JP2013168602A - Light source device and luminaire - Google Patents

Light source device and luminaire Download PDF

Info

Publication number
JP2013168602A
JP2013168602A JP2012032406A JP2012032406A JP2013168602A JP 2013168602 A JP2013168602 A JP 2013168602A JP 2012032406 A JP2012032406 A JP 2012032406A JP 2012032406 A JP2012032406 A JP 2012032406A JP 2013168602 A JP2013168602 A JP 2013168602A
Authority
JP
Japan
Prior art keywords
light source
light
phosphor
solid
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012032406A
Other languages
Japanese (ja)
Inventor
Takashi Akino
貴志 秋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012032406A priority Critical patent/JP2013168602A/en
Publication of JP2013168602A publication Critical patent/JP2013168602A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce color unevenness occurring in the light extraction surface of a phosphor layer while minimizing decrease in light extraction efficiency, in a light source device including a solid light source which emits light by using the light of a predetermined wavelength in the wavelength range of visible light as the excitation light, and a phosphor layer which is excited by the excitation light from the solid light source and emits fluorescent light having a wavelength longer than the emission wavelength of the solid light source.SOLUTION: A phosphor layer 2 is composed of a plurality of types of phosphor having different activator concentrations so that the emission intensity of fluorescent light is weakened from the central portion of irradiation of the excitation light from a solid light source 5 (irradiation spot portion) ST toward the periphery.

Description

本発明は、光源装置および照明装置に関する。   The present invention relates to a light source device and an illumination device.

従来、例えば特許文献1や特許文献2には、図1に示すように、青色光を励起光として出射する青色LED103と、青色LED103からの励起光により励起され黄色光の蛍光を発する黄色蛍光体層104とを備え、励起光により励起された蛍光(黄色光)と黄色蛍光体層104を透過した励起光(青色光)との混色により白色光を生成することを意図した光源装置が提案されている。なお、図1において、符号107は黄色蛍光体層104の光取り出し面104aから取り出される出射光(励起光(青色光)、蛍光(黄色光))を示している。   Conventionally, for example, in Patent Document 1 and Patent Document 2, as shown in FIG. 1, a blue LED 103 that emits blue light as excitation light, and a yellow phosphor that emits yellow light fluorescence when excited by excitation light from the blue LED 103. And a light source device that is intended to generate white light by mixing colors of excitation light (yellow light) excited by excitation light and excitation light (blue light) transmitted through the yellow phosphor layer 104. ing. In FIG. 1, reference numeral 107 denotes outgoing light (excitation light (blue light), fluorescence (yellow light)) extracted from the light extraction surface 104a of the yellow phosphor layer 104.

特開平5−152609号公報JP-A-5-152609 特開平7−99345号公報JP-A-7-99345

ところで、図1の構成において、青色LED103からの青色光は、その全てが光軸方向Xに揃って黄色蛍光体層104に入射するのではなく、光軸方向Xに対してある角度分布(例えばランバーシアン分布)をもって黄色蛍光体層104に入射する。従って、この場合、図2に示すように、黄色蛍光体層104に入射した青色光のうち、光軸方向Xに入射した青色光の黄色蛍光体層104内における光路長L1よりも、光軸方向Xに対してある角度をもって入射した青色光の黄色蛍光体層104内における光路長L2の方が、黄色蛍光体層104内における青色光の光路長が長くなる。このように、光軸方向Xに入射した光路長L1の青色光よりも、光軸方向Xに対してある角度をもって入射した光路長L2の青色光の方が黄色蛍光体層104を長く通ることで、蛍光(黄色光)を多く励起する。この結果、図3に示すように、黄色蛍光体層104の光取り出し面104aから見たときに、青色LED103が配置された中心部Cは青色っぽい白色となる一方で、その外周部Rはリング状に黄色っぽい白色となり、イエローリングと呼ばれる色ムラが生じてしまう。   By the way, in the configuration of FIG. 1, the blue light from the blue LED 103 is not all aligned in the optical axis direction X and incident on the yellow phosphor layer 104, but has an angular distribution with respect to the optical axis direction X (for example, It enters the yellow phosphor layer 104 with a Lambertian distribution. Therefore, in this case, as shown in FIG. 2, the blue light incident on the yellow phosphor layer 104 has an optical axis longer than the optical path length L1 in the yellow phosphor layer 104 of the blue light incident in the optical axis direction X. The optical path length L2 in the yellow phosphor layer 104 of blue light incident at an angle with respect to the direction X is longer in the optical path length of blue light in the yellow phosphor layer 104. Thus, blue light having an optical path length L2 incident at an angle with respect to the optical axis direction X passes through the yellow phosphor layer 104 longer than blue light having an optical path length L1 incident in the optical axis direction X. Thus, a lot of fluorescence (yellow light) is excited. As a result, as shown in FIG. 3, when viewed from the light extraction surface 104 a of the yellow phosphor layer 104, the central portion C where the blue LED 103 is disposed is bluish white, while the outer peripheral portion R is a ring. The color becomes yellowish white, and color unevenness called a yellow ring occurs.

上述の例は固体光源(発光素子)が青色LEDの場合であるが、固体光源が青色LD(半導体レーザー)である場合には、図4に示すように、青色LD203からの青色光は、ほぼ光軸方向Xに黄色蛍光体層104に入射し、一部はほぼ光軸方向Xに黄色蛍光体層104を通過するが(光路長はL1)、他の一部は反射、拡散などによって黄色蛍光体層104内を導光し、光路長はL1に比べて長くなる。このように、ほぼ光軸方向Xに黄色蛍光体層104を通過する光路長L1の青色光よりも、反射、拡散などによって黄色蛍光体層104内を導光する青色光の方が黄色蛍光体層104を長く通ることで、蛍光(黄色光)を多く励起する。この結果、固体光源が青色LD203である場合にも、図3に示したと同様に、黄色蛍光体層104の光取り出し面104aから見たときに、青色LD203が配置された中心部は青色っぽい白色となる一方で、その外周部はリング状に黄色っぽい白色となり、イエローリングと呼ばれる色ムラが生じてしまう。   The above example is a case where the solid light source (light emitting element) is a blue LED, but when the solid light source is a blue LD (semiconductor laser), as shown in FIG. The light is incident on the yellow phosphor layer 104 in the optical axis direction X, and a part of the light passes through the yellow phosphor layer 104 in the optical axis direction X (the optical path length is L1). The inside of the phosphor layer 104 is guided, and the optical path length is longer than that of L1. As described above, the blue light that is guided through the yellow phosphor layer 104 by reflection, diffusion, or the like is more yellow-colored than the blue light having the optical path length L1 that passes through the yellow phosphor layer 104 substantially in the optical axis direction X. By passing through the layer 104 for a long time, a lot of fluorescence (yellow light) is excited. As a result, even when the solid-state light source is the blue LD 203, the central portion where the blue LD 203 is disposed is a bluish white when viewed from the light extraction surface 104a of the yellow phosphor layer 104, as shown in FIG. On the other hand, the outer peripheral portion becomes yellowish white in a ring shape, and color unevenness called a yellow ring occurs.

このように、固体光源が青色LED103、青色LD203のいずれであっても、イエローリングと呼ばれる色ムラが生じてしまう。また、上述の例では、蛍光体層104が黄色蛍光体層であるとし、この場合には、蛍光体層104の光取り出し面104aから見たときに、外周部はリング状に黄色っぽい白色となるが、蛍光体層104が緑色蛍光体層や赤色蛍光体層の場合にも、同様の色ムラが生じる。すなわち、蛍光体層104が緑色蛍光体層や赤色蛍光体層の場合には、外周部はリング状に緑色っぽい白色、赤色っぽい白色となる。   As described above, regardless of whether the solid light source is the blue LED 103 or the blue LD 203, color unevenness called a yellow ring occurs. In the above example, the phosphor layer 104 is a yellow phosphor layer. In this case, when viewed from the light extraction surface 104a of the phosphor layer 104, the outer peripheral portion has a ring-like yellowish white color. However, similar color unevenness occurs when the phosphor layer 104 is a green phosphor layer or a red phosphor layer. That is, when the phosphor layer 104 is a green phosphor layer or a red phosphor layer, the outer peripheral portion has a ring-like greenish white and redish white.

また、上述した例では、固体光源が青色LED、青色LDであるとしたが、青色光に限らず、可視光を出射する固体光源であれば、上述したと同様の色ムラが生じる。   In the above-described example, the solid light source is a blue LED or blue LD. However, not only blue light but also a solid light source that emits visible light causes the same color unevenness as described above.

また、上述した例では、固体光源と蛍光体層104とが接して配置されているが、固体光源と蛍光体層104とが空間的に離れて配置されている場合にも、上述したと同様の原理で、上述したと同様の色ムラが生じる。   In the above-described example, the solid light source and the phosphor layer 104 are arranged in contact with each other, but the same applies to the case where the solid light source and the phosphor layer 104 are arranged spatially apart from each other. In this principle, the same color unevenness as described above occurs.

このような蛍光体層104の光取り出し面104aを直視した際に見られる色ムラは、品質上好ましくないばかりでなく、本光源装置を表示装置に利用したときの表示面における色ムラや、光センサーなど精密機器に利用した場合は誤差を生ずることにもなる。   Such color unevenness seen when the light extraction surface 104a of the phosphor layer 104 is directly viewed is not only undesirable in terms of quality, but also color unevenness on the display surface when the light source device is used for a display device, light When used in precision equipment such as sensors, errors will also occur.

そこで、図5(a)、(b)に示すように、蛍光体層104の光取り出し面104aの色ムラが生じる部分(図3に示した外周部R)を遮光膜105で覆い、色ムラを隠す手法も考えられる。なお、図5(a)は概略断面図、図5(b)は平面図(蛍光体層の光取り出し面から見た図)である。しかしながら、この場合には、遮光膜105で覆うために光(励起光、蛍光)の取り出し効率が低下してしまうという問題がある。   Therefore, as shown in FIGS. 5A and 5B, a portion where the color unevenness of the light extraction surface 104a of the phosphor layer 104 (the outer peripheral portion R shown in FIG. 3) is covered with the light shielding film 105, and the color unevenness is covered. A method of concealing is also conceivable. 5A is a schematic cross-sectional view, and FIG. 5B is a plan view (viewed from the light extraction surface of the phosphor layer). However, in this case, since the light shielding film 105 covers the light (excitation light, fluorescence), there is a problem that the extraction efficiency is lowered.

本発明は、可視光の波長領域のうちの所定の波長の光を励起光として発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する蛍光体層とを備えている光源装置において、蛍光体層の光取り出し面に生じる色ムラを低減し、かつ、光の取り出し効率の低下を抑えることの可能な光源装置および照明装置を提供することを目的としている。   The present invention includes a solid-state light source that emits light having a predetermined wavelength in the visible light wavelength region as excitation light, and fluorescence that is excited by excitation light from the solid-state light source and has a wavelength longer than the emission wavelength of the solid-state light source. Provided are a light source device and a lighting device capable of reducing color unevenness generated on a light extraction surface of the phosphor layer and suppressing a decrease in light extraction efficiency in a light source device including a phosphor layer that emits light The purpose is to do.

上記目的を達成するために、請求項1記載の発明は、可視光の波長領域のうちの所定の波長の光を励起光として発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する蛍光体層とを備えている光源装置であって、
前記蛍光体層は、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成されていることを特徴としている。
In order to achieve the above object, the invention described in claim 1 is a solid-state light source that emits light having a predetermined wavelength in a visible light wavelength region as excitation light, and is excited by excitation light from the solid-state light source. A light source device comprising a phosphor layer that emits fluorescence having a longer wavelength than the emission wavelength of a solid-state light source,
The phosphor layer is composed of a plurality of types of phosphors having different activator concentrations such that the fluorescence emission intensity decreases from the central part of the irradiation of the excitation light from the solid light source toward the periphery. Yes.

また、請求項2記載の発明は、請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となるような賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が高くなる蛍光体、または、賦活剤濃度が低くなる蛍光体で構成されていることを特徴としている。   According to a second aspect of the present invention, in the light source device according to the first aspect, the phosphor layer is activated such that the central portion of the irradiation of the excitation light from the solid state light source has a maximum fluorescence emission intensity. It consists of a phosphor with a concentration of the activator, and a phosphor with a higher activator concentration or a phosphor with a lower activator concentration as it goes from the central part to the periphery of the irradiation of the excitation light from the solid light source. It is characterized by being.

また、請求項3記載の発明は、請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となる賦活剤濃度よりも高い賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が高くなる蛍光体で構成されていることを特徴としている。   Further, the invention according to claim 3 is the light source device according to claim 1, wherein the phosphor layer has an activator concentration at which the central portion of the irradiation of excitation light from the solid state light source has a maximum fluorescence emission intensity. It is composed of a phosphor with a higher activator concentration, and is composed of a phosphor with a higher activator concentration as it goes from the central part of the irradiation of excitation light from the solid light source toward the periphery. Yes.

また、請求項4記載の発明は、請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となる賦活剤濃度よりも低い賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が低くなる蛍光体で構成されていることを特徴としている。   According to a fourth aspect of the present invention, in the light source device according to the first aspect, the phosphor layer has an activator concentration at which the central portion of the irradiation of excitation light from the solid state light source has a maximum fluorescence emission intensity. It is composed of a phosphor with a lower activator concentration, and is composed of a phosphor with a lower activator concentration as it goes from the central part of the irradiation of excitation light from the solid light source toward the periphery. Yes.

また、請求項5記載の発明は、請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置である。   The invention according to claim 5 is an illumination device characterized by using the light source device according to any one of claims 1 to 4.

請求項1乃至請求項5記載の発明によれば、可視光の波長領域のうちの所定の波長の光を励起光として発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する蛍光体層とを備えている光源装置であって、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成されているので、蛍光体層の光取り出し面に生じる色ムラを低減し、かつ、光の取り出し効率の低下を抑えることができる。   According to the first to fifth aspects of the present invention, a solid-state light source that emits light having a predetermined wavelength in the visible light wavelength region as excitation light, and the solid-state light source that is excited by the excitation light from the solid-state light source. A phosphor layer that emits fluorescence having a longer wavelength than the emission wavelength of the light source, wherein the phosphor layer emits fluorescence from the central portion of the irradiation of excitation light from the solid-state light source toward the periphery. Because it is composed of multiple types of phosphors with different activator concentrations that weaken the light emission intensity, it reduces color unevenness that occurs on the light extraction surface of the phosphor layer and suppresses the decrease in light extraction efficiency Can do.

従来の光源装置を示す図である。It is a figure which shows the conventional light source device. 固体光源が青色LEDの場合におけるイエローリングの発生メカニズムを説明するための図である。It is a figure for demonstrating the generation | occurrence | production mechanism of yellow ring in case a solid light source is blue LED. 従来の光源装置において生ずるイエローリング(色ムラ)を示す図である。It is a figure which shows the yellow ring (color nonuniformity) which arises in the conventional light source device. 固体光源が青色LDの場合におけるイエローリングの発生メカニズムを説明するための図である。It is a figure for demonstrating the generation | occurrence | production mechanism of yellow ring in case a solid light source is blue LD. 従来の光源装置において生ずるイエローリング(色ムラ)を防止するための一例を示す図である。It is a figure which shows an example for preventing the yellow ring (color nonuniformity) which arises in the conventional light source device. 本発明の光源装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the light source device of this invention. 蛍光体の賦活剤濃度による蛍光体からの蛍光の発光強度の変化を示す図である。It is a figure which shows the change of the emitted light intensity of the fluorescence from a fluorescent substance by the activator density | concentration of a fluorescent substance. 蛍光体層の賦活剤濃度を変化させる例を示す図である。It is a figure which shows the example which changes the activator density | concentration of a fluorescent substance layer. 蛍光体層の賦活剤濃度を変化させる例を示す図である。It is a figure which shows the example which changes the activator density | concentration of a fluorescent substance layer. 本発明の照明装置の一例を示す図である。It is a figure which shows an example of the illuminating device of this invention. 本発明の光源装置の他の構成例を示す図である。It is a figure which shows the other structural example of the light source device of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図6(a)、(b)は、本発明の光源装置の一構成例を示す図である。なお、図6(a)は概略断面図、図6(b)は蛍光体層の平面図である。図6(a)を参照すると、この光源装置10は、可視光の波長領域のうちの所定の波長の光を励起光として発光する固体光源5と、該固体光源5からの励起光により励起され該固体光源5の発光波長よりも長波長の蛍光を発光する蛍光体層2とを備えている。   6A and 6B are diagrams showing an example of the configuration of the light source device of the present invention. 6A is a schematic sectional view, and FIG. 6B is a plan view of the phosphor layer. Referring to FIG. 6A, the light source device 10 is excited by a solid light source 5 that emits light having a predetermined wavelength in the wavelength region of visible light as excitation light, and excitation light from the solid light source 5. And a phosphor layer 2 that emits fluorescence having a longer wavelength than the emission wavelength of the solid-state light source 5.

なお、図6(a)、(b)の例では、固体光源5と蛍光体層2とは空間的に離れて配置されている。   6A and 6B, the solid light source 5 and the phosphor layer 2 are arranged spatially separated.

また、図6(a)、(b)の光源装置10は、蛍光体層2の励起光が入射する側の面とは反対の側から光(励起光、蛍光)を取り出す方式(以下、これらを透過方式または透過型と称す)が採用されており、固体光源5と蛍光体層2とを空間的に離して配置することにより、従来に比べて十分な高輝度化を図ることが可能となる。なお、透過方式または透過型の光源装置とは、より正確には、図6(a)、(b)のように蛍光体層2に固体光源5からの励起光を照射した場合に、蛍光体層2から発せられる蛍光成分のうち、固体光源5とは反対の側に出てくる成分を利用する光源装置のことであり、このとき、励起光の透過成分も利用し、蛍光成分と励起光の透過成分との混合光を出射光(照明光)として取り出すことができる。   The light source device 10 in FIGS. 6A and 6B is a method for extracting light (excitation light, fluorescence) from the side opposite to the surface on which the excitation light of the phosphor layer 2 is incident (hereinafter referred to as these). Is referred to as a transmission system or transmission type), and the solid light source 5 and the phosphor layer 2 are arranged spatially separated from each other, thereby making it possible to achieve a sufficiently high luminance as compared with the conventional case. Become. More precisely, the transmissive or transmissive light source device is a phosphor when the phosphor layer 2 is irradiated with excitation light from the solid light source 5 as shown in FIGS. 6 (a) and 6 (b). Among the fluorescent components emitted from the layer 2, it is a light source device that uses a component that emerges on the opposite side of the solid light source 5. At this time, the transmitted component of the excitation light is also used, and the fluorescent component and the excitation light are used. The mixed light with the transmitted component can be taken out as outgoing light (illumination light).

ここで、固体光源5には、可視光領域に発光波長をもつ発光ダイオード(LED)や半導体レーザー(LD)などが使用可能である。   Here, a light emitting diode (LED) having a light emission wavelength in the visible light region, a semiconductor laser (LD), or the like can be used as the solid light source 5.

具体的に、固体光源5には、例えば、GaN系の材料を用いた発光波長が約460nm程度の青色光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、蛍光体層2の蛍光体としては、波長が約440nm乃至約470nmの青色光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+、CaSi:Eu2+、(Ca,Sr)Si:Eu2+、KSiF:Mn4+、KTiF:Mn4+等が用いられ、黄色蛍光体には、YAl12:Ce3+、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+等が用いられ、緑色蛍光体には、LuAl12:Ce3+、(Lu,Y)Al12:Ce3+、Y(Ga,Al)12:Ce3+、CaScSi12:Ce3+、CaSc:Eu2+、(Ba,Sr)SiO:Eu2+、BaSi12:Eu2+、(Si,Al)(O,N):Eu2+等を用いることができる。 Specifically, for example, a light emitting diode or a semiconductor laser that emits blue light having a light emission wavelength of about 460 nm using a GaN-based material can be used as the solid light source 5. In this case, as the phosphor of the phosphor layer 2, as the wavelength is excited by the blue light of about 440nm to about 470 nm, for example, the red phosphor, CaAlSiN 3: Eu 2+, ( Ca, Sr) AlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ and the like are used as the yellow phosphor. Y 3 Al 5 O 12 : Ce 3+ , (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si, Al) 12 (O, N) 16 : Eu 2+, etc. , Lu 3 Al 5 O 12: Ce 3+, (Lu, Y) 3 Al 5 O 12: Ce 3+, Y 3 (Ga, Al) 5 O 12: Ce 3+, Ca 3 Sc 2 Si 3 O 12: e 3+, CaSc 2 O 4: Eu 2+, (Ba, Sr) 2 SiO 4: Eu 2+, Ba 3 Si 6 O 12 N 2: Eu 2+, (Si, Al) 6 (O, N) 8: Eu 2+ Etc. can be used.

すなわち、蛍光体層2には、赤色蛍光体、あるいは、黄色蛍光体、あるいは、緑色蛍光体、あるいは、これらの混合物などを用いることができる。   That is, for the phosphor layer 2, a red phosphor, a yellow phosphor, a green phosphor, or a mixture thereof can be used.

また、蛍光体層2としては、これらの蛍光体粉末をガラス中に分散させたものや、ガラス母体に発光中心イオンを添加したガラス蛍光体、あるいは、これらの蛍光体粉末を樹脂(例えばシリコーン樹脂)などのバインダ中に分散させたものや、樹脂などのバインダを含まない蛍光体セラミックス等を用いることができる。蛍光体粉末をガラス中に分散させたものの具体例としては、上に列挙した組成の蛍光体粉末をP、SiO、B、Alなどの成分を含むガラス中に分散したものが挙げられる。ガラス母体に発光中心イオンを添加したガラス蛍光体としては、Ce3+やEu2+を賦活剤として添加したCa−Si−Al−O−N系やY−Si−Al−O−N系などの酸窒化物系ガラス蛍光体が挙げられる。蛍光体セラミックスとしては、上に列挙した組成の蛍光体組成からなり、樹脂成分を実質的に含まない焼結体が挙げられる。これらの中でも透光性を有する蛍光体セラミックスを使用することが望ましい。これは、焼結体中に光の散乱の原因となるポアや粒界の不純物がほとんど存在しないために透光性を有するに至った蛍光体セラミックスである。透光性セラミックスは、熱拡散を妨げる原因にもなるポアや不純物がほとんど存在しないため、高い熱伝導率を示す。このため蛍光体層として利用した場合には励起光や蛍光を拡散により失うことなく蛍光体層から取り出して利用でき、さらに蛍光体層で発生した熱を効率良く放散することができる。透光性を示さない焼結体でも出来るだけポアや不純物の少ないものが望ましい。ポアの残存量を評価する指標としては蛍光体セラミックスの比重の値を用いることができ、その値が計算される理論値に対して95%以上のものが望ましい。 Further, as the phosphor layer 2, those phosphor powders dispersed in glass, glass phosphors in which a luminescent center ion is added to a glass matrix, or these phosphor powders are made of resin (for example, silicone resin). ) Or the like dispersed in a binder, or phosphor ceramics that do not contain a binder such as a resin. As a specific example of the phosphor powder dispersed in glass, the phosphor powder having the composition listed above is contained in a glass containing components such as P 2 O 3 , SiO 2 , B 2 O 3 , and Al 2 O 3. Are dispersed. As the glass phosphor in which the luminescent center ion is added to the glass matrix, an acid such as Ca—Si—Al—O—N or Y—Si—Al—O—N containing Ce 3+ or Eu 2+ as an activator is used. Nitride glass phosphors may be mentioned. Examples of the phosphor ceramic include a sintered body having a phosphor composition having the composition listed above and substantially not including a resin component. Among these, it is desirable to use a phosphor ceramic having translucency. This is a phosphor ceramic that has translucency because there are almost no pores or impurities at grain boundaries that cause light scattering in the sintered body. Translucent ceramics show high thermal conductivity because there are almost no pores or impurities that cause thermal diffusion. For this reason, when it uses as a fluorescent substance layer, it can take out from a fluorescent substance layer, and can utilize it, without losing excitation light and fluorescence by diffusion, Furthermore, the heat | fever which generate | occur | produced in the fluorescent substance layer can be dissipated efficiently. Even a sintered body that does not show translucency is desirable to have as few pores and impurities as possible. As an index for evaluating the remaining amount of pores, the value of specific gravity of the phosphor ceramic can be used, and it is desirable that the value is 95% or more with respect to the theoretical value by which the value is calculated.

ところで、図6(a)、(b)の光源装置10において、仮に蛍光体層2が同じ種類の蛍光体(例えば賦活剤濃度の同じ1種類の蛍光体)で形成されている場合には、前述したように、蛍光体層2の光取り出し面2aの外周部にイエローリングのような色ムラが生じる。   By the way, in the light source device 10 of FIGS. 6A and 6B, if the phosphor layer 2 is formed of the same type of phosphor (for example, one type of phosphor having the same activator concentration), As described above, color unevenness such as a yellow ring occurs on the outer peripheral portion of the light extraction surface 2a of the phosphor layer 2.

上記のように色むらが生じてしまう原因は、前述したように、固体光源5からの励起光(例えば青色光)の蛍光体層2内での光路長が、蛍光体層2における励起光の照射の中心部分から周辺に向かうに従って、大きくなることで、蛍光を多く励起するためである。よって、蛍光体層2において励起光の照射の中心部分から周辺に向かうに従って蛍光の発光強度を減少させれば、イエローリングのような色ムラを低減できる。   As described above, the reason why the color unevenness occurs as described above is that the optical path length of the excitation light (for example, blue light) from the solid light source 5 in the phosphor layer 2 depends on the excitation light in the phosphor layer 2. This is because the fluorescence increases as it increases from the central part of the irradiation toward the periphery. Therefore, color unevenness such as yellow ring can be reduced by reducing the fluorescence emission intensity as it goes from the central part to the periphery of the irradiation of excitation light in the phosphor layer 2.

本願の発明者は、蛍光体の賦活剤濃度によって蛍光体からの蛍光の発光強度が変化することに着目した。図7は蛍光体の賦活剤濃度による蛍光体からの蛍光の発光強度の変化を示す図である。図7を参照すると、蛍光体からの蛍光の発光強度は、通常、賦活剤濃度を上げると増大し、ある賦活剤濃度F0で極大値を取った後、減少していく。   The inventors of the present application focused on the fact that the fluorescence emission intensity from the phosphor changes depending on the concentration of the activator of the phosphor. FIG. 7 is a diagram showing a change in emission intensity of fluorescence from the phosphor depending on the concentration of the activator of the phosphor. Referring to FIG. 7, the emission intensity of the fluorescence from the phosphor usually increases as the activator concentration is increased, and decreases after reaching a maximum value at a certain activator concentration F0.

なお、蛍光体からの蛍光の発光強度がある賦活剤濃度F0で極大値を取った後に減少していく現象を濃度消光と呼ぶが、一般的な蛍光体において賦活剤濃度は母体結晶に対し数モル%添加され、それ以上の濃度では、(1)賦活剤間に共鳴伝達による交差緩和が生じ、励起エネルギーの一部が失われる、(2)賦活剤間の共鳴伝達による励起の回遊が生じ、これが結晶表面や非発光中心への励起の移行と消滅を助長する、(3)賦活剤同士が凝集あるいはイオン対を形成することによって、非発光中心やキラー(蛍光抑制剤)に変わる、などの理由によって濃度消光が起こることが知られている。   The phenomenon in which the fluorescence emission intensity from the phosphor decreases after reaching a maximum value at the activator concentration F0 is called concentration quenching. In general phosphors, the activator concentration is several times that of the base crystal. When added at a mol% or higher, (1) cross relaxation due to resonance transfer occurs between activators, and a part of excitation energy is lost, and (2) excitation migration occurs due to resonance transfer between activators. , This promotes the transition and extinction of excitation to the crystal surface and non-luminescent center, (3) the activator aggregates or forms an ion pair, and changes to non-luminescent center and killer (fluorescence inhibitor), etc. It is known that concentration quenching occurs for this reason.

本発明は、上記のように、蛍光体の賦活剤濃度によって蛍光体からの蛍光の発光強度が変化することに着目してなされたものであり、図6(a)、(b)の光源装置10では、蛍光体層2は、固体光源5からの励起光の照射の中心部分(照射スポット部分)STから周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成されている。   As described above, the present invention has been made by paying attention to the fact that the emission intensity of fluorescence from the phosphor changes depending on the concentration of the activator of the phosphor, and the light source device shown in FIGS. 6 (a) and 6 (b). 10, the phosphor layer 2 includes a plurality of types of phosphors having different activator concentrations such that the emission intensity of fluorescence decreases from the central portion (irradiation spot portion) ST of the excitation light irradiation from the solid light source 5 toward the periphery. It consists of

より具体的に、第1の例として、蛍光体層2は、固体光源5からの励起光の照射の中心部分(照射スポット部分)STが、蛍光の発光強度が最大となるような賦活剤濃度(図7の賦活剤濃度F0)の蛍光体で構成されており、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って、賦活剤濃度が高くなる蛍光体、または、賦活剤濃度が低くなる蛍光体で構成することができる。この場合には、固体光源5からの励起光の照射の中心部分STで蛍光の発光強度が最大となり、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って蛍光の発光強度が弱くなるため、励起光の照射の中心部分STから周辺に向かうに従って蛍光が多く励起されても、それを相殺し、イエローリングのような色ムラを低減できる。   More specifically, as a first example, the phosphor layer 2 has an activator concentration such that the central portion (irradiation spot portion) ST of the irradiation of excitation light from the solid light source 5 has the maximum fluorescence emission intensity. A phosphor or an activator that is composed of a phosphor having an activator concentration F0 in FIG. 7 and that has a higher activator concentration as it goes from the central portion ST to the periphery of the irradiation of excitation light from the solid light source 5. It can be composed of a phosphor having a low concentration. In this case, the fluorescence emission intensity becomes maximum at the central portion ST of the excitation light irradiation from the solid light source 5, and the fluorescence emission intensity increases from the central portion ST of the excitation light irradiation from the solid light source 5 toward the periphery. Since it becomes weaker, even if a lot of fluorescence is excited from the central part ST of the irradiation of the excitation light toward the periphery, it can be offset and color unevenness such as yellow ring can be reduced.

また、第2の例として、蛍光体層2は、固体光源5からの励起光の照射の中心部分(照射スポット部分)STが、蛍光の発光強度が最大となる賦活剤濃度(図7の賦活剤濃度F0)よりも高い賦活剤濃度(図7の賦活剤濃度F1)の蛍光体で構成されており、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って、賦活剤濃度が高くなる蛍光体で構成することができる。この場合にも、固体光源5からの励起光の照射の中心部分STで蛍光の発光強度が最大となり、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って蛍光の発光強度が弱くなるため、励起光の照射の中心部分STから周辺に向かうに従って蛍光が多く励起されても、それを相殺し、イエローリングのような色ムラを低減できる。   Further, as a second example, the phosphor layer 2 has an activation agent concentration (activation of FIG. 7) in which the central portion (irradiation spot portion) ST of the excitation light from the solid light source 5 has the maximum fluorescence emission intensity. Activator concentration (activator concentration F1 in FIG. 7) is higher than the concentration of the activator, and the concentration of the activator increases from the central portion ST of the irradiation of the excitation light from the solid light source 5 toward the periphery. It can be composed of a phosphor having a high value. Also in this case, the fluorescence emission intensity becomes maximum at the central portion ST of the excitation light irradiation from the solid light source 5, and the fluorescence emission intensity increases from the central portion ST of the excitation light irradiation from the solid light source 5 toward the periphery. Since it becomes weaker, even if a lot of fluorescence is excited from the central part ST of the irradiation of the excitation light toward the periphery, it can be offset and color unevenness such as yellow ring can be reduced.

また、第3の例として、蛍光体層2は、固体光源5からの励起光の照射の中心部分(照射スポット部分)STが、蛍光の発光強度が最大となる賦活剤濃度(図7の賦活剤濃度F0)よりも低い賦活剤濃度(図7の賦活剤濃度F2)の蛍光体で構成されており、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って、賦活剤濃度が低くなる蛍光体で構成することができる。この場合にも、固体光源5からの励起光の照射の中心部分STで蛍光の発光強度が最大となり、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って蛍光の発光強度が弱くなるため、励起光の照射の中心部分STから周辺に向かうに従って蛍光が多く励起されても、それを相殺し、イエローリングのような色ムラを低減できる。   Further, as a third example, the phosphor layer 2 has an activation agent concentration (activation of FIG. 7) at which the central portion (irradiation spot portion) ST of the excitation light from the solid light source 5 has the maximum fluorescence emission intensity. Activator concentration (activator concentration F2 in FIG. 7) lower than the agent concentration F0), and the concentration of the activator increases from the central portion ST of the irradiation of the excitation light from the solid light source 5 toward the periphery. It can be composed of a phosphor that lowers. Also in this case, the fluorescence emission intensity becomes maximum at the central portion ST of the excitation light irradiation from the solid light source 5, and the fluorescence emission intensity increases from the central portion ST of the excitation light irradiation from the solid light source 5 toward the periphery. Since it becomes weaker, even if a lot of fluorescence is excited from the central part ST of the irradiation of the excitation light toward the periphery, it can be offset and color unevenness such as yellow ring can be reduced.

なお、上記各例において(例えば第2の例において)、図6(b)の蛍光体層2のA−A線における賦活剤濃度は、図8(a)に示すように、固体光源5からの励起光の照射の中心部分(照射スポット部分)STから周辺に向かうに従って、段階的に変化しているが(第2の例では、段階的に高くなっているが)、図6(b)の蛍光体層2のA−A線における賦活剤濃度を、図8(b)に示すように連続的に変化させることもできる(第2の例では、連続的に高くすることもできる)。また、図8(a)、(b)の例では、励起光の照射の中心部分(照射スポット部分)STにおいて、蛍光体層2の賦活剤濃度は一定のものとなっているが、図9(a)、(b)の例のように、励起光の照射の中心部分(照射スポット部分)ST内から、蛍光体層2の賦活剤濃度を変化させてもよい。   In each of the above examples (for example, in the second example), the concentration of the activator in the AA line of the phosphor layer 2 in FIG. 6B is from the solid light source 5 as shown in FIG. FIG. 6B shows a stepwise change from the central portion (irradiation spot portion) ST of the excitation light irradiation to the periphery (although it becomes higher stepwise in the second example). The activator concentration in the AA line of the phosphor layer 2 can be continuously changed as shown in FIG. 8B (in the second example, it can be continuously increased). 8A and 8B, the concentration of the activator of the phosphor layer 2 is constant in the central portion (irradiation spot portion) ST of the excitation light irradiation. As in the examples of (a) and (b), the concentration of the activator of the phosphor layer 2 may be changed from within the central portion (irradiation spot portion) ST of the excitation light irradiation.

このように、本発明では、蛍光体層2は、固体光源5からの励起光の照射の中心部分STから周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成されているので、蛍光体層2の光取り出し面2aの外周部にイエローリングのような色ムラが生じるのを防止し、この場合にも、光の取り出し効率の低下を抑えることができる。   As described above, in the present invention, the phosphor layer 2 includes a plurality of types of phosphors having different activator concentrations such that the emission intensity of fluorescence decreases from the central portion ST to the periphery of the irradiation of the excitation light from the solid light source 5. Therefore, it is possible to prevent color unevenness such as a yellow ring from occurring in the outer peripheral portion of the light extraction surface 2a of the phosphor layer 2, and also in this case, it is possible to suppress a decrease in light extraction efficiency. .

なお、上述した構成例では、固体光源5と蛍光体層2とが空間的に離れて配置されているが、固体光源5と蛍光体層2とが接して配置されていても良く、この場合にも、蛍光体層2を、固体光源5からの励起光の照射の中心部分(照射スポット部分)STから周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成することにより、蛍光体層2の光取り出し面2aの外周部にイエローリングのような色ムラが生じるのを防止し、かつ、光の取り出し効率の低下を抑えることができる。   In the configuration example described above, the solid light source 5 and the phosphor layer 2 are arranged spatially separated from each other, but the solid light source 5 and the phosphor layer 2 may be arranged in contact with each other. In addition, the phosphor layer 2 is formed of a plurality of types of phosphors having different activator concentrations such that the emission intensity of the fluorescence decreases from the central portion (irradiation spot portion) ST of the excitation light from the solid light source 5 toward the periphery. With this configuration, it is possible to prevent color unevenness such as a yellow ring from occurring in the outer peripheral portion of the light extraction surface 2a of the phosphor layer 2, and to suppress a decrease in light extraction efficiency.

また、上記光源装置10は、所定のレンズ系、あるいは、ミラー、リフレクタなどと組み合わせることで照明装置として構成することができる。図10は上記光源装置10とレンズ系とを組み合わせた照明装置を示す図である。図10の照明装置は、筐体51内に、上記光源装置10と、上記光源装置10からの光を前方に所定の配光特性を持って照射するレンズ系52とが格納されている。この照明装置では、光源装置10が用いられることにより、レンズ系52を用いた時でも、イエローリングなどの色ムラを生じない照明光を得ることができる。   The light source device 10 can be configured as a lighting device by combining with a predetermined lens system, a mirror, a reflector, or the like. FIG. 10 is a view showing an illumination device that combines the light source device 10 and a lens system. In the illumination device of FIG. 10, the light source device 10 and a lens system 52 that irradiates light from the light source device 10 forward with a predetermined light distribution characteristic are stored in a housing 51. In this illuminating device, by using the light source device 10, it is possible to obtain illumination light that does not cause color unevenness such as yellow ring even when the lens system 52 is used.

また、上述した例の光源装置10は、蛍光体層2に固体光源5からの励起光を入射させたときに、蛍光体層2の励起光が入射する側の面とは反対の側から蛍光などの光を取り出す透過方式(透過型)を採用したものとなっているが、本発明は、これに限定されるものではなく、光源装置が反射方式(反射型)のもの(すなわち、蛍光体層2の励起光が入射する側の面と同じ側から蛍光などの光を取り出す反射方式(反射型)のもの)である場合も、本発明の範囲に含まれる。すなわち、光源装置が反射方式(反射型)のものである場合にも、透過方式(透過型)と同様に、蛍光体層2を、固体光源5からの励起光の照射の中心部分(照射スポット部分)STから周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成することにより、蛍光体層2の光取り出し面2aの外周部にイエローリングのような色ムラが生じるのを防止し、かつ、光の取り出し効率の低下を抑えることができる。   In addition, the light source device 10 of the above-described example, when the excitation light from the solid light source 5 is incident on the phosphor layer 2, the fluorescence from the side opposite to the surface on which the excitation light of the phosphor layer 2 is incident. However, the present invention is not limited to this, and the light source device is of a reflection type (reflection type) (that is, a phosphor). The case of a reflection method (reflection type) in which light such as fluorescence is extracted from the same side as the surface on which the excitation light of the layer 2 is incident is also included in the scope of the present invention. That is, even when the light source device is of a reflective type (reflective type), the phosphor layer 2 is placed on the central portion (irradiation spot) of the excitation light from the solid light source 5 as in the transmissive type (transmissive type). (Part) By comprising a plurality of types of phosphors having different activator concentrations so that the fluorescence emission intensity decreases from the ST toward the periphery, a yellow ring or the like is formed on the outer periphery of the light extraction surface 2a of the phosphor layer 2. Color unevenness can be prevented, and reduction in light extraction efficiency can be suppressed.

図11(a)、(b)は反射方式(反射型)のものとなっている光源装置の一例を示す図(概略断面図)である。なお、図11(a)は概略断面図、図11(b)は蛍光体層の平面図であり、図11(a)、(b)において、図6(a)、(b)と同様の箇所には同じ符号を付している。図11(a)、(b)の光源装置20では、蛍光体層2の励起光(固体光源5からの励起光)が入射する側の面とは反対の側に、光(蛍光、励起光)を反射する(光(蛍光、励起光)を固体光源5側に出射光として出射させる)反射面を有する基板25が設けられている。ここで、基板25としては、これ自体を金属製とするか、あるいは、例えば透明な基板上に金属膜を配置したものを用いることができる。   FIGS. 11A and 11B are views (schematic cross-sectional views) showing an example of a light source device that is of a reflection type (reflection type). 11A is a schematic cross-sectional view, and FIG. 11B is a plan view of the phosphor layer. FIGS. 11A and 11B are the same as FIGS. 6A and 6B. The same code | symbol is attached | subjected to the location. In the light source device 20 of FIGS. 11A and 11B, light (fluorescence, excitation light) is provided on the side opposite to the surface on which the excitation light (excitation light from the solid light source 5) of the phosphor layer 2 is incident. ) Is reflected (light (fluorescence, excitation light) is emitted as emitted light to the solid light source 5 side). Here, as the substrate 25, it is possible to use a metal substrate itself or a substrate in which a metal film is arranged on a transparent substrate, for example.

図11(a)、(b)の光源装置20のように、光源装置が反射方式(反射型)のものとして構成されている場合にも、蛍光体層2を、固体光源5からの励起光の照射の中心部分(照射スポット部分)STから周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成することにより、蛍光体層2の光取り出し面2aの外周部にイエローリングのような色ムラが生じるのを防止し、かつ、光の取り出し効率の低下を抑えることができる。   Even when the light source device is configured as a reflection type (reflection type) as in the light source device 20 of FIGS. 11A and 11B, the phosphor layer 2 is excited with the excitation light from the solid light source 5. Of the light extraction surface 2a of the phosphor layer 2 by comprising a plurality of types of phosphors having different activator concentrations such that the fluorescence emission intensity decreases from the central portion (irradiation spot portion) ST toward the periphery. It is possible to prevent color unevenness such as a yellow ring from occurring on the outer peripheral portion, and to suppress a decrease in light extraction efficiency.

また、図11(a)、(b)に示すような反射方式(反射型)の光源装置20を用いて、図10に示したような照明装置を構成することもできる。   Moreover, the illumination device as shown in FIG. 10 can also be configured by using a light source device 20 of a reflection system (reflection type) as shown in FIGS.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

この実施例では、図11(a)、(b)に示したような反射方式(反射型)の光源装置20の構成となっており、固体光源5としてピーク波長が445nmの青色半導体レーザーを使用する。固体光源5からの励起光(青色光)の蛍光体層2における照射スポットは0.9mmとなるようコリメートレンズ(図示せず)で調節し、固体光源5からの励起光(青色光)を蛍光体層2に入射角60°で照射する。蛍光体層2は、直径2.0mm、厚さ200μmで色度xが約0.370となっている中心から直径0.8mmの範囲を黄色蛍光体YAl12:Ce3+の発光が最も強くなる賦活剤濃度(Ce濃度)1.0mol%とし、色度xが約0.370から約0.440へと変化する中心から0.8−1.0mmの領域を濃度消光が起こり黄色蛍光体YAl12:Ce3+の発光がやや弱くなる賦活剤濃度(Ce濃度)2.0mol%とし、それより外側の領域は、さらに黄色蛍光体YAl12:Ce3+の発光が弱くなる賦活剤濃度(Ce濃度)3.0mol%とする。このように、蛍光体層2を黄色蛍光体のものにし、固体光源5からの励起光として青色光を照射する場合、蛍光体層2からは出射光として、励起光(青色光)と蛍光(黄色光)との混色である白色光が出射されるが、この実施例では、蛍光体層2の励起光照射の中心から周辺に向かって蛍光(黄色光)の発光強度が弱まるように賦活剤濃度を変えている(高くしている)ので、出射光としての白色光にイエローリングが生じるのを防止できる。すなわち、色度の変化を少なくすることが可能となる。 In this embodiment, the reflection type (reflection type) light source device 20 as shown in FIGS. 11A and 11B is used, and a blue semiconductor laser having a peak wavelength of 445 nm is used as the solid light source 5. To do. The irradiation spot of the excitation light (blue light) from the solid light source 5 is adjusted by a collimator lens (not shown) so that the irradiation spot in the phosphor layer 2 is 0.9 mm, and the excitation light (blue light) from the solid light source 5 is fluorescent. The body layer 2 is irradiated at an incident angle of 60 °. The phosphor layer 2 emits yellow phosphor Y 3 Al 5 O 12 : Ce 3+ within a range of 0.8 mm in diameter from the center where the diameter is 2.0 mm, the thickness is 200 μm, and the chromaticity x is about 0.370. Activator concentration (Ce concentration) is 1.0 mol%, and concentration quenching occurs in a region of 0.8-1.0 mm from the center where chromaticity x changes from about 0.370 to about 0.440. The activator concentration (Ce concentration) at which the emission of the yellow phosphor Y 3 Al 5 O 12 : Ce 3+ is slightly weakened is set to 2.0 mol%, and the region outside it is further yellow phosphor Y 3 Al 5 O 12 : Ce The activator concentration (Ce concentration) at which 3+ emission is weakened is 3.0 mol%. In this way, when the phosphor layer 2 is made of a yellow phosphor and blue light is emitted as the excitation light from the solid light source 5, the excitation light (blue light) and fluorescence ( In this example, the activator is such that the emission intensity of the fluorescence (yellow light) decreases from the center of the phosphor layer 2 to the periphery of the phosphor layer 2 toward the periphery. Since the density is changed (increased), yellowing can be prevented from occurring in white light as emitted light. That is, the change in chromaticity can be reduced.

本発明は、ヘッドランプなどの自動車用照明、プロジェクタ、一般照明などに利用可能である。   The present invention can be used for automotive lighting such as headlamps, projectors, and general lighting.

2 蛍光体層
5 固体光源
10、20 光源装置
25 反射面を有する基板
51 筐体
52 レンズ系
ST 励起光の照射の中心部分(照射スポット部分)
2 phosphor layer 5 solid light source 10, 20 light source device 25 substrate having reflection surface 51 housing 52 lens system ST central portion (irradiation spot portion) of excitation light irradiation

Claims (5)

可視光の波長領域のうちの所定の波長の光を励起光として発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する蛍光体層とを備えている光源装置であって、
前記蛍光体層は、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って蛍光の発光強度が弱まるような賦活剤濃度の異なる複数種類の蛍光体で構成されていることを特徴とする光源装置。
A solid-state light source that emits light having a predetermined wavelength in the wavelength region of visible light as excitation light, and a phosphor that is excited by excitation light from the solid-state light source and emits fluorescence having a longer wavelength than the emission wavelength of the solid-state light source A light source device comprising a layer,
The phosphor layer is composed of a plurality of types of phosphors having different activator concentrations such that the emission intensity of fluorescence decreases from the central part of the irradiation of excitation light from the solid-state light source toward the periphery. Light source device.
請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となるような賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が高くなる蛍光体、または、賦活剤濃度が低くなる蛍光体で構成されていることを特徴とする光源装置。 2. The light source device according to claim 1, wherein the phosphor layer is formed of a phosphor having an activator concentration such that a central portion of irradiation of excitation light from the solid light source has a maximum fluorescence emission intensity. 3. The light source device is characterized in that it is composed of a phosphor whose activator concentration increases as it goes from the central part of the irradiation of excitation light from the solid light source to the periphery, or a phosphor whose activator concentration decreases. . 請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となる賦活剤濃度よりも高い賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が高くなる蛍光体で構成されていることを特徴とする光源装置。 2. The light source device according to claim 1, wherein the phosphor layer is a phosphor having an activator concentration higher than an activator concentration at which a central portion of excitation light irradiation from the solid light source has a maximum fluorescence emission intensity. A light source device comprising: a phosphor having a concentration of an activator that increases from a central portion of the irradiation of excitation light from the solid-state light source toward the periphery. 請求項1記載の光源装置において、前記蛍光体層は、前記固体光源からの励起光の照射の中心部分が、蛍光の発光強度が最大となる賦活剤濃度よりも低い賦活剤濃度の蛍光体で構成されており、前記固体光源からの励起光の照射の中心部分から周辺に向かうに従って、賦活剤濃度が低くなる蛍光体で構成されていることを特徴とする光源装置。 2. The light source device according to claim 1, wherein the phosphor layer is a phosphor having an activator concentration lower than an activator concentration at which a central portion of irradiation of excitation light from the solid light source has a maximum fluorescence emission intensity. A light source device comprising: a phosphor having a concentration of an activator that decreases from a central portion of the irradiation of excitation light from the solid light source toward the periphery. 請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置。 An illumination device, wherein the light source device according to any one of claims 1 to 4 is used.
JP2012032406A 2012-02-17 2012-02-17 Light source device and luminaire Pending JP2013168602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032406A JP2013168602A (en) 2012-02-17 2012-02-17 Light source device and luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032406A JP2013168602A (en) 2012-02-17 2012-02-17 Light source device and luminaire

Publications (1)

Publication Number Publication Date
JP2013168602A true JP2013168602A (en) 2013-08-29

Family

ID=49178769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032406A Pending JP2013168602A (en) 2012-02-17 2012-02-17 Light source device and luminaire

Country Status (1)

Country Link
JP (1) JP2013168602A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025167A (en) * 2015-07-17 2017-02-02 シャープ株式会社 Luminous body, light source device, and lighting device
JP2017198983A (en) * 2016-04-22 2017-11-02 パナソニック株式会社 Wavelength conversion member and projector
JP2018120923A (en) * 2017-01-24 2018-08-02 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JPWO2017082184A1 (en) * 2015-11-12 2018-08-30 株式会社小糸製作所 Light source module and vehicle lamp
JP2019212931A (en) * 2019-09-20 2019-12-12 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
WO2020003787A1 (en) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 Color conversion element and illumination device
WO2020195250A1 (en) * 2019-03-27 2020-10-01 Tdk株式会社 Phosphor and light irradiation device
CN113302430A (en) * 2019-01-24 2021-08-24 松下知识产权经营株式会社 Lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2006307090A (en) * 2005-04-28 2006-11-09 Dowa Mining Co Ltd Phosphor, method for producing the same and light emitting device using the phosphor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142737A (en) * 2001-08-22 2003-05-16 Nichia Chem Ind Ltd Light emitting device
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2006307090A (en) * 2005-04-28 2006-11-09 Dowa Mining Co Ltd Phosphor, method for producing the same and light emitting device using the phosphor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025167A (en) * 2015-07-17 2017-02-02 シャープ株式会社 Luminous body, light source device, and lighting device
JPWO2017082184A1 (en) * 2015-11-12 2018-08-30 株式会社小糸製作所 Light source module and vehicle lamp
JP2017198983A (en) * 2016-04-22 2017-11-02 パナソニック株式会社 Wavelength conversion member and projector
JP2018120923A (en) * 2017-01-24 2018-08-02 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US10381538B2 (en) 2017-01-24 2019-08-13 Nichia Corporation Light emitting device having fluorescent and light scattering light-transmissive member
US10608155B2 (en) 2017-01-24 2020-03-31 Nichia Corporation Method of manufacturing light emitting device having fluorescent and light scattering light-transmissive member
WO2020003787A1 (en) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 Color conversion element and illumination device
CN113302430A (en) * 2019-01-24 2021-08-24 松下知识产权经营株式会社 Lighting device
WO2020195250A1 (en) * 2019-03-27 2020-10-01 Tdk株式会社 Phosphor and light irradiation device
JP2019212931A (en) * 2019-09-20 2019-12-12 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP7071652B2 (en) 2019-09-20 2022-05-19 日亜化学工業株式会社 Light emitting device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2013168602A (en) Light source device and luminaire
JP2013102078A (en) Light source device and luminaire
TWI392112B (en) Led lighting arrangement including light emitting phosphor
JP2012243624A (en) Light source device and lighting device
JP2006135002A (en) Light-emitting device and lighting fixture for car
JP2017198983A (en) Wavelength conversion member and projector
JP2012243701A (en) Light source device and lighting system
KR20070039569A (en) Light emitting device and illuminator employing it, back light for display, and display
JP2012089316A (en) Light source device, and lighting system
JP5919968B2 (en) Wavelength conversion member and light emitting device
JP5709463B2 (en) Light source device and lighting device
JP5550368B2 (en) Light source device and lighting device
JP2012114040A (en) Light source device and lighting system
JP2013187043A (en) Light source device and lighting device
JP5917183B2 (en) Light source device and lighting device
JP2012243618A (en) Light source device and lighting device
JP2004200531A (en) Surface-mounted type led element
US10333273B2 (en) Phosphor module
JP2012182009A (en) Lighting device
JP5695887B2 (en) Light source device and lighting device
JP2006321689A (en) Crystallized glass composite body
JP6986523B2 (en) Optical conversion device
JP5781367B2 (en) Light source device and lighting device
US11506360B2 (en) Optical element and optical device
JP2021144062A (en) Waveform conversion element, light source device, vehicle headlight, display device, light source module, and projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329