JP2009040616A - Castable refractory composition for dry spraying and dry spraying method using the same - Google Patents

Castable refractory composition for dry spraying and dry spraying method using the same Download PDF

Info

Publication number
JP2009040616A
JP2009040616A JP2007204285A JP2007204285A JP2009040616A JP 2009040616 A JP2009040616 A JP 2009040616A JP 2007204285 A JP2007204285 A JP 2007204285A JP 2007204285 A JP2007204285 A JP 2007204285A JP 2009040616 A JP2009040616 A JP 2009040616A
Authority
JP
Japan
Prior art keywords
water
construction
mass
less
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007204285A
Other languages
Japanese (ja)
Other versions
JP4758961B2 (en
Inventor
Yoshihiro Mizuma
好博 水摩
Mitsuo Sugawara
光男 菅原
Koji Aida
広治 合田
Nobuyuki Takahashi
伸幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2007204285A priority Critical patent/JP4758961B2/en
Publication of JP2009040616A publication Critical patent/JP2009040616A/en
Application granted granted Critical
Publication of JP4758961B2 publication Critical patent/JP4758961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the possibility that peeling-off etc. occur in a sprayed body as compared with a conventional method. <P>SOLUTION: This invention provide a castable refractory composition for dry spraying, which comprises (a) a refractory powder, (b) composite fibers obtained by combining at least a first resin and a second resin so that each fiber has in a transverse section a part 11 of the first resin comprising polypropylene or polyester and a part 12 of the second resin having a lower melting point than the first resin constituting the part 11, in an amount of 0.02-1.0 mass% based on 100 mass% of the refractory powder, and (c) a powdery additive containing a binder, wherein a content of water-insoluble particles having a particle diameter of ≤75 μm is confined to ≤30 mass%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、不定形耐火組成物の吹付け施工技術に関し、特に冷温間から熱間のいずれの温度条件下においても施工可能な乾式吹付け施工用不定形耐火組成物、及びそれを用いた吹付け施工方法に関する。   TECHNICAL FIELD The present invention relates to a spraying technology for an irregular refractory composition, and in particular, an amorphous refractory composition for dry spraying that can be applied under any temperature condition from cold to hot, and a blowing using the same. It relates to the installation method.

不定形耐火組成物の吹付け施工方法の1つに、施工水が添加されていない粉末状の不定形耐火組成物を搬送管内に送り込んで気流搬送し、搬送管内又は搬送管の先端に接続した吹付けノズル内で施工水を添加して吹付ける乾式吹付け施工方法がある。   One of the methods for spraying an irregular refractory composition is a powdered irregular refractory composition to which no construction water is added, which is sent into the transport pipe and air-flow transported, and connected to the transport pipe or the tip of the transport pipe. There is a dry spray construction method in which construction water is added and sprayed in a spray nozzle.

また、粉末状の不定形耐火組成物を予め少量の水で湿潤させたものを搬送管内に送り込んで気流搬送し、搬送管内又は吹付けノズル内で施工水を添加して吹付ける半乾式吹付け施工方法も知られている。   Also, semi-dry spraying that powdered amorphous refractory composition previously wetted with a small amount of water is sent into the transport pipe and air-flow transported and added with construction water in the transport pipe or spray nozzle The construction method is also known.

特許文献1は、それら一般的な乾式又は半乾式吹付け施工方法のいずれにも勝る技術として、不定形耐火組成物を気流搬送する搬送管に、搬送方向に関して間隔をおいて一次及び二次の2つの注水器を設け、各注水器から不定形耐火組成物に平均粒径100μm以下に微粒化された施工水を添加する吹付け施工方法を開示している。   Patent Document 1 discloses a technique that is superior to any of these general dry-type or semi-dry-type spray construction methods. Two sprayers are provided, and a spray construction method is disclosed in which construction water atomized to an average particle size of 100 μm or less is added from each water dispenser to an irregular refractory composition.

本明細書においては、上述した一般的な乾式又は半乾式吹付け施工方法にしろ、特許文献1の吹付け施工方法にしろ、不定形耐火組成物を気流搬送する工程を含んで吹付ける施工方法を乾式吹付け施工方法と総称するものとする。   In this specification, whether it is the general dry or semi-dry spraying method described above, or the spraying method of Patent Document 1, the spraying method includes a step of air-flowing the amorphous refractory composition. Is collectively referred to as a dry spraying method.

不定形耐火組成物が施工面に吹付けられて構築される吹付け施工体は、施工水を含有する。この施工水は、熱間での吹付け施工の場合は施工面の熱により、また冷温間での吹付け施工の場合は吹付け施工体を乾燥させる際の加熱により、水蒸気となって施工体外に蒸発する。このとき、吹付け施工体の内部水蒸気圧の上昇に起因して吹付け施工体に剥離、ふくれ、又は爆裂(以下、剥離等という。)が生じることがある。   The spray construction body constructed by spraying the irregular refractory composition onto the construction surface contains construction water. In the case of hot spraying construction, this construction water is converted into water vapor by the heat of the construction surface, and in the case of cold spraying, by heating when the spraying construction body is dried, Evaporates. At this time, peeling, blistering, or explosion (hereinafter referred to as peeling) may occur in the spraying construction body due to an increase in the internal water vapor pressure of the spraying construction body.

吹付け施工体の剥離等を防止するには、不定形耐火組成物に有機繊維を含めることが有効である。即ち、有機繊維が熱で消失し、吹付け施工体の内部に水蒸気の逃げ道となる通気孔を形成する。このため、吹付け施工体の内部水蒸気圧の上昇を緩和でき、吹付け施工体の剥離等を抑制できる。有機繊維によって剥離等の防止を図った不定形耐火組成物としては、以下のものが知られている。   In order to prevent peeling of the sprayed construction body, it is effective to include organic fibers in the irregular refractory composition. That is, the organic fiber disappears by heat, and a vent hole serving as a water vapor escape path is formed inside the spray construction body. For this reason, the raise of the internal water vapor pressure of a spraying construction body can be relieved, and peeling etc. of a spraying construction body can be suppressed. The following are known as the irregular refractory composition in which peeling or the like is prevented by organic fibers.

特許文献1は、乾式吹付け施工用不定形耐火組成物として、耐火性粉体(耐火原料粉末)と、この耐火性粉体100質量%に対する外掛け0.1質量%の有機繊維と、結合剤を含む粉末状の添加剤とからなるものを開示する。有機繊維として、ビニロン繊維、ナイロン繊維、ポリプロピレン繊維等を例示し、実施例ではビニロン繊維を採用している。なお、この不定形耐火組成物は、粒径75μm以下の耐火性粉体を約40質量%含む(特許文献1の表3参照)。   Patent Document 1 discloses a fireproof powder (refractory raw material powder) as an indeterminate fireproof composition for dry spray construction, and an organic fiber having an outer covering of 0.1% by weight based on 100% by weight of the fireproof powder. What consists of a powdery additive containing an agent is disclosed. Examples of organic fibers include vinylon fibers, nylon fibers, and polypropylene fibers. In the examples, vinylon fibers are employed. The amorphous refractory composition contains about 40% by mass of a refractory powder having a particle size of 75 μm or less (see Table 3 of Patent Document 1).

特許文献2は、乾式吹付け施工用不定形耐火組成物として、耐火性粉体(耐火骨材)と、この耐火性粉体100質量%に対する外掛け0.01〜1質量%の量の有機繊維と、結合剤を含む添加剤とからなるものを開示する。有機繊維として、ビニロン繊維、ポリエステル繊維、及びポリプロピレン繊維等を例示し、実施例ではビニロン繊維又はポリエステル繊維を採用している。なお、この不定形耐火組成物は、粒径75μm以下の焼結マグネシアを25質量%、粒径1mm以下の焼結マグネシアを50質量%、比表面積15m/g以上の軽焼マグネシアを外掛け3〜12質量%含む(特許文献2の表1の実施例参照)。一般に、粒径1mm以下の製品には粒径75μm以下が少なくとも10質量%含まれ、比表面積15m/g以上のものの粒径は75μm以下であるから、この不定形耐火組成物は粒径75μm以下の耐火性粉体を少なくとも32質量%含むといえる。 Patent Document 2 discloses a fireproof powder (fireproof aggregate) as an amorphous fireproof composition for dry spray construction, and an organic coating in an amount of 0.01 to 1% by weight with respect to 100% by weight of the fireproof powder. What consists of a fiber and the additive containing a binder is disclosed. Examples of organic fibers include vinylon fibers, polyester fibers, and polypropylene fibers. In the examples, vinylon fibers or polyester fibers are employed. The amorphous refractory composition is made of 25% by mass of sintered magnesia having a particle size of 75 μm or less, 50% by mass of sintered magnesia having a particle size of 1 mm or less, and lightly burned magnesia having a specific surface area of 15 m 2 / g or more. 3-12 mass% is contained (refer the Example of Table 1 of patent document 2). Generally, a product having a particle size of 1 mm or less contains at least 10% by mass of a particle size of 75 μm or less, and a particle having a specific surface area of 15 m 2 / g or more has a particle size of 75 μm or less. It can be said that the following refractory powder is contained at least 32 mass%.

特許文献3は、乾式吹付け施工用不定形耐火組成物として、耐火性粉体(塩基性耐火材)と、この耐火性粉体100質量%に対する外掛けで最大3質量%の有機繊維と、結合剤を含む添加剤とからなるものを開示する。有機繊維として、ビニロン繊維、ポリエステル繊維、及びポリプロピレン繊維等を例示し、実施例では、ビニロン繊維又はポリエステル繊維を採用している。耐火性粉体の粒度構成については開示されていない。
国際公開第05/121676号パンフレット 特開平9−165272号公報 特開昭60−71577号公報
Patent Document 3 discloses a fireproof powder (basic fireproof material) as an amorphous fireproof composition for dry spray construction, and an organic fiber having a maximum of 3% by mass with respect to 100% by mass of the fireproof powder, What consists of an additive containing a binder is disclosed. Examples of organic fibers include vinylon fibers, polyester fibers, and polypropylene fibers. In the examples, vinylon fibers or polyester fibers are employed. The particle size composition of the refractory powder is not disclosed.
International Publication No. 05/121676 Pamphlet JP-A-9-165272 JP-A-60-71577

本願発明者らは、特許文献1〜3等に開示される従来の乾式吹付け施工用不定形耐火組成物を改善するものとして、有機繊維の中でも特にポリプロピレン繊維を選択し、かつ不定形耐火組成物全体に占める粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えたものを開発し、先に出願した(特願2007−125621号参照)。   The inventors of the present application select polypropylene fiber among organic fibers as an improvement in the conventional amorphous fireproofing composition for dry spraying disclosed in Patent Documents 1 to 3 and the like, and the amorphous fireproofing composition. A product in which the content of water-insoluble particles having a particle size of 75 μm or less in the entire product was suppressed to less than 20% by mass was filed earlier (see Japanese Patent Application No. 2007-125621).

ここで、非水溶性粒子とは、20℃の純水100gに対する溶解度が10g未満の粒子をいう。但し、水和物の溶解度は、20℃の純水100gに溶解する無水物の質量で表す。例えば、仮焼アルミナやシリカヒューム等の耐火性粉体、消石灰、アルミナセメント等は、非水溶性粒子である。一方、水溶性粒子とは、20℃の純水100gに対する溶解度が10g以上の粒子をいう。   Here, the water-insoluble particles refer to particles having a solubility in 100 g of pure water at 20 ° C. of less than 10 g. However, the solubility of the hydrate is represented by the mass of the anhydride dissolved in 100 g of pure water at 20 ° C. For example, refractory powders such as calcined alumina and silica fume, slaked lime, alumina cement and the like are water-insoluble particles. On the other hand, water-soluble particles are particles having a solubility in 100 g of pure water at 20 ° C. of 10 g or more.

本願発明者らが先に開発した上記不定形耐火組成物によると、特許文献1〜3等に開示される従来のものに比べて、吹付け施工体に剥離等が生じる可能性を格段に低減できたが、より一層剥離等が生じる可能性を低減できる技術が望まれていた。   According to the above irregular refractory composition developed by the inventors of the present application, the possibility of delamination or the like in the sprayed construction body is significantly reduced as compared with the conventional ones disclosed in Patent Documents 1 to 3 and the like. However, there has been a demand for a technique that can further reduce the possibility of peeling and the like.

また、本願発明者らが先に開発した上記不定形耐火組成物は、特許文献1〜3等に開示される従来のものに比べると、粒径75μm以下の非水溶性粒子の含有量を大幅に減らす必要があるため、粒径75μm以下の非水溶性粒子をさほど減らさなくても吹付け施工体に剥離等が生じる可能性を低減できる技術が望まれていた。   In addition, the amorphous refractory composition previously developed by the inventors of the present application greatly increases the content of water-insoluble particles having a particle size of 75 μm or less as compared with conventional ones disclosed in Patent Documents 1 to 3 and the like. Therefore, there has been a demand for a technique that can reduce the possibility of peeling or the like in the sprayed construction body without reducing the water-insoluble particles having a particle diameter of 75 μm or less.

本発明の目的は、吹付け施工体に剥離等が発生する可能性を低減できる乾式吹付け施工用不定形耐火組成物、及びそれを用いた吹付け施工方法を提供することにある。   An object of the present invention is to provide an amorphous refractory composition for dry-type spray construction that can reduce the possibility of peeling or the like occurring in the spray-constructed body, and a spray construction method using the same.

本発明の他の目的は、粒径75μm以下の非水溶性粒子をさほど減らさなくても吹付け施工体に剥離等が生じる可能性を低減できる乾式吹付け施工用不定形耐火組成物、及びそれを用いた吹付け施工方法を提供することにある。   Another object of the present invention is to provide an amorphous refractory composition for dry spray construction that can reduce the possibility of peeling and the like occurring in the spray construction body without reducing water-insoluble particles having a particle size of 75 μm or less. The object is to provide a spray construction method using the above.

本発明の一観点によれば、(a)耐火性粉体と、(b)横断面内にポリプロピレン又はポリエステルからなる第1の樹脂で構成された部分と、その部分を構成する第1の樹脂よりも融点の低い第2の樹脂で構成された部分とを有するように、少なくとも第1の樹脂と第2の樹脂とを複合化してなる複合繊維を前記耐火性粉体100質量%に対する外掛けで0.02〜1.0質量%と、(c)結合剤を含む粉末状の添加剤とからなり、かつ粒径75μm以下の非水溶性粒子の含有量を内掛けで30質量%以下に抑えた乾式吹付け施工用不定形耐火組成物が提供される。   According to one aspect of the present invention, (a) a refractory powder, (b) a portion made of a first resin made of polypropylene or polyester in a cross section, and a first resin constituting the portion. A composite fiber formed by compounding at least the first resin and the second resin so as to have a portion composed of the second resin having a lower melting point than that of the refractory powder. 0.02 to 1.0% by mass and (c) a powdery additive containing a binder, and the content of water-insoluble particles having a particle size of 75 μm or less is reduced to 30% by mass or less by the inner amount. An amorphous fireproof composition for dry spraying that is suppressed is provided.

本発明の他の観点によれば、上記不定形耐火組成物を搬送管内に送り込んで気流搬送し、搬送管内及び/又は搬送管の先端に接続した吹付けノズル内で、該不定形耐火組成物に平均粒径100μm以下に微粒化した施工水を添加し、施工水が添加された不定形耐火組成物を吹付けノズルから施工面に吹付ける吹付け施工方法も提供される。   According to another aspect of the present invention, the amorphous refractory composition is fed into a transport pipe and air-flow transported, and in the spray nozzle connected to the transport pipe and / or the tip of the transport pipe, the amorphous refractory composition. There is also provided a spray construction method in which the construction water atomized to an average particle size of 100 μm or less is added, and the amorphous refractory composition to which the construction water is added is sprayed from the spray nozzle onto the construction surface.

本明細書において、微粒化した施工水の平均粒径とは、位相ドップラー法で測定される個数基準での体積平均粒径のことである。その算出式は、{Σn /Σn1/3である。ここでnは直径Dの粒子の個数に相当する物理量である。この体積平均粒径の値は、米国TSI社の位相ドップラー式粒子測定装置(型式:2D-PDPA/RSA)を用いて測定することができる。 In this specification, the average particle diameter of the atomized construction water is the volume average particle diameter based on the number measured by the phase Doppler method. The calculation formula is {Σn i D i 3 / Σn i } 1/3 . Here, n i is a physical quantity corresponding to the number of particles having a diameter D i . The value of the volume average particle diameter can be measured using a phase Doppler particle measuring apparatus (model: 2D-PDPA / RSA) manufactured by TSI, USA.

従来の有機繊維に代えて上記複合繊維を用いる場合、粒径75μm以下の非水溶性粒子の含有量を30質量%以下に抑えると、吹付け施工体の剥離等を防止する効果が高まることが判った。これは、粒径75μm以下の非水溶性粒子の含有量を30質量%以下に抑えた場合、第1の樹脂からなる部分によって複合繊維の直線性が改善される効果が、第2の樹脂からなる部分によって複合繊維の消失するタイミングが早まる効果に相乗的に作用するためであると考えられる。   When using the above-mentioned composite fiber instead of the conventional organic fiber, if the content of the water-insoluble particles having a particle size of 75 μm or less is suppressed to 30% by mass or less, the effect of preventing the sprayed construction from being peeled off may be enhanced. understood. This is because when the content of water-insoluble particles having a particle size of 75 μm or less is suppressed to 30% by mass or less, the effect of improving the linearity of the composite fiber by the portion made of the first resin is from the second resin. This is considered to be due to synergistic effects on the effect of accelerating the disappearance timing of the composite fiber by the portion.

かかる不定形耐火組成物は、平均粒径100μm以下に微粒化した施工水を添加して吹付ける方法によると、施工水との混合効果が高まる結果、少ない施工水での吹付けが可能になるとともに、吹付けた際の衝撃で吹付け施工体の組織がよく締まるようになる。このため、複合繊維の消失による通気率の向上の効果は得つつ、吹付け施工体の見かけ気孔率は小さく抑えることができ、吹付け施工体の耐侵食性を向上できる。また、少ない施工水での吹付けを実現できるので、吹付け施工体からの水蒸気の発生も少なくなり、吹付け施工体の剥離等を防止する効果が一層向上する。   According to such an irregular refractory composition, a method of adding and spraying construction water atomized to an average particle size of 100 μm or less increases the effect of mixing with construction water, so that spraying with less construction water becomes possible. At the same time, the structure of the spray construction body is tightened well by the impact when sprayed. For this reason, while obtaining the effect of improving the air permeability due to the disappearance of the composite fiber, the apparent porosity of the sprayed construction body can be kept small, and the erosion resistance of the sprayed construction body can be improved. Moreover, since spraying with a small amount of construction water can be realized, the generation of water vapor from the spraying construction body is reduced, and the effect of preventing peeling of the spraying construction body is further improved.

図1は、乾式吹付け施工装置の概略図を示す。タンク1内の粉末状の不定形耐火組成物2が、テーブルフィーダ3によって搬送管5内に送り込まれる。搬送管5内に送り込まれた不定形耐火組成物2は、空気導入管6から搬送管5内に供給される圧縮空気にのって搬送管5内を吹付けノズル4に向かって気流搬送される。   FIG. 1 shows a schematic view of a dry spray construction apparatus. The powdery amorphous refractory composition 2 in the tank 1 is fed into the transport pipe 5 by the table feeder 3. The amorphous refractory composition 2 fed into the transport pipe 5 is air-transported toward the spray nozzle 4 through the transport pipe 5 on the compressed air supplied from the air introduction pipe 6 into the transport pipe 5. The

搬送管5の途中に一次注水器7が設けられ、一次注水器7よりも下流に二次注水器8が設けられている。一次注水器7から二次注水器8までの搬送管5に沿った距離は約10mであり、二次注水器8から吹付けノズル4の先端までの距離は約0.9mである。   A primary water injector 7 is provided in the middle of the transport pipe 5, and a secondary water injector 8 is provided downstream of the primary water injector 7. The distance along the transfer pipe 5 from the primary water injector 7 to the secondary water injector 8 is about 10 m, and the distance from the secondary water injector 8 to the tip of the spray nozzle 4 is about 0.9 m.

一次注水器7及び二次注水器8の各々から、搬送管5内に、米国TSI社の位相ドップラー式粒子測定装置(型式:2D-PDPA/RSA)による測定で平均粒径100μmに微粒化された施工水が圧縮空気と共に噴霧される。一次注水器7及び二次注水器8から噴霧される施工水の実質的全量、具体的には95体積%以上の平均粒径が100μmである。   Each of the primary water injector 7 and the secondary water injector 8 is atomized into the transport pipe 5 to an average particle diameter of 100 μm as measured by a phase Doppler particle measuring device (model: 2D-PDPA / RSA) manufactured by TSI, USA. Construction water is sprayed with compressed air. The actual total amount of construction water sprayed from the primary water injector 7 and the secondary water injector 8, specifically, the average particle diameter of 95% by volume or more is 100 μm.

施工水の添加量が不定形耐火組成物100質量%に対する外掛けでα質量%(例えば5〜15質量%)となる条件で、一次注水器7及び二次注水器8の各々から連続的に施工水が噴霧される。一次注水器7が、施工水のβ質量%(例えば20〜30質量%)の量の水分を噴霧し、二次注水器8が施工水の100−β質量%(例えば70〜80質量%)の量の水分を噴霧する。ここでα及びβの値は、施工員により適宜に調整できる。   Continuously from each of the primary water injector 7 and the secondary water injector 8 under the condition that the amount of construction water added is α mass% (for example, 5 to 15 mass%) as an outer shell with respect to 100 mass% of the amorphous refractory composition. Construction water is sprayed. The primary water injector 7 sprays water in an amount of β mass% (for example, 20 to 30 mass%) of the construction water, and the secondary water injector 8 is 100-β mass% (for example, 70 to 80 mass%) of the construction water. Spray the amount of water. Here, the values of α and β can be appropriately adjusted by a construction worker.

搬送管5内を流れる過程で、不定形耐火組成物2と、微粒化された施工水の粒子とが混ざり合い、不定形耐火組成物2が湿潤状となる。湿潤状となった不定形耐火組成物2が搬送管5の先端に接続された吹付けノズル4から施工面Sに吹付けられ、施工面Sに吹付け施工体9が構築される。   In the process of flowing through the transport pipe 5, the amorphous refractory composition 2 and the atomized construction water particles are mixed, and the amorphous refractory composition 2 becomes wet. The amorphous refractory composition 2 in a wet state is sprayed onto the construction surface S from the spray nozzle 4 connected to the tip of the transport pipe 5, and a spray construction body 9 is constructed on the construction surface S.

施工水を平均粒径100μmに微粒化したことにより、不定形耐火組成物2と施工水とがよく混ざり合うようになる。このため、従来法に比べて施工水の使用量を低減しても、粉塵やリバウンドロス(施工面Sからの跳ね返り損失)が生じにくくなる。また、吹付けたときの衝撃で吹付け施工体の組織がよく締まるようになるため、空気を巻き込むことに起因する吹付け施工体9の見かけ気孔率の増大を抑制できる。   By atomizing the construction water to an average particle size of 100 μm, the amorphous refractory composition 2 and the construction water are mixed well. For this reason, even if it reduces the usage-amount of construction water compared with the conventional method, it becomes difficult to produce dust and a rebound loss (bounce loss from construction surface S). Moreover, since the structure | tissue of a spraying construction body comes to tighten well with the impact at the time of spraying, the increase in the apparent porosity of the spraying construction body 9 resulting from entraining air can be suppressed.

表1は、第1の実験例による不定形耐火組成物の配合を示す。表1で、非水溶性粒子は耐火性粉体と消石灰である。電融アルミナ(b)は、粒径75μm以下の粒度を10質量%含む。仮焼アルミナ、シリカヒューム、及び粘土の粒径は10μm以下である。消石灰の粒径は6〜8μmである。PP−PE複合繊維(ポリプロピレン−ポリエチレン複合繊維)の平均長さは約12mm、平均直径は約0.05mmである。   Table 1 shows the formulation of the amorphous refractory composition according to the first experimental example. In Table 1, the water-insoluble particles are refractory powder and slaked lime. The electrofused alumina (b) contains 10% by mass of a particle size having a particle size of 75 μm or less. The particle size of calcined alumina, silica fume, and clay is 10 μm or less. The particle size of slaked lime is 6-8 μm. The average length of the PP-PE composite fiber (polypropylene-polyethylene composite fiber) is about 12 mm, and the average diameter is about 0.05 mm.

Figure 2009040616
Figure 2009040616

配合Gをベースとし、PP−PE複合繊維の配合割合は変更することなく、電融アルミナ(a)〜(c)及び仮焼アルミナの配合割合を調整することにより、粒径75μm以下の非水溶性粒子の含有量を変化させたのが配合A〜F及びH〜Mである。   Based on the blend G, the blending ratio of the PP-PE composite fiber is not changed, and by adjusting the blending ratio of the fused aluminas (a) to (c) and calcined alumina, a water-insoluble particle size of 75 μm or less The content of the conductive particles was changed in Formulas A to F and H to M.

図2は、表1の各実験例に使用したPP−PE複合繊維の横断面図である。PP−PE複合繊維は、横断面(繊維の長さ方向に直行する断面)内に、ポリプロピレンからなる芯部分11と、ポリエチレン、詳細には、密度0.929g/cm以下の低密度ポリエチレンからなる鞘部分12とを有する芯鞘構造をなしている。 FIG. 2 is a cross-sectional view of the PP-PE conjugate fiber used in each experimental example in Table 1. The PP-PE composite fiber is composed of a core portion 11 made of polypropylene and polyethylene, specifically, low density polyethylene having a density of 0.929 g / cm 3 or less, in a cross section (cross section perpendicular to the length direction of the fiber). A core-sheath structure having a sheath portion 12 is formed.

表2は、第2の実験例による不定形耐火組成物の配合を示す。表1のPP−PE複合繊維を、これと平均長さ及び平均直径が同じ繊維であって、図2の芯部分11に相当する部分がポリエステルからなり、鞘部分12に相当する部分は低密度ポリエチレンからなるポリエステル−ポリエチレン複合繊維(PET−PE複合繊維)に置き換え、これ以外の構成は第1の実験例と同一にした。   Table 2 shows the composition of the amorphous refractory composition according to the second experimental example. The PP-PE composite fiber of Table 1 has the same average length and average diameter, and the portion corresponding to the core portion 11 of FIG. 2 is made of polyester, and the portion corresponding to the sheath portion 12 is low density. It replaced with the polyester-polyethylene composite fiber (PET-PE composite fiber) which consists of polyethylene, and the structure other than this was made the same as the 1st experiment example.

Figure 2009040616
Figure 2009040616

表3は、比較例による配合を示す。表1のPP−PE複合繊維を、これと平均長さ及び平均直径が同じ繊維であって、ポリプロピレンからなる複合化されていない繊維(PP単繊維)に置き換え、これ以外の構成は第1の実験例と同一にした。   Table 3 shows the formulation according to the comparative example. The PP-PE composite fiber in Table 1 is replaced with a non-complexed fiber (PP single fiber) made of polypropylene, which has the same average length and average diameter, and the other configuration is the first. Same as the experimental example.

Figure 2009040616
Figure 2009040616

以下、吹付け実験について説明する。   Hereinafter, the spray experiment will be described.

第1及び第2の実験例並びに比較例による各不定形耐火組成物を、図1の装置を用いて常温の施工面に吹付けた。吹付けにあたり、図1の注水器7及び8から添加する施工水の合量は、発塵とリバウンドロスを抑制できる最低限度の量となるように施工員が調整した。但し、第1の実験例とそれに対応する第2の実験例及び比較例とで、施工水の合量と注水器7及び8から添加する施工水の質量比とは同一にした。そして、施工面に構築された各吹付け施工体の見かけ気孔率及び平均通気率を測定した。   Each of the irregular refractory compositions according to the first and second experimental examples and the comparative example was sprayed onto the construction surface at room temperature using the apparatus shown in FIG. In spraying, the construction worker adjusted the total amount of construction water to be added from the water injectors 7 and 8 in FIG. 1 to be the minimum amount that can suppress dust generation and rebound loss. However, the total amount of construction water and the mass ratio of construction water added from the water injectors 7 and 8 were the same in the first experimental example and the corresponding second experimental example and comparative example. And the apparent porosity and average air permeability of each spray construction body constructed | assembled on the construction surface were measured.

見かけ気孔率は、次の要領で測定した。吹付け施工体から切り出した試料を300℃で24時間乾燥させたのちの質量をWとする。次に、その試料を水中に沈めて3時間煮沸したのち常温まで放冷して飽水試料を得、飽水試料の水中における質量Wを測定する。次に、飽水試料を水中から取り出し、湿布で表面をぬぐったものの質量をWとする。見かけ気孔率は、(W−W)/(W−W)×100で定義される。見かけ気孔率は、その値が小さい程、吹付け施工体が緻密で、耐侵食性に優れることを意味する。 The apparent porosity was measured as follows. The mass after the sample cut out from the spray construction body is dried at 300 ° C. for 24 hours is defined as W 1 . Next, the sample is submerged in water, boiled for 3 hours, and then allowed to cool to room temperature to obtain a saturated sample, and the mass W 2 of the saturated sample in water is measured. Then removed water-saturated sample from the water, the mass despite mopped on surface with wet cloth and W 3. The apparent porosity is defined by (W 3 −W 1 ) / (W 3 −W 2 ) × 100. The apparent porosity means that the smaller the value, the denser the sprayed body and the better the erosion resistance.

平均通気率は、次の要領で測定した。吹付け施工体から同一寸法の直方体状の試験片を2つ切り出し、一方は110℃で24時間乾燥させ、他方は300℃で24時間乾燥させて、各々の通気率Q110℃、Q300℃を測定する。平均通気率は(Q110℃+Q300℃)/2で定義される。なお、通気率は、単位時間に試験片を透過したエアーの体積をK、試験片のエアーが通過する面の面積をS、試験片のエアーが通過する方向の厚みをL、試験片へのエアー侵入時の圧力をU、大気圧をUとしたとき、K×(L/S)/(U−U)で定義される。通気率は、その値が大きい程、吹付け施工体の内部から外部に水蒸気が抜け易く、内部水蒸気圧の上昇に起因した剥離等を防止する効果が高いことを意味する。 The average air permeability was measured as follows. Two rectangular parallelepiped test pieces of the same size are cut out from the sprayed body, one is dried at 110 ° C. for 24 hours, and the other is dried at 300 ° C. for 24 hours, and the respective air permeability Q 110 ° C. , Q 300 ° C. Measure. The average air permeability is defined by (Q 110 ° C. + Q 300 ° C. ) / 2. The air permeability is K for the volume of air that permeates the test piece per unit time, S for the surface area of the test piece through which the air passes, L for the thickness of the test piece in the direction through which the air passes, U 1 the pressure at the time of air penetration, when the atmospheric pressure was U 2, is defined by K × (L / S) / (U 1 -U 2). The larger the value of the air permeability, the easier it is for the water vapor to escape from the inside of the sprayed construction body to the outside, and the higher the effect of preventing peeling and the like due to the increase of the internal water vapor pressure.

図3に、本吹付け実験における各吹付け施工体の見かけ気孔率及び平均通気率の測定結果を示す。横軸は、不定形耐火組成物100質量%に占める粒径75μm以下の非水溶性粒子の含有量を示す。各プロットの位置における横軸の値は、表1〜3に記載されている。右側の縦軸は見かけ気孔率を示し、左側の縦軸は平均通気率を示す。   In FIG. 3, the measurement result of the apparent porosity and average air permeability of each spray construction body in this spraying experiment is shown. The horizontal axis represents the content of water-insoluble particles having a particle size of 75 μm or less in 100% by mass of the amorphous refractory composition. The values on the horizontal axis at the positions of the plots are shown in Tables 1 to 3. The vertical axis on the right side shows the apparent porosity, and the vertical axis on the left side shows the average air permeability.

折線P1は、PP単繊維を用いた比較例による吹付け施工体の見かけ気孔率の変動を示す。若干左上がりのトレンドがあるが、概ねフラットな変動傾向を示している。   The polygonal line P1 shows the fluctuation | variation of the apparent porosity of the spray construction body by the comparative example using PP single fiber. Although there is a slight upward trend, it shows a generally flat trend.

折線G1は、比較例による吹付け施工体の平均通気率の変動を示す。粒径75μm以下の非水溶性粒子の含有量が約20質量%未満の領域で、平均通気率がほぼステップ状に上昇している。即ち、粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えると、吹付け施工体の剥離等を防止する効果が向上する。   The broken line G1 shows the fluctuation | variation of the average air permeability of the spray construction body by a comparative example. In a region where the content of water-insoluble particles having a particle size of 75 μm or less is less than about 20% by mass, the average air permeability increases almost in a stepped manner. That is, when the content of the water-insoluble particles having a particle size of 75 μm or less is suppressed to less than 20% by mass, the effect of preventing the sprayed construction from being peeled off is improved.

粒径75μm以下の非水溶性粒子は、骨材間の隙間を埋めるマトリクスとなるため、その含有量の多少は、見かけ気孔率及び平均通気率の双方に影響を与える因子である。しかし、粒径75μm以下の非水溶性粒子の含有量約15〜25質量%の領域では、見かけ気孔率の変動(折線P1)がフラットであることを考慮すると、平均通気率の変動(折線G1)がステップ状をなす原因としては、粒径75μm以下の非水溶性粒子が骨材間の隙間を埋める度合いそのものの影響は小さいと考えられる。   Since the water-insoluble particles having a particle size of 75 μm or less become a matrix that fills the gaps between the aggregates, the amount of the water-insoluble particles is a factor that affects both the apparent porosity and the average air permeability. However, in the region where the content of the water-insoluble particles having a particle diameter of 75 μm or less is about 15 to 25% by mass, the variation in the average air permeability (the broken line G1) is taken into account that the variation in the apparent porosity (the broken line P1) is flat. The reason why the non-water-soluble particles having a particle diameter of 75 μm or less fill the gaps between the aggregates is considered to be a cause of the step-like).

平均通気率の変動が折線G1のようにステップ状をなす傾向は、有機繊維の中でもポリプロピレンよりなる繊維を選択した場合に特に顕著に発現する。有機繊維として、ポリエチレン、ビニロン、又はポリエステル等からなる単繊維を用いた場合には、折線G1のような変動を示すグラフが得られにくい。   The tendency that the variation of the average air permeability is stepped like the broken line G1 is particularly noticeable when a fiber made of polypropylene is selected among organic fibers. When a single fiber made of polyethylene, vinylon, polyester, or the like is used as the organic fiber, it is difficult to obtain a graph showing fluctuations like the broken line G1.

PP単繊維が、他の有機繊維に比べて変形のしにくさを表す弾性率が高いことを考慮すると、平均通気率の変動(折線G1)がステップ状をなす主な原因は、粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えたときに、搬送管5を流れる過程でPP単繊維がそれを取り囲むマトリクスからの押圧に打ち勝ち、直線性を保った状態で吹付け施工体9内に存在できるためと考えられる。   Considering the fact that the PP single fiber has a higher elastic modulus representing the resistance to deformation than other organic fibers, the main cause of the change in the average air permeability (folded line G1) in a step shape is the particle size of 75 μm. When the content of the following water-insoluble particles is suppressed to less than 20% by mass, the PP monofilament overcomes the pressure from the matrix surrounding it in the process of flowing through the transport pipe 5 and sprayed while maintaining linearity. It is considered that it can exist in the construction body 9.

即ち、折れ曲がったPP単繊維が消失して形成される折れ曲がった通気孔よりも、直線性を保った状態のPP単繊維が消失して形成される直線状の通気孔の方が、エアー(実際は水蒸気)が通過する際の抵抗が少ない。繊維の配向が同様であっても、繊維の直線性が良好な程、通気率を良好にできる。   That is, a straight vent hole formed by disappearance of a PP single fiber in a state of maintaining linearity is more air (actually, than a bent vent hole formed by disappearing a bent PP single fiber. Less resistance when water vapor passes. Even if the fiber orientation is the same, the better the linearity of the fiber, the better the air permeability.

なお、リン酸塩やケイ酸塩等の水溶性粒子は、図1の搬送管5内を流れる過程又は少なくとも吹付け施工体内で施工水に溶けた状態で存在するため、PP単繊維の直線性を妨げる因子にならない。このため、水溶性粒子の含有量の多少は、平均通気率に殆ど影響を与えない。PP単繊維の直線性を良好に保つには、非水溶性粒子、しかもマトリクスとしてPP単繊維を取り囲み、その直線性に大きく影響を与える粒径75μm以下のものの含有量を抑えることが肝要であると判った。   Since water-soluble particles such as phosphates and silicates exist in the process of flowing in the conveying pipe 5 of FIG. 1 or at least dissolved in the construction water in the sprayed construction body, the linearity of the PP single fiber It will not be a factor to prevent. For this reason, the content of the water-soluble particles has little influence on the average air permeability. In order to keep the linearity of the PP single fiber in good condition, it is important to surround the PP single fiber as a matrix and to suppress the content of particles having a particle size of 75 μm or less that greatly affects the linearity. I found out.

折線P2は、PP−PE複合繊維を用いた第1の実験例による吹付け施工体の見かけ気孔率の変動を示す。折線P1と同様、若干左上がりのトレンドがあるが、概ねフラットな変動傾向を示している。   The broken line P2 shows the change in the apparent porosity of the sprayed construction body according to the first experimental example using the PP-PE composite fiber. Similar to the broken line P1, there is a slightly upward trend, but a generally flat trend.

折線G2は、第1の実験例による吹付け施工体の平均通気率の変動を示す。横軸の全域で、比較例による吹付け施工体の平均通気率(折線G1)よりも大きな値を示している。これは、PP−PE複合繊維を用いた場合、300℃での通気率Q300℃はPP単繊維を用いた場合と同等の値となるが、110℃での通気率Q110℃がPP単繊維を用いた場合よりも格段に大きくなるためである。 The polygonal line G2 shows the fluctuation | variation of the average ventilation rate of the spraying construction body by a 1st experiment example. In the whole area of the horizontal axis, a value larger than the average air permeability (broken line G1) of the spray construction body according to the comparative example is shown. This is the case of using the PP-PE bicomponent fibers, although the air permeability Q 300 ° C. at 300 ° C. the same value in the case of using PP single fibers, the air permeability Q 110 ° C. is PP single at 110 ° C. This is because it becomes much larger than when fibers are used.

PP−PE複合繊維を用いる場合の方が、PP単繊維を用いる場合よりもQ110℃が大きくなるのは、ポリプロピレンは融点が約140〜175℃、低密度ポリエチレンは融点が約90〜135℃であるため、110℃では、PP単繊維は殆ど消失しないのに対し、PP−PE複合繊維の低密度ポリエチレンからなる鞘部分の少なくとも一部は消失し、その分、吹付け施工体内に通気孔が形成されるからである。 In the case of using PP-PE bicomponent fibers, the Q 110 ° C. is larger than in the case of using PP single fibers because the melting point of polypropylene is about 140 to 175 ° C., and the melting point of low density polyethylene is about 90 to 135 ° C. Therefore, at 110 ° C., PP monofilament hardly disappears, but at least a part of the sheath portion made of low-density polyethylene of PP-PE composite fiber disappears, and accordingly, there is a ventilation hole in the sprayed construction body. Is formed.

ところで、吹付け施工体の剥離等を防止するためには、これに含まれる有機繊維の消失するタイミングが早い程よい。有機繊維が消失するタイミングが、吹付け施工体の内部水蒸気圧がピークに達するタイミングよりも遅いと、吹付け施工体の剥離等を有効に防止しえない場合があるからである。吹付け施工体の内部水蒸気圧がどの温度でピークに達するかは、熱間施工で吹付け施工体が炉壁により急加熱される場合と、冷温間施工後の乾燥工程で吹付け施工体が徐々に加熱される場合とで異なるが、いずれにせよ、有機繊維はできるだけ早い段階、例えば吹付け施工体が110℃に達したときには少なくとも一部が消失していることが好ましい。   By the way, in order to prevent peeling of the sprayed construction body, the earlier the timing at which the organic fibers contained therein disappear, the better. This is because if the timing at which the organic fibers disappear is later than the timing at which the internal water vapor pressure of the sprayed construction body reaches its peak, peeling of the sprayed construction body may not be effectively prevented. The temperature at which the internal water vapor pressure of the spray construction body reaches its peak depends on whether the spray construction body is rapidly heated by the furnace wall during hot construction or in the drying process after the cold construction. In any case, it is preferable that at least a part of the organic fiber disappears at an early stage as much as possible, for example, when the sprayed body reaches 110 ° C.

この点、第1の実験例で用いたPP−PE複合繊維の低密度ポリエチレンからなる鞘部分は、同複合繊維が消失するタイミングをPP単繊維が消失するタイミングよりも早めるため、PP単繊維を用いる場合よりも吹付け施工体の剥離等を防止する効果が高い。   In this respect, the sheath part made of low-density polyethylene of the PP-PE composite fiber used in the first experimental example has a timing for the disappearance of the composite fiber earlier than the timing of the disappearance of the PP single fiber. The effect of preventing peeling of the sprayed construction body is higher than when using it.

一方、PP−PE複合繊維のポリプロピレンからなる芯部分は、PP−PE複合繊維の直線性をPP単繊維と同等に保つ役割を担う。   On the other hand, the core portion made of polypropylene of the PP-PE composite fiber plays a role of keeping the linearity of the PP-PE composite fiber equal to that of the PP single fiber.

粒径75μm以下の非水溶性粒子の含有量が20質量%未満の領域では、ポリプロピレンからなる芯部分によってPP−PE複合繊維の直線性が特に良好に保たれるため、その効果と、同複合繊維の低密度ポリエチレンからなる鞘部分によるQ110℃の向上効果とが相乗的に作用し、折線G2が折線G1よりも格段に大きな値を示している。 In the region where the content of water-insoluble particles having a particle size of 75 μm or less is less than 20% by mass, the linearity of the PP-PE composite fiber is maintained particularly well by the core portion made of polypropylene. The effect of improving Q 110 ° C. by the sheath portion made of low-density polyethylene of the fibers acts synergistically, and the fold line G2 shows a much larger value than the fold line G1.

粒径75μm以下の非水溶性粒子の含有量が20質量%以上の領域では、PP−PE複合繊維の直線性がある程度低下していると思われるが、同複合繊維の低密度ポリエチレンからなる鞘部分によるQ110℃の向上効果が、直線性がやや損なわれることによる通気率の低下要因を補う結果、粒径75μm以下の非水溶性粒子の含有量を30質量%まで増やしても、PP単繊維を用いて粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えた場合と同等以上の平均通気率を達成している。 In the region where the content of water-insoluble particles having a particle diameter of 75 μm or less is 20% by mass or more, it seems that the linearity of the PP-PE conjugate fiber is somewhat lowered. Even if the content of water-insoluble particles having a particle size of 75 μm or less is increased to 30% by mass, the improvement effect of Q 110 ° C. by the portion compensates for the decrease in air permeability due to the slight loss of linearity. An average air permeability equal to or higher than that in the case where the content of water-insoluble particles having a particle diameter of 75 μm or less is suppressed to less than 20% by mass using fibers is achieved.

即ち、PP単繊維を用いる場合は、良好な平均通気率を得るために粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑える必要があったが、PP−PE複合繊維を用いると、粒径75μm以下の非水溶性粒子の含有量を30質量%以下に抑えればよい。このため、配合設計の自由度が向上する。   That is, when using PP single fiber, it was necessary to suppress the content of water-insoluble particles having a particle size of 75 μm or less to less than 20% by mass in order to obtain a good average air permeability. When used, the content of water-insoluble particles having a particle diameter of 75 μm or less may be suppressed to 30% by mass or less. For this reason, the freedom degree of a compounding design improves.

なお、粒径75μm以下の非水溶性粒子の含有量が30質量%を超える領域では、繊維の直線性が著しく損なわれるためか、PP−PE複合繊維を用いても、PP単繊維を用いた場合と同様、平均通気率は小さくなっている。   In addition, in the region where the content of the water-insoluble particles having a particle diameter of 75 μm or less exceeds 30% by mass, the linearity of the fiber is remarkably impaired, or the PP single fiber is used even if the PP-PE composite fiber is used. As in the case, the average air permeability is small.

折線P3は、PET−PE複合繊維を用いた第2の実験例による吹付け施工体の見かけ気孔率の変動を示す。折線P1及びP2と同様、若干左上がりのトレンドがあるが、概ねフラットな変動傾向を示している。   The polygonal line P3 shows the fluctuation | variation of the apparent porosity of the spraying construction body by the 2nd experiment example using a PET-PE composite fiber. Similar to the broken lines P1 and P2, there is a slightly upward trend, but a generally flat fluctuation tendency is shown.

折線G3は、第2の実験例による吹付け施工体の平均通気率の変動を示す。PET−PE複合繊維において、芯部分のポリエステルは、鞘部分の低密度ポリエチレンより弾性率が高い。また、鞘部分の低密度ポリエチレンの融点90〜135℃は、芯部分のポリエステルの融点230〜260℃よりも低い。このため、PET−PE複合繊維でもPP−PE複合繊維の場合と同様、ポリエステルからなる芯部分が繊維の直線性を保ち、低密度ポリエチレンからなる鞘部分が繊維の消失を早める。   The broken line G3 shows the fluctuation | variation of the average ventilation rate of the spraying construction body by a 2nd experiment example. In the PET-PE composite fiber, the core portion polyester has a higher elastic modulus than the sheath portion low density polyethylene. In addition, the melting point of 90 to 135 ° C. of the low density polyethylene in the sheath part is lower than the melting point of 230 to 260 ° C. of the polyester in the core part. For this reason, in the case of PET-PE composite fibers, as in the case of PP-PE composite fibers, the core portion made of polyester maintains the linearity of the fibers, and the sheath portion made of low-density polyethylene accelerates the disappearance of the fibers.

粒径75μm以下の非水溶性粒子の含有量20質量%の位置で、折線G3が折線G1やG2のようにステップ状に変動しないのは、PET−PE複合繊維の芯部分を構成するポリエステルの弾性率がポリプロピレンの弾性率に劣るため、粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えてもPET−PE複合繊維の直線性が飛躍的に向上するという現象が生じないためと考えられる。   The reason why the polygonal line G3 does not change stepwise like the polygonal lines G1 and G2 at the position where the content of water-insoluble particles having a particle diameter of 75 μm or less is 20% by mass is that of the polyester constituting the core part of the PET-PE composite fiber. Since the elastic modulus is inferior to that of polypropylene, a phenomenon occurs in which the linearity of the PET-PE composite fiber is dramatically improved even if the content of water-insoluble particles having a particle diameter of 75 μm or less is suppressed to less than 20% by mass. It is thought that there is not.

しかし、第2の実験例による吹付け施工体の平均通気率(折線G3)は、横軸の全域で比較例による吹付け施工体の平均通気率(折線G1)より大きな値を示しており、第1の実験例の場合と同様、粒径75μm以下の非水溶性粒子の含有量を30質量%まで増やしても、PP単繊維を用いて粒径75μm以下の非水溶性粒子の含有量を20質量%未満に抑えた場合と同等の平均通気率を達成している。   However, the average air permeability (folded line G3) of the spray construction body according to the second experimental example shows a larger value than the average air permeability (fold line G1) of the spray construction body according to the comparative example over the entire horizontal axis. As in the case of the first experimental example, even if the content of the water-insoluble particles having a particle size of 75 μm or less is increased to 30% by mass, the content of the water-insoluble particles having a particle size of 75 μm or less is reduced using PP single fibers. An average air permeability equivalent to that when the content is suppressed to less than 20% by mass is achieved.

粒径75μm以下の非水溶性粒子の含有量20〜35.1質量%の領域では、折線G2とG3が似た変動傾向を示している。粒径75μm以下の非水溶性粒子の含有量が少ない程、平均通気率が良好になることから、第1及び第2の実験例で、粒径75μm以下の非水溶性粒子の含有量は、プロットの位置を根拠として、27質量%以下であることが好ましく、25.6質量%以下であることがより好ましく、22質量%以下であることがより一層好ましいといえる。   In the region where the content of water-insoluble particles having a particle diameter of 75 μm or less is 20 to 35.1% by mass, the polygonal lines G2 and G3 show similar fluctuation trends. The smaller the content of water-insoluble particles having a particle size of 75 μm or less, the better the average air permeability. Therefore, in the first and second experimental examples, the content of water-insoluble particles having a particle size of 75 μm or less is Based on the position of the plot, it is preferably 27% by mass or less, more preferably 25.6% by mass or less, and even more preferably 22% by mass or less.

但し、粒径75μm以下の非水溶性粒子の含有量が15質量%未満の領域では、折線P2及びP3の傾きがやや急に大きくなっている。このことから、見かけ気孔率の増大による吹付け施工体の耐侵食性の低下を防止するには、粒径75μm以下の非水溶性粒子の含有量は15質量%以上であることが好ましいと考えられる。なお、施工部位によってはさほど耐侵食性が要求されない場合もあるため、粒径75μm以下の非水溶性粒子の含有量を15質量%未満としても差し支えない場合はある。   However, in the region where the content of the water-insoluble particles having a particle size of 75 μm or less is less than 15% by mass, the inclinations of the polygonal lines P2 and P3 are slightly abruptly increased. From this, it is considered that the content of the water-insoluble particles having a particle size of 75 μm or less is preferably 15% by mass or more in order to prevent a decrease in the erosion resistance of the sprayed construction body due to an increase in apparent porosity. It is done. Depending on the construction site, erosion resistance may not be required so much, so the content of water-insoluble particles having a particle size of 75 μm or less may be less than 15% by mass.

以上、第1及び第2の実験例では、ポリプロピレン又はポリエステルよりなる第1の樹脂と複合化する第2の樹脂に低密度ポリエチレンを用いたが、第2の樹脂には、低密度ポリエチレン以外のポリエチレン、例えば、中密度ポリエチレンや高密度ポリエチレンを用いてもよい。これらの融点は、100℃〜135℃と低密度ポリエチレンの融点よりやや高いが、ポリプロピレンやポリエステルの融点より低いため、これらをポリプロピレン又はポリエステルと複合化すると上記実験例と同様の結果が得られるであろう。また、ポリエチレンを主体とした樹脂、例えばポリエチレンの含有量が80質量%以上の樹脂であれば、これを第1の樹脂と複合化すると上記実験例と同様の結果が得られるであろう。   As described above, in the first and second experimental examples, low-density polyethylene is used as the second resin to be combined with the first resin made of polypropylene or polyester. However, the second resin is not low-density polyethylene. Polyethylene, for example, medium density polyethylene or high density polyethylene may be used. These melting points are 100 ° C. to 135 ° C., which are slightly higher than those of low-density polyethylene, but lower than the melting points of polypropylene and polyester. Therefore, when these are combined with polypropylene or polyester, the same results as in the above experimental examples can be obtained. I will. In addition, if a resin mainly composed of polyethylene, for example, a resin having a polyethylene content of 80% by mass or more is combined with the first resin, the same result as the above experimental example will be obtained.

さらに、ポリエチレン以外の樹脂であっても、第1の樹脂よりも融点の低い樹脂、好ましくは110℃における体積減少率((常温での体積−110℃での体積)/常温での体積)が第1の樹脂よりも高い樹脂であれば、平均通気率をPP単繊維を用いる場合よりも改善できる。ポリエチレン以外の第2の樹脂としては、例えば、エチレンとコモノマーとの共重合体や、脂肪族ポリエステル(例:ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート)等が挙げられる。   Further, even a resin other than polyethylene has a lower melting point than the first resin, preferably a volume reduction rate at 110 ° C. ((volume at normal temperature−volume at 110 ° C.) / Volume at normal temperature). If the resin is higher than the first resin, the average air permeability can be improved as compared with the case where PP single fiber is used. Examples of the second resin other than polyethylene include a copolymer of ethylene and a comonomer, an aliphatic polyester (eg, polycaprolactone, polybutylene succinate, polyethylene succinate), and the like.

第2の樹脂は、融点が低いもの程好ましい。融点を下げるためには、ベースとなる樹脂に、エチレン−酢酸ビニル共重合体(EVA)を相溶させることが有効である。ここで、相溶とは、既にできあがっているポリマー同士を混合する操作をいう。具体的にはポリエチレン、好ましくは低密度ポリエチレンに、エチレン−酢酸ビニル共重合体を相溶させた相溶物は、ポリエチレンよりも融点が低く、第2の樹脂に用いて好ましい。エチレン−酢酸ビニル共重合体の割合は、相溶物に占める内掛けで10質量%以上であることが好ましい。   The second resin has a lower melting point. In order to lower the melting point, it is effective to make an ethylene-vinyl acetate copolymer (EVA) compatible with the base resin. Here, the term “compatible” refers to an operation of mixing already produced polymers. Specifically, a compatible material obtained by compatibilizing an ethylene-vinyl acetate copolymer with polyethylene, preferably low-density polyethylene, has a lower melting point than polyethylene and is preferably used for the second resin. The ratio of the ethylene-vinyl acetate copolymer is preferably 10% by mass or more as an inner portion of the compatible material.

また、複合繊維は、特に図2に示したものに限られない。例えば、図2で、鞘部分12を第1の樹脂(例:ポリプロピレン)で構成し、芯部分11を第2の樹脂(例:低密度ポリエチレン)で構成してもよい。要は、横断面内に、第1の樹脂で構成された部分と、その部分を構成する第1の樹脂よりも融点の低い第2の樹脂で構成された部分とを有するように、少なくとも第1の樹脂と第2の樹脂とが複合化されていればよい。   The composite fiber is not particularly limited to that shown in FIG. For example, in FIG. 2, the sheath portion 12 may be composed of a first resin (eg, polypropylene), and the core portion 11 may be composed of a second resin (eg, low density polyethylene). In short, at least the first portion is formed in the cross section so as to have a portion made of the first resin and a portion made of the second resin having a melting point lower than that of the first resin constituting the portion. It is sufficient that the first resin and the second resin are combined.

図4は、複合繊維の他の例を示す横断面図である。以下、便宜上、第1の樹脂と第2の樹脂との一方からなる部分を第1部分といい、他方からなる部分を第2部分という。   FIG. 4 is a cross-sectional view showing another example of the composite fiber. Hereinafter, for the sake of convenience, a portion made of one of the first resin and the second resin is called a first portion, and a portion made of the other is called a second portion.

図4(a)は、横断面が各々半円形をなす第1部分21と第2部分22とを両者によって円形の横断面が形成されるように組み合わせて複合化した複合繊維を示す。   FIG. 4 (a) shows a composite fiber in which a first portion 21 and a second portion 22 each having a semicircular cross section are combined to form a circular cross section.

図4(b)は、横断面視において2つの第1部分21及び21が、第2部分22を両側から挟むように配置して複合化した複合繊維を示す。   FIG. 4B shows a composite fiber in which two first portions 21 and 21 are arranged so as to sandwich the second portion 22 from both sides in a cross-sectional view.

図4(c)は、図2と同様、第1部分21が第2部分22を取り囲んで芯鞘構造をなすもののうち、第2部分22を第1部分に対して偏心させて配置した複合繊維を示す。   FIG. 4C is a composite fiber in which the first portion 21 surrounds the second portion 22 and forms a core-sheath structure, as in FIG. 2, and the second portion 22 is eccentric with respect to the first portion. Indicates.

図4(d)は、図2の芯鞘型複合繊維に中空23を設けた芯鞘中空型複合繊維を示す。   FIG. 4D shows a core-sheath hollow composite fiber in which a hollow 23 is provided in the core-sheath composite fiber of FIG.

図4(e)は、第2部分22を複数に分けて構成し、横断面視において、第1部分21が海、複数の第2部分22の各々が海上に離散的に分布する島の関係になるように、両者を組み合わせて複合化した海島型複合繊維を示す。   FIG. 4E shows the relationship between the islands in which the second portion 22 is divided into a plurality of parts, and the first portion 21 is the sea and each of the plurality of second portions 22 is discretely distributed on the sea in a cross-sectional view. As shown, a sea-island type composite fiber obtained by combining the two is shown.

図4(f)は、(e)の海島型複合繊維に中空23を設けた海島中空型複合繊維を示す。   FIG. 4 (f) shows a sea-island hollow composite fiber in which a hollow 23 is provided in the sea-island composite fiber of (e).

表1及び2では、複合繊維の添加量を耐火性粉体100質量%に対する外掛けで0.1質量%としたが、複合繊維の添加量は耐火性粉体100質量%に対する外掛けで0.02〜1.0質量%であればよい。0.02質量%未満だと、吹付け施工体に充分な本数の通気孔を形成できないため、吹付け施工体の剥離等の問題を解決できず、0.4質量%より多いと、繊維の消失に伴う吹付け施工体の体積減少率が大きく、施工体がそりやすくなる。両問題の兼ね合いを考慮すると、複合繊維の添加量は、耐火性粉体100質量%に対する外掛けで0.04〜0.3質量%であることが好ましい。   In Tables 1 and 2, the addition amount of the composite fiber was 0.1% by mass with respect to 100% by mass of the refractory powder, but the addition amount of the composite fiber was 0 with respect to 100% by mass of the refractory powder. It may be 0.02 to 1.0% by mass. If the amount is less than 0.02% by mass, a sufficient number of air holes cannot be formed in the sprayed construction body, so that problems such as peeling of the sprayed construction body cannot be solved. The volume reduction rate of the spray construction body accompanying the disappearance is large, and the construction body tends to warp. Considering the balance between the two problems, the amount of the composite fiber added is preferably 0.04 to 0.3% by mass as an outer coating with respect to 100% by mass of the refractory powder.

また、表1及び2では、複合繊維の平均長さを12mm、平均直径を0.05mmとしたが、複合繊維の平均長さ及び平均直径は特に限定されない。複合繊維の平均長さは、2mm〜20mmが好ましく、2mm〜13mmがより好ましい。複合繊維の平均直径は、0.01mm〜1mmが好ましく、0.025mm〜0.07mmがより好ましい。   In Tables 1 and 2, although the average length of the composite fiber is 12 mm and the average diameter is 0.05 mm, the average length and the average diameter of the composite fiber are not particularly limited. The average length of the composite fiber is preferably 2 mm to 20 mm, more preferably 2 mm to 13 mm. The average diameter of the composite fiber is preferably 0.01 mm to 1 mm, more preferably 0.025 mm to 0.07 mm.

耐火性粉体も、表1及び2に示したものに限られない。耐火性粉体は、粒径75μmを超える耐火性骨材と、粒径75μm以下の耐火性微粉とで構成でき、耐火性骨材には、例えば、アルミナやボーキサイト等の金属酸化物、ダイアスポア、ムライト、カイヤナイト、バン土頁岩、シャモット、ケイ石、パイロフィライト、シリマナイト、アンダリュウサイト、クロム鉄鉱、スピネル、マグネシア、ジルコニア、ジルコン、クロミア、窒化ケイ素、窒化アルミニウム等の金属窒化物、炭化ケイ素、金属炭化物、金属、炭化ホウ素、ホウ化チタン、及びホウ化ジルコニウムから選ばれる1種以上を使用でき、耐火性微粉には、例えば、仮焼アルミナ、シリカヒューム、及び粘土の他、コロイダルシリカやアルミナゾル等の無機酸化物コロイド粒子等を使用できる。   The refractory powder is not limited to those shown in Tables 1 and 2. The refractory powder can be composed of a refractory aggregate having a particle size exceeding 75 μm and a refractory fine powder having a particle size of 75 μm or less. Examples of the refractory aggregate include metal oxides such as alumina and bauxite, diaspore, Mullite, kayanite, van shale, chamotte, quartzite, pyrophyllite, sillimanite, andalusite, chromite, spinel, magnesia, zirconia, zircon, chromia, silicon nitride, aluminum nitride, etc., silicon carbide One or more kinds selected from metal carbide, metal, boron carbide, titanium boride, and zirconium boride can be used. Examples of the refractory fine powder include calcined alumina, silica fume, and clay, colloidal silica, Inorganic oxide colloidal particles such as alumina sol can be used.

結合剤も、表1及び2に示したものに限られない。水溶性粒子としては、リン酸塩やケイ酸塩の他、ホウ酸塩等が挙げられる。非水溶性粒子としては、アルミナセメント、マグネシアセメント、レジンやピッチ等の熱間でカーボンボンドを形成する有機物等が挙げられる。熱間での通気性を確保し易い点では、リン酸塩又はケイ酸塩が好ましい。結合剤の添加量は、耐火性粉体100質量%に対する外掛けで1〜5質量%が好ましい。   The binder is not limited to those shown in Tables 1 and 2. Examples of water-soluble particles include phosphates and silicates, as well as borates. Examples of the water-insoluble particles include alumina cement, magnesia cement, organic matter that forms a carbon bond with heat, such as resin and pitch, and the like. Phosphate or silicate is preferred from the viewpoint of easily ensuring hot air permeability. The addition amount of the binder is preferably 1 to 5% by mass on the basis of 100% by mass of the refractory powder.

硬化促進剤も、表1及び2に示したものに限られない。非水溶性粒子としては、消石灰以外にも、CaO・Al、12CaO・7Al、CaO・2Al、3CaO・Al、3CaO・3Al・CaF、11CaO・7Al・CaF等のカルシウムアルミネート類、酸化カルシウム、炭酸カルシウム、及び塩化カルシウム等のカルシウム塩等が挙げられる。水溶性粒子としては、ケイ酸ソーダ、ケイ酸カリウム等のケイ酸塩、アルミン酸ソーダ、アルミン酸カリウム、アルミン酸カルシウム等のアルミン酸塩、硫酸ソーダ、硫酸カリウム、硫酸マグネシウム等の硫酸塩、及び塩化カルシウム等が挙げられる。硬化促進剤の添加量は、耐火性粉体100質量%に対する外掛けで0.1〜6質量%であることが好ましい。 The curing accelerator is not limited to those shown in Tables 1 and 2. The water-insoluble particles, besides hydrated lime, CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, CaO · 2Al 2 O 3, 3CaO · Al 2 O 3, 3CaO · 3Al 2 O 3 · CaF 2, Examples thereof include calcium aluminates such as 11CaO · 7Al 2 O 3 · CaF 2 , calcium salts such as calcium oxide, calcium carbonate, and calcium chloride. Examples of water-soluble particles include silicates such as sodium silicate and potassium silicate, aluminates such as sodium aluminate, potassium aluminate and calcium aluminate, sulfates such as sodium sulfate, potassium sulfate and magnesium sulfate, and Examples include calcium chloride. The addition amount of the curing accelerator is preferably 0.1 to 6% by mass as an outer coating with respect to 100% by mass of the refractory powder.

添加剤には、結合剤及び硬化促進剤の他、分散剤、焼結助剤(例:金属粉、シリコン粉、及びフェロシリコン粉等)、炭化ホウ素等の酸化防止剤、硬化遅延剤等を用いてもよい。   In addition to binders and curing accelerators, additives include dispersants, sintering aids (eg, metal powders, silicon powders, ferrosilicon powders, etc.), antioxidants such as boron carbide, curing retarders, etc. It may be used.

分散剤には、水溶性粒子であるクエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、及びカルボキシル基含有ポリエーテルから選ばれる1種以上を用いることができる。   The dispersant is selected from water-soluble particles such as sodium citrate, sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, β-naphthalenesulfonate, naphthalenesulfonic acid, and carboxyl group-containing polyether. 1 or more types can be used.

但し、以上の各材料は、不定形耐火組成物に占める粒径75μm以下の非水溶性粒子の含有量が30質量%以下となるように組み合わせることは言うまでもない。こうすることでリバウンドロスが増える場合は、粒径75μm未満の非水溶性粒子に粘土等の増粘作用をもつ粒子を含めるとよい。具体的には、粒径75μm未満の非水溶性粒子100質量%中、3〜13質量%、特に3〜8質量%を粘土が占める構成にすることが好ましい。   However, it goes without saying that the above materials are combined so that the content of water-insoluble particles having a particle diameter of 75 μm or less in the amorphous refractory composition is 30% by mass or less. When rebound loss increases by carrying out like this, it is good to include the particle | grains which have thickening effects, such as clay, in the water-insoluble particle | grains with a particle size of less than 75 micrometers. Specifically, it is preferable that the clay occupies 3 to 13% by mass, particularly 3 to 8% by mass in 100% by mass of the water-insoluble particles having a particle diameter of less than 75 μm.

なお、表1及び2の実験例では、硬化促進剤に非水溶性粒子である消石灰のみを用いたが、硬化促進剤に水溶性粒子を用いてもよい。添加剤、例えば硬化促進剤の少なくとも一部に水溶性粒子を用いれば、粒径75μm以下の非水溶性粒子の含有量を30質量%以下に抑えることを容易に実現できる。   In the experimental examples in Tables 1 and 2, only slaked lime, which is a water-insoluble particle, was used as the curing accelerator, but water-soluble particles may be used as the curing accelerator. If water-soluble particles are used for at least a part of an additive, for example, a curing accelerator, it is possible to easily realize the content of water-insoluble particles having a particle size of 75 μm or less to 30% by mass or less.

但し、硬化促進剤に何を採用するかは、例えば結合剤に使用するものとの相性を考慮に入れなければならない場合がある。硬化促進剤に水溶性粒子のみを用いた場合、その硬化作用に不具合が生じるような場合は、硬化促進剤に水溶性粒子と非水溶性粒子とを併用すればよいであろう。両者を併用することにより、水溶性粒子のみを使用する場合の不具合を抑制できる。   However, what is adopted as the curing accelerator may have to take into consideration compatibility with, for example, that used for the binder. When only water-soluble particles are used as the curing accelerator, if there is a problem with the curing action, water-soluble particles and water-insoluble particles may be used in combination with the curing accelerator. By using both in combination, it is possible to suppress problems when only water-soluble particles are used.

また、硬化促進剤や分散剤の一部又は全部を施工水に溶解し、図1の一次注水器7及び/又は二次注水器8から噴霧してもよい。本明細書において、施工水とは添加剤の水溶液も含む概念とする。   Moreover, you may melt | dissolve a part or all of a hardening accelerator and a dispersing agent in construction water, and you may spray from the primary water injector 7 and / or the secondary water injector 8 of FIG. In this specification, the construction water is a concept including an aqueous solution of an additive.

なお、本明細書においては、搬送管内及び/又は吹付けノズル内で不定形耐火組成物に添加する水はすべて施工水の概念に含めるものとする。搬送管内に送り込む前に不定形耐火組成物を少量の水で湿潤させてもよいが、その水は施工水の概念には含まれない。   In addition, in this specification, all the water added to an amorphous refractory composition in a conveyance pipe and / or a spray nozzle shall be included in the concept of construction water. The amorphous refractory composition may be moistened with a small amount of water before being fed into the transport pipe, but that water is not included in the concept of construction water.

また、図1の装置では、施工水の実質的全量を平均粒径100μmに微粒化したが、施工水の平均粒径は小さい程、施工水と不定形耐火組成物との混ざり合いを改善できる。発明者らの研究によると、施工水の実質的全量の平均粒径は、70μm以下が好ましく、50μm以下がより好ましく、30μm以下が最も好ましい。   Moreover, in the apparatus of FIG. 1, although the substantial whole quantity of construction water was atomized to the average particle diameter of 100 micrometers, the mixing of construction water and an amorphous refractory composition can be improved, so that the average particle diameter of construction water is small. . According to the inventors' research, the average particle diameter of the substantial total amount of construction water is preferably 70 μm or less, more preferably 50 μm or less, and most preferably 30 μm or less.

また、図1には、施工水を2つの注水器7及び8から2段階的に供給する例を示したが、注水器の数は3つ以上であってもよい。この他、種々の設計変更、改良、及び組み合わせが可能なことは当業者に自明であろう。   Moreover, although the example which supplies construction water in two steps from two water injectors 7 and 8 was shown in FIG. 1, the number of water injectors may be three or more. It will be apparent to those skilled in the art that other various design changes, improvements, and combinations are possible.

本発明は、例えば、高炉、樋、混銑車、転炉、RHやDH等の脱ガス装置のスノーケル、取鍋、二次精錬炉、タンディッシュ、セメントロータリーキルン、廃棄物溶融炉、焼却炉、及び非鉄金属容器といった溶融金属用容器、溶融金属の通路、溶炉、又は窯炉等の吹付け補修に利用できる。   The present invention includes, for example, a blast furnace, firewood, chaos car, converter, snorkel, ladle, secondary refining furnace, tundish, cement rotary kiln, waste melting furnace, incinerator, RH, DH and the like, and It can be used for spraying repair of molten metal containers such as non-ferrous metal containers, molten metal passages, furnaces, or kilns.

乾式吹付け施工装置の概略図である。It is the schematic of a dry-type spray construction apparatus. 複合繊維の一例を示す横断面図である。It is a cross-sectional view which shows an example of a composite fiber. 粒径75μm以下の非水溶性粒子の含有量と、吹付け施工体の平均通気率及び見かけ気孔率との関係を示すグラフである。It is a graph which shows the relationship between content of the water-insoluble particle | grains with a particle size of 75 micrometers or less, the average air permeability of a spraying construction body, and an apparent porosity. 複合繊維の他の例を示す横断面図である。It is a cross-sectional view which shows the other example of a composite fiber.

符号の説明Explanation of symbols

1…タンク、2…不定形耐火組成物、3…テーブルフィーダ、4…吹付けノズル、5…搬送管、6…空気導入管、7…一次注水器、8…二次注水器、9…吹付け施工体、S…施工面、11…ポリプロピレン(第1の樹脂)からなる部分、12…ポリエチレン(第2の樹脂)からなる部分、21…第1部分、22…第2部分、23…中空。   DESCRIPTION OF SYMBOLS 1 ... Tank, 2 ... Amorphous refractory composition, 3 ... Table feeder, 4 ... Spray nozzle, 5 ... Transfer pipe, 6 ... Air introduction pipe, 7 ... Primary water injector, 8 ... Secondary water injector, 9 ... Blow Application body, S ... construction surface, 11 ... part made of polypropylene (first resin), 12 ... part made of polyethylene (second resin), 21 ... first part, 22 ... second part, 23 ... hollow .

Claims (6)

(a)耐火性粉体と、(b)横断面内にポリプロピレン又はポリエステルからなる第1の樹脂で構成された部分と、その部分を構成する第1の樹脂よりも融点の低い第2の樹脂で構成された部分とを有するように、少なくとも第1の樹脂と第2の樹脂とを複合化してなる複合繊維を前記耐火性粉体100質量%に対する外掛けで0.02〜1.0質量%と、(c)結合剤を含む粉末状の添加剤とからなり、かつ粒径75μm以下の非水溶性粒子の含有量を30質量%以下に抑えた乾式吹付け施工用不定形耐火組成物。   (A) refractory powder, (b) a portion made of polypropylene or polyester in the cross section, and a second resin having a melting point lower than that of the first resin constituting the portion. The composite fiber formed by combining at least the first resin and the second resin so as to have a portion composed of 0.02 to 1.0 mass as an outer coating with respect to 100 mass% of the refractory powder. And (c) a powdery additive containing a binder, and the content of water-insoluble particles having a particle size of 75 μm or less is suppressed to 30% by mass or less, and the amorphous refractory composition for dry spraying construction is used. . 粒径75μm以下の非水溶性粒子の含有量が15質量%以上である請求項1に記載の乾式吹付け施工用不定形耐火組成物。   The amorphous refractory composition for dry spraying according to claim 1, wherein the content of water-insoluble particles having a particle size of 75 µm or less is 15% by mass or more. 前記第2の樹脂が、ポリエチレンからなるか、又はポリエチレンを主体とした樹脂からなる請求項1又は2に記載の乾式吹付け施工用不定形耐火組成物。   The amorphous refractory composition for dry spraying construction according to claim 1 or 2, wherein the second resin is made of polyethylene or a resin mainly composed of polyethylene. 前記複合繊維の平均長さを2mm〜20mm、平均直径を0.01mm〜1mmとした請求項1〜3のいずれかに記載の乾式吹付け施工用不定形耐火組成物。   The amorphous refractory composition for dry spraying construction according to any one of claims 1 to 3, wherein the average length of the composite fiber is 2 mm to 20 mm, and the average diameter is 0.01 mm to 1 mm. 請求項1〜4のいずれかに記載の不定形耐火組成物を搬送管内に送り込んで気流搬送し、搬送管内及び/又は搬送管の先端に接続した吹付けノズル内で、該不定形耐火組成物に平均粒径100μm以下に微粒化した施工水を添加し、施工水が添加された不定形耐火組成物を吹付けノズルから施工面に吹付ける吹付け施工方法。   The amorphous refractory composition according to any one of claims 1 to 4, wherein the amorphous refractory composition is fed into a transport pipe and transported by airflow, and the spray fire nozzle connected to the front end of the transport pipe and / or the transport pipe. The spray construction method which adds the construction water atomized to the average particle diameter of 100 micrometers or less to this, and sprays the amorphous refractory composition to which construction water was added to a construction surface from a spray nozzle. 平均粒径100μm以下に微粒化した施工水は、搬送管と吹付けノズルとで構成される搬送経路上に、搬送方向に関して間隔をおいて配置された複数の注水器によって多段的に供給する請求項5に記載の吹付け施工方法。   The construction water atomized to an average particle size of 100 μm or less is supplied in multiple stages by a plurality of water injectors arranged at intervals in the transport direction on a transport path constituted by a transport pipe and a spray nozzle. Item 6. The spray construction method according to Item 5.
JP2007204285A 2007-08-06 2007-08-06 Amorphous refractory composition for dry spray construction, and spray construction method using the same Expired - Fee Related JP4758961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204285A JP4758961B2 (en) 2007-08-06 2007-08-06 Amorphous refractory composition for dry spray construction, and spray construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204285A JP4758961B2 (en) 2007-08-06 2007-08-06 Amorphous refractory composition for dry spray construction, and spray construction method using the same

Publications (2)

Publication Number Publication Date
JP2009040616A true JP2009040616A (en) 2009-02-26
JP4758961B2 JP4758961B2 (en) 2011-08-31

Family

ID=40441771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204285A Expired - Fee Related JP4758961B2 (en) 2007-08-06 2007-08-06 Amorphous refractory composition for dry spray construction, and spray construction method using the same

Country Status (1)

Country Link
JP (1) JP4758961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081373A1 (en) * 2010-12-15 2012-06-21 黒崎播磨株式会社 Castable refractory
JP2012211033A (en) * 2011-03-31 2012-11-01 Kuraray Co Ltd Explosive fracture-resistive hydraulically hardened body
CN106630791A (en) * 2016-11-17 2017-05-10 同济大学 Self-fireproof cement-base composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247179A (en) * 1994-03-14 1995-09-26 Osamu Yamamoto Ceramic structure material, its production and production of ceramic sheet
JP2003096622A (en) * 2001-09-26 2003-04-03 Toyobo Co Ltd Reinforcing organic fiber material and fiber-reinforced molded article produced by using the same
JP2007155215A (en) * 2005-12-05 2007-06-21 Kurosaki Harima Corp Spraying method for monolithic refractory, and spray material used therein
JP2008120669A (en) * 2006-10-16 2008-05-29 Kurosaki Harima Corp Monolithic refractory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247179A (en) * 1994-03-14 1995-09-26 Osamu Yamamoto Ceramic structure material, its production and production of ceramic sheet
JP2003096622A (en) * 2001-09-26 2003-04-03 Toyobo Co Ltd Reinforcing organic fiber material and fiber-reinforced molded article produced by using the same
JP2007155215A (en) * 2005-12-05 2007-06-21 Kurosaki Harima Corp Spraying method for monolithic refractory, and spray material used therein
JP2008120669A (en) * 2006-10-16 2008-05-29 Kurosaki Harima Corp Monolithic refractory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081373A1 (en) * 2010-12-15 2012-06-21 黒崎播磨株式会社 Castable refractory
JP2012126597A (en) * 2010-12-15 2012-07-05 Kurosaki Harima Corp Monolithic refractory
JP2012211033A (en) * 2011-03-31 2012-11-01 Kuraray Co Ltd Explosive fracture-resistive hydraulically hardened body
CN106630791A (en) * 2016-11-17 2017-05-10 同济大学 Self-fireproof cement-base composite material

Also Published As

Publication number Publication date
JP4758961B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
TWI510602B (en) Method of injection of powder quick - setting agent and unshaped refractory
JP4758961B2 (en) Amorphous refractory composition for dry spray construction, and spray construction method using the same
US20050255986A1 (en) Monothilic refractory composition
JP5016371B2 (en) Hot spray construction method
CN107141000A (en) A kind of resistive connection skin wear-resistant castable
JP5324751B2 (en) Method for spraying irregular refractories, and irregular refractories used for them
JP2874831B2 (en) Refractory for pouring
JP4220131B2 (en) Amorphous refractory composition for ladle
JP2005179130A (en) Monolithic refractory for wet spraying blended with used refractory
WO2003095391A1 (en) Monothilic refractory composition
JP2011156553A (en) Method for maintaining tundish
JP2548878B2 (en) Unshaped refractory for burner nozzle
JP3790621B2 (en) Refractory spraying method
JP3595089B2 (en) Cast refractory
JPH02180753A (en) Production of immersion nozzle for continuous casting
JP6420922B1 (en) Method for spraying irregular refractories and spraying materials used therefor
JP4814544B2 (en) Granulated slag production equipment
JPH01264975A (en) Flame spraying material
JP6420920B1 (en) Method for spraying irregular refractories and spraying materials used therefor
JPS6138154B2 (en)
JPH0725668A (en) Refractory for casting work
JP2007152237A (en) Spraying device, spraying method and undeterminate form fire-resistant material
WO2019181505A1 (en) Monolithic refractory spray application method, and spray material used therein
JPH02141480A (en) Castable refractory
JP3024971B1 (en) Flame sprayed material containing coarse particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees