JP2006321689A - Crystallized glass composite body - Google Patents
Crystallized glass composite body Download PDFInfo
- Publication number
- JP2006321689A JP2006321689A JP2005147166A JP2005147166A JP2006321689A JP 2006321689 A JP2006321689 A JP 2006321689A JP 2005147166 A JP2005147166 A JP 2005147166A JP 2005147166 A JP2005147166 A JP 2005147166A JP 2006321689 A JP2006321689 A JP 2006321689A
- Authority
- JP
- Japan
- Prior art keywords
- crystallized glass
- ions
- based crystallized
- light
- glass composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011521 glass Substances 0.000 title claims abstract description 68
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 150000002500 ions Chemical class 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 230000005284 excitation Effects 0.000 claims description 30
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 13
- 238000009877 rendering Methods 0.000 abstract description 12
- 238000000295 emission spectrum Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Luminescent Compositions (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
本発明は、結晶化ガラス複合体に関するものである。 The present invention relates to a crystallized glass composite.
従来、白色光源としては主に蛍光灯やハロゲンランプ、白熱灯などが用いられてきた。近年、携帯電話やパソコンに代表される液晶ディスプレイ(LCD)の市場が拡大するにつれ、LCD用バックライトとしての小型白色光源の必要性が高まり、この用途に白色LEDが用いられるようになってきた。一般に白色LEDは青色励起光によって黄色の蛍光を発する蛍光体を励起光源上に配置し、黄色の蛍光と蛍光体を透過する青色の励起光の混合によって白色を得る方式が主流である。この方式は小型の白色光源を得るのに適しているが、白色を構成するスペクトルが青色と黄色からなるため自然光下での色の再現性、いわゆる演色性に乏しい欠点がある。他の方式としては、赤、青、緑の三原色を発するLEDを一体的に配置して白色を得るものがあるが、この方式は小型化には不向きである。 Conventionally, fluorescent lamps, halogen lamps, incandescent lamps and the like have been mainly used as white light sources. In recent years, with the expansion of the liquid crystal display (LCD) market represented by mobile phones and personal computers, the need for small white light sources as backlights for LCDs has increased, and white LEDs have been used for this purpose. . In general, a white LED is mainly used in which a phosphor that emits yellow fluorescence by blue excitation light is disposed on an excitation light source, and white is obtained by mixing yellow fluorescence and blue excitation light that passes through the phosphor. This method is suitable for obtaining a small white light source. However, since the spectrum constituting white is composed of blue and yellow, there is a drawback that the color reproducibility under natural light, so-called color rendering, is poor. As another method, there is one in which LEDs emitting three primary colors of red, blue, and green are integrally arranged to obtain white, but this method is not suitable for downsizing.
一方、LEDを用いる以外の方法としては、各種の蛍光材料から発せられる蛍光の混合によって白色を得る方法が考えられる。しかし、各種蛍光体の励起波長はそれぞれ異なる場合が多いため複数の励起光源が必要となり、さらに、多くの蛍光体の励起波長は可視光域と重複するため、吸収されなかった余剰の励起光によって白色光の演色性が低下する欠点が存在する。従って、単一の励起光源によって白色を得ることが可能であり、かつ、演色性の良い蛍光材料の開発が望まれていた。 On the other hand, as a method other than using an LED, a method of obtaining white by mixing fluorescent light emitted from various fluorescent materials is conceivable. However, since the excitation wavelengths of various phosphors are often different from each other, a plurality of excitation light sources are required, and furthermore, since the excitation wavelengths of many phosphors overlap with the visible light region, There is a drawback that the color rendering of white light is lowered. Accordingly, it has been desired to develop a fluorescent material capable of obtaining white color with a single excitation light source and having good color rendering properties.
また、励起波長と異なる波長の光を発する材料としては、アップコンバージョン材料がある。このアップコンバージョン材料としてはYb3+とEr3+を含有するフッ化物系セラミック材料が知られているが、これらの材料は不透明であり、材料の可視光吸収性のため白色光を得ることは困難である。それに対し、材料の可視光吸収がほとんどないアップコンバージョン材料として、Yb3+とEr3+とを含有し、PbF2結晶を析出する透明な結晶化ガラスが知られている(例えば、特許文献1参照。)。
しかしながら、特許文献1に記載されているように、Yb3+−Er3+含有PbF2系結晶化ガラスは、発光波長が550nm(緑)および660nm(赤)に限定されるため発光色は黄緑色となり、演色性の良い白色を得ることができず、さらに環境負荷物質であるPbを含有するため環境上問題となる。
However, as described in
本発明は、上記事情に鑑みなされたものであり、単一の励起光源によって白色を得ることが可能で、かつ、演色性の良い小型白色光源用蛍光材料に使用できる結晶化ガラス複合体を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a crystallized glass composite that can be used for a fluorescent material for a small white light source that can obtain white color with a single excitation light source and has good color rendering properties. The purpose is to do.
本発明者等は、余剰の励起光による演色性の低下を防止するため、視感度の極めて小さな近赤外線を励起光源に用いることを着想した。すなわち、人間の目には見えない励起光を用いつつ、それより波長の短い可視光の蛍光を発する、いわゆるアップコンバージョンの応用により、余剰の励起光が存在しても演色性に影響を及ぼすことが避けられると考えたからである。 The present inventors have conceived that near-infrared rays having extremely low visibility are used as an excitation light source in order to prevent a decrease in color rendering due to excess excitation light. In other words, the application of so-called up-conversion, which uses visible light that is invisible to the human eye and emits visible light with a shorter wavelength, affects the color rendering even when there is excess excitation light. This is because I thought it was possible to avoid.
本発明者等は、SiO2−Al2O3−CaO−CaF2−YbF3−ErF3系(以下、Er系と言う)およびSiO2−Al2O3−CaO−CaF2−YbF3−TmF3系(以下、Tm系と言う)ガラスを熱処理して、CaF2結晶を析出させた少なくとも二種の結晶化ガラスを複合化することで、近赤外光励起による三原色の蛍光の混合が可能であり白色光が得られることを見出し、本発明として提案する。 The present inventors have made SiO 2 —Al 2 O 3 —CaO—CaF 2 —YbF 3 —ErF 3 system (hereinafter referred to as Er system) and SiO 2 —Al 2 O 3 —CaO—CaF 2 —YbF 3 —. By mixing TmF 3 glass (hereinafter referred to as Tm glass) with heat treatment and compounding at least two kinds of crystallized glass on which CaF 2 crystals are precipitated, it is possible to mix the three primary colors by near-infrared light excitation. It is found that white light can be obtained, and is proposed as the present invention.
すなわち、本発明の結晶化ガラス複合体は、発光イオンとしてErイオンを含有し結晶相としてCaF2が析出したEr系結晶化ガラスと、発光イオンとしてTmイオンを含有し結晶相としてCaF2が析出したTm系結晶化ガラスとを含有し、近赤外光によって励起され白色光を発することを特徴とする。 That is, the crystallized glass composite of the present invention includes an Er-based crystallized glass containing Er ions as luminescent ions and precipitating CaF 2 as a crystal phase, and Tm ions as luminescent ions and precipitating CaF 2 as a crystal phase. And Tm-based crystallized glass, which emits white light when excited by near-infrared light.
このような構成によれば、単一の励起光源によって白色を得ることが可能であり、かつ、余剰の励起光によって演色性を低下させることが無いため、小型白色光源に適した蛍光材料を提供することが可能である。また、励起光源としては光通信分野で多く用いられている波長920〜1000nmの発光ダイオードが使用可能であり、安価な構成で白色光源を作製することが可能である。 According to such a configuration, it is possible to obtain white color with a single excitation light source, and since there is no deterioration in color rendering due to excess excitation light, a fluorescent material suitable for a small white light source is provided. Is possible. Further, a light emitting diode having a wavelength of 920 to 1000 nm, which is often used in the optical communication field, can be used as an excitation light source, and a white light source can be produced with an inexpensive configuration.
すなわち、Er系結晶化ガラスでは、波長が920〜1000nmの励起光によって、
4S3/2−4I15/2準位間の遷移による550nm(緑)の蛍光と4F9/2−4I15/2準位間の遷移による660nm(赤)の蛍光が生じる。また、Tm系結晶化ガラスでは
1G4−3H6準位間の遷移による480nm(青)の蛍光が生じる。しかも、これらの結晶化ガラスは励起光に対する吸収効果は大きいものの、互いの蛍光に対するそれは小さく、複合化しても互いの発光効率が維持され、Er、Tmの添加量または結晶化ガラスの厚さや粒径さらに励起光の照射方向を適切に制御することで演色性の高い白色が得られる。励起光が近赤外光であるため、励起光を過剰に照射しても演色性が低下することがなく、励起光を充分に照射することが可能であり、高い蛍光強度を得ることが可能である。また、YbイオンをErイオンやTmイオンと共存させることによってアップコンバージョン効率を大幅に向上させることができる。
That is, in the Er-based crystallized glass, the excitation light having a wavelength of 920 to 1000 nm,
4 S 3/2 - 4 fluorescence and 4 F of 550nm (green) by the transition between the I 15/2 level 9/2 - 4 I 15/2 fluorescence of 660nm (red) by the transition between levels occurs. In Tm-based crystallized glass,
1 G 4 - 3 fluorescence H 6 480 nm by transition between levels (blue) is generated. Moreover, although these crystallized glasses have a large absorption effect on the excitation light, they are small in the mutual fluorescence, and even if they are combined, the mutual light emission efficiency is maintained. A white color with high color rendering properties can be obtained by appropriately controlling the diameter and the irradiation direction of the excitation light. Since the excitation light is near-infrared light, even if the excitation light is excessively irradiated, the color rendering does not deteriorate, it is possible to sufficiently irradiate the excitation light, and high fluorescence intensity can be obtained. It is. In addition, upconversion efficiency can be greatly improved by allowing Yb ions to coexist with Er ions and Tm ions.
上記した様に、本発明によれば、単一の励起光源によって白色を得ることが可能であり、かつ、余剰の励起光によって演色性を低下させることが無いため、小型白色光源に適した蛍光材料に使用できる結晶化ガラス複合体を提供することが可能である。また、環境負荷物質を含まない上、励起光源としては光通信分野で用いられている波長920〜1000nmの発光ダイオードが使用可能であり、安価な構成で白色光源を得ることが可能であるため、新規な小型白色光源の開発に資するところ大である。 As described above, according to the present invention, it is possible to obtain white color with a single excitation light source, and since there is no deterioration in color rendering due to excess excitation light, it is suitable for a small white light source. It is possible to provide a crystallized glass composite that can be used as a material. In addition, since it does not contain an environmental load substance and a light emitting diode having a wavelength of 920 to 1000 nm used in the optical communication field can be used as an excitation light source, it is possible to obtain a white light source with an inexpensive configuration. It greatly contributes to the development of a new small white light source.
本発明の結晶化ガラス複合体において、Er系結晶化ガラス及びTm系結晶化ガラスのうち少なくとも一方は、SiO2を20〜60mol%、Al2O3を0〜30mol%、CaF2を10〜40mol%、CaOを0〜20mol%含有することが好ましい。
In the crystallized glass complex of the present invention, at least one of the Er-based crystallized glass and Tm-based crystallized glass, SiO 2 20~60mol%, 0~30mol% of Al 2 O 3, a
また、本発明の結晶化ガラス複合体において、Er系結晶化ガラスは、Erイオンの含有量が0.1〜3.0mol%、Ybイオンの含有量が0〜15mol%であることが好ましい。また、Tm系結晶化ガラスは、Tmイオンの含有量が0.05〜0.5mol%、Ybイオンの含有量が0.3〜10mol%であることが好ましい。 In the crystallized glass composite of the present invention, the Er-based crystallized glass preferably has an Er ion content of 0.1 to 3.0 mol% and a Yb ion content of 0 to 15 mol%. The Tm-based crystallized glass preferably has a Tm ion content of 0.05 to 0.5 mol% and a Yb ion content of 0.3 to 10 mol%.
また、本発明の結晶化ガラス複合体において、Er系結晶化ガラスとTm系結晶化ガラスとが質量比で1:10〜10:1であることが好ましい。 In the crystallized glass composite of the present invention, it is preferable that the Er-based crystallized glass and the Tm-based crystallized glass have a mass ratio of 1:10 to 10: 1.
本発明における結晶化ガラスの複合化方法としては、板状の結晶化ガラスを積層する方法と粉末状結晶化ガラスを一体化する方法がある。 As a method for compounding crystallized glass in the present invention, there are a method of laminating plate-like crystallized glass and a method of integrating powdered crystallized glass.
前者では、結晶化ガラス同士を融着する方法の他、樹脂やガラス等の接着剤による複合化も可能である。このようにすれば、RGB発光強度比のレーザービーム照射位置依存性がない。 In the former, in addition to the method of fusing crystallized glasses together, it is possible to combine them with an adhesive such as resin or glass. In this way, the RGB light emission intensity ratio does not depend on the laser beam irradiation position.
後者では結晶化ガラス粉末を焼結することや結晶化前の結晶性ガラス粉末を熱処理して結晶化と焼結を同時に行うことも可能である。さらに結晶化ガラス粉末を、励起光に対して不活性なガラスや樹脂と混合して複合化しても良い。尚、本発明の効果に悪影響を及ぼさない限り、他種の結晶化ガラスまたは結晶化ガラス以外のアップコンバージョン材料を混合させることも可能である。 In the latter case, the crystallized glass powder can be sintered, or the crystallized glass powder before crystallization can be heat treated to simultaneously perform crystallization and sintering. Further, the crystallized glass powder may be mixed with glass or resin that is inert to the excitation light to be compounded. As long as the effects of the present invention are not adversely affected, other types of crystallized glass or upconversion materials other than crystallized glass can be mixed.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
モル比で45SiO2−20Al2O3−10CaO−22CaF2−2YbF3−1ErF3の組成を有するガラスと、45SiO2−20Al2O3−10CaO−20CaF2−5YbF3−0.05TmF3の組成を有するガラスを、それぞれ、白金坩堝を用いて空気中で1300°Cで溶融した。次いで双方のガラスとも700〜750°Cで4時間熱処理を行うことによって、CaF2結晶が析出したEr系およびTm系の透明結晶化ガラスを得た。蛍光スペクトルの測定は、970nmの波長を有するInGaAs半導体レーザー光を励起光源とし、ファイバマルチチャネル分光器(USB2000,オーシャンオプティクス)によって発光スペクトルを確認した。
A glass having a composition of 45SiO 2 -20Al 2 O 3 -10CaO- 22CaF 2 -2YbF 3 -
図1にEr系、図2にTm系結晶化ガラスの発光スペクトルをそれぞれ示す。Er系から緑と赤、Tm系から青と赤の蛍光が得られることが分かる。 FIG. 1 shows the emission spectrum of Er-based glass and FIG. 2 shows the emission spectrum of Tm-based crystallized glass. It can be seen that green and red fluorescence can be obtained from the Er system, and blue and red fluorescence can be obtained from the Tm system.
図3に、厚さ1mmに研磨した上記の両結晶化ガラスを有機接着剤で積層した結晶化ガラス複合体に90°の入射角度から励起光(970nmの波長を有するInGaAs半導体レーザー光)を照射し発光スペクトルを測定した結果を示す。三原色の蛍光が同時に得られていることが分かる。本発光スペクトルにおいては、比視感度が低い発光帯の順に高い蛍光強度を有しており、その結果、図4の色度座標に示すように黒体輻射軌道上で演色性の高い白色光((x, y)= (0.33, 0.33)、黒四角印)を得ることが可能であった。尚、結晶化ガラス複合体への励起光の入射角度を変化させることによって、各発光帯の発光強度を変化させることが出来、得られる白色光の色度を制御することも可能である。 In FIG. 3, a crystallized glass composite obtained by laminating both crystallized glasses polished to a thickness of 1 mm with an organic adhesive is irradiated with excitation light (InGaAs semiconductor laser light having a wavelength of 970 nm) from an incident angle of 90 °. The results of measuring the emission spectrum are shown. It can be seen that the fluorescence of the three primary colors is obtained simultaneously. The emission spectrum has higher fluorescence intensity in the order of emission bands with lower specific visibility. As a result, as shown in the chromaticity coordinates of FIG. (X, y) = (0.33, 0.33), black square mark). In addition, by changing the incident angle of the excitation light to the crystallized glass composite, the emission intensity of each emission band can be changed, and the chromaticity of the obtained white light can be controlled.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005147166A JP2006321689A (en) | 2005-05-19 | 2005-05-19 | Crystallized glass composite body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005147166A JP2006321689A (en) | 2005-05-19 | 2005-05-19 | Crystallized glass composite body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006321689A true JP2006321689A (en) | 2006-11-30 |
Family
ID=37541626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005147166A Withdrawn JP2006321689A (en) | 2005-05-19 | 2005-05-19 | Crystallized glass composite body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006321689A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169065A (en) * | 2007-01-10 | 2008-07-24 | Tohoku Univ | Fluoride bulk single crystal material for up-conversion |
JP2008169348A (en) * | 2007-01-15 | 2008-07-24 | Nippon Electric Glass Co Ltd | Phosphor composite material |
WO2009119668A1 (en) * | 2008-03-26 | 2009-10-01 | 宇部興産株式会社 | Transparent phosphor and process for producing the transparent phosphor |
CN102126858A (en) * | 2011-01-31 | 2011-07-20 | 武汉理工大学 | Preparation method of erbium ion-doped calcium fluoride laser transparent ceramic material |
CN103951204A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Rare-earth-ion-doped BaLuCl8 microcrystalline glass and preparation method thereof |
CN110002761A (en) * | 2019-03-04 | 2019-07-12 | 昆明理工大学 | A kind of upper conversion LED fluorescent glass-ceramics and preparation method thereof |
CN113929309A (en) * | 2020-07-14 | 2022-01-14 | 中国科学院大连化学物理研究所 | Erbium ion doped luminescent glass ceramics and preparation and application thereof |
-
2005
- 2005-05-19 JP JP2005147166A patent/JP2006321689A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169065A (en) * | 2007-01-10 | 2008-07-24 | Tohoku Univ | Fluoride bulk single crystal material for up-conversion |
JP2008169348A (en) * | 2007-01-15 | 2008-07-24 | Nippon Electric Glass Co Ltd | Phosphor composite material |
WO2009119668A1 (en) * | 2008-03-26 | 2009-10-01 | 宇部興産株式会社 | Transparent phosphor and process for producing the transparent phosphor |
CN102126858A (en) * | 2011-01-31 | 2011-07-20 | 武汉理工大学 | Preparation method of erbium ion-doped calcium fluoride laser transparent ceramic material |
CN103951204A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Rare-earth-ion-doped BaLuCl8 microcrystalline glass and preparation method thereof |
CN103951204B (en) * | 2014-05-08 | 2016-03-16 | 宁波大学 | Rare earth ion doped BaLu 2cl 8devitrified glass and preparation method thereof |
CN110002761A (en) * | 2019-03-04 | 2019-07-12 | 昆明理工大学 | A kind of upper conversion LED fluorescent glass-ceramics and preparation method thereof |
CN113929309A (en) * | 2020-07-14 | 2022-01-14 | 中国科学院大连化学物理研究所 | Erbium ion doped luminescent glass ceramics and preparation and application thereof |
CN113929309B (en) * | 2020-07-14 | 2022-11-15 | 中国科学院大连化学物理研究所 | Erbium ion doped luminescent glass ceramics and preparation and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100798054B1 (en) | Light emitting devices having silicate fluorescent phosphors | |
JP5013405B2 (en) | Phosphor and light emitting diode | |
JP4894186B2 (en) | Phosphor and light emitting diode | |
US7109648B2 (en) | Light emitting device having thio-selenide fluorescent phosphor | |
KR100811054B1 (en) | Silicated-based green phosphors | |
EP2937315B1 (en) | Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same | |
JP2007536388A (en) | Light-emitting device having sulfoselenide fluorescent phosphor | |
US7112921B2 (en) | Light emitting device having selenium-based fluorescent phosphor | |
JP2009517857A (en) | Display device having solid fluorescent material | |
JP2007161944A (en) | Phosphor | |
JP2006321689A (en) | Crystallized glass composite body | |
JP2008517091A (en) | Fluorescent substance and light emitting element using the fluorescent substance {Phosphorandlighting deviceing themes} | |
JP2012022028A (en) | Liquid crystal display | |
TW201633568A (en) | Wavelength conversion member and light-emitting device | |
JP7454785B2 (en) | Phosphors and light emitting devices using them | |
JP2013168602A (en) | Light source device and luminaire | |
WO2012063492A1 (en) | White light-emitting glass, glass-coated light-emitting element, and light-emitting device | |
US20070090327A1 (en) | Novel red fluorescent powder | |
JP5917183B2 (en) | Light source device and lighting device | |
CN108603112B (en) | Phosphor and light emitting device | |
JP2012052061A (en) | Phosphor composite member | |
JP6450936B2 (en) | Phosphor dispersed glass | |
WO2009104651A1 (en) | White light emitting device and lighting fitting for vehicles using the white light emitting device | |
US9663397B2 (en) | Broadband emission material and white light emission material | |
CN114806578A (en) | Oxyfluoride phosphor composition and lighting device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061221 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080805 |