JP2009038907A - Hysteresis motor and method of manufacturing stator yoke for hysteresis motor - Google Patents

Hysteresis motor and method of manufacturing stator yoke for hysteresis motor Download PDF

Info

Publication number
JP2009038907A
JP2009038907A JP2007201649A JP2007201649A JP2009038907A JP 2009038907 A JP2009038907 A JP 2009038907A JP 2007201649 A JP2007201649 A JP 2007201649A JP 2007201649 A JP2007201649 A JP 2007201649A JP 2009038907 A JP2009038907 A JP 2009038907A
Authority
JP
Japan
Prior art keywords
mass
less
hysteresis motor
stator
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201649A
Other languages
Japanese (ja)
Other versions
JP5207514B2 (en
Inventor
Tomoharu Shigetomi
智治 重富
Junichi Katsuki
淳一 香月
Hiroshi Morikawa
広 森川
Ikuo Takahashi
郁夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Ranco Japan Ltd
Original Assignee
Ranco Japan Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranco Japan Ltd, Nisshin Steel Co Ltd filed Critical Ranco Japan Ltd
Priority to JP2007201649A priority Critical patent/JP5207514B2/en
Publication of JP2009038907A publication Critical patent/JP2009038907A/en
Application granted granted Critical
Publication of JP5207514B2 publication Critical patent/JP5207514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hysteresis motor having a stator yoke which employs a soft magnetic stainless steel plate having excellent AC magnetic characteristics equal to or more than that of an electromagnetic soft iron or a cold rolled steel sheet even at a commercial frequency level of 50-60 Hz and having press-moldability to the stator yoke. <P>SOLUTION: The hysteresis motor is provided with a rotor 6 made of a semi-hard magnetic material and a stator generating a rotary magnetic field affecting the rotor. As stator yokes 3, 4, 7 configuring the stator of the hysteresis motor together with an excitation coil 5, an Fe-Cr-based soft magnetic stainless steel plate is employed which has a constitution containing ≥95% ferrite phase, ≥50 μΩ/cm electric resistivity and a thickness t satisfying (3): t≥0.23÷f<SP>1/2</SP>, where a used frequency is f(kHz). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒステリシスモータ及びそれに用いるステータヨークの製造方法に関する。   The present invention relates to a hysteresis motor and a method of manufacturing a stator yoke used therefor.

永久磁石を有するモータとしては、例えばPM型ステッピングモータやタイマーモータ等がある。それらに対してヒステリシスモータは通電時の回転ムラが小さく同期速度までほぼ一定の出力を持つとともに、非通電時の出力軸の回転に要する回転力が極めて小さいという特性を有している。そして、この特性を生かして、近年、ヒステリシスモータが、スプリングリターン型の分野で利用されている。
ヒステリシスモータは、例えば図1,2に示すように、半硬質磁性材料で形成されたロータと当該ロータに及ぼす回転磁界を発生させる複数のステータを備えている(例えば特許文献1参照)。
Examples of the motor having a permanent magnet include a PM type stepping motor and a timer motor. On the other hand, the hysteresis motor has characteristics that the rotation unevenness when energized is small and has a substantially constant output up to the synchronous speed, and that the rotational force required to rotate the output shaft when not energized is extremely small. In recent years, hysteresis motors have been utilized in the field of spring return type, taking advantage of this characteristic.
As shown in FIGS. 1 and 2, for example, the hysteresis motor includes a rotor formed of a semi-hard magnetic material and a plurality of stators that generate a rotating magnetic field exerted on the rotor (see, for example, Patent Document 1).

そして、励磁コイルとともにヒステリシスモータのステータを構成するステータヨークには、従来、一般的なモータと同様に、電磁軟鉄(SUY),冷間圧延鋼板(SPC),亜鉛めっき鋼板(SEC)等が用いられてきた。電磁軟鉄や冷間圧延鋼板、或いは亜鉛めっき鋼板は直流磁気特性に優れるとともに、ヒステリシスモータの使用周波数である商用周波数レベルの50〜60Hzでの交流磁気特性にも優れている。さらに、電磁軟鉄や冷間圧延鋼板、或いは亜鉛めっき鋼板は軟質でプレス成形性に優れ、ステータヨークのプレス加工にも適している。
特開平11−168863号公報
For the stator yoke that constitutes the stator of the hysteresis motor together with the excitation coil, conventionally, electromagnetic soft iron (SUY), cold-rolled steel plate (SPC), galvanized steel plate (SEC), etc. are used as in the case of general motors. Has been. Electromagnetic soft iron, cold-rolled steel sheet, or galvanized steel sheet is excellent in DC magnetic characteristics, and also excellent in AC magnetic characteristics at a commercial frequency level of 50 to 60 Hz, which is a use frequency of a hysteresis motor. Furthermore, electromagnetic soft iron, cold-rolled steel plate, or galvanized steel plate is soft and excellent in press formability, and is suitable for press working of a stator yoke.
Japanese Patent Laid-Open No. 11-168863

しかしながら、電磁軟鉄や冷間圧延鋼板を使用する場合には、防錆のためにめっきや塗装を施す必要がある。そして、亜鉛めっき鋼板や塗装鋼板を用いる場合には、素材が剥き出しとなる加工端面において十分な耐食性が得られないため、当該部分を再び塗装等の防錆処理を施す必要がある。素材として電磁軟鉄や冷延鋼板を用いる限り、めっきや塗装に欠陥があると腐食が進行し、その腐食生成物が付着すると所望のモータ性能が発揮できなくなる。さらに、めっきや塗装の工程で異物が付着した場合にも、同様にモータ性能を劣化させることがある。このように、めっきや塗装には微小な欠陥や異物の付着も許されないため、多大な労力と費用を用いた厳格な造り込みと検査を行う必要があった。
一方、近年は環境問題などからも、モータの素材に対してめっきや塗装の省略が求められている。
However, when using electromagnetic soft iron or cold rolled steel sheet, it is necessary to apply plating or coating to prevent rust. And when using a galvanized steel plate or a coated steel plate, since sufficient corrosion resistance is not acquired in the process end surface from which a raw material is exposed, it is necessary to perform the rust prevention process of the said part again. As long as electromagnetic soft iron or cold-rolled steel sheet is used as a material, if the plating or coating is defective, corrosion proceeds, and if the corrosion product adheres, desired motor performance cannot be exhibited. Further, when foreign matter adheres during the plating or painting process, the motor performance may be similarly deteriorated. As described above, since minute defects and foreign matters are not allowed to be attached to the plating or coating, it is necessary to perform strict fabrication and inspection using a great deal of labor and cost.
On the other hand, in recent years, it has been required to omit plating and painting of motor materials due to environmental problems.

めっきや塗装を施すことなしに優れた耐食性を発揮する軟磁性材料としては、軟磁性のステンレス鋼板が挙げられる。しかしながら、軟磁性ステンレス鋼板は、電磁軟鉄や冷延鋼板等と比較して直流磁気特性に劣っている。また交流磁気特性についても、電磁軟鉄や冷延鋼板等と同程度の磁束密度が得られるのは、数kHz以上の高周波磁場においてであるとされてきた。
本発明は、このような問題を解消すべく案出されたものであり、50〜60Hzの商用周波数レベルでも電磁軟鉄や冷延鋼板と同等以上の優れた交流磁気特性を維持し、しかもヒステリシスモータ用のステータヨークへのプレス加工が可能なプレス成形性を有する軟磁性のステンレス鋼板、及びその軟磁性ステンレス鋼板を用いたヒステリシスモータを低コストで提供することを目的とする。
An example of a soft magnetic material that exhibits excellent corrosion resistance without being plated or painted is a soft magnetic stainless steel plate. However, the soft magnetic stainless steel plate is inferior in DC magnetic properties as compared with electromagnetic soft iron, cold rolled steel plate and the like. Also, with regard to AC magnetic characteristics, it has been said that a magnetic flux density comparable to that of electromagnetic soft iron, cold-rolled steel sheet, etc. can be obtained in a high-frequency magnetic field of several kHz or more.
The present invention has been devised to solve such problems, and maintains an excellent AC magnetic characteristic equivalent to or better than that of electromagnetic soft iron or cold-rolled steel sheet even at a commercial frequency level of 50-60 Hz, and is a hysteresis motor. An object of the present invention is to provide a soft magnetic stainless steel plate having press formability that can be pressed into a stator yoke and a hysteresis motor using the soft magnetic stainless steel plate at low cost.

本発明のヒステリシスモータは、その目的を達成するため、半硬質磁性材料で形成されたロータと当該ロータに及ぼす回転磁界を発生させるステータを備えたヒステリシスモータであって、励磁コイルとともに当該ヒステリシスモータのステータを構成するステータヨークが、C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下,及び必要に応じてAl:4.0質量%以下,Mo:3質量%以下の一種又は二種を含み、残部がFe及び不可避的不純物からなり、下記式(4)及び(5)を満足する組成を有するとともに、使用周波数をf(kHz)とするとき式(3)を満たす板厚tのFe−Cr系軟磁性ステンレス鋼板で形成されていることを特徴とする。
4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.2 ・・・・(1)
64×%Si+35×%Cr+480×%Ti+25×%Mo+490×%Al
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(2)
t≧0.23÷f1/2 ・・・・(3)
Fe−Cr系軟磁性ステンレス鋼板は、フェライト相が95%以上の組織をもち、50μΩ・cm以上の電気抵抗率を有するものが好ましい。
In order to achieve the object, the hysteresis motor of the present invention is a hysteresis motor including a rotor formed of a semi-hard magnetic material and a stator that generates a rotating magnetic field exerted on the rotor. Stator yoke constituting the stator is C: 0.05 mass% or less, N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass % Or less, P: 0.04 mass% or less, S: 0.01 mass% or less, Cr: 5.0 to 20.0 mass%, Ti: 0.5 mass% or less, and if necessary, Al: 4 0.0 mass% or less, Mo: one or two of 3 mass% or less, the balance being composed of Fe and inevitable impurities, having a composition satisfying the following formulas (4) and (5), and using frequency f (kHz) Then formed by Fe-Cr soft magnetic stainless steel having a thickness t satisfying can formula (3), characterized in that is.
4.3 x% Cr + 19.1 x% Si + 15.1 x% Al + 2.5 x% Mo> 40.2 (1)
64 ×% Si + 35 ×% Cr + 480 ×% Ti + 25 ×% Mo + 490 ×% Al
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (2)
t ≧ 0.23 ÷ f 1/2 (3)
The Fe—Cr soft magnetic stainless steel plate preferably has a structure in which the ferrite phase is 95% or more and has an electrical resistivity of 50 μΩ · cm or more.

また、本発明のヒステリシスモータ用ステータヨークは、C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下,及び必要に応じてAl:4.0質量%以下,Mo:3質量%以下の一種又は二種を含み、残部がFe及び不可避的不純物からなり、下記式(4)及び(5)を満足する組成を有するFe−Cr系ステンレス鋼板を、所定形状にプレス加工した後、真空又は還元性雰囲気中、900℃以上、かつ下記式(6)で定義される温度T(℃)以下で熱処理することにより製造される。
4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.2 ・・・・(4)
64×%Si+35×%Cr+480×%Ti+25×%Mo+490×%Al
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(5)
T(℃)=(64×%Si+35×%Cr+480×%Ti+490×%Al+25×%Mo+480)
−(221×%C+247×%N+40×%Mn+80×%Ni) ・・・・(6)
The stator yoke for a hysteresis motor of the present invention has C: 0.05 mass% or less, N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass% or less, P: 0.04 mass% or less, S: 0.01 mass% or less, Cr: 5.0-20.0 mass%, Ti: 0.5 mass% or less, and as required Fe: having a composition satisfying the following formulas (4) and (5), including one or two of Al: 4.0% by mass or less, Mo: 3% by mass or less, the balance being Fe and inevitable impurities A Cr-based stainless steel sheet is manufactured by pressing into a predetermined shape and then heat-treating in a vacuum or reducing atmosphere at 900 ° C. or higher and at a temperature T (° C.) or lower defined by the following formula (6). .
4.3 x% Cr + 19.1 x% Si + 15.1 x% Al + 2.5 x% Mo> 40.2 (4)
64 ×% Si + 35 ×% Cr + 480 ×% Ti + 25 ×% Mo + 490 ×% Al
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (5)
T (℃) = (64 ×% Si + 35 ×% Cr + 480 ×% Ti + 490 ×% Al + 25 ×% Mo + 480)
-(221 x% C + 247 x% N + 40 x% Mn + 80 x% Ni) (6)

本発明によれば、耐食性に優れるフェライト系ステンレス鋼をベースに、電気抵抗率を高めるとともにマルテンサイト相の生成を抑えるように成分調整された軟磁性ステンレス鋼板をステータヨークの素材として用いることにより、従来の電磁軟鋼や冷延鋼板を用いたものと比べても遜色のないモータ特性を有するヒステリシスモータを提供することができる。
ステータヨークに軟磁性ステンレス鋼を用いたため、めっきや塗装等の防食処理を施す必要がないので、結果的に、低コストでヒステリシスモータを提供することができる。
According to the present invention, based on a ferritic stainless steel having excellent corrosion resistance, by using a soft magnetic stainless steel plate that has been adjusted to suppress the formation of the martensite phase while increasing the electrical resistivity as a material for the stator yoke, It is possible to provide a hysteresis motor having motor characteristics comparable to those using conventional electromagnetic mild steel or cold rolled steel sheet.
Since soft magnetic stainless steel is used for the stator yoke, it is not necessary to perform anticorrosion treatment such as plating or painting, and as a result, a hysteresis motor can be provided at low cost.

本発明者等は、ヒステリシスモータを構成するステータヨーク材として、モータ特性を低下させることなく、また、プレス成形性に優れ、磁気特性を劣化させるめっきや塗装を施すことなしに優れた耐食性を発揮する軟磁性材料について、鋭意検討を重ねてきた。
その結果、フェライト系ステンレス鋼をベースとし、電気抵抗率を高めるとともにマルテンサイト相の生成を抑え、しかも磁気特性を劣化させる析出物が形成されにくい成分組成と熱処理条件を選択することにより、上記課題を達成できることを見出した。
以下に、その内容を詳述する。
As a stator yoke material that constitutes a hysteresis motor, the present inventors show excellent corrosion resistance without deteriorating motor characteristics, excellent press formability, and without performing plating or coating that deteriorates magnetic characteristics. We have made extensive studies on soft magnetic materials.
As a result, based on ferritic stainless steel, by selecting the component composition and heat treatment conditions to increase the electrical resistivity and suppress the formation of martensite phase and to prevent the formation of precipitates that deteriorate the magnetic properties, the above problems I found that I can achieve.
The details will be described below.

一般に、モータの特性低下の一つとしてヨークに流れる渦電流による効率低下が挙げられる。渦電流は電気抵抗率に比例するので、ヨーク素材としては電気抵抗率が高いものが効果的である。本発明で対象とするヒステリシスモータでも、ステータヨークに電気抵抗率が高い材料を用いると、例えばモータ駆動中、交流磁場が発生しているときに渦電流の発生が可及的に抑制される。その結果、鉄損が少なくなる。渦電流が流れ難くなることから、逆磁場も減少し、入力電流を一定とすると、総磁束量が増加し、出力トルクが増大することになる。換言すると、ステータヨークに電気抵抗率が高い材料を用いると、同一出力トルクを得るために励磁コイルに流す電流を少なくすることができ、その結果、銅損も低減できる。   In general, one of the characteristics of the motor is reduced efficiency due to eddy current flowing in the yoke. Since the eddy current is proportional to the electrical resistivity, a yoke material having a high electrical resistivity is effective. Even in the hysteresis motor targeted by the present invention, when a material having high electrical resistivity is used for the stator yoke, for example, generation of eddy current is suppressed as much as possible when an AC magnetic field is generated during motor driving. As a result, iron loss is reduced. Since the eddy current is less likely to flow, the reverse magnetic field also decreases, and when the input current is constant, the total magnetic flux increases and the output torque increases. In other words, when a material having a high electrical resistivity is used for the stator yoke, the current flowing through the exciting coil to obtain the same output torque can be reduced, and as a result, the copper loss can be reduced.

ステータヨークに電気抵抗率が高い材料を用いると、上記のように鉄損及び銅損が低減できることから、モータ自身の発熱も低く抑えられるという効果も期待できる。このような効果は周波数が増加するほど顕著であるが、ステータヨークに電気抵抗率が高く、式(3)により板厚を制限した材料を用いた本発明のヒステリシスモータでは、商用周波数レベルでも、電磁軟鉄や冷延鋼板で作製されたステータヨークを備えた従前のヒステリシスモータと同等以上の電力効率を発揮することができる。   When a material having a high electrical resistivity is used for the stator yoke, the iron loss and the copper loss can be reduced as described above, so that an effect of suppressing the heat generation of the motor itself can be expected. Such an effect becomes more prominent as the frequency increases. However, in the hysteresis motor of the present invention using the material having a high electric resistivity for the stator yoke and the plate thickness limited by the equation (3), even at the commercial frequency level, Power efficiency equal to or higher than that of a conventional hysteresis motor provided with a stator yoke made of electromagnetic soft iron or cold rolled steel sheet can be exhibited.

ステータヨークに耐食性に優れたステンレス鋼板を用いることにより、モータ特性を損なうことなく、電磁軟鉄や冷延鋼板を用いるとき必須であっためっきや塗装を省略することが可能となる。また本発明で用いるFe−Cr系軟磁性ステンレス鋼板は、硬質なマルテンサイト相の生成を抑制して大部分がフェライト相からなる組織を有するものとしているため、加工性が極めて良好で、絞り加工も容易に行える。従来の冷延鋼板を成形加工している製造設備をそのまま用いて所定形状のステータヨークを成形することができる。
したがって、ステータヨークに電気抵抗率が高い軟磁性フェライト系ステンレス鋼板を用いることにより、従来の電磁軟鉄や冷延鋼板を用いたヒステリシスモータと同等以上のモータ特性を有するヒステリシスモータが、結果的に低コストで得られることになる。
By using a stainless steel plate having excellent corrosion resistance for the stator yoke, it is possible to omit plating and coating, which are essential when using electromagnetic soft iron or cold rolled steel plate, without impairing motor characteristics. In addition, the Fe-Cr soft magnetic stainless steel sheet used in the present invention has a structure composed mainly of a ferrite phase by suppressing the formation of a hard martensite phase. Can also be done easily. A stator yoke having a predetermined shape can be formed using a conventional manufacturing facility for forming a cold-rolled steel sheet as it is.
Therefore, by using a soft magnetic ferritic stainless steel plate having a high electrical resistivity for the stator yoke, a hysteresis motor having motor characteristics equivalent to or better than those of conventional hysteresis motors using electromagnetic soft iron or cold-rolled steel plate is consequently reduced. It will be obtained at cost.

電気抵抗率が高いステータヨークを用いる利点は前記の通りであるが、その効果は、電気抵抗率が高いことにより高周波磁場において高い磁束密度が得られることに起因する。
そこで、ヒステリシスモータのステータヨーク材として用いようとするFe−Cr系軟磁性ステンレス鋼板の磁束密度に及ぼす電気伝導率の関係を調査した。
すなわち、電気抵抗率の異なるFe−Cr系軟磁性ステンレス鋼板を磁気リング形状に機械加工し、各種条件下で磁気焼鈍した後、磁束密度を測定した。なお、磁束密度の測定にはB−Hアナライザを使用し、励起磁場の発振周波数kHz,磁場強度1エルステッドの低磁場を測定条件とした。ここで、発振周波数と磁場強度が本発明で適用するヒステリシスモータの使用条件と異なるのは、単に商用周波数レベルで素材を評価すると、Fe−Cr合金の優れた高周波磁気特性が発現されないためであり、適正成分の見極めのために故意に高周波かつ低磁場を用いた。
The advantages of using the stator yoke having a high electrical resistivity are as described above, but the effect is due to the fact that a high magnetic flux density can be obtained in a high-frequency magnetic field due to the high electrical resistivity.
Therefore, the relationship between the electrical conductivity and the magnetic flux density of the Fe—Cr soft magnetic stainless steel sheet to be used as the stator yoke material of the hysteresis motor was investigated.
That is, Fe—Cr soft magnetic stainless steel plates with different electrical resistivity were machined into a magnetic ring shape, magnetically annealed under various conditions, and then the magnetic flux density was measured. The BH analyzer was used for measuring the magnetic flux density, and the measurement conditions were an oscillation frequency kHz of the excitation magnetic field and a low magnetic field with a magnetic field strength of 1 oersted. Here, the reason why the oscillation frequency and the magnetic field strength are different from the usage conditions of the hysteresis motor applied in the present invention is that when the material is simply evaluated at the commercial frequency level, the excellent high-frequency magnetic characteristics of the Fe—Cr alloy are not expressed. In order to determine the proper components, we intentionally used a high frequency and low magnetic field.

その結果は、図3に示す通りである。Fe−Cr系軟磁性ステンレス鋼板の電気抵抗率が50μΩ・cm以上であるとき、磁束密度が顕著に改善されることがわかった。そこで、50μΩ・cm以上の電気抵抗率を示すFe−Cr系ステンレス鋼について成分が電気抵抗率に及ぼす影響を調査した結果、Fe−Cr系ステンレス鋼の電気抵抗率ρは次式で表されることを解明した。したがって、50μΩ・cm以上の電気抵抗率ρを得るために式(4)を設定した。
ρ(μΩ・cm)=4.3%Cr+19.1%Si+15.1%Al+2.5%Mo+9.8
The result is as shown in FIG. It has been found that when the electrical resistivity of the Fe—Cr soft magnetic stainless steel sheet is 50 μΩ · cm or more, the magnetic flux density is remarkably improved. Therefore, as a result of investigating the influence of components on the electrical resistivity of Fe—Cr stainless steel showing an electrical resistivity of 50 μΩ · cm or more, the electrical resistivity ρ of Fe—Cr stainless steel is expressed by the following equation: I clarified that. Therefore, in order to obtain an electrical resistivity ρ of 50 μΩ · cm or more, the formula (4) is set.
ρ (μΩ · cm) = 4.3% Cr + 19.1% Si + 15.1% Al + 2.5% Mo + 9.8

しかしながら、同一組成のFe−Cr系ステンレス鋼から作られた軟磁性部品であっても,焼鈍条件に応じて磁束密度に大きなバラツキが生じることを見出した。磁束密度がばらつく原因を究明するため、熱処理された軟磁性部品の金属組織を観察し、金属組織と磁束密度との関係を調査した。その結果、マルテンサイト相が存在する組織や、マルテンサイト相のないフェライト単相であっても微細な析出物が存在する組織では、同じ組成のFe−Cr系ステンレス鋼板であっても磁束密度、ひいてはモータ特性が著しく低下することがわかった。   However, it has been found that even in soft magnetic parts made of Fe—Cr stainless steel having the same composition, the magnetic flux density varies greatly depending on the annealing conditions. In order to investigate the cause of the variation in magnetic flux density, the metal structure of the heat-treated soft magnetic parts was observed and the relationship between the metal structure and the magnetic flux density was investigated. As a result, in the structure in which the martensite phase exists, or in the structure in which fine precipitates exist even in the ferrite single phase without the martensite phase, the magnetic flux density, even if the Fe-Cr stainless steel sheet has the same composition. As a result, it was found that the motor characteristics deteriorated remarkably.

磁束密度の低下に及ぼすマルテンサイト相の影響は、5体積%以上のマルテンサイト量で顕著になる(図4)。析出物に関しては、1μmを超える大きな粒径では磁束密度への影響がほとんどないが、1μm以下の粒径になると磁束密度への影響が現れる。また、析出物の個数が多いほど磁束密度が低下する傾向がみられ、粒径1μm以下の析出物が6×10個/mm以上の割合で析出していると磁束密度が著しく低下する(図5)。 The influence of the martensite phase on the decrease in magnetic flux density becomes significant when the amount of martensite is 5% by volume or more (FIG. 4). With regard to the precipitate, a large particle size exceeding 1 μm has almost no influence on the magnetic flux density, but when the particle size is 1 μm or less, an influence on the magnetic flux density appears. In addition, as the number of precipitates increases, the magnetic flux density tends to decrease. When precipitates having a particle size of 1 μm or less are deposited at a rate of 6 × 10 5 pieces / mm 2 or more, the magnetic flux density is significantly decreased. (FIG. 5).

以上の結果から、高周波域の励起磁場で使用されるヒステリシスモータで高いモータ特性を得るためには、50μΩ・cm以上の電気抵抗率に加え、部品形状に加工し磁気焼鈍した後での金属組織においてマルテンサイト量が5体積%未満で且つ粒径1μm以下の析出物が6×10個/mm以下に規制されたFe−Cr系ステンレス鋼板が好ましいといえる。
粒径1μm以下の微細析出物は、Fe−Cr系ステンレス鋼を900℃以上に加熱することにより著しく減少する。熱処理による微細析出物の減少は、均熱0分以上(好ましくは30分以上)で実効的になる。しかし、高すぎる熱処理温度では,Fe−Cr系ステンレス鋼がγ域まで昇温し、冷却過程でマルテンサイト相が生成しやすくなる。
From the above results, in order to obtain high motor characteristics with a hysteresis motor used in an excitation magnetic field in a high frequency range, in addition to an electric resistivity of 50 μΩ · cm or more, the metal structure after being processed into a part shape and magnetically annealed In this case, it can be said that a Fe—Cr-based stainless steel sheet in which the amount of martensite is less than 5% by volume and the number of precipitates having a particle size of 1 μm or less is regulated to 6 × 10 5 pieces / mm 2 or less is preferable.
Fine precipitates having a particle size of 1 μm or less are remarkably reduced by heating the Fe—Cr stainless steel to 900 ° C. or higher. The reduction of fine precipitates by the heat treatment becomes effective when soaking is 0 minutes or more (preferably 30 minutes or more). However, when the heat treatment temperature is too high, the Fe—Cr stainless steel is heated to the γ region, and a martensite phase is easily generated during the cooling process.

また、900℃以下の加熱温度でγ相が生成するような鋼種では、磁束密度向上に有効なフェライト単相で微細な析出物が少ない金属組織に改質できない。工業炉での温度制御精度を考慮すると、マルテンサイト相が生成せず且つ微細析出物が少ない金属組織が得られる熱処理温度範囲としては、目標温度に対して最低でも±20℃,理想的には±50℃以上の温度幅が必要である。   In addition, in a steel type in which a γ phase is generated at a heating temperature of 900 ° C. or less, it cannot be reformed into a metal structure with a single ferrite phase that is effective in improving the magnetic flux density and few fine precipitates. Considering the temperature control accuracy in an industrial furnace, the heat treatment temperature range in which a martensitic phase is not generated and a metal structure with few fine precipitates is obtained is at least ± 20 ° C, ideally at the target temperature. A temperature range of ± 50 ° C. or more is required.

そこで、オーステナイト生成開始温度T(℃)に及ぼす成分の影響を調査し、前掲の式(6)を得た。また、微細な析出物を生じることなく且つマルテンサイトの生成を防止するためには、オーステナイト生成開始温度Tを900℃以上に設定する必要がある。さらに、工業炉での温度制御精度を考慮すると、目標温度に対して最低でも±20℃以上の温度幅が必要である。   Therefore, the influence of the component on the austenite generation start temperature T (° C.) was investigated, and the above formula (6) was obtained. In order to prevent the formation of martensite without producing fine precipitates, it is necessary to set the austenite generation start temperature T to 900 ° C. or higher. Furthermore, in consideration of the temperature control accuracy in an industrial furnace, a temperature range of ± 20 ° C. or more is required at the minimum with respect to the target temperature.

したがって、T(℃)≧940℃とし、これに式(6)を代入すると前掲の式(4)が得られる。さらに、磁気特性向上を狙ってマルテンサイトの生成がなく結晶粒径を大きくするためには、熱処理温度を940℃以上に設定することが好ましく、理想的にはオーステナイト生成開始温度Tを980℃以上に設定する。
以上のように、オーステナイト生成開始温度Tを高くするSi等のフェライト安定化元素を添加するとフェライト単層の金属組織が得られやすくなる。しかし、フェライト安定化元素を多量に添加すると、圧延性、プレス加工性等が低下し、表面疵発生等の問題も派生する。
Therefore, T (° C.) ≧ 940 ° C. and substituting equation (6) into this yields equation (4) above. Furthermore, in order to increase the crystal grain size without generating martensite with the aim of improving magnetic properties, the heat treatment temperature is preferably set to 940 ° C. or higher, and ideally the austenite generation start temperature T is set to 980 ° C. or higher. Set to.
As described above, when a ferrite stabilizing element such as Si that increases the austenite generation start temperature T is added, a metal structure of a ferrite single layer is easily obtained. However, if a large amount of ferrite stabilizing element is added, the rollability, press workability and the like are lowered, and problems such as surface flaws are also derived.

5体積%以下のマルテンサイト量域では、磁束密度の低下傾向は大幅に小さい(図4)。フェライト化強度(11.5×%Si+11.5×%Cr+49×%Ti+12×%Mo+52×%Al)とオーステナイト化強度(420×%C+470×%N+7×%Mn+23×%Ni)との間に124以上の差をつけると、1030℃程度の温度までFe−Cr系鋼を加熱してもオーステナイト相が生成しないため、マルテンサイトの生成量が大幅に抑えられる。   In the martensite amount region of 5% by volume or less, the decreasing tendency of the magnetic flux density is significantly small (FIG. 4). Ferrite strength (11.5 ×% Si + 11.5 ×% Cr + 49 ×% Ti + 12 ×% Mo + 52 ×% Al) and austenitizing strength (420 ×% C + 470 ×% N + 7 ×% Mn + 23 ×% Ni) If a difference of 124 or more is provided between them, since the austenite phase is not generated even when the Fe—Cr steel is heated to a temperature of about 1030 ° C., the amount of martensite generated can be greatly suppressed.

フェライト化強度とオーステナイト化強度との差が大きくなるほどオーステナイト生成開始温度Tが上昇し、フェライト単相の金属組織が得られやすくなる。しかし、フェライト化強度とオーステナイト化強度との差を大きくするためには多量のフェライト形成元素を添加する必要があり、圧延性,プレス加工性の劣化や表面傷の発生等の問題が派生する。そこで、本発明のFe−Cr系合金では含有成分を後述する範囲に定める必要がある。   The larger the difference between the ferritization strength and the austenitization strength, the higher the austenite generation start temperature T, and it becomes easier to obtain a ferrite single-phase metal structure. However, in order to increase the difference between the ferritic strength and the austenitic strength, it is necessary to add a large amount of ferrite-forming elements, which leads to problems such as deterioration of rolling properties and press workability and generation of surface flaws. Therefore, in the Fe—Cr based alloy of the present invention, it is necessary to set the contained components within the range described later.

板圧が薄いとステータヨークの断面積が小さく、ヨークそのものの電気抵抗は大きくなる。そのため、素材の電気抵抗率の影響が小さくなる。ところが、板厚がある程度厚くなると、ヨークそのものの電気抵抗は低下し、素材の電気抵抗率の影響が大きくなる。すなわち、板厚が前掲の式(3)を満たす場合、本発明のFe−Cr系鋼は電磁軟鉄や冷延鋼板と比較して渦電流損を軽減する効果が大きくなる。   When the plate pressure is thin, the cross-sectional area of the stator yoke is small, and the electric resistance of the yoke itself is large. Therefore, the influence of the electrical resistivity of the material is reduced. However, when the plate thickness increases to some extent, the electrical resistance of the yoke itself decreases, and the influence of the electrical resistivity of the material increases. That is, when the plate thickness satisfies the above formula (3), the Fe—Cr steel of the present invention has a greater effect of reducing eddy current loss than electromagnetic soft iron or cold rolled steel plate.

次に、本発明で特定したFe−Cr系軟磁性ステンレス鋼の成分組成を具体的に説明する。
ヒステリシスモータとしての使用環境で必要な耐食性を有し、しかも複雑なステータヨーク形状をプレス加工により成形可能な優れた成形性を持たせるために、以下の通り各成分を限定した。
Next, the component composition of the Fe—Cr soft magnetic stainless steel specified in the present invention will be specifically described.
Each component was limited as follows in order to provide corrosion resistance necessary in the usage environment as a hysteresis motor and to have excellent formability capable of forming a complicated stator yoke shape by press working.

C:0.05質量%以下
軟磁性材料用のFe−Cr系鋼では、マルテンサイトの生成を促進させるとともに、炭化物の析出量を増大させ磁気特性を劣化させる有害元素である。また、材質を硬化させ,プレス加工性を劣化させる元素でもある。このような影響を抑制するため、C含有量の上限を0.05質量%に設定した。
C: 0.05% by mass or less Fe-Cr steel for soft magnetic materials is a harmful element that promotes the formation of martensite and increases the amount of precipitation of carbides to deteriorate magnetic properties. It is also an element that hardens the material and degrades press workability. In order to suppress such an influence, the upper limit of C content was set to 0.05 mass%.

N:0.05質量%以下
Cと同様にマルテンサイトの生成を促進させ、Fe−Cr系鋼を硬質化してプレス加工性を劣化させるとともに、AlやTi等と窒化物を形成して磁気特性を劣化させる有害成分である。そのため、N含有量は低く抑えるひつようがあり、上限を0.05質量%に設定した。
N: 0.05% by mass or less Like C, promotes the formation of martensite, hardens the Fe-Cr steel to deteriorate the press workability, and forms nitrides with Al, Ti, etc. to form magnetic characteristics It is a harmful component that degrades Therefore, there is a need to keep the N content low, and the upper limit is set to 0.05% by mass.

Si:3.0質量%以下
増加に伴い電気抵抗率が増大するために、高周波磁気特性を向上させるのに有効な合金成分である。また、軟磁気特性に有害なマルテンサイトの生成を抑制する作用も呈する。しかし、材質を著しく硬化する成分であり、過剰添加はプレス加工性の著しい低下を導く。したがって,Si含有量の上限を3.0質量%に設定した。
Si: Since the electrical resistivity increases with an increase of 3.0% by mass or less , it is an effective alloy component for improving high-frequency magnetic properties. It also exhibits the effect of suppressing the formation of martensite that is harmful to soft magnetic properties. However, it is a component that significantly hardens the material, and excessive addition leads to a significant decrease in press workability. Therefore, the upper limit of the Si content is set to 3.0% by mass.

Mn:1.0質量%以下
製鋼時にスクラップ等から混入する不純物成分であり、マルテンサイトの生成を促進させて磁気特性を劣化させる作用を呈する。そのため、Mn含有量の上限を1.0質量%に設定した。
Ni:1.0質量%以下
Mnと同様に製鋼時にスクラップ等から混入する不純物成分であり、マルテンサイトの生成を促進させて磁気特性を劣化させる作用を呈する。そのため、Ni含有量の上限を1.0質量%に設定した。
Mn: 1.0% by mass or less An impurity component mixed from scraps or the like at the time of steelmaking, and has the effect of promoting martensite generation and deteriorating magnetic properties. Therefore, the upper limit of the Mn content is set to 1.0% by mass.
Ni: 1.0% by mass or less Like Mn, it is an impurity component mixed from scraps or the like during steelmaking, and has the effect of accelerating the formation of martensite and deteriorating magnetic properties. Therefore, the upper limit of the Ni content is set to 1.0% by mass.

P:0.04質量%以下
軟磁特性に有害な燐化物を形成するので、上限を0.04質量%に設定した。
S:0.01質量%以下
軟磁特性に有害な硫化物を形成するので、上限を0.01質量%に設定した。
P: 0.04 mass% or less An upper limit is set to 0.04 mass% because phosphides harmful to the soft magnetic properties are formed.
S: 0.01% by mass or less An upper limit is set to 0.01% by mass because sulfides harmful to soft magnetic properties are formed.

Cr:5.0〜20.0質量%
Siと同様にマルテンサイトの生成を抑制し、電気抵抗率を増加させ、高周波磁場での磁束密度を増加させる有効成分である。また、耐食性の向上にも有効である。このような作用・効果は、5.0質量%以上のCr含有量で顕著になる。好ましくは、10質量%以上である。しかし、20.0質量%を超えるCrの過剰添加は、飽和磁束密度を低下させるとともに、材質を硬化しプレス加工性を劣化させる。このため、Cr含有量は5.0〜20.0質量%とした。
Cr: 5.0-20.0 mass%
Like Si, it is an active ingredient that suppresses the formation of martensite, increases the electrical resistivity, and increases the magnetic flux density in the high-frequency magnetic field. It is also effective in improving corrosion resistance. Such actions and effects become remarkable when the Cr content is 5.0% by mass or more. Preferably, it is 10 mass% or more. However, excessive addition of Cr exceeding 20.0% by mass lowers the saturation magnetic flux density and hardens the material to deteriorate the press workability. For this reason, Cr content was 5.0-20.0 mass%.

Ti:0.5質量%以下
Cr,Moと同様にマルテンサイトの生成を抑制する作用を呈する。しかし、過剰の添加は、Ti系介在物に起因する表面傷を惹起させることから、Ti含有量の上限を0.5質量%に設定した。
Ti: 0.5% by mass or less Like Cr and Mo, it exhibits the action of suppressing the formation of martensite. However, excessive addition causes surface scratches due to Ti inclusions, so the upper limit of Ti content was set to 0.5 mass%.

Al:4.0質量%以下
Si,Crと同様にマルテンサイト相の生成を抑制して電気抵抗率を大きく増加させ、高周波磁場における磁束密度を増加させるのに有効な合金成分であり必要に応じて添加される。しかし、Alの過剰添加はAl系介在物に起因する表面傷を惹起させることから、添加する場合は4.0質量%を上限とする。
Al: 4.0 mass% or less Like Si and Cr, it is an alloy component effective for suppressing the formation of martensite phase to greatly increase the electrical resistivity and increasing the magnetic flux density in the high frequency magnetic field. Added. However, excessive addition of Al causes surface flaws caused by Al inclusions, so when added, the upper limit is 4.0 mass%.

Mo:3質量%以下
Cr,Si,Alと同様にマルテンサイトの生成を抑制して電気抵抗率を増加させ、高周波磁場での磁束密度を増大するのに有効な合金成分であり必要に応じて添加される。しかし、過剰添加は材質を著しく硬質化しプレス加工性を劣化させることから、添加する場合は3質量%を上限とする。
Mo: 3% by mass or less As with Cr, Si, Al, it is an alloy component that is effective in suppressing the formation of martensite and increasing the electrical resistivity and increasing the magnetic flux density in the high-frequency magnetic field. Added. However, excessive addition makes the material extremely hard and deteriorates press workability, so when it is added, the upper limit is 3% by mass.

上記のように成分調整されたFe−Cr系ステンレス鋼からなる所定板厚の板材をプレス加工し、前記したように900℃以上であって、式(4)で定義される温度T(℃)以上で熱処理すると、マルテンサイト相の生成が抑制され、フェライト相が体積%で95%以上占め、かつ微細の析出物が極めて少ない軟磁性材料が得られる。
熱処理の際、表面状態を悪化させないためには、真空又は還元性雰囲気中で加熱する必要がある。
A plate material having a predetermined plate thickness made of Fe—Cr stainless steel whose components are adjusted as described above is pressed, and as described above, the temperature is 900 ° C. or higher, and the temperature T (° C.) defined by Equation (4) When the heat treatment is performed as described above, the formation of a martensite phase is suppressed, and a soft magnetic material is obtained in which the ferrite phase occupies 95% or more by volume and very little fine precipitates are obtained.
In order to prevent the surface state from being deteriorated during the heat treatment, it is necessary to heat in a vacuum or a reducing atmosphere.

実施例1;
表1の組成をもつFe−Cr系鋼をそれぞれ高周波真空溶解炉で溶製し、鍛造,熱間圧延,冷間圧延,仕上げ焼鈍,酸洗の工程を経て、板厚2.0mmのFe−Cr系軟磁性鋼素材を製造した。
Example 1;
Each of the Fe—Cr steels having the composition shown in Table 1 was melted in a high-frequency vacuum melting furnace, and after forging, hot rolling, cold rolling, finish annealing, and pickling, Fe— A Cr-based soft magnetic steel material was manufactured.

得られた各Fe−Cr系軟磁性鋼素材から試験片を切り出し、表2の条件で磁気焼鈍した。磁気焼鈍された外径45mm,内径33mmのリング試験片について、周波数1kHz,印加磁場1エルステッドの条件下でB−Hアナライザを用いて磁束密度Bを測定した。
また、試験片断面をフッ硝酸グリセリン液(HF:HNO:グリセリン=2:1:2)でエッチングし、光学顕微鏡を用いたポイントカウント法でマルテンサイト量を測定した。同じ試験片をスピード法でエッチングし、走査型顕微鏡を用いてモニター画面に現れた粒径1μm以下の微細析出物の個数をカウントし、1mm当りの個数として測定した。さらに、幅5mm,長さ150mmの試験片について、ホイートストンブリッジ法で電気抵抗率を測定した。
A test piece was cut out from each of the obtained Fe—Cr soft magnetic steel materials and magnetically annealed under the conditions shown in Table 2. The magnetic flux density B was measured using a BH analyzer on a magnetically annealed ring specimen having an outer diameter of 45 mm and an inner diameter of 33 mm under conditions of a frequency of 1 kHz and an applied magnetic field of 1 Oersted.
Moreover, the cross section of the test piece was etched with a glyceryl nitrate solution (HF: HNO 3 : glycerin = 2: 1: 2), and the amount of martensite was measured by a point count method using an optical microscope. The same specimen was etched by the speed method, and the number of fine precipitates having a particle size of 1 μm or less that appeared on the monitor screen was counted using a scanning microscope, and the number per 1 mm 2 was measured. Furthermore, the electrical resistivity of the test piece having a width of 5 mm and a length of 150 mm was measured by the Wheatstone bridge method.

別途、Fe−Cr系軟磁性鋼素材をプレス加工してヒステリシスモータ用ステータヨークを作製し、磁気リングと同じ条件下で磁気焼鈍した。プレス加工に際しては、加工後の部品を観察して、寸法精度と割れの有無によってプレス加工性を評価した。
プレス加工性は、プレス成形後の寸法を測定し、目標寸法との誤差、すなわち寸歩精度により評価し、その精度が0.25%以下を○,0.25〜0.5%を△,0.5%以上又は割れが認められたものを×で評価した。
Separately, a Fe-Cr soft magnetic steel material was pressed to produce a stator yoke for a hysteresis motor, and was magnetically annealed under the same conditions as the magnetic ring. During the press working, the processed parts were observed, and the press workability was evaluated based on the dimensional accuracy and the presence or absence of cracks.
The press workability is measured by measuring the dimensions after press molding and evaluating the error from the target dimension, that is, the step accuracy. The accuracy is 0.25% or less, 0.25 to 0.5% is △, 0.5% or more or the thing by which the crack was recognized was evaluated by x.

Figure 2009038907
Figure 2009038907

調査結果を焼鈍条件と共に表2に示す。
本発明に従って電気抵抗率,マルテンサイト量及び微細析出物の個数が規制された試験番号1〜9では、50μΩ・cm以上の電気抵抗率を有するとともに500G以上の高い磁束密度が得られ、またプレス加工性にも優れていた。
他方、合金No.B1のFe−Cr系軟磁性鋼素材は、粒径1μm以下の微細析出物が多数生成し、その個数が6×10/mmを超えていたため磁束密度の低下が著しかった。
The survey results are shown in Table 2 together with the annealing conditions.
In Test Nos. 1 to 9 in which the electrical resistivity, martensite amount and the number of fine precipitates are regulated according to the present invention, an electrical resistivity of 50 μΩ · cm or more and a high magnetic flux density of 500 G or more are obtained, and press Excellent workability.
On the other hand, Alloy No. In the Fe-Cr soft magnetic steel material of B1, a large number of fine precipitates having a particle size of 1 μm or less were generated, and the number thereof exceeded 6 × 10 5 / mm 2 , so that the magnetic flux density was significantly reduced.

成分的には同じFe−Cr系軟磁性鋼素材を使用した場合でも、磁気焼鈍温度が低すぎる試験番号13では、粒径1μm以下の微細析出物が多数生成しており、磁束密度の低下が著しかった。逆に磁気焼鈍温度が高すぎる試験番号14では、磁気焼鈍後に多量のマルテンサイトが生成し、磁束密度の低下が著しかった。また加工性も悪かった。   Even when the same Fe—Cr soft magnetic steel material is used in terms of component, in test number 13 where the magnetic annealing temperature is too low, a large number of fine precipitates having a particle size of 1 μm or less are generated, and the magnetic flux density is reduced. It was written. On the other hand, in test number 14 where the magnetic annealing temperature was too high, a large amount of martensite was generated after magnetic annealing, and the decrease in magnetic flux density was remarkable. The processability was also poor.

Figure 2009038907
Figure 2009038907

実施例2;
本発明に基づく組成をもつFe−Cr系鋼及び通常の電磁軟鋼をそれぞれ高周波真空溶解炉で溶製し、鍛造,熱間圧延,冷間圧延,仕上げ焼鈍,酸洗の工程を経て、板厚0.3〜2.0mmのFe−Cr系軟磁性鋼素材を製造した。
得られた各鋼素材から外径45mm,内径33mmのリング試験片を切り出し、温度950℃,均熱2時間,真空中加熱の条件で磁気焼鈍した。磁気焼鈍されたリング試験片について、周波数0.05〜5kHz,印加磁場10エルステッドの条件下でB−Hアナライザを用いて磁束密度を測定した。
Example 2;
The Fe-Cr steel having the composition based on the present invention and ordinary electromagnetic mild steel are respectively melted in a high-frequency vacuum melting furnace and subjected to forging, hot rolling, cold rolling, finish annealing, and pickling processes, and then the plate thickness A 0.3 to 2.0 mm Fe—Cr soft magnetic steel material was produced.
A ring test piece having an outer diameter of 45 mm and an inner diameter of 33 mm was cut out from each of the obtained steel materials and magnetically annealed under the conditions of a temperature of 950 ° C., a soaking temperature of 2 hours, and heating in a vacuum. About the magnetically annealed ring test piece, the magnetic flux density was measured using a BH analyzer under the conditions of a frequency of 0.05 to 5 kHz and an applied magnetic field of 10 oersted.

本発明に基づく組成をもつFe−Cr系鋼と電磁軟鋼について、同じ板厚のリング状試験片での電磁密度を比較し、本発明に基づく組成をもつFe−Cr系鋼の電磁密度が電磁軟鋼の磁束密度を10%下回る周波数を図6にプロットした。
図5において、プロットを結び線は式(3)で表わされる。図6中、式(3)で表わされる曲線を境界に、上方領域では、本発明に基づく化学組成のFe−Cr系鋼の磁束密度は電磁軟鋼の磁束密度と同等以上になっている。
t≧0.23÷f1/2 ・・・・(3)
For Fe-Cr steel and electromagnetic mild steel having the composition based on the present invention, the electromagnetic densities of ring-shaped test pieces having the same plate thickness are compared, and the electromagnetic density of the Fe-Cr steel having the composition based on the present invention is The frequencies that are 10% below the magnetic flux density of mild steel are plotted in FIG.
In FIG. 5, the line connecting the plots is expressed by equation (3). In FIG. 6, the magnetic flux density of the Fe—Cr steel having the chemical composition based on the present invention is equal to or higher than the magnetic flux density of the electromagnetic mild steel in the upper region with the curve represented by the formula (3) as the boundary.
t ≧ 0.23 ÷ f 1/2 (3)

実施例3;
本発明のFe−Cr系軟磁性ステンレス鋼板及び亜鉛めっき鋼板からなる同形状のステータヨークを用意し、励磁コイル及びロータの材質と構造は同じものとして2種のヒステリシスモータを構成した。そして、各ヒステリシスモータについて、次の手法により、各種モータ特性を測定した。また、一定出力を得るに必要な電圧と電流値から消費電力を算出した。
励磁コイルを一定出力とし、過負荷状態から徐々に負荷を軽減し、モータが回転し始める荷重を起動トルクとした。また、励磁コイルを一定出力とし、無負荷で回転し続けるモータへ負荷を与え、モータの回転が停止する荷重を制動トルクとした。さらに、一定出力で一定時間運転したモータを停止し、逆回転方向に徐々に負荷を与え、逆回転し始める荷重をリターントルクとした。
測定結果を図7に示す。
Example 3;
A stator yoke having the same shape made of the Fe—Cr soft magnetic stainless steel plate and galvanized steel plate of the present invention was prepared, and two types of hysteresis motors were constructed with the same material and structure of the exciting coil and rotor. And about each hysteresis motor, various motor characteristics were measured with the following method. The power consumption was calculated from the voltage and current values necessary to obtain a constant output.
The excitation coil was set to a constant output, the load was gradually reduced from the overload state, and the load at which the motor started rotating was taken as the starting torque. Further, the excitation coil was set to a constant output, a load was applied to the motor that continued to rotate without load, and the load at which the rotation of the motor stopped was defined as the braking torque. Furthermore, the motor operated for a certain time at a constant output was stopped, a load was gradually applied in the reverse rotation direction, and the load that started reverse rotation was defined as return torque.
The measurement results are shown in FIG.

図7に見られるように、本発明のFe−Cr系軟磁性ステンレス鋼をステータヨークに用いた場合、従来の亜鉛めっき鋼板性のステータヨークを用いたヒステリシスモータと同等以上のモータ特性を発揮することができる。
耐食性に優れたFe−Cr系ステンレス鋼が用いられるため防錆のためのめっきや塗装が不要となり、結果的に同等以上のモータ特性を有するヒステリシスモータが低コストで得られることになる。
As shown in FIG. 7, when the Fe—Cr soft magnetic stainless steel of the present invention is used for a stator yoke, it exhibits motor characteristics equivalent to or better than those of a conventional hysteresis motor using a galvanized steel plate-shaped stator yoke. be able to.
Since Fe-Cr stainless steel having excellent corrosion resistance is used, plating and coating for rust prevention are unnecessary, and as a result, a hysteresis motor having motor characteristics equal to or higher than that can be obtained at low cost.

ヒステリシスモータの構造を概略的に説明する分解斜視図Exploded perspective view schematically explaining structure of hysteresis motor ヒステリシスモータの構造を概略的に説明する断面図Sectional view schematically explaining the structure of the hysteresis motor 電気抵抗率と磁束密度との関係を示すグラフGraph showing the relationship between electrical resistivity and magnetic flux density 素材鋼のマルテンサイト量と磁束密度の関係を示すグラフGraph showing the relationship between the amount of martensite and magnetic flux density 析出物の数と磁束密度の関係を示すグラフGraph showing the relationship between the number of precipitates and magnetic flux density ステータヨークに用いる素材の磁束密度に及ぼす使用周波数と板厚の関係を示すグラフGraph showing the relationship between operating frequency and plate thickness on the magnetic flux density of the material used for the stator yoke ステータヨークに用いた素材鋼種とモータ特性の関係を示すグラフGraph showing the relationship between the steel grade used for the stator yoke and the motor characteristics

符号の説明Explanation of symbols

1:カップ 2:回転軸 3,4,7:ステータヨーク 5:コイル
6:ロータ
1: Cup 2: Rotating shaft 3, 4, 7: Stator yoke 5: Coil
6: Rotor

Claims (5)

半硬質磁性材料で形成されたロータと当該ロータに及ぼす回転磁界を発生させるステータを備えたヒステリシスモータであって、励磁コイルとともに当該ヒステリシスモータのステータを構成するステータヨークが、C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下を含み、残部がFe及び不可避的不純物からなり、下記式(1)及び(2)を満足する組成を有するとともに、使用周波数をf(kHz)とするとき式(3)を満たす板厚tのFe−Cr系軟磁性ステンレス鋼板で形成されていることを特徴とするヒステリシスモータ。
4.3×%Cr+19.1×%Si≧40.2 ・・・・(1)
64×%Si+35×%Cr+480×%Ti
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(2)
t≧0.23÷f1/2 ・・・・(3)
A hysteresis motor including a rotor formed of a semi-rigid magnetic material and a stator that generates a rotating magnetic field exerted on the rotor, and a stator yoke that constitutes the stator of the hysteresis motor together with an excitation coil is C: 0.05 mass %: N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass% or less, P: 0.04 mass% or less, S: 0.01% by mass or less, Cr: 5.0 to 20.0% by mass, Ti: 0.5% by mass or less, with the balance being Fe and inevitable impurities, and the following formulas (1) and (2) A hysteresis motor characterized by being formed of an Fe—Cr soft magnetic stainless steel plate having a thickness t that satisfies the formula (3) when the operating frequency is f (kHz) and has a satisfactory composition.
4.3 ×% Cr + 19.1 ×% Si ≧ 40.2 (1)
64 ×% Si + 35 ×% Cr + 480 ×% Ti
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (2)
t ≧ 0.23 ÷ f 1/2 (3)
半硬質磁性材料で形成されたロータと当該ロータに及ぼす回転磁界を発生させるステータを備えたヒステリシスモータであって、励磁コイルとともに当該ヒステリシスモータのステータを構成するステータヨークが、C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下を含み、さらにAl:4.0質量%以下,Mo:3質量%以下の一種又は二種を含み、残部がFe及び不可避的不純物からなり、下記式(4)及び(5)を満足する組成を有するとともに、使用周波数をf(kHz)とするとき式(3)を満たす板厚tのFe−Cr系軟磁性ステンレス鋼板で形成されていることを特徴とするヒステリシスモータ。
4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.2 ・・・・(4)
64×%Si+35×%Cr+480×%Ti+25×%Mo+490×%Al
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(5)
t≧0.23÷f1/2 ・・・・(3)
A hysteresis motor including a rotor formed of a semi-rigid magnetic material and a stator that generates a rotating magnetic field exerted on the rotor, and a stator yoke that constitutes the stator of the hysteresis motor together with an excitation coil is C: 0.05 mass %: N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass% or less, P: 0.04 mass% or less, S: 0.01% by mass or less, Cr: 5.0 to 20.0% by mass, Ti: 0.5% by mass or less, Al: 4.0% by mass or less, Mo: 3% by mass or less Thickness t that includes seeds, the balance is Fe and inevitable impurities, has a composition that satisfies the following formulas (4) and (5), and satisfies the formula (3) when the operating frequency is f (kHz) Fe-Cr soft magnetic stainless steel Hysteresis motor, characterized in that it is formed by the scan steel.
4.3 x% Cr + 19.1 x% Si + 15.1 x% Al + 2.5 x% Mo> 40.2 (4)
64 ×% Si + 35 ×% Cr + 480 ×% Ti + 25 ×% Mo + 490 ×% Al
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (5)
t ≧ 0.23 ÷ f 1/2 (3)
Fe−Cr系軟磁性ステンレス鋼板は、フェライト相が95%以上の組織をもち、50μΩ・cm以上の電気抵抗率を有するものである請求項1又は2に記載のヒステリシスモータ。   The hysteresis motor according to claim 1 or 2, wherein the Fe-Cr soft magnetic stainless steel plate has a structure in which a ferrite phase is 95% or more and has an electric resistivity of 50 µΩ · cm or more. C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下を含み、残部がFe及び不可避的不純物からなり、下記式(1)及び(2)を満足する組成を有するFe−Cr系ステンレス鋼板を、所定形状にプレス加工した後、真空又は還元性雰囲気中、900℃以上、かつ下記式(6)で定義される温度T(℃)以下で熱処理することを特徴とするヒステリシスモータ用ステータヨークの製造方法。
4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.2 ・・・・(1)
64×%Si+35×%Cr+480×%Ti+25×%Mo+490×%Al
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(2)
T(℃)=(64×%Si+35×%Cr+480×%Ti+490×%Al+25×%Mo+480)
−(221×%C+247×%N+40×%Mn+80×%Ni) ・・・・(6)
C: 0.05 mass% or less, N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass% or less, P: 0.04 Including mass% or less, S: 0.01 mass% or less, Cr: 5.0 to 20.0 mass%, Ti: 0.5 mass% or less, with the balance being Fe and inevitable impurities, ) And (2) are pressed into a predetermined shape, and the temperature T defined by the following formula (6) is 900 ° C. or higher in a vacuum or reducing atmosphere. A method of manufacturing a stator yoke for a hysteresis motor, wherein the heat treatment is performed at (° C.) or less.
4.3 x% Cr + 19.1 x% Si + 15.1 x% Al + 2.5 x% Mo> 40.2 (1)
64 ×% Si + 35 ×% Cr + 480 ×% Ti + 25 ×% Mo + 490 ×% Al
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (2)
T (℃) = (64 ×% Si + 35 ×% Cr + 480 ×% Ti + 490 ×% Al + 25 ×% Mo + 480)
-(221 x% C + 247 x% N + 40 x% Mn + 80 x% Ni) (6)
C:0.05質量%以下,N:0.05質量%以下,Si:3.0質量%以下,Mn:1.0質量%以下,Ni:1.0質量%以下,P:0.04質量%以下,S:0.01質量%以下,Cr:5.0〜20.0質量%,Ti:0.5質量%以下を含み、さらにAl:4.0質量%以下,Mo:3質量%以下の一種又は二種を含み、残部がFe及び不可避的不純物からなり、下記式(4)及び(5)を満足する組成を有するFe−Cr系ステンレス鋼板を、所定形状にプレス加工した後、真空又は還元性雰囲気中、900℃以上、かつ下記式(6)で定義される温度T(℃)以下で熱処理することを特徴とするヒステリシスモータ用ステータヨークの製造方法。
4.3×%Cr+19.1×%Si+15.1×%Al+2.5×%Mo≧40.2 ・・・・(4)
64×%Si+35×%Cr+480×%Ti+25×%Mo+490×%Al
≧221×%C+247×%N+40×%Mn+80×%Ni+460 ・・・・(5)
T(℃)=(64×%Si+35×%Cr+480×%Ti+490×%Al+25×%Mo+480)
−(221×%C+247×%N+40×%Mn+80×%Ni) ・・・・(6)
C: 0.05 mass% or less, N: 0.05 mass% or less, Si: 3.0 mass% or less, Mn: 1.0 mass% or less, Ni: 1.0 mass% or less, P: 0.04 Including mass% or less, S: 0.01 mass% or less, Cr: 5.0 to 20.0 mass%, Ti: 0.5 mass% or less, Al: 4.0 mass% or less, Mo: 3 mass % Of Fe-Cr stainless steel sheet having a composition satisfying the following formulas (4) and (5), including one or two types of the following: A method of manufacturing a stator yoke for a hysteresis motor, wherein the heat treatment is performed at a temperature of 900 ° C. or higher and a temperature T (° C.) or lower defined by the following formula (6) in a vacuum or a reducing atmosphere.
4.3 x% Cr + 19.1 x% Si + 15.1 x% Al + 2.5 x% Mo> 40.2 (4)
64 ×% Si + 35 ×% Cr + 480 ×% Ti + 25 ×% Mo + 490 ×% Al
≧ 221 ×% C + 247 ×% N + 40 ×% Mn + 80 ×% Ni + 460 (5)
T (℃) = (64 ×% Si + 35 ×% Cr + 480 ×% Ti + 490 ×% Al + 25 ×% Mo + 480)
-(221 x% C + 247 x% N + 40 x% Mn + 80 x% Ni) (6)
JP2007201649A 2007-08-02 2007-08-02 Hysteresis motor Active JP5207514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201649A JP5207514B2 (en) 2007-08-02 2007-08-02 Hysteresis motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201649A JP5207514B2 (en) 2007-08-02 2007-08-02 Hysteresis motor

Publications (2)

Publication Number Publication Date
JP2009038907A true JP2009038907A (en) 2009-02-19
JP5207514B2 JP5207514B2 (en) 2013-06-12

Family

ID=40440379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201649A Active JP5207514B2 (en) 2007-08-02 2007-08-02 Hysteresis motor

Country Status (1)

Country Link
JP (1) JP5207514B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233246A (en) * 2011-05-09 2012-11-29 Daido Steel Co Ltd Electromagnetic stainless steel
JP2015052154A (en) * 2013-09-09 2015-03-19 本田技研工業株式会社 Yoke and production method thereof
JP2017220987A (en) * 2016-06-03 2017-12-14 株式会社デンソー Rotor for rotary electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322650A (en) * 1994-05-20 1995-12-08 Olympus Optical Co Ltd Rotary motor
JPH11168861A (en) * 1997-12-02 1999-06-22 Minolta Co Ltd Hysteresis motor and image-forming device using the same
JP2002226954A (en) * 2000-11-30 2002-08-14 Nisshin Steel Co Ltd Fe-Cr SOFT MAGNETIC MATERIAL AND PRODUCTION METHOD THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322650A (en) * 1994-05-20 1995-12-08 Olympus Optical Co Ltd Rotary motor
JPH11168861A (en) * 1997-12-02 1999-06-22 Minolta Co Ltd Hysteresis motor and image-forming device using the same
JP2002226954A (en) * 2000-11-30 2002-08-14 Nisshin Steel Co Ltd Fe-Cr SOFT MAGNETIC MATERIAL AND PRODUCTION METHOD THEREFOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233246A (en) * 2011-05-09 2012-11-29 Daido Steel Co Ltd Electromagnetic stainless steel
JP2015052154A (en) * 2013-09-09 2015-03-19 本田技研工業株式会社 Yoke and production method thereof
JP2017220987A (en) * 2016-06-03 2017-12-14 株式会社デンソー Rotor for rotary electric machine
US10523070B2 (en) 2016-06-03 2019-12-31 Denso Corporation Rotor for rotary electric machine

Also Published As

Publication number Publication date
JP5207514B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP7221474B6 (en) Non-magnetic austenitic stainless steel and its manufacturing method
EP1211331B1 (en) A Fe-Cr soft magnetic material and a method of manufacturing thereof
JP5699601B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101399995B1 (en) Low-carbon steel sheet and process for producing same
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
JP4860783B2 (en) Non-oriented electrical steel sheet
KR20140075005A (en) Electromagnetic steel sheet
JP5644680B2 (en) Electrical steel sheet and manufacturing method thereof
JP5207514B2 (en) Hysteresis motor
JP2008038191A (en) Austenitic stainless steel and its production method
JP2005200713A (en) Nonoriented silicon steel sheet having excellent uniformity of magnetic property in coil and high production yield, and its production method
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP4060407B2 (en) Method for producing soft magnetic stainless steel sheet for motor yoke
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP6222498B2 (en) Metastable austenitic stainless steel strip or steel plate
JP5613134B2 (en) Rotor core for permanent magnet motor
JP5110637B2 (en) Hysteresis motor and method for manufacturing hysteresis motor rotor
JP2005344179A (en) High-strength non-oriented silicon steel sheet with excellent magnetic property and fatigue characteristic, and its manufacturing method
KR102181748B1 (en) Ferritic stainless steel with improved magnetization properties and manufacturing method thereof
JP2007197806A (en) Austenitic stainless steel and spring produced by the steel
CN101777803A (en) Hysteresis motor and manufacturing method of stator yokes used by same
JP3685282B2 (en) Soft magnetic stainless steel with excellent maximum permeability
JP2013224482A (en) Method for producing raw material for composite magnetic material and method for producing the composite magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250