluoride single crystal
JP2006347792A (en) * 2005-06-14 2006-12-28 Tokuyama Corp Method for producing metal fluoride single crystal
JP2007106662A (en) * 2005-09-14 2007-04-26 Tokuyama Corp Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034193A (en) * 1998-07-16 2000-02-02 Nikon Corp Heat treatment and production of fluoride single crystal
JP2005145727A (en) * 2003-11-11 2005-06-09 Nikon Corp Method for removing cloudiness from fluorite, optical fluorite, optical system and aligner
JP2005330145A (en) * 2004-05-19 2005-12-02 Canon Inc Fluoride crystal production method
JP2006199577A (en) * 2004-12-22 2006-08-03 Tokuyama Corp Pulling apparatus for manufacturing metal fluoride single crystal and method of manufacturing metal fluoride single crystal using the apparatus
JP2006347792A (en) * 2005-06-14 2006-12-28 Tokuyama Corp Method for producing metal fluoride single crystal
JP2006347834A (en) * 2005-06-17 2006-12-28 Tokuyama Corp Method for producing metal fluoride single crystal
JP2007106662A (en) * 2005-09-14 2007-04-26 Tokuyama Corp Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus

Also Published As

Publication number Publication date
JP4859785B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2006068062A1 (en) Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus
JP4863710B2 (en) Pulling apparatus for producing metal fluoride single crystal and method for producing metal fluoride single crystal using the apparatus
JP2008007354A (en) Method for growing sapphire single crystal
JP4668068B2 (en) Metal fluoride single crystal pulling apparatus and method for producing metal fluoride single crystal using the apparatus
JP4463730B2 (en) Method for producing metal fluoride single crystal
JP4859785B2 (en) Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP2010064936A (en) Method for producing semiconductor crystal
JP2008260649A (en) Method of solidification of residual melt in crucible
JP2011225423A (en) Double crucible structure used for metal fluoride single crystal growing furnace, and metal fluoride single crystal growing furnace
JP4301921B2 (en) Single crystal pulling equipment for metal fluoride
JP4425181B2 (en) Method for producing metal fluoride single crystal
JP2012036054A (en) Method for producing metal fluoride single crystal
KR20040044146A (en) Single crystal pulling apparatus for metal fluoride
JP6713382B2 (en) Quartz glass crucible manufacturing method and quartz glass crucible
JP2009280411A (en) Seed crystal for producing metal fluoride single crystal
JP4500531B2 (en) As-grown single crystal of alkaline earth metal fluoride
JP2009102194A (en) Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus
JP2004231502A (en) As-grown single crystal body of barium fluoride
JP2004217469A (en) Apparatus for pulling single crystal
JP2012006786A (en) Method for producing metal fluoride single crystal
JP2007326730A (en) Apparatus for pulling metal fluoride single crystal
JP4456849B2 (en) As-grown single crystal of calcium fluoride
JP4821623B2 (en) Single crystal growth crucible and fluoride crystal grown by this crucible
JP2011213574A (en) Method for suppressing adhering substance on seed crystal surface in producing metal fluoride single crystal by melt-solidification method using seed crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees