JP2009038304A - Lamp for lighting - Google Patents

Lamp for lighting Download PDF

Info

Publication number
JP2009038304A
JP2009038304A JP2007203295A JP2007203295A JP2009038304A JP 2009038304 A JP2009038304 A JP 2009038304A JP 2007203295 A JP2007203295 A JP 2007203295A JP 2007203295 A JP2007203295 A JP 2007203295A JP 2009038304 A JP2009038304 A JP 2009038304A
Authority
JP
Japan
Prior art keywords
phosphor
light
led
light emitting
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007203295A
Other languages
Japanese (ja)
Other versions
JP2009038304A5 (en
Inventor
Daisuke Uchida
大祐 内田
Teiichiro Takano
貞一郎 高野
Toshiyuki Kondo
俊幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2007203295A priority Critical patent/JP2009038304A/en
Publication of JP2009038304A publication Critical patent/JP2009038304A/en
Publication of JP2009038304A5 publication Critical patent/JP2009038304A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lamp for lighting by the combination of a semiconductor light emitting element and a phosphor, for which the decline of an irradiation light quantity from the start of lighting and the change of the color temperature and chrominance of irradiation light are little and the uniformity of the light quantity distribution of the irradiation light is excellent. <P>SOLUTION: An LED light source 1 composed by mounting a blue light emitting LED element 3 on an LED mounting board 2 is mounted on an aluminum substrate 4 and the LED light source 1 is covered with a dome-like phosphor cover 6 with a phosphor film 5 formed on the inner surface. When a current is supplied to the LED element 3, white light obtained by additive color synthesis of light for which a part of blue light emitted from the LED element 3 is wavelength-converted by exciting the phosphor film 5 formed on the phosphor cover 6 and a part of the blue light emitted from the LED element 3 is emitted through a light transmissive member 7 to the outside. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、照明用灯具に関するものであり、詳しくは、半導体光源と蛍光体の組み合わせによる照明用灯具に関する。   The present invention relates to an illumination lamp, and more particularly to an illumination lamp using a combination of a semiconductor light source and a phosphor.

従来、半導体(具体的には例えばLED)を光源とする照明用灯具において、白色光を照射する照明用灯具には図16または図17に示す構成のLEDランプが使用されていた。   Conventionally, in an illumination lamp using a semiconductor (specifically, for example, an LED) as a light source, an LED lamp having the configuration shown in FIG. 16 or 17 has been used as the illumination lamp that emits white light.

図16のLEDランプ50は、リード51の一端に実装した青色発光の半導体発光素子53を封止樹脂54で樹脂封止し、封止樹脂54を円筒部55aと球面部55bからなる蛍光カバー55で被着したものである。蛍光カバー55は球面部55bの頂点から円筒部55aに向かって肉厚が徐々に薄くなるように設定されている。   In the LED lamp 50 of FIG. 16, a blue light emitting semiconductor light emitting element 53 mounted on one end of a lead 51 is resin-sealed with a sealing resin 54, and the sealing resin 54 is a fluorescent cover 55 including a cylindrical portion 55a and a spherical portion 55b. It is what was attached by. The fluorescent cover 55 is set so that the thickness gradually decreases from the apex of the spherical surface portion 55b toward the cylindrical portion 55a.

このとき、封止樹脂54には蛍光体が添加されず、蛍光カバー55には一定の濃度分布で蛍光体56が添加されており、半導体発光素子53から光軸方向に出射される発光強度の高い青色光は封止樹脂54内を導光されて蛍光カバー55の蛍光体56量の多い球面部55bの頂点部に照射され、光軸方向から離れる方向に出射される発光強度の低い青色光は封止樹脂54内を導光されて蛍光カバー55の蛍光体56量の少ない球面部55bの縁部に照射される。   At this time, the phosphor is not added to the sealing resin 54, and the phosphor 56 is added to the fluorescent cover 55 with a certain concentration distribution, and the emission intensity emitted from the semiconductor light emitting element 53 in the optical axis direction is high. The high blue light is guided through the sealing resin 54 and applied to the apex portion of the spherical portion 55b having a large amount of phosphor 56 of the fluorescent cover 55, and is emitted in a direction away from the optical axis direction. Is guided through the sealing resin 54 and applied to the edge of the spherical portion 55b of the fluorescent cover 55 with a small amount of the phosphor 56.

そのため、半導体発光素子53から出射された青色光のうち蛍光カバー55に添加された蛍光体56を励起して波長変換された波長変換成分と、半導体発光素子53から出射された青色光のうち蛍光カバー55に添加された蛍光体56を励起することなくそのまま蛍光カバー55を透過した青色光成分との割合が蛍光カバー55全面に亘ってほぼ一定となり、LEDランプ50から放出された光の波長は全方向に亘ってほぼ均一となる(例えば、特許文献1参照。)。   Therefore, among the blue light emitted from the semiconductor light emitting element 53, the wavelength conversion component obtained by exciting the phosphor 56 added to the fluorescent cover 55 and wavelength-converted, and the blue light emitted from the semiconductor light emitting element 53 is fluorescent. The ratio of the blue light component that has passed through the fluorescent cover 55 without exciting the phosphor 56 added to the cover 55 is substantially constant over the entire surface of the fluorescent cover 55, and the wavelength of the light emitted from the LED lamp 50 is It becomes almost uniform in all directions (see, for example, Patent Document 1).

図17のLEDランプ60は、青色発光の半導体発光素子61を透光性樹脂に蛍光体62を添加した封止樹脂63で樹脂封止した構成となっており、小型LEDランプとして活用される(例えば、特許文献2参照。)。   The LED lamp 60 of FIG. 17 has a configuration in which a blue light emitting semiconductor light emitting element 61 is sealed with a sealing resin 63 obtained by adding a phosphor 62 to a translucent resin, and is used as a small LED lamp ( For example, see Patent Document 2.)

図16および図17のいずれの構成のLEDランプにおいても、青色発光の半導体発光素子から出射された青色光の一部が蛍光体を励起することによって波長変換された光(青色光よりも長波長の光)と、半導体発光素子から出射された青色光との加法混色によって白色の色度の光を得るものである。
特開2000−22216号公報 特開2003−203504号公報
In both the LED lamps of FIGS. 16 and 17, light that has been converted in wavelength by exciting part of the blue light emitted from the blue light emitting semiconductor light emitting element (having a longer wavelength than the blue light). Light) and blue light emitted from the semiconductor light emitting element are added to obtain light of white chromaticity.
JP 2000-22216 A JP 2003-203504 A

ところで、蛍光体は一般的に波長変換効率や変換波長が温度依存性を有しており、温度上昇に伴って波長変換効率が低下すると共に、変換波長が長波長側にシフトする。   By the way, phosphors generally have temperature dependency in wavelength conversion efficiency and conversion wavelength, and as the temperature rises, the wavelength conversion efficiency decreases and the conversion wavelength shifts to the longer wavelength side.

そこで、図16の構成のLEDランプ50は、LEDランプ50から放出された光の波長の均一性は確保されているが、半導体発光素子53の発光時の発熱が封止樹脂54を介して蛍光カバー55に添加された蛍光体56を加熱し、蛍光体56の温度上昇に伴って該蛍光体56の波長変換効率の低下と変換波長の波長シフトが生じる。その結果、LEDランプ50の点灯時の光取り出し効率が低下し、色度および色温度がシフトする。   Therefore, in the LED lamp 50 having the configuration shown in FIG. 16, the uniformity of the wavelength of the light emitted from the LED lamp 50 is ensured, but the heat generated when the semiconductor light emitting element 53 emits light is fluorescent through the sealing resin 54. The phosphor 56 added to the cover 55 is heated, and as the temperature of the phosphor 56 increases, the wavelength conversion efficiency of the phosphor 56 decreases and the wavelength shift of the conversion wavelength occurs. As a result, the light extraction efficiency when the LED lamp 50 is turned on decreases, and the chromaticity and color temperature shift.

このような構成のLEDランプ50を照明用灯具の光源に使用すると、LEDランプ50の点灯開始からLEDランプ50が熱飽和状態に至るまでの間、照明用灯具の照射光量が低下し続け、且つ照射光の色度、色温度が変化し続けることになる。   When the LED lamp 50 having such a configuration is used as a light source of an illumination lamp, the amount of irradiation light of the illumination lamp continues to decrease from the start of lighting of the LED lamp 50 until the LED lamp 50 reaches a thermal saturation state, and The chromaticity and color temperature of the irradiation light will continue to change.

また、図17の構成のLEDランプ60は、蛍光体62を添加した封止樹脂63が半導体発光素子61を覆うように樹脂封止しているため、蛍光体62に対する半導体発光素子61の発熱の影響は上記図16の構成のLEDランプ50よりも大きい。   In the LED lamp 60 having the configuration shown in FIG. 17, since the sealing resin 63 to which the phosphor 62 is added is resin-sealed so as to cover the semiconductor light-emitting element 61, the semiconductor light-emitting element 61 generates heat with respect to the phosphor 62. The influence is larger than that of the LED lamp 50 having the configuration shown in FIG.

従って、半導体発光素子61の発光時の発熱による蛍光体62の温度上昇に伴う該蛍光体62の波長変換効率の低下と変換波長の波長シフトは、上記図16の構成のLEDランプ50よりも大きく、LEDランプ60の点灯時の光取り出し効率の低下、色度および色温度のシフトも同様である。   Accordingly, the decrease in wavelength conversion efficiency of the phosphor 62 due to the temperature rise of the phosphor 62 due to heat generation during light emission of the semiconductor light emitting element 61 and the wavelength shift of the conversion wavelength are larger than those of the LED lamp 50 having the configuration shown in FIG. The same applies to a decrease in light extraction efficiency when the LED lamp 60 is turned on, and a shift in chromaticity and color temperature.

また、蛍光体62を添加した封止樹脂63が半導体発光素子61の近傍に位置するために、LEDランプ60の発光面となる封止樹脂63の光放出面の面積が小さい。そのため、このような構成のLEDランプ60を照明用灯具の光源に使用すると、照明用灯具の光量分布が不均一となり、照射面にLEDランプ60の輝点が形成されることになる。   Further, since the sealing resin 63 to which the phosphor 62 is added is located in the vicinity of the semiconductor light emitting element 61, the area of the light emission surface of the sealing resin 63 that becomes the light emitting surface of the LED lamp 60 is small. Therefore, when the LED lamp 60 having such a configuration is used as a light source of an illumination lamp, the light amount distribution of the illumination lamp becomes non-uniform, and the bright spot of the LED lamp 60 is formed on the irradiated surface.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、点灯開始からの照射光量の低下および照射光の色温度、色度の変化が少なく且つ照射光の光量分布の均一性が良好な、半導体発光素子と蛍光体の組み合わせによる照明用灯具を提供することにある。   Accordingly, the present invention was devised in view of the above problems, and the object of the present invention is to reduce the amount of irradiation light from the start of lighting and to reduce the change in the color temperature and chromaticity of the irradiation light, and the light amount distribution of the irradiation light. An object of the present invention is to provide an illumination lamp using a combination of a semiconductor light emitting element and a phosphor with good uniformity.

上記課題を解決するために、本発明の請求項1に記載された発明は、半導体発光素子と、
前記半導体発光素子の光で励起されて波長変換された光を放出する蛍光体膜が設けられた蛍光体カバーを備え、
前記半導体発光素子と前記蛍光体膜の間には少なくとも気体層が存在し、前記半導体発光素子の光が少なくとも前記気体層を伝搬されて前記蛍光体膜に到達することを特徴とするものである。
In order to solve the above problems, the invention described in claim 1 of the present invention includes a semiconductor light emitting device,
Comprising a phosphor cover provided with a phosphor film that emits light that has been excited by the light of the semiconductor light emitting element and wavelength-converted;
At least a gas layer exists between the semiconductor light emitting element and the phosphor film, and light of the semiconductor light emitting element is propagated through at least the gas layer and reaches the phosphor film. .

また、本発明の請求項2に記載された発明は、請求項1において、前記気体層が空気層であることを特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the gas layer is an air layer.

また、本発明の請求項3に記載された発明は、請求項1または2のいずれか1項において、前記半導体発光素子の主光出射面と前記蛍光体膜の最短距離が5mm〜50mmの範囲にあり、前記蛍光体膜の面積が1.57cm〜157cmの範囲にあることを特徴とするものである。 Moreover, the invention described in claim 3 of the present invention is the method according to any one of claim 1 or 2, wherein the shortest distance between the main light emitting surface of the semiconductor light emitting element and the phosphor film is in the range of 5 mm to 50 mm. The area of the phosphor film is in the range of 1.57 cm 2 to 157 cm 2 .

また、本発明の請求項4に記載された発明は、請求項1〜3のいずれか1項において、前記蛍光体膜の膜厚が0.05mm〜0.15mmの範囲にあることを特徴とするものである。   The invention described in claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the thickness of the phosphor film is in the range of 0.05 mm to 0.15 mm. To do.

また、本発明の請求項5に記載された発明は、請求項1〜4のいずれか1項において、前記蛍光体膜はオルトシリケート系蛍光体であることを特徴とするものである。   Further, the invention described in claim 5 of the present invention is characterized in that, in any one of claims 1 to 4, the phosphor film is an orthosilicate phosphor.

本発明は、半導体発光素子と、前記半導体発光素子の光で励起されて波長変換した光を放出する蛍光体膜が設けられた蛍光体カバーを備え、前記半導体発光素子と前記蛍光体の間には少なくとも気体層が存在し、前記半導体発光素子の光が少なくとも前記気体層を伝搬されて前記蛍光体膜に到達するようにした。   The present invention includes a semiconductor light emitting device and a phosphor cover provided with a phosphor film that emits light that has been wavelength-converted by being excited by the light of the semiconductor light emitting device, and is provided between the semiconductor light emitting device and the phosphor. There is at least a gas layer, and light of the semiconductor light emitting element is propagated through at least the gas layer to reach the phosphor film.

そのため、半導体発光素子から蛍光体カバーまでの距離を気体層を介して確保することができ、蛍光体カバーと共に該蛍光体カバーに形成された蛍光体膜の面積を大きくすることができるようになった。   Therefore, the distance from the semiconductor light emitting element to the phosphor cover can be secured through the gas layer, and the area of the phosphor film formed on the phosphor cover together with the phosphor cover can be increased. It was.

その結果、蛍光体カバーによる蛍光体膜に対する放熱効果により照射光の光量、色温度、色度の変化が少なくなった。また蛍光体膜の薄膜化が可能となって光取り出し効率の向上が図られた。更に、半導体発光素子からの光が蛍光体カバーに均一に到達するため照射光の光量分布の均一な照明用灯具が実現した。   As a result, changes in the amount of light, color temperature, and chromaticity of the irradiated light were reduced due to the heat dissipation effect on the phosphor film by the phosphor cover. In addition, the phosphor film can be made thinner, and the light extraction efficiency is improved. Furthermore, since the light from the semiconductor light emitting element reaches the phosphor cover uniformly, an illumination lamp having a uniform light amount distribution of the irradiated light has been realized.

以下、この発明の好適な実施形態を図1から図15を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 15 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

本発明の照明用用具に係わる実施形態の基本構成は、青色発光のLED光源と、該LED光源と気体(空気を含む)を介して配置された、透光性部材に蛍光体を塗布した蛍光体カバーを備えている。   The basic configuration of the embodiment relating to the illumination tool of the present invention includes a blue light emitting LED light source, and a fluorescent material in which a phosphor is applied to a translucent member disposed via the LED light source and gas (including air). It has a body cover.

具体的には、図1(LED光源の斜視図)のように、LED光源1が幅3mm、長さ6mmで面積18mmのLED実装基板2と該LED実装基板2に実装された4個の青色LED素子(以下、LED素子と略称する)3で構成されている。 Specifically, as shown in FIG. 1 (perspective view of the LED light source), the LED light source 1 has an LED mounting substrate 2 having a width of 3 mm, a length of 6 mm, and an area of 18 mm 2 , and four mounted on the LED mounting substrate 2. It is composed of a blue LED element (hereinafter abbreviated as LED element) 3.

そして、図2(本実施形態の照明用灯具の斜視図)のように、LED光源1が熱伝導性が良好なアルミニウム基板4上に載置され、蛍光体膜5が形成されたドーム状の蛍光体カバー6で覆われている。蛍光体膜5はオルトシリケート蛍光体がドーム状の透光性部材7の内面に塗布され、その膜厚は通常の白色LED(例えば、図17の構成からなる従来例のLEDランプ)に形成される蛍光体の膜厚の1/10となる0.09±0.01mmとなるように設定されている。   Then, as shown in FIG. 2 (a perspective view of the lighting lamp of the present embodiment), the LED light source 1 is placed on the aluminum substrate 4 having good thermal conductivity, and the dome-like shape on which the phosphor film 5 is formed. Covered with a phosphor cover 6. The phosphor film 5 is formed by applying an orthosilicate phosphor on the inner surface of the dome-shaped translucent member 7 and having a film thickness of a normal white LED (for example, a conventional LED lamp having the configuration shown in FIG. 17). The thickness is set to 0.09 ± 0.01 mm which is 1/10 of the thickness of the phosphor.

そこで、本発明と従来例の性能を比較評価するために上記実施形態に基づく5つの実施例と従来例に基づく2つの比較例を作製して試験を行なった。   Therefore, in order to compare and evaluate the performance of the present invention and the conventional example, five examples based on the above embodiment and two comparative examples based on the conventional example were produced and tested.

5つの実施例は上記図2の構成の照明用灯具9において、ドーム状の蛍光体カバー6の半径(内側)を変えることによって蛍光体膜5の表面積を変えたもので、実施例1は蛍光体カバー6の半径Rを10mmとし、蛍光体膜5の表面積Sが628mmであり、実施例2は半径Rが15mmで表面積Sが1414mm、実施例3は半径Rが20mmで表面積Sが2513mm、実施例4は半径Rが25mmで表面積Sが3927mm、実施例5は半径Rが30mmで表面積Sが5655mmである。 In the fifth embodiment, the surface area of the phosphor film 5 is changed by changing the radius (inside) of the dome-shaped phosphor cover 6 in the illumination lamp 9 having the configuration shown in FIG. the radius R of the body cover 6 and 10 mm, the surface area S of the phosphor film 5 is 628 mm 2, example 2 radius R surface area S at 15mm is 1414Mm 2, example 3 the radius R is the surface area S at 20mm is 2513 mm 2 , Example 4 has a radius R of 25 mm and a surface area S of 3927 mm 2 , and Example 5 has a radius R of 30 mm and a surface area S of 5655 mm 2 .

そして、図3(図2の断面図)に示すように、4個のLED素子3の夫々に電流を供給すると、LED素子3から発せられた青色光の一部が蛍光体カバー6に形成された蛍光体膜5を励起することによって波長変換された黄色光と、LED素子3から発せられた青色光の一部との加法混色によって得られる白色光が蛍光体カバー6を通して外部に放出される。   Then, as shown in FIG. 3 (cross-sectional view of FIG. 2), when a current is supplied to each of the four LED elements 3, a part of the blue light emitted from the LED elements 3 is formed on the phosphor cover 6. White light obtained by additive color mixing of the yellow light wavelength-converted by exciting the phosphor film 5 and a part of the blue light emitted from the LED element 3 is emitted to the outside through the phosphor cover 6. .

一方、2つの比較例は図4(LED光源の斜視図)に示すように、幅3mm、長さ6mmで面積18mmのLED実装基板2に実装された4個のLED素子3で構成されている。基板の材質、基板の寸法、LED素子の材質は全て実施例と同一である。そして、比較例は更に4個のLED素子3の周りを蛍光体8で封止しており、LED素子3上の蛍光体8の膜厚は通常の白色LEDに形成される蛍光体の膜厚と同様の0.9±0.1mmとなるように設定されている。蛍光体8の材料は、比較例1がオルトシリケート蛍光体であり、比較例2がアルミネート蛍光体となっている。 On the other hand, as shown in FIG. 4 (perspective view of the LED light source), the two comparative examples are composed of four LED elements 3 mounted on the LED mounting substrate 2 having a width of 3 mm, a length of 6 mm and an area of 18 mm 2. Yes. The material of the substrate, the dimensions of the substrate, and the material of the LED element are all the same as in the example. Further, in the comparative example, the periphery of the four LED elements 3 is further sealed with the phosphor 8, and the film thickness of the phosphor 8 on the LED element 3 is the film thickness of the phosphor formed on a normal white LED. It is set to be 0.9 ± 0.1 mm similar to the above. As for the material of the phosphor 8, the comparative example 1 is an orthosilicate phosphor, and the comparative example 2 is an aluminate phosphor.

比較例は実施例と放熱条件を同一にするために、図5(比較例の実装斜視図)に示すように、半径R=30mmのアルミニウム基板4上に載置されている。   The comparative example is placed on an aluminum substrate 4 having a radius R = 30 mm, as shown in FIG. 5 (mounting perspective view of the comparative example), in order to make the heat dissipation condition the same as the example.

そして、図6(図5の断面図)に示すように、4個のLED素子3の夫々に電流を供給すると、LED素子3から発せられた青色光の一部が蛍光体8を励起することによって波長変換された黄色光と、LED素子3から発せられた青色光の一部との加法混色によって得られる白色光が蛍光体8を通して外部に放出される。   As shown in FIG. 6 (cross-sectional view of FIG. 5), when a current is supplied to each of the four LED elements 3, a part of blue light emitted from the LED elements 3 excites the phosphor 8. The white light obtained by the additive color mixture of the yellow light wavelength-converted by the above and a part of the blue light emitted from the LED element 3 is emitted to the outside through the phosphor 8.

試験条件および測定項目は、まず、実施例および比較例で使用するオルトシリケート蛍光体とアルミネート蛍光体の温度に対する相対光度を測定し、両者の波長変換効率の温度依存性の比較を行なった。   As test conditions and measurement items, first, the relative luminosity of the orthosilicate phosphor and aluminate phosphor used in Examples and Comparative Examples was measured, and the temperature dependence of the wavelength conversion efficiency of both was compared.

また、実施例1〜5および比較例1、比較例2の夫々において、4個のLED素子3に700mAの電流を供給して発光させ、発光経過時間に対する蛍光体膜5および蛍光体8の面温度を測定した(測定器:HIOKI製メモリーハイロガー 8421−50)。測定箇所は実施例1〜5においては蛍光体カバー6の頂点近傍の蛍光体膜5、比較例1においては蛍光体8の中央近傍とした。   In each of Examples 1 to 5 and Comparative Examples 1 and 2, the four LED elements 3 are caused to emit light by supplying a current of 700 mA, and the surfaces of the phosphor film 5 and the phosphor 8 with respect to the elapsed light emission time. The temperature was measured (measuring instrument: Memory Hilogger 8421-50 manufactured by HIOKI). The measurement locations were the phosphor film 5 near the apex of the phosphor cover 6 in Examples 1 to 5, and the vicinity of the center of the phosphor 8 in Comparative Example 1.

更に、実施例5、比較例1および比較例2の夫々において、4個のLED素子3に供給する電流値を変えて発光させ、電流値に対する全光束、色温度、色度(X、Y)を測定した(測定器:大塚電子製 MCPD7000+1m積分球)。   Further, in each of Example 5, Comparative Example 1 and Comparative Example 2, the current values supplied to the four LED elements 3 are changed to emit light, and the total luminous flux, color temperature, and chromaticity (X, Y) with respect to the current values. Was measured (measuring instrument: MCPD7000 + 1m integrating sphere manufactured by Otsuka Electronics).

図7〜図12は上記測定の結果を表わすグラフであり、図7はオルトシリケート蛍光体およびアルミネート蛍光体における温度と相対光度との関係、図8はLED素子の発光経過時間と蛍光体層の表面温度との関係、図9はLED素子に供給する電流値と全光束との関係、図10はLED素子に供給する電流値と色温度との関係、図11はLED素子に供給する電流値と色度(X)との関係、図12はLED素子に供給する電流値と色度(Y)との関係を夫々表わしている。   7 to 12 are graphs showing the results of the above measurement, FIG. 7 is the relationship between the temperature and the relative luminous intensity in the orthosilicate phosphor and the aluminate phosphor, and FIG. 8 is the light emission elapsed time of the LED element and the phosphor layer. 9 is a relationship between the current value supplied to the LED element and the total luminous flux, FIG. 10 is a relationship between the current value supplied to the LED element and the color temperature, and FIG. 11 is a current supplied to the LED element. FIG. 12 shows the relationship between the current value supplied to the LED element and chromaticity (Y).

そこで図7より、25℃の時の相対光度を100%とすると、オルトシリケート蛍光体は温度が75℃以上になると急激に相対光度が低下し、200℃になると25℃の時の20%まで下がる。これに対してアルミネート蛍光体は温度が100℃以上になると相対光度が低下するもののオルトシリケート蛍光体ほどの急激な低下率ではなく、200℃においても25℃の時の90%の光度を保っている。よってこのグラフより、アルミネート蛍光体がオルトシリケート蛍光体よりも波長変換効率の温度依存性が大幅に少ないことが分かる。   Therefore, from FIG. 7, assuming that the relative luminous intensity at 25 ° C. is 100%, the orthosilicate phosphor rapidly decreases when the temperature is 75 ° C. or higher, and reaches 200% at 25 ° C. up to 20%. Go down. On the other hand, the aluminate phosphor decreases in relative light intensity when the temperature exceeds 100 ° C., but does not decrease as rapidly as the orthosilicate phosphor, and maintains 90% light intensity at 25 ° C. even at 200 ° C. ing. Therefore, it can be seen from this graph that the temperature dependence of the wavelength conversion efficiency of the aluminate phosphor is significantly less than that of the orthosilicate phosphor.

また図8より、実施例1〜5においては、LED素子の発光開始から10分程度経過すると蛍光体膜面の温度はほぼ安定し、蛍光体カバーの半径が大きいほど蛍光体膜面の温度上昇が小さい。これは、LED素子の発熱が発光体カバー内の大気中に拡散されて蛍光体カバーに伝達される熱を遮ると共に、蛍光体カバーの半径が大きいほど蛍光体カバーの表面積(外側)が大きくなって大気との接触面積が大きくなり、その結果蛍光体カバーの放熱効率が高まって該蛍光体カバーに形成された蛍光体膜の温度上昇が抑制されるためである。   8, in Examples 1 to 5, the temperature of the phosphor film surface is substantially stabilized after about 10 minutes from the start of light emission of the LED element, and the temperature of the phosphor film surface increases as the radius of the phosphor cover increases. Is small. This is because the heat generated by the LED element is diffused in the air inside the light emitter cover and blocks heat transmitted to the phosphor cover, and the surface area (outside) of the phosphor cover increases as the radius of the phosphor cover increases. This is because the contact area with the atmosphere increases, and as a result, the heat dissipation efficiency of the phosphor cover increases, and the temperature rise of the phosphor film formed on the phosphor cover is suppressed.

一方、比較例1においては、LED素子の発光開始から蛍光体表面の温度上昇が実施例1〜5よりも極めて大きい。これは蛍光体が直接LED素子と接触していると共に空気と接触する蛍光体の表面積が実施例1〜5の蛍光体カバーの表面積に比べて極めて小さいために放熱効率が悪く、その結果蛍光体の温度上昇の抑制効果が少ないためである。   On the other hand, in Comparative Example 1, the temperature rise on the phosphor surface from the start of light emission of the LED element is much larger than in Examples 1-5. This is because the phosphor is in direct contact with the LED element and the surface area of the phosphor in contact with the air is very small compared to the surface area of the phosphor cover of Examples 1 to 5, resulting in poor heat dissipation efficiency. This is because the effect of suppressing the temperature rise is small.

そして、約1500時間経過後の蛍光体表面温度は比較例1および比較例2は共に195℃まで上昇しており、この温度においては上記図7のグラフによりオルトシリケート蛍光体を使用した比較例1は80%近く波長変換効率が低下していることになり、アルミネート蛍光体を使用した比較例2においても10%以上波長変換効率が低下していることになる。   The phosphor surface temperature after about 1500 hours has increased to 195 ° C. in both Comparative Example 1 and Comparative Example 2. At this temperature, Comparative Example 1 using an orthosilicate phosphor according to the graph of FIG. This means that the wavelength conversion efficiency is reduced by nearly 80%, and the wavelength conversion efficiency is also reduced by 10% or more in Comparative Example 2 using the aluminate phosphor.

これに対し、実施例1〜5においては、約1500時間経過後の蛍光体表面温度はいずれの実施例とも100℃前後以下となっており、同様に図7のグラフより本実施形態の構造においてはオルトシリケート蛍光体を使用してもアルミネート蛍光体を使用しても90%以上の波長変換効率を確保することが可能であるということがわかった。   On the other hand, in Examples 1 to 5, the phosphor surface temperature after about 1500 hours elapsed is about 100 ° C. or less in all Examples, and similarly, in the structure of this embodiment from the graph of FIG. It was found that a wavelength conversion efficiency of 90% or more can be ensured regardless of whether an orthosilicate phosphor or an aluminate phosphor is used.

また、図9より、実施例5、比較例1および比較例2のいずれもLED素子に供給する電流が大きくなるにつれて全光束が増加している。但し、比較例1および比較例2においては、LED素子に供給する電流が大きくなるにつれて全光束の増加率は低下している。これは、LED素子に供給される電流の増加に伴ってLED素子の発熱が大きくなり、その熱を受けた蛍光体の温度が上昇したために波長変換効率の低下を生じたものである。   Further, from FIG. 9, in all of Example 5, Comparative Example 1, and Comparative Example 2, the total luminous flux increases as the current supplied to the LED element increases. However, in Comparative Example 1 and Comparative Example 2, the increase rate of the total luminous flux decreases as the current supplied to the LED element increases. This is because the LED element generates a large amount of heat as the current supplied to the LED element increases, and the temperature of the phosphor receiving the heat rises, resulting in a decrease in wavelength conversion efficiency.

そのなかでも、アルミネート蛍光体を使用した比較例2よりもオルトシリケート蛍光体を使用した比較例1の方が全光束の増加率の低下が大きい。これは、図7で示されているようにオルトシリケート蛍光体がアルミネート蛍光体よりも波長変換効率の温度依存性が高いためである。   Among them, the decrease in the increase rate of the total luminous flux is larger in Comparative Example 1 using the orthosilicate phosphor than in Comparative Example 2 using the aluminate phosphor. This is because the orthosilicate phosphor has higher temperature dependency of wavelength conversion efficiency than the aluminate phosphor as shown in FIG.

それに対し、オルトシリケート蛍光体を塗布した蛍光体カバーを使用した実施例5は同じくオルトシリケート蛍光体を使用した比較例1よりも全光束の増加率の低下が小さく、アルミネート蛍光体を使用した比較例2に対しても全光束の増加率の低下が小さい。   In contrast, Example 5 using a phosphor cover coated with an orthosilicate phosphor has a smaller decrease in the increase rate of the total luminous flux than Comparative Example 1 using the same orthosilicate phosphor, and uses an aluminate phosphor. Even for the comparative example 2, the decrease in the increase rate of the total luminous flux is small.

しかも、電流と全光束の関係がほとんど比例関係となることを示しており、これにより実施例5の構成が良好な放熱効果を発揮して蛍光体の温度上昇を効率良く抑制していることがわかる。特に、LED素子に流れる電流が大きいほど放熱効果が顕著になることを示している。   Moreover, it is shown that the relationship between the current and the total luminous flux is almost proportional, and thus the configuration of Example 5 exhibits a good heat dissipation effect and efficiently suppresses the temperature rise of the phosphor. Recognize. In particular, it shows that the heat dissipation effect becomes more prominent as the current flowing through the LED element increases.

また、図10により、比較例1および比較例2においては、青色LED素子に供給する電流が大きくなるにつれて色温度が高くなっている。これは、蛍光体の温度上昇による波長変換効率の低下によって、LED素子から発せられて蛍光体の励起に寄与しない青色光に対して蛍光体で波長変換された光の割合が低下し、加法混色された光の青色成分が相対的に増加したためである。   Further, according to FIG. 10, in Comparative Example 1 and Comparative Example 2, the color temperature increases as the current supplied to the blue LED element increases. This is due to a decrease in the wavelength conversion efficiency due to the temperature rise of the phosphor, and the ratio of the light wavelength-converted by the phosphor to the blue light that is emitted from the LED element and does not contribute to the excitation of the phosphor decreases. This is because the blue component of the emitted light is relatively increased.

また、アルミネート蛍光体を使用した比較例2よりもオルトシリケート蛍光体を使用した比較例1の方が色温度の上昇率が高くなっている。これはオルトシリケート蛍光体がアルミネート蛍光体よりも波長変換効率の温度依存性が高いことに起因するものである。   The rate of increase in color temperature is higher in Comparative Example 1 using the orthosilicate phosphor than in Comparative Example 2 using the aluminate phosphor. This is due to the fact that the orthosilicate phosphor has a higher temperature dependency of wavelength conversion efficiency than the aluminate phosphor.

これに対し、実施例5においては、LED素子に供給する電流が大きくなっても色温度の変化はほとんどなく、放熱効果が有効に発揮されていることがわかる。   On the other hand, in Example 5, even if the electric current supplied to an LED element becomes large, it turns out that there is almost no change in color temperature, and the heat dissipation effect is exhibited effectively.

また、図11および図12により、比較例1および比較例2のいずれも、LED素子に流れる電流の変化に伴って色度(X)、色度(Y)が共に大きく変化している。これは上述の電流値と色温度との関係と同様に、蛍光体の温度上昇による波長変換効率の低下によって、青色LED素子から発せられて蛍光体の励起に寄与しない青色光に対して蛍光体で波長変換された光の割合が低下し、加法混色された光の青色成分が相対的に増加したためである。   11 and 12, in both Comparative Example 1 and Comparative Example 2, both chromaticity (X) and chromaticity (Y) change greatly with changes in the current flowing through the LED elements. Similar to the relationship between the current value and the color temperature described above, this is due to a decrease in wavelength conversion efficiency due to a temperature rise of the phosphor, and the phosphor with respect to the blue light emitted from the blue LED element and not contributing to the excitation of the phosphor. This is because the ratio of the light wavelength-converted in the above decreases, and the blue component of the additively mixed light relatively increases.

これに対し、実施例5においては、LED素子に供給する電流が大きくなっても色度(X)、色度(Y)共に変化はほとんどなく、放熱効果が有効に発揮されていることがわかる。   On the other hand, in Example 5, even when the current supplied to the LED element is increased, both chromaticity (X) and chromaticity (Y) hardly change, and it can be seen that the heat dissipation effect is effectively exhibited. .

以上の測定結果より、本発明に係わる構成の実施例1〜5は、内部にLED素子を収容した蛍光体カバーの放熱効果が極めて良好であり、LED素子に供給される電流が大きくなっても蛍光体カバーに形成された蛍光体膜の温度上昇を効果的に抑制することが確認できた。   From the above measurement results, in Examples 1 to 5 of the configuration according to the present invention, the heat dissipation effect of the phosphor cover that accommodates the LED element is extremely good, and even if the current supplied to the LED element increases. It was confirmed that the temperature rise of the phosphor film formed on the phosphor cover was effectively suppressed.

その結果、電流の大きさにほぼ比例した光束が得られると共に、電流の変化にほとんど影響されない一定の色調(色温度および色度)の光を得ることができる。更に、蛍光体の温度上昇に対する抑制効果は、LED素子の発光開始時点から経過時間に関係なく一定の光束を維持できるようにも働く。   As a result, a light beam approximately proportional to the magnitude of the current can be obtained, and light having a constant color tone (color temperature and chromaticity) that is hardly affected by changes in the current can be obtained. Further, the effect of suppressing the temperature rise of the phosphor also works to maintain a constant luminous flux regardless of the elapsed time from the light emission start time of the LED element.

そこで、測定結果および半導体発光素子の指向特性を考慮すると、半導体発光素子の主光出射面と蛍光体膜の最短距離は5mm〜50mmの範囲にあることが好ましく、蛍光体膜の面積は、半導体発光素子の主光出射面と蛍光体膜の最短距離5mm〜50mmを半径とする半球の表面積に相当する1.57cm〜157cmの範囲にあることが好ましい。 Therefore, in consideration of the measurement results and the directivity characteristics of the semiconductor light emitting device, the shortest distance between the main light emitting surface of the semiconductor light emitting device and the phosphor film is preferably in the range of 5 mm to 50 mm. It is preferably in the range of 1.57 cm 2 to 157 cm 2 corresponding to the surface area of a hemisphere having a radius of the shortest distance of 5 mm to 50 mm between the main light emitting surface of the light emitting element and the phosphor film.

図13は本発明の照明用灯具の応用例の分解立体図を示している。応用例は基板10と反射枠11とキャップ12の部分で構成されている。基板10は一方の面側に所定の間隔で複数の青色LED素子3が実装されている。   FIG. 13 shows an exploded view of an application example of the lighting lamp of the present invention. The application example includes a substrate 10, a reflection frame 11, and a cap 12. The substrate 10 has a plurality of blue LED elements 3 mounted on one surface side at a predetermined interval.

LED素子3が実装された基板10上には白色樹脂からなる所定の厚みの反射枠11が配置されている。反射枠11は各LED素子3に対応する位置に擂鉢状の貫通孔13を有しており、各LED素子3が貫通孔13のテーパ状の側面で囲まれている。   On the substrate 10 on which the LED element 3 is mounted, a reflection frame 11 made of a white resin and having a predetermined thickness is disposed. The reflection frame 11 has a bowl-shaped through hole 13 at a position corresponding to each LED element 3, and each LED element 3 is surrounded by a tapered side surface of the through hole 13.

更に、反射枠11の基板10と反対側には、反射枠11に対向する面に蛍光体膜(図示せず)が形成されたキャップ12が配置されている。キャップ12の、基板10に実装されたLED素子3および反射枠11に設けられた貫通孔13に対応する位置に外側に膨らんだ湾曲部14が設けられている。   Further, a cap 12 having a phosphor film (not shown) formed on the surface facing the reflection frame 11 is disposed on the opposite side of the reflection frame 11 from the substrate 10. A curved portion 14 bulging outward is provided at a position corresponding to the LED element 3 mounted on the substrate 10 and the through hole 13 provided in the reflection frame 11 of the cap 12.

このような構成の照明用灯具15において、図14(照明用灯具の部分断面図)に示すように、各LED素子3から発せられた青色光の一部は反射枠11の貫通孔13を通って直接キャップ12の蛍光体膜5に至り、一部は反射枠11の貫通穴13の側面16で反射して反射光がキャップ12の蛍光体膜5に至る。キャップ12の蛍光体膜5に到達した前記直接光および反射光はその一部がキャップ12内を導光されて直接外部に放出され、一部が蛍光体膜5を励起して波長変換された光がキャップ12内を導光されて外部に放出される。   In the illumination lamp 15 having such a configuration, as shown in FIG. 14 (partial sectional view of the illumination lamp), a part of the blue light emitted from each LED element 3 passes through the through hole 13 of the reflection frame 11. Thus, the phosphor film 5 of the cap 12 is directly reached, and part of the light is reflected by the side surface 16 of the through hole 13 of the reflection frame 11, and the reflected light reaches the phosphor film 5 of the cap 12. A part of the direct light and reflected light reaching the phosphor film 5 of the cap 12 is guided through the cap 12 and directly emitted to the outside, and a part of the direct light and reflected light is wavelength-converted by exciting the phosphor film 5. Light is guided through the cap 12 and emitted to the outside.

このとき、キャップ12の各湾曲部14からは、LED素子3からの青色光と、蛍光体膜5で波長変換された黄色光を加法混色した白色光が該湾曲面14で配光制御されて外部に放出される。   At this time, from each curved portion 14 of the cap 12, the blue light from the LED element 3 and the white light obtained by additively mixing the yellow light wavelength-converted by the phosphor film 5 are light-distributed and controlled by the curved surface 14. Released to the outside.

この場合、LED素子3と蛍光体膜5の間には反射枠11の貫通孔13およびキャップ12の内側の空間17が存在するためにLED素子3の発熱は蛍光体膜5に到達するのを抑制され、且つLED素子3の大きさに対して各湾曲部14の面積が大きいために蛍光体膜5に到達したLED素子3の発熱が効率良く外部に放散され、蛍光体膜5の温度上昇が少なく抑えられる。   In this case, since the through hole 13 of the reflecting frame 11 and the space 17 inside the cap 12 exist between the LED element 3 and the phosphor film 5, the heat generated by the LED element 3 reaches the phosphor film 5. Since the area of each curved portion 14 is suppressed with respect to the size of the LED element 3, the heat generated by the LED element 3 reaching the phosphor film 5 is efficiently dissipated to the outside, and the temperature of the phosphor film 5 rises. Can be reduced.

また、LED素子3と蛍光体膜5の間に所定の距離を確保して1つのLED素子3が照射する蛍光体膜5の面積を大きくしたことにより、LED素子3からの光が蛍光体膜5に均一に照射される。   Further, by securing a predetermined distance between the LED element 3 and the phosphor film 5 and increasing the area of the phosphor film 5 irradiated by one LED element 3, the light from the LED element 3 is reflected by the phosphor film. 5 is evenly irradiated.

その結果、点灯時間に係わらず明るさ、色温度、色度の変化が少なく、面輝度が均一な照明用灯具が実現できた。   As a result, it was possible to realize an illumination lamp having a uniform surface luminance with little change in brightness, color temperature, and chromaticity regardless of the lighting time.

なお、上記照明用灯具は本発明に係わる一応用例であって、その他種々の応用例が考えられる。例えば、キャップの互いに隣り合う湾曲部に異なる種類の蛍光体膜を塗布して全体を2種類の蛍光体膜で形成し、基板に実装するLED素子をキャップの湾曲部に対応する位置の1個置きに配置し、基板とキャップの位置を円周方向にずらすことによって色温度および色度の異なる光を照射するようにすることも可能である。   The illumination lamp is an application example according to the present invention, and various other application examples are conceivable. For example, different types of phosphor films are applied to the adjacent curved portions of the cap to form the whole with two types of phosphor films, and the LED element mounted on the substrate is one at a position corresponding to the curved portion of the cap. It is also possible to irradiate light with different color temperature and chromaticity by disposing them and shifting the position of the substrate and the cap in the circumferential direction.

以上説明したように、本発明の照明用灯具は、青色LED素子と蛍光体膜との間に所定の距離を確保し、蛍光体膜の面積をLED光源の30倍とした。   As described above, in the illumination lamp of the present invention, a predetermined distance is ensured between the blue LED element and the phosphor film, and the area of the phosphor film is 30 times that of the LED light source.

その結果、蛍光体層の膜厚を従来の白色LEDの膜厚の1/10に薄膜化できることによって蛍光体膜内の2次衝突における光吸収(図15参照)が大幅に低下して光取り出し効率が向上し、照射光量の大きい照明用灯具となった。具体的には、蛍光体層の膜厚は0.05mm〜0.15mmの範囲内にあることが好ましい。膜厚が0.05mmよりも薄くなると蛍光体層を励起する励起光に対して蛍光体層で励起される光の割合が低下し、蛍光体層における波長変換率が低下して所望する色温度、色度の光を得ることができない。   As a result, the thickness of the phosphor layer can be reduced to 1/10 of the thickness of the conventional white LED, so that light absorption (see FIG. 15) in the secondary collision in the phosphor film is greatly reduced, and light extraction is performed. The efficiency is improved and the lighting lamp has a large amount of irradiation light. Specifically, the thickness of the phosphor layer is preferably in the range of 0.05 mm to 0.15 mm. When the film thickness is less than 0.05 mm, the ratio of the light excited in the phosphor layer to the excitation light that excites the phosphor layer decreases, and the wavelength conversion rate in the phosphor layer decreases, resulting in a desired color temperature. Can't get chromaticity light.

また、蛍光体膜を塗布した蛍光体カバーによる放熱効果が機能し、蛍光体膜の温度上昇が抑制されて光取り出し効率の向上や、色温度や色度の変化を改善した照明用灯具となった。   In addition, the heat dissipation effect of the phosphor cover coated with the phosphor film functions, and the temperature rise of the phosphor film is suppressed, so that the light extraction efficiency is improved, and the lighting lamp has improved the change in color temperature and chromaticity. It was.

また、蛍光体カバーにおける面輝度の均一化が図られて照射光に於ける輝点の発生がなくなり、照射面を均一に照射する照明用灯具となった。   In addition, since the surface brightness of the phosphor cover is made uniform, the generation of bright spots in the irradiated light is eliminated, and an illumination lamp that irradiates the irradiated surface uniformly is obtained.

更に、応用例として蛍光体カバーに形成する蛍光体の種類、塗布位置を工夫することにより同一のLED実装基板で様々な配色パターンを実現することが可能となる。   Further, as an application example, various color arrangement patterns can be realized on the same LED mounting substrate by devising the type and application position of the phosphor formed on the phosphor cover.

本発明の実施形態に使用されるLED光源の斜視図である。It is a perspective view of the LED light source used for embodiment of this invention. 本発明の実施形態の斜視図である。It is a perspective view of the embodiment of the present invention. 図2の断面図である。FIG. 3 is a cross-sectional view of FIG. 2. 比較例に使用されるLED光源の斜視図である。It is a perspective view of the LED light source used for a comparative example. 比較例を示す斜視図である。It is a perspective view which shows a comparative example. 図5の断面図である。It is sectional drawing of FIG. オルトシリケート蛍光体およびアルミネート蛍光体における温度と相対光度との関係を示すグラフである。It is a graph which shows the relationship between the temperature and relative luminous intensity in orthosilicate fluorescent substance and aluminate fluorescent substance. LED素子の発光経過時間と蛍光体の表面温度との関係を示すグラフである。It is a graph which shows the relationship between the light emission elapsed time of a LED element, and the surface temperature of a fluorescent substance. LED素子に供給する電流値と全光束との関係を示すグラフである。It is a graph which shows the relationship between the electric current value supplied to an LED element, and a total luminous flux. LED素子に供給する電流値と色温度との関係を示すグラフである。It is a graph which shows the relationship between the electric current value supplied to an LED element, and color temperature. LED素子に供給する電流値と色度(X)との関係を示すグラフである。It is a graph which shows the relationship between the electric current value supplied to an LED element, and chromaticity (X). LED素子に供給する電流値と色度(Y)との関係を示すグラフである。It is a graph which shows the relationship between the electric current value supplied to an LED element, and chromaticity (Y). 本発明の応用例の照明用灯具を示す分解立体図である。It is an exploded three-dimensional view which shows the lighting lamp of the application example of this invention. 本発明の応用例の照明用灯具の部分断面図である。It is a fragmentary sectional view of the lighting lamp of the application example of this invention. 本発明の実施形態に係わる蛍光体膜の説明図である。It is explanatory drawing of the fluorescent substance film concerning embodiment of this invention. 従来例の照明用灯具に使用されるLEDランプの説明図である。It is explanatory drawing of the LED lamp used for the lamp for illumination of a prior art example. 同じく、従来例の照明用灯具に使用されるLEDランプの説明図である。Similarly, it is explanatory drawing of the LED lamp used for the lighting fixture of a prior art example.

符号の説明Explanation of symbols

1 LED光源
2 LED実装基板
3 青色LED素子
4 アルミニウム基板
5 蛍光体膜
6 蛍光体カバー
7 透光性部材
8 蛍光体
9 照明用灯具
10 基板
11 反射枠
12 キャップ
13 貫通孔
14 湾曲部
15 照明用灯具
16 側面
17 空間
DESCRIPTION OF SYMBOLS 1 LED light source 2 LED mounting board 3 Blue LED element 4 Aluminum substrate 5 Phosphor film 6 Phosphor film 7 Phosphor cover 7 Translucent member 8 Phosphor 9 Lighting lamp 10 Substrate 11 Reflection frame 12 Cap 13 Through-hole 14 Bending part 15 For illumination Lamp 16 Side 17 Space

Claims (5)

半導体発光素子と、
前記半導体発光素子の光で励起されて波長変換された光を放出する蛍光体膜が設けられた蛍光体カバーを備え、
前記半導体発光素子と前記蛍光体膜の間には少なくとも気体層が存在し、前記半導体発光素子の光が少なくとも前記気体層を伝搬されて前記蛍光体膜に到達することを特徴とする照明用灯具。
A semiconductor light emitting device;
Comprising a phosphor cover provided with a phosphor film that emits light that has been excited by the light of the semiconductor light emitting element and wavelength-converted;
An illumination lamp characterized in that at least a gas layer exists between the semiconductor light emitting element and the phosphor film, and light of the semiconductor light emitting element is propagated through at least the gas layer and reaches the phosphor film. .
前記気体層が空気層であることを特徴とする請求項1に記載の照明用灯具。   The lighting lamp according to claim 1, wherein the gas layer is an air layer. 前記半導体発光素子の主光出射面と前記蛍光体膜の最短距離が5mm〜50mmの範囲にあり、前記蛍光体膜の面積が1.57cm〜157cmの範囲にあることを特徴とする請求項1または2のいずれか1項に記載の照明用灯具。 The shortest distance between the main light emitting surface of the semiconductor light emitting element and the phosphor film is in the range of 5 mm to 50 mm, and the area of the phosphor film is in the range of 1.57 cm 2 to 157 cm 2. Item 3. An illumination lamp according to any one of Items 1 and 2. 前記蛍光体膜の膜厚が0.05mm〜0.15mmの範囲にあることを特徴とする請求項1〜3のいずれか1項に記載の照明用灯具。   The lighting lamp according to any one of claims 1 to 3, wherein a thickness of the phosphor film is in a range of 0.05 mm to 0.15 mm. 前記蛍光体膜はオルトシリケート系蛍光体であることを特徴とする請求項1〜4のいずれか1項に記載の照明用灯具。   The illumination lamp according to any one of claims 1 to 4, wherein the phosphor film is an orthosilicate phosphor.
JP2007203295A 2007-08-03 2007-08-03 Lamp for lighting Pending JP2009038304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007203295A JP2009038304A (en) 2007-08-03 2007-08-03 Lamp for lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007203295A JP2009038304A (en) 2007-08-03 2007-08-03 Lamp for lighting

Publications (2)

Publication Number Publication Date
JP2009038304A true JP2009038304A (en) 2009-02-19
JP2009038304A5 JP2009038304A5 (en) 2010-09-09

Family

ID=40439934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203295A Pending JP2009038304A (en) 2007-08-03 2007-08-03 Lamp for lighting

Country Status (1)

Country Link
JP (1) JP2009038304A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014359A (en) * 2009-07-01 2011-01-20 Isahiko Suzuki Led lighting fixture
JP2012079671A (en) * 2010-10-05 2012-04-19 Advanced Connectek Inc Complementary color light source device
JP2012099297A (en) * 2010-11-01 2012-05-24 Keiji Iimura Led lamp and led bulb
JP2012520547A (en) * 2009-03-10 2012-09-06 ネペス エルイーディー コーポレーション Lamp cover and LED lamp using the same
CN102901015A (en) * 2011-07-26 2013-01-30 日立空调·家用电器株式会社 Illuminating apparatus
JP2013175467A (en) * 2013-03-30 2013-09-05 Keiji Iimura Led lamp and led bulb
JP2013187106A (en) * 2012-03-09 2013-09-19 Panasonic Corp Lighting fixture
JP2015072910A (en) * 2014-10-24 2015-04-16 日立アプライアンス株式会社 Lighting system
JP2018147903A (en) * 2018-07-02 2018-09-20 日立アプライアンス株式会社 Luminaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031547A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Planar light source
JP2005086051A (en) * 2003-09-10 2005-03-31 Toshiba Lighting & Technology Corp Light emitting device
JP2005537651A (en) * 2002-08-30 2005-12-08 ゲルコアー リミテッド ライアビリティ カンパニー Covered LED with improved efficiency
JP2007066939A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
WO2007083907A1 (en) * 2006-01-17 2007-07-26 Lucimea Co., Ltd. Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031547A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Planar light source
JP2005537651A (en) * 2002-08-30 2005-12-08 ゲルコアー リミテッド ライアビリティ カンパニー Covered LED with improved efficiency
JP2005086051A (en) * 2003-09-10 2005-03-31 Toshiba Lighting & Technology Corp Light emitting device
JP2007066939A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
WO2007083907A1 (en) * 2006-01-17 2007-07-26 Lucimea Co., Ltd. Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520547A (en) * 2009-03-10 2012-09-06 ネペス エルイーディー コーポレーション Lamp cover and LED lamp using the same
JP2011014359A (en) * 2009-07-01 2011-01-20 Isahiko Suzuki Led lighting fixture
JP2012079671A (en) * 2010-10-05 2012-04-19 Advanced Connectek Inc Complementary color light source device
JP2012099297A (en) * 2010-11-01 2012-05-24 Keiji Iimura Led lamp and led bulb
CN102901015A (en) * 2011-07-26 2013-01-30 日立空调·家用电器株式会社 Illuminating apparatus
JP2013026588A (en) * 2011-07-26 2013-02-04 Hitachi Appliances Inc Illuminating device
JP2013187106A (en) * 2012-03-09 2013-09-19 Panasonic Corp Lighting fixture
JP2013175467A (en) * 2013-03-30 2013-09-05 Keiji Iimura Led lamp and led bulb
JP2015072910A (en) * 2014-10-24 2015-04-16 日立アプライアンス株式会社 Lighting system
JP2018147903A (en) * 2018-07-02 2018-09-20 日立アプライアンス株式会社 Luminaire

Similar Documents

Publication Publication Date Title
JP2009038304A (en) Lamp for lighting
US7586127B2 (en) Light emitting diode
TWI422920B (en) Led backlight
JP5826503B2 (en) LED bulb
US20060023447A1 (en) Luminous body for generating white light
JP2006059625A (en) Led illumination device, pendant illumination fixture, and street lgt
JP5443959B2 (en) Lighting device
JP2007081234A (en) Lighting system
JP2011510445A (en) Illumination device comprising an LED and a transmissive support having a luminescent material
JP2010034184A (en) Light-emitting device
JP2006324134A (en) Surface light-emitting device
JP2011065804A (en) Lighting device, and lighting fixture for vehicle
JP2011222924A (en) Illumination device structure
JP2018041723A (en) Light emitting module and vehicular headlight
US20130242532A1 (en) Luminaire
JP2010129185A (en) Led lamp
JP2009231569A (en) Led light source and its chrominance adjusting method
JP2013168602A (en) Light source device and luminaire
JP2012204413A (en) White light emitting device and luminaire using the same
JP5598669B2 (en) Lighting device
JP2011071354A (en) Light-emitting device, bulb-shaped lamp, and lighting apparatus
JP2010010655A (en) Led lamp
JP2013257985A (en) Light-emitting module, lamp unit and lighting device using the lamp unit
JP2013069881A (en) Lighting device
JP5524793B2 (en) lamp

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918