JP2011156553A - Method for maintaining tundish - Google Patents
Method for maintaining tundish Download PDFInfo
- Publication number
- JP2011156553A JP2011156553A JP2010019039A JP2010019039A JP2011156553A JP 2011156553 A JP2011156553 A JP 2011156553A JP 2010019039 A JP2010019039 A JP 2010019039A JP 2010019039 A JP2010019039 A JP 2010019039A JP 2011156553 A JP2011156553 A JP 2011156553A
- Authority
- JP
- Japan
- Prior art keywords
- tundish
- mass
- water
- repair material
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
Description
本発明は、製鉄プロセスにおいて鋼の連続鋳造に使用されるタンディッシュの整備方法に関する。 The present invention relates to a method for preparing a tundish used for continuous casting of steel in an iron making process.
鋼の連続鋳造においては、鋳型への溶鋼の注入速度を調整する機能、溶鋼の成分や温度を均一化する機能、さらには溶鋼中の介在物を除去する機能等を担うものとして、取鍋と鋳型との間に配置される中間容器としてのタンディッシュが不可欠である。 In continuous casting of steel, the function of adjusting the injection rate of molten steel into the mold, the function of homogenizing the composition and temperature of the molten steel, and the function of removing inclusions in the molten steel, A tundish as an intermediate container placed between the mold and the mold is essential.
図1に、タンディッシュの断面図を示す。タンディッシュは、鉄皮1の内側に、パーマ層2、母材層3、及び被覆層4がこの順に積層された構造をもつ。通常、パーマ層2は、アルミナを含有するれんがで構成され、母材層3はアルミナ‐シリカ質の不定形耐火物で構成され、被覆層4はマグネシア質の不定形耐火物で構成される。
FIG. 1 shows a sectional view of the tundish. The tundish has a structure in which a
連続鋳造を終えたタンディッシュの内面には、残鋼滓が付着しており、また被覆層4及び母材層3(以下、これらを内張り耐火物と総称する。)が劣化しているため、そのままでは再使用することができない。そこで、連続鋳造を終えたタンディッシュは、整備されてから再使用に供される。
Since the remaining steel slag has adhered to the inner surface of the tundish that has been continuously cast, and the covering
タンディッシュの整備は一般に次のフローで行われる。連続鋳造の終了→タンディッシュの水冷→タンディッシュ内の残鋼滓の除去→劣化した内張り耐火物、具体的には被覆層4と母材層3の一部との除去→母材層3を除去した部分への補修材の吹付け→被覆層4を形成するための被覆材の吹付け→タンディッシュの予熱→連続鋳造の再開。
Tundish maintenance is generally performed according to the following flow. End of continuous casting → Water cooling of tundish → Removal of steel residue in tundish → Deteriorated lining refractory, specifically removal of
上記整備フローにおいて、母材層3の補修に用いる補修材は、母材層3と整合する材質よりなる耐火骨材に、少なくともバインダを加えてなる。補修材としては、バインダに粉末珪酸塩を用いたもの(特許文献1等参照)、又はアルミナセメントを用いたもの(特許文献2及び3等参照)が主に使用されている。
In the maintenance flow, the repair material used for repairing the base material layer 3 is made by adding at least a binder to a refractory aggregate made of a material that matches the base material layer 3. As the repair material, a material using powder silicate as a binder (see Patent Document 1 or the like) or a material using alumina cement (see
なお、補修材として、バインダに燐酸塩を用いたものも知られるが、鋼種によっては燐酸塩の使用が規制される場合があるため、燐酸塩の多量の使用は望まれていない。 A repair material using a phosphate as a binder is also known, but depending on the steel type, the use of phosphate may be restricted, so that a large amount of phosphate is not desired.
補修材の吹付けにおいては、タンディッシュ内面への付着率が良いこと、即ち、リバウンドロスが少ないことが望まれる。この点、不定形耐火物の吹付け技術においては、不定形耐火物を構成する耐火骨材に占める粒径75μm未満の微粒(以下、単に微粒ということがある。)の割合が25質量%以下だと不定形耐火物の粘りが不足し、リバウンドが多くなるため好ましくないと考えられている(特許文献4等参照)。そこで、従来は、補修材においても、耐火骨材に占める微粒の割合を35質量%程度としている。 In spraying the repair material, it is desired that the adhesion rate to the inner surface of the tundish is good, that is, the rebound loss is small. In this regard, in the spraying technique for the amorphous refractory, the proportion of fine particles having a particle size of less than 75 μm (hereinafter sometimes simply referred to as fine particles) in the refractory aggregate constituting the irregular refractory is 25% by mass or less. In this case, it is considered that the amorphous refractory does not have enough stickiness and rebound increases, which is not preferable (see Patent Document 4). Therefore, conventionally, even in the repair material, the proportion of fine particles in the refractory aggregate is about 35% by mass.
なお、一般に不定形耐火物の吹付け技術においては、吹付けられた不定形耐火物のだれ落ちを防止するために硬化促進剤が用いられるが、タンディッシュ用補修材の吹付けにおいてはその施工厚みがさほど厚くなく、厚くても高々30mm程度であるため、必ずしも硬化促進剤は使用されていない(特許文献1及び2参照)。 In general, in the spraying technology for amorphous refractories, a curing accelerator is used to prevent the sprayed amorphous refractory from dripping, but in the spraying of repair materials for tundish, its construction is applied. Since the thickness is not so thick, and even if it is thick, it is at most about 30 mm, so a curing accelerator is not necessarily used (see Patent Documents 1 and 2).
連続鋳造再開前のタンディッシュの予熱に要する熱エネルギーを削減するために、タンディッシュが冷めすぎないうちに補修材及び被覆材の吹付けを終えることが望まれる。 In order to reduce the thermal energy required for preheating the tundish before resuming continuous casting, it is desirable to finish spraying the repair material and the covering material before the tundish is cooled too much.
この点、通常は、残鋼滓及び劣化した内張り耐火物の除去を、タンディッシュが高温状態のままアクチュエータにより遠隔操作で行えるため、タンディッシュ内面が200℃以上の高温状態で補修材の吹付けにのぞむことができる。 In this regard, the remaining steel slag and deteriorated lining refractories can be removed remotely by an actuator while the tundish is in a high temperature state, so that the repair material can be sprayed at a high temperature of 200 ° C or higher on the inner surface of the tundish. You can look into it.
しかし、例えば、残鋼滓の付着が著しい場合や、タンディッシュが誘導加熱型であって誘導加熱コイルのメンテナンスが必要な場合等は、人手による補修が必要となるため、タンディッシュ内に作業員が入り込めるようにするべく、タンディッシュ内面の温度を例えば常温〜100℃程度に冷まさなければならない場合がある。 However, for example, when the remaining steel slag is significantly attached, or when the tundish is induction heating type and maintenance of the induction heating coil is required, manual repair is required. In some cases, the temperature of the inner surface of the tundish must be cooled to, for example, about room temperature to about 100 ° C. so that the water can enter.
このように、タンディッシュの整備においては、補修材の吹付けを開始する際のタンディッシュ内面の温度が整備フロー間で大きく変動し得る。そして、このことに起因して、以下の課題が生じている。 As described above, in the maintenance of the tundish, the temperature of the inner surface of the tundish when starting to spray the repair material can vary greatly between maintenance flows. Due to this, the following problems have arisen.
補修材のバインダに粉末珪酸塩を用いた場合、タンディッシュ内面が200℃以上の高温状態で施工水と共に吹付けると良好な接着性を示すが、タンディッシュ内面が200℃未満の低温状態で施工水と共に吹付けると予熱時に剥離が生じやすい。 When powdered silicate is used for the binder of the repair material, the tundish inner surface shows good adhesion when sprayed with construction water at a high temperature of 200 ° C or higher, but the tundish inner surface is applied at a low temperature of less than 200 ° C. When sprayed with water, peeling tends to occur during preheating.
なお、本発明者らの研究によると、この剥離の原因は、低温状態だと吹付け施工体からの施工水の蒸発の仕方が緩慢となり、吹付け施工体内に水蒸気がこもることに起因して吹付け施工体とタンディッシュ内面との間に空隙が形成されるためと考えられる。 According to the study by the present inventors, the cause of this separation is due to the fact that the way of evaporation of the construction water from the spray construction body becomes slow when the temperature is low, and water vapor is trapped in the spray construction body. This is probably because a gap is formed between the sprayed construction body and the inner surface of the tundish.
一方、補修材のバインダにアルミナセメントを用いた場合、タンディッシュ内面が100℃未満の低温状態で施工水と共に吹付けると良好な接着性を示すが、タンディッシュ内面が200℃以上の高温状態で施工水と共に吹付けると、吹付け施工体からの施工水の蒸発の仕方が急激となるため、アルミナセメントの水和反応に要する時間を充分に確保できず、良好な接着性を示すことができない。 On the other hand, when alumina cement is used for the binder of the repair material, the tundish inner surface shows good adhesion when sprayed with construction water in a low temperature state of less than 100 ° C, but the tundish inner surface is in a high temperature state of 200 ° C or higher. When sprayed together with the construction water, the construction water evaporates from the spray construction body, so the time required for the hydration reaction of the alumina cement cannot be sufficiently secured and good adhesion cannot be shown. .
補修材が剥離すると、それを覆っている被覆材も一緒に剥離してしまうことになる。また、たとえ補修材が剥離しなくても、被覆材だけが予熱時又は使用中に剥離することがある。本発明者らの研究によると、被覆材が剥離する主な原因の一つは、補修材と被覆材との熱膨張特性の差にあると考えられる。 When the repair material is peeled off, the covering material covering the repair material is also peeled off together. Even if the repair material does not peel off, only the coating material may peel off during preheating or during use. According to the study by the present inventors, one of the main causes of the peeling of the covering material is considered to be a difference in thermal expansion characteristics between the repair material and the covering material.
本発明の目的は、補修材及び被覆材の剥離トラブルが生じにくいタンディッシュの整備方法を提供することである。 An object of the present invention is to provide a tundish maintenance method that hardly causes troubles of peeling of a repair material and a covering material.
本発明の一観点によれば、(a)連続鋳造を終えたタンディッシュを冷まし、タンディッシュ内部の残鋼滓及び劣化した内張り耐火物を除去する工程と、(b)タンディッシュの内面に、耐火骨材に占める微粒の割合を25質量%以下に抑え、バインダとして、10℃の水に5分間溶解させた場合に40質量%以上の溶解率を示す粉末珪酸塩を用い、かつ石灰化合物よりなる硬化促進剤を含む補修材を、施工水と共に吹付ける工程と、(c)補修材の吹付け施工体に、耐火骨材に占める微粒の割合が35質量%以上の被覆材を、施工水と共に吹付ける工程とを有するタンディッシュの整備方法が提供される。 According to one aspect of the present invention, (a) cooling the tundish after continuous casting, removing the remaining steel slag and deteriorated lining refractory inside the tundish, and (b) on the inner surface of the tundish, The proportion of fine particles in the refractory aggregate is suppressed to 25% by mass or less, and as a binder, powder silicate showing a dissolution rate of 40% by mass or more when dissolved in water at 10 ° C. for 5 minutes is used. A step of spraying a repair material containing a hardening accelerator together with the construction water, and (c) a coating material having a proportion of fine particles in the refractory aggregate of 35% by mass or more applied to the spray construction body of the repair material. And a tundish maintenance method having a step of spraying together.
補修材の耐火骨材に占める微粒の割合を25質量%以下に抑えたことで、補修材の吹付け施工体の通気性が改善されるため、たとえ工程(a)を終えた時点でタンディッシュ内面が200℃未満であっても、補修材の吹付け施工体から施工水が蒸発しやすくなり、吹付け施工体内に水蒸気がこもることに起因する剥離の発生率を低減することができる。 By controlling the proportion of fine particles in the fireproof aggregate of the repair material to 25% by mass or less, the air permeability of the sprayed construction body of the repair material is improved. Even if the step (a) is finished, the tundish Even if the inner surface is less than 200 ° C., the construction water is likely to evaporate from the repairing material spray construction body, and the occurrence rate of peeling due to the accumulation of water vapor in the spray construction body can be reduced.
補修材の耐火骨材に占める微粒の割合を抑えたにも関らず、水に溶解しやすい粉末珪酸塩を用い、かつ硬化促進剤も併用したことで、吹付け時のリバウンドロスを抑えることができ、かつ吹付け施工体の強度を確保することができる。 Despite suppressing the proportion of fine particles in the fireproof aggregate of the repair material, the use of powdered silicate that is easy to dissolve in water and the use of a curing accelerator also suppresses rebound loss during spraying. And the strength of the sprayed construction body can be ensured.
補修材を微粒の少ない粗い構成とし、被覆材を相対的に微粒が多い緻密な構成とすることで、補修材の吹付け施工体への被覆材の噛み込み性が高まるため、たとえ両者の熱膨張率が異なっていても、予熱時又はタンディッシュ使用中に被覆材が剥離しにくくなる。 Since the repairing material has a coarse structure with few fine particles and the covering material has a dense structure with relatively many fine particles, the biting property of the covering material to the sprayed construction body of the repairing material increases, so even the heat of both Even if the expansion rates are different, the coating material is difficult to peel off during preheating or during tundish use.
まず、補修材の構成について説明する。 First, the structure of the repair material will be described.
補修材は、耐火骨材に少なくともバインダと硬化促進剤とを加えてなる。 The repair material is formed by adding at least a binder and a hardening accelerator to the refractory aggregate.
耐火骨材は、図1の母材層3と整合する材質となるように、例えば、電融アルミナ、焼結アルミナ、ボーキサイト、ばん土頁岩、及び仮焼アルミナ等のアルミナ質原料、珪石、揮発シリカ、及び溶融シリカ等のシリカ質原料、蝋石、シャモット、粘土、アンダリュサイト、シリマナイト、カイヤナイト、及びムライト等のアルミナ‐シリカ質原料、マグネシアクリンカー等のマグネシア質原料、ドロマイトクリンカー等のドロマイト質原料、炭素質原料、スピネル質原料、並びにこれらを主材とする使用済み耐火物の粉砕物から選択される一種以上を使用することができる。 The refractory aggregate is made of an alumina material such as fused alumina, sintered alumina, bauxite, porphyry shale, calcined alumina, silica stone, volatilization so as to be a material consistent with the base material layer 3 in FIG. Siliceous raw materials such as silica and fused silica, alumina-siliceous raw materials such as wax, chamotte, clay, andalusite, sillimanite, kayanite and mullite, magnesia raw materials such as magnesia clinker, dolomite such as dolomite clinker One or more kinds selected from raw materials, carbonaceous raw materials, spinel raw materials, and pulverized products of used refractory materials containing these as main materials can be used.
耐火骨材は、粒径1mm以上の粗粒、粒径75μm以上1mm未満の中粒、及び粒径75μm未満の微粒からなる。補修材においては、吹付け施工体から水蒸気が逸散しやすくするために、耐火骨材に占める微粒の割合を25質量%以下に抑えることが必要である。耐火骨材の粒度構成を粗くして水蒸気の逸散をより促進するために、耐火骨材に占める粗粒の割合は15質量%以上であることが好ましい。 The refractory aggregate is composed of coarse particles having a particle size of 1 mm or more, medium particles having a particle size of 75 μm or more and less than 1 mm, and fine particles having a particle size of less than 75 μm. In the repair material, it is necessary to suppress the proportion of fine particles in the refractory aggregate to 25% by mass or less in order to facilitate the dissipation of water vapor from the sprayed construction body. In order to increase the particle size composition of the refractory aggregate and further promote the dissipation of water vapor, the proportion of coarse particles in the refractory aggregate is preferably 15% by mass or more.
バインダには、10℃の水に5分間溶解させた場合に40質量%以上の溶解率を示す粉末珪酸塩(以下、易水溶性粉末珪酸塩という。)を用いる。ここで、水とは精製水を指し、溶解率はスターラ等で攪拌し溶解を促進した場合の値とする。 As the binder, powder silicate (hereinafter referred to as “water-soluble powder silicate”) having a dissolution rate of 40% by mass or more when dissolved in water at 10 ° C. for 5 minutes is used. Here, water refers to purified water, and the dissolution rate is a value when the dissolution is promoted by stirring with a stirrer or the like.
バインダとして粉末珪酸塩は周知である。しかし、一般の粉末珪酸塩は、珪酸アルカリ水溶液を噴霧乾燥等によって急速に脱水し粉末化することで得られるため、その製法上、得られる粉末珪酸塩の粒子は粒径が180μm以下と細かいものの、粒子形状が中空球形をなしており、球形であるため表面積が最小であることから、水に対する溶解速度を高めることに関して改善の余地を残している。 Powdered silicates are well known as binders. However, since general powder silicate is obtained by rapidly dehydrating and pulverizing an alkali silicate aqueous solution by spray drying or the like, the powder silicate particles obtained have a fine particle size of 180 μm or less. The particle shape is a hollow sphere, and since it has a spherical shape, the surface area is minimal, so there is room for improvement in terms of increasing the dissolution rate in water.
そこで、上記従来法で得た粉末珪酸塩をその平均粒径が1/2以下となる程度、例えば70μm以下、好ましくは50μm以下となる程度に破砕処理を施し、中空構造を破壊することで、表面積の増大により水に対する溶解速度が増すため、易水溶性粉末珪酸塩と成すことができる。なお、破砕処理には、振動ミル、ボールミル、又はパルベライザー等周知の技術を用いることができる。 Therefore, by crushing the powdered silicate obtained by the above conventional method to an extent that the average particle size is ½ or less, for example 70 μm or less, preferably 50 μm or less, and destroying the hollow structure, Since the dissolution rate with respect to water increases with the increase in the surface area, it can be formed into a readily water-soluble powder silicate. Note that a known technique such as a vibration mill, a ball mill, or a pulverizer can be used for the crushing treatment.
本明細書において、平均粒径とは、レーザ回折散乱式粒度分布計で測定された累積曲線の中央累積値にあたる体積平均粒径をいう。また、本明細書において、粒子の粒径がd以上とは、粒子がJIS‐Z8801に規定する目開きdの篩上に残る粒度であることを意味し、粒子の粒径がd未満とは、粒子が同篩を通過する粒度であることを意味する。 In this specification, the average particle diameter means a volume average particle diameter corresponding to the central cumulative value of a cumulative curve measured with a laser diffraction / scattering particle size distribution meter. Further, in the present specification, the particle size of the particle being equal to or larger than d means that the particle is a particle size remaining on the sieve having an opening d defined in JIS-Z8801, and the particle size of the particle is less than d. , Meaning that the particles are of a particle size that passes through the same sieve.
易水溶性粉末珪酸塩におけるSiO2/M2O(MはNa又はK)のモル比(以下、珪曹比という)は、3以下が好ましい。これにより、水に対する溶解速度をいっそう高めることができる。なお、珪曹比3以下の粉末珪酸塩は、珪曹比3以下の珪酸アルカリ水溶液を噴霧乾燥することで得られるが、低珪曹比と高珪曹比の粉末珪酸塩を混合し、全体としての珪曹比を3以下に調整することでも得られる。 The molar ratio of SiO 2 / M 2 O (M is Na or K) (hereinafter referred to as “silicic acid ratio”) in the readily water-soluble powder silicate is preferably 3 or less. Thereby, the melt | dissolution rate with respect to water can be raised further. Powdered silicates with a silicate ratio of 3 or less can be obtained by spray drying an alkali silicate aqueous solution with a silicate ratio of 3 or less. It can also be obtained by adjusting the ratio of silica to 3 or less.
易水溶性粉末珪酸塩の添加量は、耐火骨材100質量%に対する外かけで3〜10質量%が好ましい。3質量%以上とすることで充分な接着力を得ることができ、10質量%以下とすることで下地に対する焼付きを防止することができる。 The addition amount of the easily water-soluble powdered silicate is preferably 3 to 10% by mass on the basis of 100% by mass of the refractory aggregate. When the content is 3% by mass or more, sufficient adhesive strength can be obtained, and when the content is 10% by mass or less, seizure to the base can be prevented.
硬化促進剤には、石灰化合物、例えば、消石灰、生石灰、炭酸カルシウム、及びカルシウムアルミネート等から選択される一種以上を用いることができる。その添加量は、耐火骨材100質量%に対する外かけで1〜8質量%が好ましい。1質量%以上とすることで易水溶性粉末珪酸塩に対して顕著な硬化促進作用を示すことができ、8質量%以下とすることで耐食性の低下を防止することができる。 As the curing accelerator, one or more selected from lime compounds such as slaked lime, quicklime, calcium carbonate, calcium aluminate and the like can be used. The addition amount is preferably 1 to 8% by mass on the basis of 100% by mass of the refractory aggregate. By setting the content to 1% by mass or more, a remarkable hardening accelerating action can be exhibited with respect to the easily water-soluble powdered silicate, and by setting the content to 8% by mass or less, the corrosion resistance can be prevented from being lowered.
この他、補修材には、有機繊維や分散剤等の添加剤を含めてもよい。 In addition, the repair material may include additives such as organic fibers and a dispersant.
有機繊維としては、例えば、パルプ、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維等から選択される一種以上を用いることができる。 As the organic fiber, for example, one or more selected from pulp, vinylon fiber, polypropylene fiber, polyethylene fiber, polyester fiber and the like can be used.
有機繊維は一般に、水蒸気の通気パスを形成する目的で添加されるが、本実施形態ではむしろ、リバウンドロスを低減する目的で添加する。即ち、耐火骨材に占める微粒の割合を抑えた場合はリバウンドが生じやすいが、有機繊維が緩衝材として作用することで、リバウンドを抑えることができる。 The organic fiber is generally added for the purpose of forming a water vapor ventilation path, but in this embodiment, it is added for the purpose of reducing the rebound loss. That is, when the proportion of fine particles in the refractory aggregate is suppressed, rebound is likely to occur, but rebound can be suppressed by the organic fiber acting as a buffer material.
有機繊維の添加量は、耐火骨材100質量%に対する外かけで0.05〜0.5質量%が好ましい。0.05質量%以上とすることで、リバウンド防止の効果が顕著となり、0.5質量%以下に抑えることで、耐食性の低下を防止することができる。 The addition amount of the organic fiber is preferably 0.05 to 0.5% by mass on the basis of 100% by mass of the fireproof aggregate. By setting it as 0.05 mass% or more, the effect of rebound prevention becomes remarkable, and the fall of corrosion resistance can be prevented by restraining to 0.5 mass% or less.
分散剤としては、例えば、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ等のアルカリ金属リン酸塩、ポリカルボン酸ソーダ等のポリカルボン酸塩、アルキルスルホン酸塩、芳香族スルホン酸塩、ポリアクリル酸ソーダ、及びスルホン酸ソーダ等から選択される一種以上を用いることができる。その添加量は、耐火骨材100質量%に対する外かけで0.01〜1質量%が好ましい。 Examples of the dispersant include alkali metal phosphates such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium hexametaphosphate, polycarboxylate such as sodium polycarboxylate, alkylsulfonate, aromatic One or more selected from sulfonates, sodium polyacrylate, sodium sulfonate, and the like can be used. The addition amount is preferably 0.01 to 1% by mass on the basis of 100% by mass of the refractory aggregate.
以下、被覆材の構成について説明する。 Hereinafter, the configuration of the covering material will be described.
被覆材は、耐火骨材に少なくともバインダを加えてなる。被覆材の、補修材との相違点は、耐火骨材に占める微粒の割合を相対的に高める点、バインダが易水溶性粉末珪酸塩に限定されない点、及び硬化促進剤を必須としない点等である。以下、具体的に説明する。 The covering material is formed by adding at least a binder to the refractory aggregate. The difference between the coating material and the repair material is that the proportion of fine particles in the fireproof aggregate is relatively increased, the binder is not limited to the water-soluble powder silicate, and the hardening accelerator is not essential. It is. This will be specifically described below.
耐火骨材は、図1の被覆層4と整合する材質となるように、例えば、マグネシアクリンカー等のマグネシア質原料、カルシアクリンカー等のカルシア質原料等を含んで構成することができる。なお、他に、珪石等のシリカ質原料、粘土等のアルミナ‐シリカ質原料等を含めてもよい。一般に、被覆材の耐火骨材は、補修材の耐火骨材と材質が異なるため、両者の熱膨張特性は異なる。
The refractory aggregate can be configured to include, for example, a magnesia material such as magnesia clinker, a calcia material such as calcia clinker, and the like so as to be a material that matches the
耐火骨材は、粒径1mm以上の粗粒、粒径75μm以上1mm未満の中粒、及び粒径75μm未満の微粒からなる。被覆材においては、補修材の吹付け施工体への噛み込み性を高めるために、耐火骨材に占める微粒の割合を35質量%以上とすることが必要である。耐火骨材の粒度構成を緻密にすることで、補修材の吹付け施工体への噛み込み性を高める観点から、耐火骨材に占める粗粒の割合は、15質量%未満であることが好ましく、5質量%以下であることがより好ましい。 The refractory aggregate is composed of coarse particles having a particle size of 1 mm or more, medium particles having a particle size of 75 μm or more and less than 1 mm, and fine particles having a particle size of less than 75 μm. In the covering material, in order to improve the biting property of the repair material to the spray construction body, it is necessary that the proportion of the fine particles in the fireproof aggregate is 35% by mass or more. From the viewpoint of improving the bite structure of the repair material to the sprayed construction body by making the particle structure of the fireproof aggregate dense, the proportion of coarse particles in the fireproof aggregate is preferably less than 15% by mass. More preferably, it is 5 mass% or less.
バインダは、特に限定されない。耐火骨材に占める微粒の割合が35質量%以上であることから、施工水と共に吹付ける場合に被覆材の粘性を充分に確保することができ、リバウンドが生じにくいため、必ずしも易水溶性粉末珪酸塩を用いなくてもよい。従って、例えば通常の粉末珪酸塩を用いることができる。但し、被覆材のバインダにも易水溶性粉末珪酸塩を用いてもよい。 The binder is not particularly limited. Since the proportion of fine particles in the refractory aggregate is 35% by mass or more, the viscosity of the coating material can be sufficiently secured when sprayed together with the construction water, and rebound does not easily occur. It is not necessary to use salt. Thus, for example, ordinary powdered silicate can be used. However, a water-soluble powder silicate may be used for the binder of the covering material.
この他、被覆材に、硬化促進剤、有機繊維、又は分散剤等の添加剤を含めてもよい。 In addition, additives such as a curing accelerator, organic fibers, or a dispersant may be included in the coating material.
以下、タンディッシュの整備方法について説明する。 Hereinafter, a tundish maintenance method will be described.
まず、連続鋳造終了後、タンディッシュからの浸漬ノズルの取り外し作業等を行い、タンディッシュを連続鋳造位置から整備位置に移送する(移送工程)。通常、整備位置に到達した時点で、タンディッシュ内面の温度は、例えば800〜1000℃程度である。 First, after completion of continuous casting, the operation of removing the immersion nozzle from the tundish is performed, and the tundish is transferred from the continuous casting position to the maintenance position (transfer process). Usually, when the maintenance position is reached, the temperature of the inner surface of the tundish is, for example, about 800 to 1000 ° C.
次に、タンディッシュを冷ます(冷却工程)。通常は、タンディッシュ内に水を供給することでタンディッシュ内面の温度を例えば600℃以下、具体的には400〜500℃に低下させる。本冷却工程の目的の一つは、タンディッシュ内の残鋼滓を凝固させることにある。なお、空冷又は自然放置によりタンディッシュを冷ましてもよい。 Next, the tundish is cooled (cooling process). Usually, by supplying water into the tundish, the temperature of the inner surface of the tundish is lowered to, for example, 600 ° C. or less, specifically, 400 to 500 ° C. One of the purposes of this cooling process is to solidify the remaining steel sheet in the tundish. The tundish may be cooled by air cooling or natural standing.
次に、タンディッシュ内で凝固した残鋼滓及び劣化した内張り耐火物を除去する(除去工程)。具体的には、凝固した残鋼滓を除去した後、被覆層4を除去し、かつ母材層3のうち劣化した部分を除去する。
Next, the remaining steel slag solidified in the tundish and the deteriorated lining refractory are removed (removal step). Specifically, after removing the solidified steel sheet, the
通常は、残鋼滓及び劣化した内張り耐火物の除去作業を、アクチュエータにより遠隔操作で行う。この場合、除去作業をタンディッシュが高温状態のまま行えるため、タンディッシュ内面の温度を200℃未満に低下させることなく除去作業を終えることができる。 Normally, the remaining steel slag and the deteriorated lining refractory are removed remotely by an actuator. In this case, since the removal operation can be performed while the tundish is in a high temperature state, the removal operation can be completed without lowering the temperature of the inner surface of the tundish to less than 200 ° C.
しかし、タンディッシュ内面への残鋼滓の付着が著しい場合や、タンディッシュが誘導加熱型であって誘導加熱コイルのメンテナンスが必要な場合等は、タンディッシュ内面を例えば常温〜100℃程度、例えば80°程度に冷ました後、作業員がタンディッシュ内部に入り込んで上記除去作業と併せてメンテナンス作業を行う。 However, when the remaining steel plate is significantly attached to the inner surface of the tundish, or when the tundish is induction heating type and maintenance of the induction heating coil is required, the inner surface of the tundish is, for example, room temperature to about 100 ° C., for example, After cooling to about 80 °, the worker enters the inside of the tundish and performs maintenance work together with the above removal work.
次に、母材層3を補修するために、タンディッシュ内面に、補修材を施工水と共に吹付ける(補修材吹付け工程)。補修材の施工厚みは、母材層3の除去した部分を埋める程度、例えば、5〜30mm程度である。 Next, in order to repair the base material layer 3, a repair material is sprayed on the inner surface of the tundish together with construction water (a repair material spraying step). The construction thickness of the repair material is such as to fill the removed portion of the base material layer 3, for example, about 5 to 30 mm.
吹付け法としては、吹付け材(補修材)を搬送管内に送り込んで気流搬送し、搬送管内又は搬送管の先端に接続したノズル内で、吹付け材に水を添加して吹付ける乾式吹付け法が好ましい。補修材に対する水の添加量は、補修材に対する外かけで、例えば15〜25質量%程度である。 As a spraying method, dry-type spraying is performed by feeding spray material (repair material) into the transport pipe and transporting it by air, and adding water to the spray material in the nozzle connected to the transport pipe or the tip of the transport pipe. The attaching method is preferred. The amount of water added to the repair material is, for example, about 15 to 25% by mass with respect to the repair material.
補修材の耐火骨材に占める微粒の割合を25質量%以下に抑えたことで、たとえ除去工程を終えた時点でタンディッシュ内面が200℃未満であっても、補修材の吹付け施工体内に水蒸気がこもりにくいため、後述する被覆材を吹付けるまでの間に、補修材の吹付け施工体から施工水の殆どを逸散させることができ、予熱時の剥離を防止することができる。 By suppressing the proportion of fine particles in the fireproof aggregate of the repair material to 25% by mass or less, even when the inner surface of the tundish is less than 200 ° C. at the time of completion of the removal process, Since it is difficult for water vapor to accumulate, it is possible to dissipate most of the construction water from the repairing material spray construction body before spraying the coating material described later, and to prevent peeling during preheating.
補修材の耐火骨材に占める微粒の割合を抑えたにも関らず、易水溶性粉末珪酸塩と硬化促進剤とを併用したことで、リバウンドロスを抑えることができ、かつ吹付け施工体の強度を確保することができる。 Despite suppressing the proportion of fine particles in the fireproof aggregate of the repair material, the rebound loss can be suppressed and the spray construction body by using the water-soluble powdered silicate and the hardening accelerator in combination. The strength of the can be ensured.
なお、バインダに粉末珪酸塩を用いるため、タンディッシュ内面が200℃以上の場合に良好な接着率が得られることは勿論である。このように、補修材が低温〜高温と幅広い温度域に対応できるため、タンディッシュ内面の温度によって補修材を使い分けする必要がないという利便性が得られる。 In addition, since powder silicate is used for a binder, when a tundish inner surface is 200 degreeC or more, it is needless to say that a favorable adhesive rate is obtained. Thus, since the repair material can cope with a wide temperature range from low temperature to high temperature, the convenience that the repair material does not need to be properly used depending on the temperature of the inner surface of the tundish is obtained.
次に、被覆層4を形成するために、補修材の吹付け施工体に、被覆材を施工水と共に吹付ける(被覆材吹付け工程)。被覆材の施工厚みは、例えば25〜30mm程度である。被覆材の吹付け方法としても乾式吹付け法が好ましい。被覆材に対する水の添加量は、被覆材に対する外かけで、外かけで20〜30質量%程度である。
Next, in order to form the
補修材を微粒の少ない構成とし、被覆材を相対的に微粒が多い構成とすることで、補修材の吹付け施工体への被覆材の噛み込み性、即ち接着性を高めることができる。 By setting the repair material to have a structure with less fine particles and the cover material to have a structure with relatively more fine particles, it is possible to improve the biting property of the cover material to the sprayed construction body of the repair material, that is, the adhesiveness.
即ち、補修材は微粒の含有割合が少なく、自ずと中粒及び粗粒の含有割合が高い粒度構成をもつため、補修材の吹付け施工体の表面は凹凸状となっている。被覆材は補修材よりも微粒が多く緻密であるため、その凹凸部に嵌まりこんだ状態で、被覆層が形成される。このような両者の接合構造により、たとえ両者の熱膨張率が異なっていても、予熱時又はタンディッシュ使用中に、被覆材の吹付け施工体が補修材の吹付け施工体から剥離しにくくなる。 In other words, since the repair material has a small particle content and a medium particle size and high coarse particle content, the surface of the repair material sprayed body is uneven. Since the coating material has more fine particles and is denser than the repair material, the coating layer is formed in a state in which the coating material is fitted into the uneven portion. Due to such a joint structure between the two, even if the thermal expansion coefficients of the two differ, it is difficult for the covering material spray construction body to peel off from the repair material spray construction body during preheating or during tundish use. .
次に、補修を終えたタンディッシュを予熱する(予熱工程)。予熱は、一般的な不定形耐火物の乾燥工程と異なり、例えば、1000℃/2時間〜1200℃/2時間程度と高い昇温レートで行う。予熱後、タンディッシュは再使用に供される。 Next, the tundish that has been repaired is preheated (preheating step). The preheating is performed at a high temperature rising rate of, for example, about 1000 ° C./2 hours to 1200 ° C./2 hours, unlike a general drying process of an irregular refractory. After preheating, the tundish is ready for reuse.
なお、整備の対象とするタンディッシュは特に限定されないが、誘導加熱型タンディッシュでは誘導加熱コイルのメンテナンスが必要となること等に起因して補修材の吹付けを開始する際のタンディッシュ内面の温度が大きく変動しやすいことに起因して補修材及び被覆材の剥離が生じやすい。そこで、本発明は、誘導加熱型タンディッシュに適用する意義が特に大きい。 The tundish to be serviced is not particularly limited. However, induction heating type tundish requires maintenance of the induction heating coil. Due to the fact that the temperature tends to fluctuate greatly, the repair material and the covering material are likely to be peeled off. Therefore, the present invention is particularly significant when applied to induction heating tundish.
また、側面が70°以上に切り立ったタンディッシュでは、側面が70°未満に傾斜したタンディッシュに比べて、側面に吹付けられた補修材及び被覆材が剥落しやすい。このため、側面が70°以上に切り立ったタンディッシュに対して本発明を適用して補修材及び被覆材の剥落を防止する意義が大きい。 In addition, in a tundish whose side surface is cut to 70 ° or more, the repair material and the covering material sprayed on the side surface are more easily peeled off than a tundish whose side surface is inclined to less than 70 °. For this reason, it is significant to apply the present invention to a tundish whose side faces are cut at 70 ° or more to prevent the repair material and the covering material from peeling off.
以下、第1の実験について説明する。 Hereinafter, the first experiment will be described.
補修材を、乾式吹付け方法により常温のテスト面に吹付ける。施工水の添加量は、補修材に対する外かけで20質量%とする。吹付け後、テスト面からのリバウンドを回収し、「付着率=(吹付けた補修材の総量−リバウンドした量)/吹付けた補修材の総量」なる式に従って付着率を求める。付着率によって、◎、○、△、×の4段階評価した。 Spray the repair material onto the test surface at room temperature using the dry spray method. The amount of construction water added is 20% by mass on the repair material. After spraying, the rebound from the test surface is collected, and the adhesion rate is determined according to the formula: “Adhesion rate = (total amount of repair material sprayed−rebound amount) / total amount of repair material sprayed”. According to the adhesion rate, four grades of ◎, ○, Δ, and × were evaluated.
表1に、補修材の構成と付着率の評価結果とを示す。 Table 1 shows the structure of the repair material and the evaluation result of the adhesion rate.
表1で、易水溶性粉末珪酸塩には、珪酸アルカリ水溶液を噴霧乾燥により粉末化したものを振動ミルで粉砕することで平均粒径42μmに調整した粉末珪酸ソーダを用いた。この易水溶性粉末珪酸塩は、SiO2含有量50〜53質量%、Na2O含有量18〜19質量%、珪曹比2.70〜2.90であり、10℃の精製水50mlに20g投入し、スターラで5分間攪拌した場合の溶解率が48質量%である。 In Table 1, as the water-soluble powdered silicate, powdered sodium silicate adjusted to an average particle size of 42 μm by pulverizing an alkali silicate aqueous solution by spray drying with a vibration mill was used. This easily water-soluble powdered silicate has a SiO 2 content of 50 to 53 mass%, a Na 2 O content of 18 to 19 mass%, and a silicate ratio of 2.70 to 2.90. When 20 g is charged and stirred with a stirrer for 5 minutes, the dissolution rate is 48 mass%.
また、粉末珪酸ソーダ3号には、珪酸アルカリ水溶液を噴霧乾燥により粉末化して得られる平均粒径104μm、SiO2含有量56〜61質量%、Na2O含有量17〜20質量%、珪曹比3.15〜3.35のものを用いた。この一般的な粉末珪酸ソーダ3号は、10℃の精製水50mlに20g投入し、スターラで5分間攪拌した場合の溶解率が5質量%未満、具体的には、3.7質量%である。 In addition, powdered sodium silicate No. 3 has an average particle size of 104 μm obtained by pulverizing an alkali silicate aqueous solution by spray drying, an SiO 2 content of 56 to 61% by mass, an Na 2 O content of 17 to 20% by mass, silica The one with a ratio of 3.15 to 3.35 was used. This general powdered sodium silicate No. 3 has a dissolution rate of less than 5% by mass, specifically 3.7% by mass when charged with 50 g of purified water at 10 ° C. and stirred with a stirrer for 5 minutes. .
比較例aは、耐火骨材に占める微粒の割合が35質量%と多い従来例であり、充分な粘性が付与されたため、通常の粉末珪酸ソーダを用いても良好な接着性を示す。但しこのように緻密な補修材では、水蒸気が吹付け施工体内にこもりやすいので剥離が生じやすい。 Comparative Example a is a conventional example in which the proportion of fine particles in the refractory aggregate is as large as 35% by mass, and because sufficient viscosity is imparted, it exhibits good adhesion even when using ordinary powdered sodium silicate. However, with such a dense repair material, water vapor tends to be trapped in the sprayed construction body, so that peeling is likely to occur.
比較例bは、比較例aよりも微粒を減らしたものであり、水蒸気の抜けやすさは改善されるかもしれないが、付着率に劣る。このように、耐火骨材に占める微粒の割合を抑えると、付着率の低下が認められる。 Comparative example b is one in which the number of fine particles is reduced as compared with comparative example a, and the ease of water vapor removal may be improved, but the adhesion rate is inferior. As described above, when the proportion of fine particles in the refractory aggregate is suppressed, a decrease in the adhesion rate is recognized.
比較例cは、比較例bのバインダを易水溶性粉末珪酸塩に置き換えたものであり、硬化促進剤を用いていないため、付着率に劣る。 Comparative Example c is obtained by replacing the binder of Comparative Example b with a readily water-soluble powdered silicate, and is inferior in adhesion rate because no curing accelerator is used.
実施例aは、耐火骨材に占める微粒の割合を25質量%以下に抑えたにも関らず、易水溶性粉末珪酸塩、硬化促進剤、及び有機繊維を併用したことで、比較例aと同等の付着率を達成した。 In Example a, although the proportion of fine particles in the refractory aggregate was suppressed to 25% by mass or less, the water-soluble powdered silicate, the curing accelerator, and the organic fiber were used in combination. Achieved the same adhesion rate.
実施例b〜eは、実施例aよりも微粒の割合を低減するか、又は有機繊維を省略したもので、実施例aには劣るものの許容できる付着率を示した。この結果から、微粒を抑えた場合、少なくとも易水溶性粉末珪酸塩及び硬化促進剤を組み合わせることで付着率を改善できることが分かる。 In Examples b to e, the proportion of fine particles was reduced as compared with Example a or organic fibers were omitted, and an acceptable adhesion rate was exhibited although it was inferior to Example a. From this result, it can be seen that, when fine particles are suppressed, the adhesion rate can be improved by combining at least a readily water-soluble powder silicate and a curing accelerator.
また、実施例aとbの比較、及び実施例dとeの比較から、有機繊維を添加すると、さらに付着率が向上することが分かる。微粒を減らした系においては、リバウンドロスが発生しがちであるため、有機繊維を添加する意義が特に大きい。 In addition, it can be seen from the comparison between Examples a and b and the comparison between Examples d and e that the adhesion rate is further improved when organic fibers are added. In a system in which fine particles are reduced, rebound loss tends to occur, so the significance of adding organic fibers is particularly great.
以下、第2の実験について説明する。 Hereinafter, the second experiment will be described.
所定の初期温度を有するれんがを縦横に積んで形成した垂直なテスト面に、補修材を乾式吹付け法で吹付ける。吹付け後、テスト面かられんがを所定個切り出し、予熱工程を模した昇温レート(1200℃/2時間)で加熱後、各れんがと吹付け施工体との間のせん断強さを測定し、平均値を求める。その値によって、接着強度を◎、○、△、×の4段階評価した。れんがの初期温度が30℃の場合(低温)と、200℃の場合(高温)とで個別に接着強度を評価した。 A repair material is sprayed by a dry spraying method on a vertical test surface formed by stacking bricks having a predetermined initial temperature vertically and horizontally. After spraying, a predetermined number of bricks are cut out from the test surface, heated at a temperature increase rate (1200 ° C./2 hours) simulating a preheating process, and the shear strength between each brick and the sprayed construction is measured. Find the average value. According to the value, the adhesive strength was evaluated in four levels, ◎, ○, Δ, and ×. The adhesive strength was individually evaluated when the initial temperature of the brick was 30 ° C. (low temperature) and when it was 200 ° C. (high temperature).
表2に、補修材の構成と接着強度の評価結果とを示す。なお、表2で、易水溶性粉末珪酸塩及び粉末珪酸ソーダ3号には、それぞれ表1と同じものを用いた。 Table 2 shows the structure of the repair material and the evaluation result of the adhesive strength. In Table 2, the same water-soluble powder silicate and powder sodium silicate No. 3 as those in Table 1 were used.
比較例dは、バインダにアルミナセメントを用いた従来例であり、高温での接着強度に劣る。この原因は、高温下だと施工水が急速に蒸発するため、アルミナセメントの水和反応が充分に進行しなかったためと考えられる。一方、アルミナセメントを用いる場合、たとえ吹付け施工体内に水蒸気がこもっても、それが水和反応に有効に利用されるため、低温下で良好な接着強度を示している。 Comparative example d is a conventional example in which alumina cement is used as a binder, and is inferior in adhesive strength at high temperatures. This is considered to be because the hydration reaction of the alumina cement did not proceed sufficiently because the construction water rapidly evaporated at high temperatures. On the other hand, when alumina cement is used, even if water vapor is trapped in the sprayed construction body, it is effectively used for the hydration reaction, and therefore shows good adhesive strength at low temperatures.
比較例eは、バインダに粉末珪酸ソーダ3号を用いた従来例であり、低温での接着強度に劣る。この原因は、低温下だと施工水の蒸発が緩慢となり、補修材の吹付け施工体内に水蒸気がこもることに起因して吹付け施工体とテスト面との間に空隙が形成されるためと考えられる。 Comparative example e is a conventional example using powdered sodium silicate No. 3 as a binder and is inferior in adhesive strength at low temperatures. The reason for this is that the evaporation of construction water slows down at low temperatures, and a gap is formed between the spray construction body and the test surface due to the accumulation of water vapor in the repair construction body. Conceivable.
比較例fは、比較例eよりも微粒の割合を減らした例であり、吹付け施工体から水蒸気がぬけやすくなったためか、比較例eに対して低温での接着性はやや改善されたが不充分である。このように単に微粒を減らすだけでは、低温での接着性を改善しがたい。この理由は、通常の粉末珪酸ソーダでは吹付け施工体に充分な強度を付与できなかったためと推定される。 Comparative Example f is an example in which the proportion of fine particles is reduced as compared with Comparative Example e, and the adhesiveness at a low temperature is slightly improved compared to Comparative Example e because the water vapor is easily removed from the sprayed construction body. Insufficient. Thus, it is difficult to improve the adhesion at low temperatures simply by reducing the fine particles. The reason for this is presumed that normal powdered sodium silicate could not give sufficient strength to the sprayed body.
比較例gは、バインダに易水溶性粉末珪酸塩を用いたが、耐火骨材に占める微粒の割合が35質量%と多い例であり、低温での接着強度に劣る。即ち、単に易水溶性粉末珪酸塩を用いるだけでは、水蒸気のこもりを抑制できず、低温での接着性を改善できない。 In Comparative Example g, an easily water-soluble powdered silicate was used as the binder, but the proportion of fine particles in the refractory aggregate was as large as 35% by mass, and the adhesive strength at low temperature was poor. That is, simply using easily water-soluble powdered silicate cannot suppress the accumulation of water vapor and cannot improve the adhesion at low temperatures.
実施例f〜hは、低温及び高温で接着強度に優れる。耐火骨材に占める微粒の割合を25質量%以下に抑え、かつ易水溶性粉末珪酸塩を用いることで、接着強度を高めることができる。実施例fと比較例fとの比較から、易水溶性粉末珪酸塩の使用は、接着強度の向上にも寄与することが分かる。 Examples f to h are excellent in adhesive strength at low and high temperatures. Adhesive strength can be increased by controlling the proportion of fine particles in the refractory aggregate to 25% by mass or less and using a water-soluble powder silicate. From the comparison between Example f and Comparative Example f, it can be seen that the use of the easily water-soluble powder silicate contributes to the improvement of the adhesive strength.
なお、耐火骨材に占める微粒の割合が少なすぎると、吹付け施工体の強度を確保しにくいだけでなく、下地との接触面積が小さくなるためか、低温及び高温での接着強度が低下する傾向が認められる。このため、耐火骨材に占める微粒の割合は20質量%以上が好ましいと言える。 In addition, if the proportion of fine particles in the refractory aggregate is too small, not only is it difficult to ensure the strength of the sprayed construction body, but also because the contact area with the base becomes small, the adhesive strength at low and high temperatures decreases. A trend is observed. For this reason, it can be said that the proportion of fine particles in the refractory aggregate is preferably 20% by mass or more.
以下、第3の実験について説明する。 Hereinafter, the third experiment will be described.
れんがを縦横に積んで形成した常温の垂直なテスト面に、補修材を乾式吹付け法で吹付けた後、補修材の吹付け施工体に対し、同じく乾式吹付け法で被覆材を吹付ける。吹付け後、テスト面かられんがを所定個切り出し、予熱工程を模した昇温レート(1200℃/2時間)で加熱後、1200℃の熱間状態で、補修材の吹付け施工体と、被覆材の吹付け施工体との間のせん断強さを測定し、平均値を求める。この値によって補修材‐被覆材間の接着強度を◎、○、△、×の4段階評価した。 After spraying the repair material on the vertical test surface formed by stacking bricks vertically and horizontally with the dry spray method, spray the covering material on the repair material sprayed body with the dry spray method. . After spraying, a predetermined number of bricks are cut out from the test surface, heated at a temperature increase rate (1200 ° C / 2 hours) simulating a preheating process, and then in a hot state at 1200 ° C, a repairing material spraying body and coating Measure the shear strength between the material and the sprayed body, and determine the average value. Based on this value, the adhesive strength between the repair material and the coating material was evaluated in four stages: ◎, ○, Δ, and ×.
表3に、補修材及び被覆材について耐火骨材における粒径1mm以上の粗粒/粒径75μm未満の微粒の質量比と、補修材‐被覆材間の接着強度の評価結果とを示す。 Table 3 shows the mass ratio of the coarse particles having a particle diameter of 1 mm or more / fine particles having a particle diameter of less than 75 μm in the refractory aggregate and the evaluation results of the adhesive strength between the repair material and the coating material.
表3で、被覆材は、マグネシアクリンカーからなる耐火骨材に、バインダとしての粉末珪酸ソーダ3号を加えてなり、表3に示すように耐火骨材の粒度構成を調整した。補修材は、粒径1mm以上の粗粒がシャモット、粒径75μm以上1mm未満の中粒がばん土頁岩、粒径75μm未満の微粒が電融アルミナからなる耐火骨材に、易水溶性粉末珪酸塩及び硬化促進剤を加えてなり、表3に示すように耐火骨材の粒度構成を調整した。 In Table 3, the coating material was prepared by adding powdered sodium silicate No. 3 as a binder to a refractory aggregate made of magnesia clinker, and the particle size constitution of the refractory aggregate was adjusted as shown in Table 3. The repair material is a fire-resistant aggregate composed of coarse grains with a particle size of 1 mm or more made of chamotte, medium particles with a particle size of 75 μm or more and less than 1 mm of barn clay shale, and fine particles with a particle size of less than 75 μm made of fused alumina. Salt and a hardening accelerator were added, and the particle size constitution of the refractory aggregate was adjusted as shown in Table 3.
表3に示すように、被覆材と補修材とで微粒の含有量が等しい場合よりも、補修材を微粒の少ない構成とし、被覆材を相対的に微粒が多い構成とした方が、両者間の接着強度が高まる。また、補修材の微粒の含有量が小さい程、両者間の接着強度が高まる傾向が認められる。これは、補修材の粒度構成が粗い程、補修材の吹付け施工体の表面の粗度が大きくなるため、被覆材の噛み込みが顕著となるためと考えられる。 As shown in Table 3, the repair material has a structure with less fine particles and the cover material has a structure with more fine particles than the case where the content of the fine particles is equal between the covering material and the repair material. Increases the adhesive strength. Moreover, the tendency for the adhesive strength between both to increase is recognized, so that content of the fine particle of a repair material is small. This is presumably because the coarseness of the surface of the repair material sprayed construction increases as the particle size composition of the repair material is coarser, and the biting of the covering material becomes more prominent.
以上、本発明の具体例について説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。 As mentioned above, although the specific example of this invention was demonstrated, this invention is not limited to this. For example, it will be apparent to those skilled in the art that various combinations and improvements are possible.
1…鉄皮、2…パーマ層、3…母材層、4…被覆層。 DESCRIPTION OF SYMBOLS 1 ... Iron skin, 2 ... Perm layer, 3 ... Base material layer, 4 ... Covering layer.
Claims (1)
(b)前記タンディッシュの内面に、耐火骨材に占める粒径75μm未満の微粒の割合を25質量%以下に抑え、バインダとして、10℃の水に5分間溶解させた場合に40質量%以上の溶解率を示す粉末珪酸塩を用い、かつ石灰化合物よりなる硬化促進剤を含む補修材を、施工水と共に吹付ける工程と、
(c)前記補修材の吹付け施工体に、耐火骨材に占める粒径75μm未満の微粒の割合が35質量%以上の被覆材を、施工水と共に吹付ける工程と
を有するタンディッシュの整備方法。 (A) cooling the tundish after continuous casting, removing the remaining steel slag inside the tundish and the deteriorated lining refractory;
(B) On the inner surface of the tundish, the proportion of fine particles having a particle size of less than 75 μm in the refractory aggregate is suppressed to 25% by mass or less, and 40% by mass or more when dissolved in water at 10 ° C. for 5 minutes as a binder. A step of spraying a repair material containing a hardening accelerator made of a lime compound together with construction water, using a powdered silicate exhibiting a dissolution rate of
(C) A tundish maintenance method comprising a step of spraying, together with construction water, a coating material in which the proportion of fine particles having a particle size of less than 75 μm in the refractory aggregate is 35% by mass or more on the repairing material spraying construction body .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010019039A JP2011156553A (en) | 2010-01-29 | 2010-01-29 | Method for maintaining tundish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010019039A JP2011156553A (en) | 2010-01-29 | 2010-01-29 | Method for maintaining tundish |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011156553A true JP2011156553A (en) | 2011-08-18 |
Family
ID=44588999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010019039A Withdrawn JP2011156553A (en) | 2010-01-29 | 2010-01-29 | Method for maintaining tundish |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011156553A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014043383A (en) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Working method of coating material on inner surface of molten steel bath |
JP2015190179A (en) * | 2014-03-28 | 2015-11-02 | 住友大阪セメント株式会社 | Confirmation method for construction state of sprayed mortar |
JP7472890B2 (en) | 2021-11-08 | 2024-04-23 | Jfeスチール株式会社 | Repair management method and repair management system |
-
2010
- 2010-01-29 JP JP2010019039A patent/JP2011156553A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014043383A (en) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Working method of coating material on inner surface of molten steel bath |
JP2015190179A (en) * | 2014-03-28 | 2015-11-02 | 住友大阪セメント株式会社 | Confirmation method for construction state of sprayed mortar |
JP7472890B2 (en) | 2021-11-08 | 2024-04-23 | Jfeスチール株式会社 | Repair management method and repair management system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1198571A (en) | Monolithic refractory layer for metallurgical vessels and method of application | |
JP5674187B2 (en) | Wet spray construction method | |
CA2081108A1 (en) | Dry refractory composition | |
JP5507262B2 (en) | Aggregate particles for mold | |
JP2010536705A (en) | Heat-resistant substance mixed with calcium by adding calcium carbonate | |
JP2007039255A (en) | Spraying material for repairing lining of steelmaking electric furnace and method for repairing lining of steelmaking electric furnace using the same | |
JP2011156553A (en) | Method for maintaining tundish | |
CN110183213A (en) | A kind of dry working lining and preparation method thereof adding waste refractory materials | |
JP5980612B2 (en) | Aggregate particles and method for producing the same | |
JP2003321276A (en) | Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material | |
JP5324751B2 (en) | Method for spraying irregular refractories, and irregular refractories used for them | |
JP2000344581A (en) | Wet-spraying material for molten steel ladle and method for spraying | |
JP4338193B2 (en) | Wet spraying method for premix material | |
JP5271239B2 (en) | Furnace | |
US20140322442A1 (en) | Calcium enriched refractory material by the addition of calcium carbonate | |
JP6374926B2 (en) | Unfixed refractory for repair and repair method | |
JP5193137B2 (en) | Furnace | |
CN110872192A (en) | Nanometer coating for permanent layer of torpedo ladle and preparation method thereof | |
CN115872730B (en) | Slag-sticking-preventing thermal-state gunning material for ladle, and preparation method and use method thereof | |
JP2006212650A (en) | Method for manufacturing mold | |
JP7441103B2 (en) | Spraying material | |
JP7075026B1 (en) | Mold powder and manufacturing method of mold powder | |
KR100276313B1 (en) | Anti-expandable coating agent for oxidation and coating method using the same | |
JP2001058879A (en) | Substrate-treating agent for material for spray- repairing blast furnace gutter, material for spray- repairing blast furnace gutter, and spray application of blast furnace gutter | |
JP2015178128A (en) | Dry coat material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20120913 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A761 | Written withdrawal of application |
Effective date: 20131106 Free format text: JAPANESE INTERMEDIATE CODE: A761 |
|
A977 | Report on retrieval |
Effective date: 20131111 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131212 |