JP2005145727A - Method for removing cloudiness from fluorite, optical fluorite, optical system and aligner - Google Patents

Method for removing cloudiness from fluorite, optical fluorite, optical system and aligner Download PDF

Info

Publication number
JP2005145727A
JP2005145727A JP2003381577A JP2003381577A JP2005145727A JP 2005145727 A JP2005145727 A JP 2005145727A JP 2003381577 A JP2003381577 A JP 2003381577A JP 2003381577 A JP2003381577 A JP 2003381577A JP 2005145727 A JP2005145727 A JP 2005145727A
Authority
JP
Japan
Prior art keywords
fluorite
heat treatment
treatment furnace
dust
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003381577A
Other languages
Japanese (ja)
Other versions
JP4352863B2 (en
Inventor
Minako Azumi
美菜子 安住
Masaaki Mochida
昌昭 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003381577A priority Critical patent/JP4352863B2/en
Publication of JP2005145727A publication Critical patent/JP2005145727A/en
Application granted granted Critical
Publication of JP4352863B2 publication Critical patent/JP4352863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing or removing cloudiness in fluorite. <P>SOLUTION: In the method, a fluorite material 10 is placed inside an airtight heat-treatment furnace 15, the airtight heat-treatment furnace 15 is evacuated, the evacuation is completed after the pressure inside the airtight heat-treatment furnace 15 has reached a value equal to or below the desired pressure, and temperature elevation is initiated after evacuation completion T1. By adjusting the pressure inside the airtight heat-treatment furnace 15 to ≤1 Pa at temperature elevation initiation T2, oxygen inside the fluorite material 10 is diffused into the exterior of the fluorite material 10 after temperature elevation initiation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、光学系に用いる蛍石を熱処理することにより、蛍石のにごりを除去する方法、並びにその方法を用いてにごりを除去した光学用蛍石、光学系、及び露光装置に関する。   The present invention relates to a method for removing dust from fluorite by heat-treating fluorite used in an optical system, and an optical fluorite from which dust is removed using the method, an optical system, and an exposure apparatus.

シリコン等のウエハ上に集積回路の微細なパターンを露光・転写する光リソグラフィ技術は従来から良く知られている。近年、半導体の高集積化が進んでおり、これに伴いより解像力の高い光リソグラフィ装置が必要となっている。   An optical lithography technique for exposing and transferring a fine pattern of an integrated circuit on a wafer such as silicon has been well known. In recent years, semiconductors have been highly integrated, and accordingly, an optical lithography apparatus with higher resolution is required.

この光リソグラフィ装置の光源は解像力を高めるため、g線(436nm)からi線(365nm)、KrFエキシマ(248nm)、ArFエキシマ(193nm)、Fレーザへと短波長化が進められている。 In order to increase the resolution of the light source of this photolithography apparatus, the wavelength has been reduced from g-line (436 nm) to i-line (365 nm), KrF excimer (248 nm), ArF excimer (193 nm), and F 2 laser.

ここで、i線より長波長の光源を用いた光リソグラフィ装置の照明光学系あるいは投影光学系のレンズ等の光学部材の材料として現在用いられている光学ガラス材料は、i線よりも短波長領域では光透過率が急激に低下し、特に250nm以下の波長領域ではほとんどの光学ガラスでは光が透過しなくなってしまう。そのため、エキシマレーザ等を光源とした光リソグラフィ装置の光学系のレンズ材料は、現在のところ、このような短波長の光の透過が可能である一部の材料に限られており、そのような材料の一つとして、蛍石(フッ化カルシウム結晶)が知られている。   Here, an optical glass material currently used as a material of an optical member such as a lens of an illumination optical system or a projection optical system of an optical lithography apparatus using a light source having a wavelength longer than that of i-line has a shorter wavelength region than that of i-line. Then, the light transmittance is drastically lowered, and light is not transmitted through most optical glasses, particularly in a wavelength region of 250 nm or less. Therefore, the lens material of the optical system of the photolithography apparatus using an excimer laser or the like as a light source is currently limited to a part of materials that can transmit light of such a short wavelength. As one of the materials, fluorite (calcium fluoride crystal) is known.

このようにエキシマレーザ等の光源を用いた光リソグラフィ装置の結像光学系に使用される蛍石には非常に高い屈折率均質性と小さい歪が要求され、かつ、光透過率が非常にすぐれている必要がある。光透過率に関しては、例えば投影露光装置では収差補正のために非常に多くの曲率を有するレンズが必要になり、投影光学系全体の光路長が1000mmにも及ぶ場合がある。この場合、投影光学系全体としての透過率を80%以上に保つには光学部材の10mm当たりの内部透過率が99.8%以上である必要がある。さらに、その高透過率をレンズの口径全体にわたって保つ必要がある。   As described above, fluorite used in the imaging optical system of an optical lithography apparatus using a light source such as an excimer laser is required to have a very high refractive index homogeneity and a small distortion, and has an excellent light transmittance. Need to be. Regarding the light transmittance, for example, a projection exposure apparatus requires a lens having a very large curvature for aberration correction, and the optical path length of the entire projection optical system may reach as much as 1000 mm. In this case, in order to keep the transmittance as a whole of the projection optical system at 80% or more, the internal transmittance per 10 mm of the optical member needs to be 99.8% or more. Furthermore, the high transmittance needs to be maintained over the entire aperture of the lens.

また、屈折率均質性と歪に関しては、近年、仕様が非常に厳しくなっており、より高品質な蛍石光学部品を作製するために、育成された蛍石をアニール処理することにより、蛍石内に残留するひずみを少なくして均質性を向上させることが行われている(例えば、下記特許文献1参照)。   In recent years, the specifications for refractive index homogeneity and distortion have become very strict. In order to produce higher-quality fluorite optical components, the grown fluorite is annealed to produce fluorite. It has been practiced to improve the homogeneity by reducing the strain remaining in the interior (for example, see Patent Document 1 below).

このアニール処理は、例えば蛍石をフッ素化剤と共に熱処理炉内に配置し、炉内の気体を排気して、熱処理炉内の雰囲気中に存在する各種の揮発性不純物及び気体、水分などを除去し、この排気終了後に昇温することにより炉内をフッ素雰囲気にし、所定の加熱及び冷却をすることにより行なわれていた。
特開平10−231194号
In this annealing treatment, for example, fluorite is placed in a heat treatment furnace together with a fluorinating agent, the gas in the furnace is exhausted, and various volatile impurities, gases, moisture, etc. present in the atmosphere in the heat treatment furnace are removed. However, the temperature inside the furnace is increased by raising the temperature to a fluorine atmosphere, followed by predetermined heating and cooling.
JP-A-10-231194

蛍石の内部欠陥の一つとして、にごりと呼ばれる現象がある。このにごりは蛍石内部に光束を通した時に、白くにごった散乱体として観察されるものである。   One of the internal defects in fluorite is a phenomenon called nigari. This dust is observed as a white scatterer when the light beam passes through the fluorite.

にごりの発生原因等の詳細は明らかではなく、従来、にごりが確認されない蛍石であっても、アニール処理により蛍石内部の歪を除去すると、にごりが発生してしまうこともあった。このにごりが発生すると透過率低下や散乱によるフレアー発生などの問題点を生じるため、より高品質な蛍石光学部材を製造するには、蛍石中のにごりを低減或いは除去することが望まれている。   The details of the cause of the dust are not clear. Conventionally, even if the fluorite has not been confirmed to be dusty, if the distortion inside the fluorite is removed by annealing, the dust may be generated. When this dust is generated, problems such as a decrease in transmittance and flare generation due to scattering occur. Therefore, in order to produce a higher quality fluorite optical member, it is desired to reduce or remove dust in the fluorite. Yes.

そこで、この発明は、蛍石中に存在するにごりを低減或いは除去することができる方法を提供するとともに、にごりの少ない光学用螢石、それを用いた光学系や露光装置を提供することを目的とする。   Accordingly, the present invention provides a method capable of reducing or removing dust existing in fluorite, an optical meteorite with less dust, and an optical system and an exposure apparatus using the same. And

本発明者らが、蛍石のにごりついての研究をしたところ、にごりの原因が酸素によるものであることを突き止めた。特に、酸素は蛍石の結晶欠陥であるサブグレインバウンダリまたは転位網に局在していることがわかった。しかも、従来のアニール処理では加熱により酸素が凝集し、にごりが悪化するものもあることがわかった。   The present inventors conducted research on fluorite dust and found that the cause of the dust was due to oxygen. In particular, oxygen was found to be localized in the subgrain boundary or dislocation network, which is a crystal defect of fluorite. Moreover, it has been found that some conventional annealing treatments cause oxygen to agglomerate due to heating, resulting in deterioration of the dust.

そして、蛍石中に局在している酸素を蛍石の外部に拡散させて放出することにより、このにごりを低減できること、更に、蛍石の周囲の圧力を充分に低減して熱処理すると、蛍石内部の酸素の拡散が容易になることを発見し、これにより、にごりを消すことが可能になることを見出した。   Then, the oxygen localized in the fluorite is diffused to the outside of the fluorite and released, so that this dust can be reduced, and further, when the pressure around the fluorite is sufficiently reduced and heat-treated, It was discovered that the diffusion of oxygen inside the stone was facilitated, and it became possible to eliminate the dust.

即ち、請求項1に記載の発明は、蛍石素材を気密熱処理炉内に収容して、該気密熱処理炉内の気体を排気し、該気密熱処理炉内の圧力が所望圧力以下に到達後、前記排気を終了し、該排気終了時より後に昇温を開始して熱処理を行う方法であって、前記昇温開始時の前記気密熱処理炉内の圧力を1Pa以下にすることにより、前記昇温開始後に前記蛍石素材中の酸素を該蛍石素材の外部へ拡散させることを特徴とする。   That is, in the invention according to claim 1, the fluorite material is accommodated in an airtight heat treatment furnace, the gas in the airtight heat treatment furnace is exhausted, and after the pressure in the airtight heat treatment furnace reaches a desired pressure or lower, Ending the exhaust, and starting the temperature rise after the end of the exhaust, and performing a heat treatment, the pressure inside the hermetic heat treatment furnace at the start of the temperature rise is reduced to 1 Pa or less, After starting, oxygen in the fluorite material is diffused to the outside of the fluorite material.

請求項2に記載の発明は、請求項1に記載の構成に加え、前記排気終了時の前記気密熱処理炉内の圧力を前記昇温開始時の圧力より低くすることを特徴とする。   The invention according to claim 2 is characterized in that, in addition to the configuration according to claim 1, the pressure in the hermetic heat treatment furnace at the end of the exhaust is made lower than the pressure at the start of temperature rise.

請求項3に記載の発明は、請求項2に記載の構成に加え、前記排気終了時の気密熱処理炉内の圧力が1×10−2Pa以下であることを特徴とする。 The invention described in claim 3 is characterized in that, in addition to the structure described in claim 2, the pressure in the hermetic heat treatment furnace at the end of the exhaust is 1 × 10 −2 Pa or less.

請求項4に記載の発明は、請求項1乃至3に記載の構成に加え、前記排気終了時から前記昇温開始時までの間の所定時間における前記気密熱処理炉の圧力増加が所定範囲以内となるように前記気密熱処理炉の気密性を確保し、前記熱処理を行うことを特徴とする。   According to a fourth aspect of the present invention, in addition to the configuration of the first to third aspects, the pressure increase in the hermetic heat treatment furnace during a predetermined time from the end of the exhaust to the start of the temperature rise is within a predetermined range. The airtightness of the airtight heat treatment furnace is ensured so that the heat treatment is performed.

請求項5に記載の発明は、請求項1乃至4の何れか一つに記載の構成に加え、前記熱処理は、前記昇温開始後、前記蛍石素材を800℃以上1300℃以下の温度範囲に昇温して一定温度に所定時間維持した後、徐々に降温するものであることを特徴とする。   According to a fifth aspect of the present invention, in addition to the structure according to any one of the first to fourth aspects, the heat treatment is performed at a temperature range of 800 ° C. or higher and 1300 ° C. or lower after the temperature increase starts. The temperature is raised to a constant temperature and maintained at a constant temperature for a predetermined time, and then the temperature is gradually lowered.

請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、前記気密熱処理炉内に前記蛍石素材とともにフッ素化剤を収容して前記昇温を行うことにより、前記気密熱処理炉内に前記フッ素化剤を気化させてフッ素雰囲気で前記熱処理を行うことを特徴とする。   According to a sixth aspect of the present invention, in addition to the configuration according to any one of the first to fifth aspects, the temperature is raised by storing a fluorinating agent together with the fluorite material in the hermetic heat treatment furnace. Thus, the heat treatment is performed in a fluorine atmosphere by vaporizing the fluorinating agent in the hermetic heat treatment furnace.

請求項7に記載の発明は、請求項1乃至6の何れか一つに記載の構成に加え、前記気密熱処理炉内で前記蛍石素材を支持部上に配置することにより、前記蛍石素材の底部を該気密熱処理炉の床面から離間させた状態で、前記熱処理を行うことを特徴とする。   According to a seventh aspect of the present invention, in addition to the configuration according to any one of the first to sixth aspects, the fluorite material is disposed on a support portion in the hermetic heat treatment furnace. The heat treatment is performed in a state in which the bottom portion is separated from the floor surface of the hermetic heat treatment furnace.

請求項8に記載の光学用蛍石は、請求項1乃至7の何れか一つの蛍石のにごり除去方法が施されたことを特徴とする。   According to an eighth aspect of the present invention, there is provided an optical fluorite according to any one of the first to seventh aspects.

請求項9に記載の光学系は、請求項8に記載の光学用蛍石を有することを特徴とする。   An optical system according to a ninth aspect includes the optical fluorite according to the eighth aspect.

請求項10に記載の露光装置は、請求項9に記載の光学系を有することを特徴とする。   An exposure apparatus according to a tenth aspect has the optical system according to the ninth aspect.

請求項1乃至7に記載の発明によれば、昇温開始時の気密熱処理炉内の圧力を1Pa以下にして熱処理を行うことにより、蛍石素材中の酸素を該蛍石素材の外部へ拡散させるので、蛍石素材の結晶欠陥であるサブグレインバウンダリまたは転位網に局在している酸素を、蛍石素材の外部に拡散させることが容易で、にごりを低減することが可能である。   According to the first to seventh aspects of the present invention, oxygen in the fluorite material is diffused to the outside of the fluorite material by performing the heat treatment with the pressure in the hermetic heat treatment furnace at the start of raising the temperature being 1 Pa or less. Therefore, oxygen localized in the subgrain boundary or dislocation network, which is a crystal defect of the fluorite material, can be easily diffused to the outside of the fluorite material, and the dust can be reduced.

請求項2又は請求項3に記載の発明によれば、排気終了時の気密熱処理炉内の圧力を昇温開始時の圧力より低くするので、熱処理時の蛍石素材の周囲の雰囲気中の水分や酸素等を低減することができ、より蛍石素材中に存在する酸素を外部に放出させ易く、にごりをより低減し易い。   According to the invention described in claim 2 or claim 3, since the pressure in the hermetic heat treatment furnace at the end of exhaust is made lower than the pressure at the start of temperature rise, moisture in the atmosphere around the fluorite material at the time of heat treatment And oxygen can be reduced, oxygen present in the fluorite material can be easily released to the outside, and dust can be further reduced.

請求項4に記載の発明によれば、排気終了時から昇温開始時までの間の所定時間における気密熱処理炉の圧力増加が所定範囲以内となるように気密熱処理の気密性を確保して熱処理を行うので、熱処理中に気密処理炉内の気圧を充分に低く維持することができ、酸素や水分の存在量が充分少ない雰囲気中で螢石を熱処理することができ、よりにごりを低減し易くすることができる。   According to the invention described in claim 4, the airtightness of the hermetic heat treatment is ensured so that the increase in pressure in the hermetic heat treatment furnace within a predetermined range between the end of exhaust and the start of temperature rise is within a predetermined range. Therefore, it is possible to keep the air pressure in the hermetic treatment furnace sufficiently low during the heat treatment, heat the meteorite in an atmosphere with a small amount of oxygen and moisture, and more easily reduce dust. can do.

請求項8乃至10に記載の発明によれば、にごりが少ない光学用蛍石を提供することができるとともに、光学用螢石のにごりが少ないため、より高い透過率と小さいフレアーが得られ、より優れた解像度が得られる光学用光学系又は露光装置を提供することができる。   According to the invention described in claims 8 to 10, it is possible to provide an optical fluorite with a small amount of dust, and since there is little dust of the optical meteorite, a higher transmittance and a small flare can be obtained. It is possible to provide an optical optical system or an exposure apparatus that can obtain excellent resolution.

以下、この発明の実施の形態について説明する。この実施の形態では、予め製造された蛍石素材を、図1に示すような熱処理炉を用いて熱処理することにより、蛍石素材の内部に存在するにごりを低減或いは除去して光学用螢石を得る例について説明する。   Embodiments of the present invention will be described below. In this embodiment, the pre-manufactured fluorite material is heat-treated using a heat treatment furnace as shown in FIG. 1 to reduce or remove the dust existing inside the fluorite material, thereby reducing the optical meteorite. An example of obtaining the above will be described.

まず、この実施の形態において得られる光学用蛍石は、KrFエキシマレーザ、ArFエキシマレーザ、F2レーザ等の短波長の光が照射される光学系に用いることが可能な光学素子又はその材料として好適に使用可能な蛍石である。   First, the optical fluorite obtained in this embodiment is suitable as an optical element that can be used for an optical system that is irradiated with light of a short wavelength, such as a KrF excimer laser, an ArF excimer laser, or an F2 laser, or a material thereof. Fluorite that can be used for

また、蛍石素材は、例えば、ブリッジマン法等の公知の製造方法を用いて製造されたフッ化カルシウム結晶であり、育成後の結晶塊であってもよく、また、育成後の結晶塊をアニール処理して育成時の残留歪を除去したものであってもよい。更に、各種の光学素子の形状に加工されたものであってもよい。この実施の形態では、ブリッジマン法により育成されたままで、内部ににごりを生じている結晶塊を用いる。   Further, the fluorite material is, for example, a calcium fluoride crystal manufactured using a known manufacturing method such as the Bridgman method, and may be a crystal lump after growth. What removed the residual distortion at the time of a growth by annealing treatment may be used. Further, it may be processed into various optical element shapes. In this embodiment, a crystal lump that has been grown by the Bridgman method and has dust inside is used.

このにごりは、図2Aに示すように、例えば、蛍石素材10の育成時に混入した酸素などが原因で生じており、蛍石素材10の育成時に混入した酸素11が結晶構造欠陥であるサブグレインバウンダリまたは転位網等の結晶格子の隙間12に局在的に存在し、これらの酸素11が集光器の光を入射させた時に散乱中心となり、にごりとして観察されるものと推測される。   As shown in FIG. 2A, this dust is caused by, for example, oxygen mixed during the growth of the fluorite material 10, and oxygen 11 mixed during the growth of the fluorite material 10 is a subgrain having a crystal structure defect. It is presumed that these oxygens 11 exist locally in the gaps 12 of the crystal lattice such as the boundary or the dislocation network, become a scattering center when the light of the collector is incident, and are observed as dust.

このようなにごりを、図1に示す気密熱処理炉15を用いて除去する。ここでは、気密熱処理炉15内の雰囲気を充分に低圧にし、その低圧の状態を維持して熱処理することにより行う。また、蛍石素材10が育成されたままの結晶塊であるため、このニゴリを除去するための熱処理において、蛍石素材10に残留する歪を除去するアニール処理も合せて行う。   Such dust is removed using an airtight heat treatment furnace 15 shown in FIG. Here, the atmosphere in the hermetic heat treatment furnace 15 is set to a sufficiently low pressure, and the heat treatment is performed while maintaining the low pressure state. In addition, since the fluorite material 10 is a grown crystal mass, an annealing process for removing strain remaining in the fluorite material 10 is also performed in the heat treatment for removing the stagnation.

この気密熱処理炉15は、ケーシング16内に配置され、密閉して排気減圧可能な気密容器17と、この気密容器17内に配置されたカーボン容器18と、気密容器17及びカーボン容器18の内部を外側周囲から加熱可能なヒータ19とを有している。   The hermetic heat treatment furnace 15 is disposed in a casing 16 and is hermetically sealed and can be evacuated and decompressed, a carbon container 18 disposed in the hermetic container 17, and the inside of the hermetic container 17 and the carbon container 18. And a heater 19 that can be heated from the outer periphery.

そして、この気密熱処理炉15を用いて蛍石素材10を熱処理するには、まず、カーボン容器18の内部に蛍石素材10を載置可能な蛍石製の底上用支持部21を配置し、この底上用支持部21上に蛍石素材10を載置することにより、蛍石素材10の底面10aを熱処理炉15の床面15aから離間させた状態で収容する。これにより、蛍石素材10の表面ができるだけ他の部材により覆われず、カーボン容器18の内部の雰囲気に極力直接接触するように螢石素材10を配置する。また、カーボン容器18内には、蛍石素材10とともにフッ素化剤22を収容する。このフッ素化剤22としては、例えば、テフロン(登録商標)、酸性フッ化アンモニウム等、昇温することにより、フッ素成分を気化させることができる物質を用いることができる。   In order to heat-treat the fluorite material 10 using the airtight heat treatment furnace 15, first, a fluorite bottom support portion 21 on which the fluorite material 10 can be placed is placed inside the carbon container 18. By placing the fluorite material 10 on the bottom support 21, the bottom surface 10 a of the fluorite material 10 is accommodated while being separated from the floor surface 15 a of the heat treatment furnace 15. Thereby, the surface of the fluorite material 10 is not covered with other members as much as possible, and the meteorite material 10 is arranged so as to be in direct contact with the atmosphere inside the carbon container 18 as much as possible. In addition, the fluorinating agent 22 is housed in the carbon container 18 together with the fluorite material 10. As the fluorinating agent 22, for example, a substance that can vaporize the fluorine component by raising the temperature, such as Teflon (registered trademark), acidic ammonium fluoride, or the like can be used.

次に、カーボン容器18内に蛍石素材10及びフッ素化剤22を収容した状態で、気密容器17を密封し、排気路17aから図示しない真空ポンプにより排気を行う。この排気過程の気密容器17内の圧力変化を図3に示す。   Next, in a state where the fluorite material 10 and the fluorinating agent 22 are accommodated in the carbon container 18, the hermetic container 17 is sealed, and the exhaust path 17a is evacuated by a vacuum pump (not shown). FIG. 3 shows the pressure change in the airtight container 17 during the exhaust process.

この排気により気密容器17及びカーボン容器18内の圧力が所望圧力以下に到達した段階で真空ポンプによる排気を終了する。この排気終了時T1における気密熱処理炉15内の圧力P1は、1×10−2Pa以下とするのが好ましい。これにより、気密熱処理炉15内の雰囲気中に残留する酸素量及び水蒸気量を充分に少なくすることができ、蛍石素材10中に存在する微量の酸素を充分に拡散し易くすることができる。 When the pressure in the airtight container 17 and the carbon container 18 reaches a desired pressure or less due to this exhaust, the exhaust by the vacuum pump is finished. The pressure P1 in the airtight heat treatment furnace 15 at the end of exhaust T1 is preferably 1 × 10 −2 Pa or less. Thereby, the amount of oxygen and water vapor remaining in the atmosphere in the hermetic heat treatment furnace 15 can be sufficiently reduced, and a small amount of oxygen present in the fluorite material 10 can be sufficiently diffused.

次に、排気を終了した後、ヒータ19により気密容器17及びカーボン容器18内の昇温を開始して熱処理を行う。   Next, after exhausting is completed, the heater 19 starts to raise the temperature in the hermetic container 17 and the carbon container 18 to perform heat treatment.

気密容器17は、多くの場合、極微量のリークと容器からの揮発成分等が存在する。その結果、この気密熱処理炉15では、排気終了時T1の気密熱処理炉15内の圧力P1と昇温開始時T2の気密熱処理炉15内の圧力P2とが異なり、排気終了時T1の圧力P1より昇温開始時T2の圧力P2が高くなる。   In many cases, the airtight container 17 includes a very small amount of leak and a volatile component from the container. As a result, in this hermetic heat treatment furnace 15, the pressure P1 in the hermetic heat treatment furnace 15 at the end of exhaust T1 is different from the pressure P2 in the hermetic heat treatment furnace 15 at the start of temperature rise T2, and is different from the pressure P1 at the end of exhaust T1. The pressure P2 at the start of temperature increase T2 increases.

この気密容器17のリークが大きいと熱処理中に蛍石素材10の周囲の雰囲気を維持することが困難になるため、この実施の形態では、気密処理炉15のリーク量を調べて、その気密性を確認する。この気密性は、熱処理中に、蛍石素材10に存在する酸素を外部に拡散させることができる程度の低い酸素含有量及び水分含有量を維持できるものである必要があり、これにより確実ににごりを除去できる雰囲気を確保することができる。   If the leak in the hermetic vessel 17 is large, it becomes difficult to maintain the atmosphere around the fluorite material 10 during the heat treatment. Therefore, in this embodiment, the leak amount of the hermetic treatment furnace 15 is examined and its hermeticity is confirmed. Confirm. This airtightness must be able to maintain an oxygen content and a water content that are low enough to diffuse oxygen present in the fluorite material 10 to the outside during the heat treatment. It is possible to secure an atmosphere that can remove water.

ここでは、排気終了時T1から昇温開始時T2までの間の所定時間に、気密熱処理炉15の圧力増加が所定範囲以内となるようにする。より具体的には、排気終了時T1から60分以上の時間経過後に、昇温開始時T2の気密熱処理炉15内の圧力P2が排気終了時T1の圧力P1の100倍以内に維持できる気密性を有するのが特に好適である。   Here, the pressure increase in the hermetic heat treatment furnace 15 is set to be within a predetermined range during a predetermined time from the exhaust end T1 to the temperature rise start T2. More specifically, after the passage of time of 60 minutes or more from the end T1 of exhaust, the pressure P2 in the hermetic heat treatment furnace 15 at the start of temperature rise T2 can be maintained within 100 times the pressure P1 at the end of exhaust T1. It is particularly preferred to have

更に、このような気密性とともに、この発明では、昇温開始時T2の気密熱処理炉15内の圧力P2を1Pa以下にする。このような圧力でなければ、昇温開始後に蛍石素材10中の酸素を外部に拡散し難くなり、蛍石素材10中に分散されていた酸素が凝集してにごりが悪化し易くなるおそれがあるからである。   Further, in addition to such airtightness, in the present invention, the pressure P2 in the airtight heat treatment furnace 15 at the start of temperature increase T2 is set to 1 Pa or less. Without such a pressure, it is difficult to diffuse oxygen in the fluorite material 10 to the outside after starting the temperature rise, and the oxygen dispersed in the fluorite material 10 may be aggregated and the dust may be easily deteriorated. Because there is.

このとき、昇温開始時T2における気密熱処理炉15の気密容器17及びカーボン容器18内に残留する酸素の分圧及び水蒸気の分圧は、少なくとも1Pa以下であり、特に、酸素分圧を0.2Pa以下、水蒸気分圧を0.05Pa以下とすれば、より蛍石素材10内の酸素を拡散させ易くなり、好ましい。   At this time, the partial pressure of oxygen and the partial pressure of water vapor remaining in the hermetic container 17 and the carbon container 18 of the hermetic heat treatment furnace 15 at the start of temperature increase T2 are at least 1 Pa or less, and in particular, the oxygen partial pressure is set to 0. If it is 2 Pa or less and the water vapor partial pressure is 0.05 Pa or less, oxygen in the fluorite material 10 is more easily diffused, which is preferable.

この昇温では、蛍石素材10を800℃以上1300℃以下の温度範囲まで昇温する。昇温中には、気密熱処理炉15内に収容されたフッ素化剤22により、気密熱処理炉15内がフッ素雰囲気となる。そして、その状態で、所定時間一定温度で維持し、その後、徐々に降温することにより熱処理を行う。   In this temperature increase, the fluorite material 10 is heated to a temperature range of 800 ° C. or higher and 1300 ° C. or lower. During the temperature rise, the inside of the hermetic heat treatment furnace 15 becomes a fluorine atmosphere by the fluorinating agent 22 accommodated in the hermetic heat treatment furnace 15. In this state, the heat treatment is performed by maintaining the temperature at a constant temperature for a predetermined time and then gradually lowering the temperature.

このような熱処理を行うと、気密処理炉15内が充分に低圧であるため、昇温時或いは一定温度に維持する間に、蛍石素材10中の酸素11が、図2Bに示すように、網目状に存在するサブグレインバウンダリおよび転位網等の結晶格子の隙間12を通り、蛍石素材10の周囲の低圧の外部へと拡散する。その結果、蛍石素材10中に存在する酸素量が低減し、にごりが薄くなり、最も好ましくは完全に除去される。   When such a heat treatment is performed, the inside of the hermetic treatment furnace 15 has a sufficiently low pressure, so that the oxygen 11 in the fluorite material 10 is maintained during the temperature rise or at a constant temperature, as shown in FIG. It passes through gaps 12 in crystal lattices such as subgrain boundaries and dislocation networks that exist in a network, and diffuses to the outside of the low pressure around the fluorite material 10. As a result, the amount of oxygen present in the fluorite material 10 is reduced, the turbidity is reduced and most preferably removed completely.

同時に、この熱処理では、所定の温度範囲で一定温度に維持し、その後、徐々に降温するため、蛍石素材10内の残留歪を低減するアニール処理も同時に行うことができる。そのため、より均質性に優れた蛍石が得られる。   At the same time, in this heat treatment, a constant temperature is maintained within a predetermined temperature range, and then the temperature is gradually lowered. Therefore, an annealing treatment for reducing residual strain in the fluorite material 10 can be performed at the same time. Therefore, fluorite with better homogeneity can be obtained.

以上のようにして、蛍石素材10を熱処理すれば、昇温開始時T2の気密熱処理炉15内の圧力P2を1Pa以下にして熱処理を行うことにより、蛍石素材10中の酸素11を蛍石素材10の外部へ拡散させるので、蛍石素材10の結晶の間隙12間に局在している酸素11を、蛍石素材10の外部に拡散させることが容易で、にごりを低減することが可能である。   When the fluorite material 10 is heat-treated as described above, the oxygen P11 in the fluorite material 10 is fluorinated by performing the heat treatment with the pressure P2 in the hermetic heat treatment furnace 15 at the start of temperature rise T2 being 1 Pa or less. Since it diffuses to the outside of the stone material 10, it is easy to diffuse the oxygen 11 localized between the crystal gaps 12 of the fluorite material 10 to the outside of the fluorite material 10, and to reduce the dust. Is possible.

また、排気終了時T1の気密熱処理炉15内の圧力P1を昇温開始時T2の圧力P2より低くするので、熱処理時の蛍石素材10の周囲の雰囲気中の水分や酸素等を低減することができ、より蛍石素材10中に存在する酸素を外部に放出させ易く、にごりをより低減し易い。   Further, since the pressure P1 in the hermetic heat treatment furnace 15 at the end of exhaust T1 is made lower than the pressure P2 at the start of temperature rise T2, moisture, oxygen, etc. in the atmosphere around the fluorite material 10 at the time of heat treatment are reduced. This makes it easier to release the oxygen present in the fluorite material 10 to the outside and to further reduce the dust.

更に、排気終了時T1から昇温開始時T2までの間の所定時間における気密熱処理炉15の圧力増加が所定範囲以内となる気密性を確保できるようにすれば、気密処理炉15のリークが少なく、熱処理中に酸素や水分の存在量を充分に少ない雰囲気中を維持することができ、よりにごりを低減し易い。   Furthermore, if the airtightness in which the pressure increase in the airtight heat treatment furnace 15 during the predetermined time from the exhaust end time T1 to the temperature rising start time T2 is within a predetermined range can be secured, the leakage of the airtight processing furnace 15 is reduced. In addition, it is possible to maintain an atmosphere with a sufficiently small amount of oxygen and moisture during heat treatment, and it is easier to reduce dust.

なお、上記の実施の形態では、螢石素材10として、にごりが生じているものについて説明したが、にごりがなくて従来のアニール処理によりにごりが生じる可能性のある螢石素材10であっても、この発明を全く同様に適用することが可能である。   In the above-described embodiment, the meteorite material 10 has been described as having a dust, but even a meteorite material 10 that has no dust and may cause a dust due to a conventional annealing process. The present invention can be applied in exactly the same manner.

また、上記では、蛍石素材10の残留歪を除去するためのアニール処理と合せて、にごりを除去するための熱処理を行ったが、アニール処理とは別ににごりを除去する処理を行ってもよい。   Further, in the above, the heat treatment for removing the dust is performed together with the annealing treatment for removing the residual strain of the fluorite material 10, but the treatment for removing the dust may be performed separately from the annealing treatment. .

その場合、例えば、図4Aから図4Cに示すように、まず、アニール処理を行い、その後、にごりを除去するための熱処理を行うことができる。   In that case, for example, as shown in FIG. 4A to FIG. 4C, first, annealing treatment can be performed, and then heat treatment for removing dust can be performed.

まず、図4Aに示すように、育成後の結晶塊からなる螢石素材10では、育成時に混入した酸素が蛍石素材10全体に分散して存在しているために、にごりが見られない。この蛍石素材10を、従来と同様に、排気終了時に10−1Pa程度まで減圧し、排気終了時後、内部の圧力が数Pa〜10Pa程度となった状態で昇温を開始してアニール処理すると、図4Bに示すように、酸素が蛍石素材10中のサブグレインバウンダリおよび転位網に凝集し、にごりが生じる。そして、このにごりが生じた螢石素材10を、上記実施の形態と同様にして熱処理すれば図4Cに示すように、螢石素材10内の酸素を外部に拡散してにごりを除去することが可能となる。 First, as shown in FIG. 4A, in the meteorite material 10 made of the crystal lump after the growth, oxygen mixed at the time of growth is dispersed in the entire fluorite material 10 and no dust is observed. The fluorite material 10 is depressurized to about 10 −1 Pa at the end of evacuation as before, and after the end of evacuation, the temperature rise is started in a state where the internal pressure is about several Pa to 10 Pa and annealed. When the treatment is performed, as shown in FIG. 4B, oxygen aggregates in the subgrain boundary and the dislocation network in the fluorite material 10, and a dust is generated. Then, if the meteorite material 10 in which the dust is generated is heat-treated in the same manner as in the above embodiment, as shown in FIG. 4C, oxygen in the meteorite material 10 is diffused to the outside to remove the dust. It becomes possible.

次に、このようにしてにごりを除去して得られた光学用螢石を用いた露光装置について説明する。図5は、露光装置の基本構造を示している。   Next, an exposure apparatus using the optical meteorite obtained by removing dust as described above will be described. FIG. 5 shows the basic structure of the exposure apparatus.

この露光装置30は少なくとも、エキシマレーザ等を露光光として供給するための光源31、この露光光をマスクRに供給するための照明光学系32、マスクRのパターンのイメージを被露光基板W上に投影するための投影光学系33を含んでいる。   The exposure apparatus 30 includes at least a light source 31 for supplying an excimer laser or the like as exposure light, an illumination optical system 32 for supplying the exposure light to the mask R, and an image of the pattern of the mask R on the substrate W to be exposed. A projection optical system 33 for projecting is included.

照明光学系32は、マスクRと被露光基板Wとの間の相対位置を調節するためのアライメント光学系34を含んでいる。マスクRは、マスク交換系35により位置が制御されるマスクステージ36に配置されている。被露光基板Wは、ステージ制御系37により位置が制御されるウェハーステージ38に配置されている。更に、光源31、アライメント光学系34、マスク交換系35、ステージ制御系37は、主制御部39によって制御されている。   The illumination optical system 32 includes an alignment optical system 34 for adjusting the relative position between the mask R and the substrate W to be exposed. The mask R is disposed on a mask stage 36 whose position is controlled by a mask exchange system 35. The substrate to be exposed W is arranged on a wafer stage 38 whose position is controlled by a stage control system 37. Further, the light source 31, the alignment optical system 34, the mask exchange system 35, and the stage control system 37 are controlled by the main control unit 39.

このような露光装置30では、詳細な図示は省略されているが、多数の光学部材が、照明光学系32及び/又は投影光学系33に配置されている。これらの多数の光学部材うちの少なくとも一部には、種々の理由で、光学用蛍石からなる光学部材が用いられることがあり、この実施の形態の露光装置30でも、光学用蛍石からなる光学部材が配置されている。そして、その光学用蛍石として、前述のようなにごりが低減或いは除去された蛍石が用いられている。   In such an exposure apparatus 30, although not shown in detail, a large number of optical members are arranged in the illumination optical system 32 and / or the projection optical system 33. An optical member made of optical fluorite may be used for at least some of these many optical members for various reasons, and the exposure apparatus 30 of this embodiment is also made of optical fluorite. An optical member is disposed. As the optical fluorite, fluorite from which dust is reduced or removed as described above is used.

このような照明光学系32及び/又は投影光学系33を有する露光装置30によれば、光学用螢石からなる光学部材のにごりが少ないため、より高い透過率が得られ、より優れた解像度を得ることができる。   According to the exposure apparatus 30 having such an illumination optical system 32 and / or the projection optical system 33, since the optical member made of optical meteorite is less turbid, higher transmittance can be obtained and a higher resolution can be obtained. Can be obtained.

[実施例1〜5及び比較例1、2] [Examples 1 to 5 and Comparative Examples 1 and 2]

略同一形状を有する育成後の結晶塊からなる蛍石素材10を用い、気密熱処理炉15の気密性及び排気終了時の圧力を異ならせて、表1に示すような条件で排気及び昇温して熱処理を行い、熱処理前後のにごりを観察した。   Using a fluorite material 10 made of crystal grains after growth having substantially the same shape, the airtightness of the airtight heat treatment furnace 15 and the pressure at the end of exhaustion are varied, and the exhaust and temperature are raised under the conditions shown in Table 1. Heat treatment was performed, and dust was observed before and after the heat treatment.

ここで、実施例3では蛍石素材10とともにフッ素化剤22を気密熱処理炉15内に配置したが、他の実施例及び比較例では配置することなく熱処理を行った。また、実施例4では、底上支持部22を配置して蛍石素材10を載置することにより、蛍石素材10の底面10aを気密熱処理炉15の床面15aから離間させたが、他の実施例及び比較例では底上支持部22を配置することなく熱処理を行った。   Here, in Example 3, the fluorinating agent 22 and the fluorinating agent 22 were disposed in the hermetic heat treatment furnace 15, but in other examples and comparative examples, heat treatment was performed without being disposed. Further, in Example 4, the bottom support 10 is disposed and the fluorite material 10 is placed, so that the bottom surface 10a of the fluorite material 10 is separated from the floor surface 15a of the hermetic heat treatment furnace 15, but other In the examples and comparative examples, the heat treatment was performed without arranging the bottom upper support portion 22.

なお、にごりは、各蛍石に同一の平行光を照射して目視により評価した。評価は、にごりが濃い方から5段階に、5、4、3、2、1とし、3以下を合格、4以上を不合格とした。   The dust was visually evaluated by irradiating each fluorite with the same parallel light. Evaluation was made into 5, 4, 3, 2, 1 in five steps from the one where darkness was deep, 3 or less was accepted, and 4 or more was rejected.

結果を表1に示す。   The results are shown in Table 1.

Figure 2005145727
Figure 2005145727

実施例1では10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.9Paまで下げて熱処理を施すとにごりの濃さが3と合格になったのに対し、比較例1では従来の10−1Pa以下に排気して排気を終了した後、昇温開始時の圧力が約5Paの熱処理を施したところ、熱処理後のにごりの濃さは5のままで不合格であった。 In Example 1, after exhausting to 10 −2 Pa or less and exhausting, the pressure at the start of the temperature rise was reduced to about 0.9 Pa and the heat treatment was performed, and the dust density passed 3 and passed. On the other hand, in Comparative Example 1, after exhausting to 10 −1 Pa or less in the prior art and ending the exhaust, when heat treatment was performed at a pressure at the start of temperature increase of about 5 Pa, the concentration of dust after the heat treatment remained at 5 It was rejected.

実施例2では10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.2Paまで下げた熱処理を施すとにごりの濃さが実施例1よりさらに薄い2になった。 In Example 2, after exhausting to 10 −2 Pa or less and ending the exhaust, when the heat treatment is performed by lowering the pressure at the start of temperature rise to about 0.2 Pa, the density of the dust becomes 2 that is thinner than Example 1 became.

実施例3では気密熱処理炉15内にフッ素化剤22を置き10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.9Paまで下げて昇温過程においてフッ素化剤22を気化させ、気密熱処理炉15内をフッ素雰囲気とする熱処理を施すと、にごりの濃さは実施例よりさらに薄い2となり合格であった。 In Example 3, after placing the fluorinating agent 22 in the hermetic heat treatment furnace 15 and exhausting it to 10 −2 Pa or less and ending the exhaust, the pressure at the start of temperature increase is lowered to about 0.9 Pa and the fluorine is increased in the temperature increasing process. When the heat treatment agent 22 was vaporized and heat treatment was performed with the inside of the hermetic heat treatment furnace 15 in a fluorine atmosphere, the density of the dust became 2 which was thinner than in the example, which was acceptable.

実施例4では本発明の10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.2Paまで下げた熱処理を実施する上で、蛍石素材10内部の酸素の拡散をより促進させるために蛍石素材10の底部10aに蛍石製の支持部22上に配置し、隙間をあけた熱処理(以下、「底上熱処理」と称す。)を施すことにより酸素の拡散経路を増やし拡散を促進させ、にごりの濃さを1にすることが可能になった。 In Example 4, after exhausting to 10 −2 Pa or less according to the present invention and ending the exhaust, the heat treatment in which the pressure at the start of temperature increase was reduced to about 0.2 Pa was performed. In order to further promote the diffusion of oxygen, the bottom portion 10a of the fluorite material 10 is placed on the support portion 22 made of fluorite and subjected to a heat treatment with a gap (hereinafter referred to as “bottom heat treatment”) to provide oxygen. It is now possible to increase the diffusion path of, promote diffusion and make the darkness density 1.

実施例5では既ににごりの濃さ3で合格の蛍石光学部材を本発明の10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.2Paまで下げた熱処理を施すとにごりの濃さはさらに薄い2となったのに対し、比較例2では従来の10−1Pa以下に排気して排気を終了した後、昇温開始時の圧力が約5Paの熱処理を施し、熱処理後のにごりの濃さは5と悪化し不合格になった。
[実施例6]
In Example 5, after passing the fluorite optical member having passed the density of 3 and passing to 10 −2 Pa or less of the present invention to finish the exhaustion, the pressure at the start of temperature increase was lowered to about 0.2 Pa. When the heat treatment is performed, the density of the dust becomes 2 which is thinner, whereas in Comparative Example 2, the pressure at the start of the temperature rise is about 5 Pa after exhausting to 10 −1 Pa or less and ending the exhaust. After the heat treatment, the density of dust after the heat treatment deteriorated to 5 and was rejected.
[Example 6]

育成後の結晶塊を歪を除去するためのアニールを施してから、にごりを除去するための熱処理を行う他は、前記と同様にして、表2に示す条件でにごりを観察した。   Dust was observed under the conditions shown in Table 2 in the same manner as described above, except that the grown crystal mass was annealed to remove strain and then heat-treated to remove dust.

結果を表2に示す。   The results are shown in Table 2.

Figure 2005145727
Figure 2005145727

この実施例6では、従来の10−1Pa以下に排気して排気を終了した後、昇温開始時の圧力が約5Paのアニールを施したところ、にごりの濃さが5となり不合格となったが、更に、10−2Pa以下に排気して排気を終了した後、昇温開始時の圧力を約0.2Paまで下げた熱処理を施すとにごりの濃さが2と合格になった。 In this Example 6, after exhausting to 10 −1 Pa or less in the prior art and ending the exhaust, annealing was performed with a pressure at the start of temperature increase of about 5 Pa. However, after exhausting to 10 −2 Pa or less and ending the exhaust, when the heat treatment at which the pressure at the start of the temperature increase was reduced to about 0.2 Pa, the density of the dust became 2 and passed.

この発明の実施の形態の気密熱処理炉を示す断面図である。It is sectional drawing which shows the airtight heat processing furnace of embodiment of this invention. 蛍石の構造を模式的に示す図であり、育成時にできたにごりを示している。It is a figure which shows the structure of a fluorite typically, and shows the dust produced at the time of a growth. 蛍石の構造を模式的に示す図であり、育成時にできたにごりが、この発明の実施の形態において熱処理を施すことにより消えた状態を示している。It is a figure which shows the structure of a fluorite typically, and has shown the state which the dust produced at the time of a growth disappeared by heat-processing in embodiment of this invention. 排気過程の気密容器17内の圧力変化を示すグラフである。It is a graph which shows the pressure change in the airtight container 17 of an exhaust process. 蛍石の構造を模式的に示す図であり、育成後ににごりの見られなかった状態を示している。It is a figure which shows the structure of a fluorite typically, and has shown the state which was not seen after growth. 蛍石の構造を模式的に示す図であり、従来のアニールを施すことによりにごりが発生した状態を示している。It is a figure which shows the structure of a fluorite typically, and has shown the state which the dust generate | occur | produced by performing the conventional annealing. 蛍石の構造を模式的に示す図であり、アニールにより発生したにごりが、この発明の実施の形態において熱処理を施すことにより消えた状態を示している。It is a figure which shows the structure of a fluorite typically, and has shown the state from which the dust which generate | occur | produced by annealing disappeared by heat-processing in embodiment of this invention. この発明の実施の形態の露光装置の基本構造を示す図である。It is a figure which shows the basic structure of the exposure apparatus of embodiment of this invention.

符号の説明Explanation of symbols

10 蛍石素材
11 酸素
12 隙間
15 気密熱処理炉
17 気密容器
18 カーボン容器
19 ヒータ
21 底上用支持部
22 フッ素化剤
DESCRIPTION OF SYMBOLS 10 Fluorite material 11 Oxygen 12 Crevice 15 Airtight heat treatment furnace 17 Airtight container 18 Carbon container 19 Heater 21 Bottom support 22 Fluorinating agent

Claims (10)

蛍石素材を気密熱処理炉内に収容して、該気密熱処理炉内の気体を排気し、該気密熱処理炉内の圧力が所望圧力以下に到達後、前記排気を終了し、該排気終了時より後に昇温を開始して熱処理を行う方法であって、
前記昇温開始時の前記気密熱処理炉内の圧力を1Pa以下にすることにより、前記昇温開始後に前記蛍石素材中の酸素を該蛍石素材の外部へ拡散させることを特徴とする蛍石のにごり除去方法。
The fluorite material is housed in an airtight heat treatment furnace, the gas in the airtight heat treatment furnace is exhausted, and after the pressure in the airtight heat treatment furnace reaches a desired pressure or less, the exhaust is terminated, and from the end of the exhaust A method of starting the temperature rise later and performing heat treatment,
Fluorite that diffuses oxygen in the fluorite material to the outside of the fluorite material after the temperature rise is started by setting the pressure in the hermetic heat treatment furnace at the start of the temperature rise to 1 Pa or less How to remove dust.
前記排気終了時の前記気密熱処理炉内の圧力を前記昇温開始時の圧力より低くすることを特徴とする請求項1に記載の蛍石のにごり除去方法。 2. The method for removing fluorite debris according to claim 1, wherein the pressure in the airtight heat treatment furnace at the end of the exhaust is made lower than the pressure at the start of the temperature increase. 前記排気終了時の気密熱処理炉内の圧力が1×10−2Pa以下であることを特徴とする請求項2に記載の蛍石のにごり除去方法。 3. The method for removing fluorite dust according to claim 2, wherein the pressure in the hermetic heat treatment furnace at the end of the exhaust is 1 × 10 −2 Pa or less. 前記排気終了時から前記昇温開始時までの間の所定時間における前記気密熱処理炉の圧力増加が所定範囲以内となるように前記気密熱処理炉の気密性を確保し、前記熱処理を行うことを特徴とする請求項1乃至3に記載の蛍石のにごり除去方法。 Ensuring the hermeticity of the hermetic heat treatment furnace and performing the heat treatment so that the pressure increase in the hermetic heat treatment furnace during a predetermined time from the end of the exhaust to the start of the temperature rise is within a predetermined range. The method for removing fluorite dust according to any one of claims 1 to 3. 前記熱処理は、前記昇温開始後、前記蛍石素材を800℃以上1300℃以下の温度範囲に昇温して一定温度に所定時間維持した後、徐々に降温するものであることを特徴とする請求項1乃至4の何れか一つに記載の蛍石のにごり除去方法。 The heat treatment is characterized in that after the start of the temperature increase, the temperature of the fluorite material is increased to a temperature range of 800 ° C. or higher and 1300 ° C. or lower and maintained at a constant temperature for a predetermined time, and then the temperature is gradually decreased. The method for removing fluorite dust according to any one of claims 1 to 4. 前記気密熱処理炉内に前記蛍石素材とともにフッ素化剤を収容して前記昇温を行うことにより、前記気密熱処理炉内に前記フッ素化剤を気化させてフッ素雰囲気で前記熱処理を行うことを特徴とする請求項1乃至5の何れか一つに記載の蛍石のにごり除去方法。 The fluorinating agent is housed in the hermetic heat treatment furnace together with the fluorite material and the temperature is raised, thereby vaporizing the fluorinating agent in the hermetic heat treatment furnace and performing the heat treatment in a fluorine atmosphere. 6. The method for removing dust from fluorite according to any one of claims 1 to 5. 前記気密熱処理炉内で前記蛍石素材を支持部上に配置することにより、前記蛍石素材の底部を該気密熱処理炉の床面から離間させた状態で、前記熱処理を行うことを特徴とする請求項1乃至6の何れか一つに記載の蛍石のにごり除去方法。 The heat treatment is performed in a state where the bottom portion of the fluorite material is separated from the floor surface of the hermetic heat treatment furnace by disposing the fluorite material on a support in the hermetic heat treatment furnace. The method for removing fluorite dust according to any one of claims 1 to 6. 請求項1乃至7の何れか一つの蛍石のにごり除去方法が施されたことを特徴とする光学用蛍石。 8. An optical fluorite, wherein the fluorite dust removal method according to any one of claims 1 to 7 is applied. 請求項8に記載の光学用蛍石を有することを特徴とする光学系。 An optical system comprising the optical fluorite according to claim 8. 請求項9に記載の光学系を有することを特徴とする露光装置。
An exposure apparatus comprising the optical system according to claim 9.
JP2003381577A 2003-11-11 2003-11-11 How to remove fluorite dust Expired - Fee Related JP4352863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381577A JP4352863B2 (en) 2003-11-11 2003-11-11 How to remove fluorite dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381577A JP4352863B2 (en) 2003-11-11 2003-11-11 How to remove fluorite dust

Publications (2)

Publication Number Publication Date
JP2005145727A true JP2005145727A (en) 2005-06-09
JP4352863B2 JP4352863B2 (en) 2009-10-28

Family

ID=34690913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381577A Expired - Fee Related JP4352863B2 (en) 2003-11-11 2003-11-11 How to remove fluorite dust

Country Status (1)

Country Link
JP (1) JP4352863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040630A (en) * 2007-08-08 2009-02-26 Tokuyama Corp Method for producing metal fluoride single crystal using metal fluoride single crystal pulling apparatus
JP2015124144A (en) * 2013-12-27 2015-07-06 株式会社ニコン Calcium fluoride optical member, manufacturing method of calcium fluoride member, and processing method of calcium fluoride single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040630A (en) * 2007-08-08 2009-02-26 Tokuyama Corp Method for producing metal fluoride single crystal using metal fluoride single crystal pulling apparatus
JP2015124144A (en) * 2013-12-27 2015-07-06 株式会社ニコン Calcium fluoride optical member, manufacturing method of calcium fluoride member, and processing method of calcium fluoride single crystal

Also Published As

Publication number Publication date
JP4352863B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP2000034193A (en) Heat treatment and production of fluoride single crystal
JP2005289801A (en) Optical element of quartz glass, method of manufacturing the optical element and its use
US9487426B2 (en) Heat treatment method of synthetic quartz glass
US20060081008A1 (en) Method for manufacturing synthetic silica glass substrate for photomask and synthetic silica glass substrate for photomask manufactured thereby
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
US6989060B2 (en) Calcium fluoride crystal and method and apparatus for using the same
JP4078161B2 (en) Fluorite and its manufacturing method
JP4352863B2 (en) How to remove fluorite dust
US9322954B2 (en) Fluorite production method
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JP5287574B2 (en) Heat treatment method for synthetic quartz glass
JP2000191329A (en) Production of optical quartz glass for excimer laser
JP4092515B2 (en) Fluorite manufacturing method
JP4051805B2 (en) Exposure apparatus and photomask
JP2008063151A (en) Synthetic quartz glass substrate for excimer laser and its production method
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP2000128553A (en) Thermal annealing method for quartz glass and quartz glass member obtained by using the method
US11851364B2 (en) Synthetic quartz glass substrate and making method
US7014703B2 (en) Method for annealing group IIA metal fluoride crystals
JP2005035815A (en) Method for manufacturing quartz glass preform, and quartz glass preform
JPS60216549A (en) Manufacture of semiconductor device
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP2010285327A (en) Method for heat-treating fluoride, method for producing fluoride single crystal, and fluoride single crystal
JP2012096955A (en) Method of heat-treatment of metal fluoride single crystal
JP5682895B2 (en) Fluorite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Ref document number: 4352863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150807

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees