JP2009036600A - Elastic modulus measuring method and instrument, and program - Google Patents

Elastic modulus measuring method and instrument, and program Download PDF

Info

Publication number
JP2009036600A
JP2009036600A JP2007200247A JP2007200247A JP2009036600A JP 2009036600 A JP2009036600 A JP 2009036600A JP 2007200247 A JP2007200247 A JP 2007200247A JP 2007200247 A JP2007200247 A JP 2007200247A JP 2009036600 A JP2009036600 A JP 2009036600A
Authority
JP
Japan
Prior art keywords
specimen
displacement
measuring
elastic modulus
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007200247A
Other languages
Japanese (ja)
Other versions
JP4895302B2 (en
Inventor
Arihito Mizobe
有人 溝部
Tetsuo Tsuzuki
哲生 続木
Hiroyuki Fuchimoto
博之 淵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2007200247A priority Critical patent/JP4895302B2/en
Publication of JP2009036600A publication Critical patent/JP2009036600A/en
Application granted granted Critical
Publication of JP4895302B2 publication Critical patent/JP4895302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elastic modulus measuring method capable of precisely measuring bending elastic modulus by reducing the error of a measuring system in the measurement of the bending elastic modulus due to a three-point bending method. <P>SOLUTION: The displacement quantities ΔW<SB>1</SB>and ΔW<SB>2</SB>of the central parts of test pieces X and Y, both of which are made of the same material, equal in length and different in width, with the respect to the change quantity ΔP of the stress applied to the central parts of the test pieces X and Y are measured with respect to the test pieces X and Y. The bending elastic moduli E of the respective test pieces are calculated from these measuring values, the interval S between the two supports, the thicknesses h<SB>1</SB>and h<SB>2</SB>of the test pieces X and Y, the widths b<SB>1</SB>and b<SB>2</SB>of the test pieces X and Y and the width ratio 1:A of the test pieces X and Y. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐火物に代表されるセラミックスなどの固体の供試体の曲げ弾性率を測定する弾性率測定方法及び弾性率測定装置に関する。   The present invention relates to an elastic modulus measuring method and an elastic modulus measuring device for measuring a bending elastic modulus of a solid specimen such as ceramics represented by a refractory.

固体の静弾性率の測定方法として、三点曲げ法が広く知られている(非特許文献1,2参照)。三点曲げ法は、三点曲げにより供試体に生じる歪みと応力との関係から、曲げ弾性率を算出する方法である。   A three-point bending method is widely known as a method for measuring the static elastic modulus of a solid (see Non-Patent Documents 1 and 2). The three-point bending method is a method for calculating a flexural modulus from the relationship between strain and stress generated in a specimen by three-point bending.

図8は、三点曲げ法による曲げ弾性率の測定を行う弾性率測定装置を示す図である(非特許文献1参照)。図8の弾性率測定装置は、弾性率測定装置101と制御用のコンピュータ102とを備えており、両者はインタフェース103を介してケーブル接続されている。   FIG. 8 is a diagram illustrating an elastic modulus measuring apparatus that measures a flexural modulus by a three-point bending method (see Non-Patent Document 1). The elastic modulus measuring apparatus in FIG. 8 includes an elastic modulus measuring apparatus 101 and a control computer 102, both of which are connected by a cable via an interface 103.

弾性率測定装置101は、床面に設置された架台104の上面に、4本の柱体105が立設されており、これらの柱体105で囲まれた架台104上面に、供試体を設置する支持台106が設置されている。また、支持台106の上部を囲繞して、チャンバ107が設置されており、チャンバ107の内部は外界から隔絶され、チャンバ内部の温度や雰囲気を自由に調整することが可能とされている。   In the elastic modulus measuring apparatus 101, four column bodies 105 are erected on the upper surface of the gantry 104 installed on the floor surface, and the test specimen is installed on the upper surface of the gantry 104 surrounded by these column bodies 105. A support base 106 is installed. Further, a chamber 107 is installed surrounding the upper portion of the support base 106. The inside of the chamber 107 is isolated from the outside, and the temperature and atmosphere inside the chamber can be freely adjusted.

支持台106の上面には、並行に2本の丸棒からなる支持体108,108が設置されている。そして、この2本の支持体上に、供試体Aが載置されている。供試体Aは、所定の矩形断面形状(図8の例では30×30mm)の棒状体であり、その両端付近の底面が2つの支持体108,108により支持される。   On the upper surface of the support base 106, supports 108 and 108 made of two round bars are installed in parallel. The specimen A is placed on the two supports. The specimen A is a rod-shaped body having a predetermined rectangular cross-sectional shape (30 × 30 mm in the example of FIG. 8), and the bottom surfaces near both ends thereof are supported by the two supports 108 and 108.

また、チャンバ107の真上には、加圧力を発生させるクロスヘッド109が配設されており、クロスヘッド109の下部には、供試体Aの上面の中央部を加圧するための加圧体110が設けられている。加圧体110は、扁平な板状体であり、下部断面形状が先細りとなり先端が円弧状に形成されている。この加圧体110の上端部がクロスヘッド109によって加圧され、供試体Aの上面中央が加圧される。   Further, a cross head 109 for generating a pressurizing force is disposed directly above the chamber 107, and a pressurizing body 110 for pressurizing the central portion of the upper surface of the specimen A is provided below the crosshead 109. Is provided. The pressurizing body 110 is a flat plate-like body, the lower cross-sectional shape is tapered, and the tip is formed in an arc shape. The upper end portion of the pressing body 110 is pressed by the cross head 109, and the center of the upper surface of the specimen A is pressed.

尚、供試体A上面の加圧体110の接触点と、供試体A下面の各支持体108,108の接触点との距離は等しくなるように、各部が配置されている。   In addition, each part is arrange | positioned so that the distance of the contact point of the pressurization body 110 of the specimen A upper surface and the contact point of each support body 108,108 of the specimen A lower surface may become equal.

尚、図8には図示されていないが、弾性率測定装置は、クロスヘッド109により加圧体110に加えられる応力を検出するロードセルなどの圧力センサと、加圧体110の変位を検出する変位検出器とを備えている。そして、加圧体110に加えられる応力と加圧体110の変位のデータは、インタフェース103を介してコンピュータ102にリアルタイムで送られて保存される。   Although not shown in FIG. 8, the elastic modulus measuring device is a pressure sensor such as a load cell that detects the stress applied to the pressurizing body 110 by the crosshead 109 and a displacement that detects the displacement of the pressurizing body 110. And a detector. Then, the stress applied to the pressing body 110 and the displacement data of the pressing body 110 are sent to the computer 102 via the interface 103 and stored in real time.

以上のような弾性率測定装置において実際に曲げ弾性率を測定する場合、まず、クロスヘッド109により加圧体110に加える応力Pを徐々に増加させる。そして、応力Pを増加させながら各時点での加圧体110の変位Wを測定する。これにより、応力Pと変位との関係が得られる。そして、コンピュータ102は、応力Pと変位との関係のデータが得られた時点で、曲げ弾性率Eの計算を行う。   When actually measuring the bending elastic modulus in the elastic modulus measuring apparatus as described above, first, the stress P applied to the pressing body 110 by the cross head 109 is gradually increased. Then, the displacement W of the pressurizing body 110 at each time point is measured while increasing the stress P. Thereby, the relationship between the stress P and the displacement is obtained. Then, the computer 102 calculates the bending elastic modulus E at the time when the data on the relationship between the stress P and the displacement is obtained.

三点曲げ試験の場合、図9に示すように、両支持体108,108の間隔をSとし、供試体Aの厚さをh,幅をbとした場合、供試体Aの中央部の変位Wは、次式(1)のように表される。   In the case of the three-point bending test, as shown in FIG. 9, when the distance between the two supports 108, 108 is S, the thickness of the specimen A is h, and the width is b, the displacement of the central portion of the specimen A W is expressed as the following equation (1).

Figure 2009036600
Figure 2009036600

ここで、Iは供試体Aの断面2次モーメントであり、次式(2)により表される。   Here, I is a cross-sectional secondary moment of the specimen A, and is represented by the following equation (2).

Figure 2009036600
Figure 2009036600

従って、(1)より、供試体Aの曲げ弾性率Eは、応力Pと変位Wの比P/Wの関数として次式(3)のように表される。   Therefore, from (1), the bending elastic modulus E of the specimen A is expressed as the following equation (3) as a function of the ratio P / W of the stress P and the displacement W.

Figure 2009036600
Figure 2009036600

故に、測定された応力Pと変位Wとの関係のデータから勾配P/Wを求めれば、式(3)により曲げ弾性率が求められる。実際の測定においては、一般に、応力Pと変位Wとの関係は、正比例関係とはならず、図8内のグラフに示したようなカーブを描く。このような場合、通常は最も直線に近い部分のデータを切り取ってこれを直線近似し、近似直線の勾配をP/Wとして式(3)により曲げ弾性率が求められる。
特開平2−108942号公報 特開昭63−311143号公報 特開昭58−92930号公報 特公平6−41900号公報 特公平3−59374号公報 駿河俊博,保木井利之,浅野敬輔,「MgO-C質耐火物の熱間静弾性率特性」,耐火材料,黒崎播磨株式会社,2001年12月20日,No.149, pp.62-67. 朝倉秀夫, 南園広志, 中務正幸,「熱間静弾性率測定装置の開発」,品川技報,品川白煉瓦株式会社,2000年03月20日,No.43, pp.83-90.
Therefore, if the gradient P / W is obtained from the data of the relationship between the measured stress P and the displacement W, the bending elastic modulus can be obtained from the equation (3). In actual measurement, generally, the relationship between the stress P and the displacement W is not a direct proportional relationship, but draws a curve as shown in the graph in FIG. In such a case, normally, the data of the portion closest to the straight line is cut out and approximated by a straight line, and the bending elastic modulus is obtained by the equation (3) with the gradient of the approximate straight line as P / W.
JP-A-2-108942 JP-A-63-311143 JP 58-92930 A Japanese Patent Publication No. 6-41900 Japanese Patent Publication No. 3-59374 Toshihiro Suruga, Toshiyuki Hokii, Keisuke Asano, “Hot Static Elastic Modulus Properties of MgO-C Refractories”, Refractory Materials, Kurosaki Harima Co., Ltd., December 20, 2001, No.149, pp.62- 67. Hideo Asakura, Hiroshi Minamizono, Masayuki Nakajo, “Development of Hot Static Elastic Modulus Measuring Device”, Shinagawa Technical Report, Shinagawa White Brick Co., Ltd., March 20, 2000, No. 43, pp.83-90.

しかしながら、上記測定系において得られる供試体Aの中央部の変位は、加圧体110の移動した距離を検出しており、直接供試体Aの変位を検出したものではない。この加圧体110の変位には、供試体Aの歪みによる変位以外に、供試体Aと加圧体110との接触面における微小な凹凸の変化、供試体Aと加圧体110との接触状態の変化、供試体内部のキャビテーションの圧潰、加圧体110自体の圧力による歪み、加圧装置の剛性などの様々なファクターが含まれているため、真の供試体Aの歪みによる変位Wを求めることは困難である。また、実際に測定を行うと、これらのファクターの値は、測定の度に変化するため、簡単に補正をすることができない。   However, the displacement of the central part of the specimen A obtained in the measurement system detects the distance traveled by the pressurizing body 110 and does not directly detect the displacement of the specimen A. In addition to the displacement due to the distortion of the specimen A, the displacement of the specimen 110 is a change in minute irregularities on the contact surface between the specimen A and the specimen 110, and the contact between the specimen A and the specimen 110. Since it includes various factors such as changes in the state, cavitation crushing inside the specimen, distortion due to the pressure of the pressurized body 110 itself, rigidity of the pressure device, the displacement W due to the distortion of the true specimen A is calculated. It is difficult to find. Further, when actual measurement is performed, the values of these factors change with each measurement, and thus cannot be easily corrected.

一方、供試体Aが耐火物やセラミックスのような高い剛性をもつ物質の場合、供試体Aに加える応力に対する変位の値は極めて小さい。従って、測定された変位値に含まれる、供試体Aの歪みによる変位以外のファクターの値が小さいとしても、供試体の曲げ弾性率の計算結果に与える誤差は大きなものとなる。   On the other hand, when the specimen A is a substance having high rigidity such as a refractory or ceramic, the displacement value with respect to the stress applied to the specimen A is extremely small. Therefore, even if the value of factors other than the displacement due to distortion of the specimen A included in the measured displacement value is small, the error given to the calculation result of the bending elastic modulus of the specimen becomes large.

従って、従来の三点法による曲げ弾性率の測定方法では、耐火物やセラミックスのような高い剛性をもつ物質の場合、曲げ弾性率の正確な値を測定することができないという問題があった。   Therefore, the conventional method for measuring the flexural modulus by the three-point method has a problem that an accurate value of the flexural modulus cannot be measured in the case of a material having high rigidity such as a refractory or ceramic.

この問題を解決するためには、供試体Aの中央部の変位の測定を、加圧体110の変位から間接的に求めるのではなく、供試体Aに歪みゲージを貼り付けて、直接歪み量を求めればよい。常温での測定では、このような方法は有効である。   In order to solve this problem, the measurement of the displacement of the central portion of the specimen A is not indirectly obtained from the displacement of the pressurizing body 110, but a strain gauge is attached to the specimen A to directly measure the amount of strain. You can ask for. Such a method is effective for measurement at room temperature.

しかしながら、耐火物やセラミックスの弾性率測定は、熱間での耐熱スポーリング性の評価のためなどに行われるため、数百℃以上の熱間において弾性率の試験を行う必要がある場合が多い。このような高温下においては、供試体Aに歪みゲージを貼り付けて測定するといったことは不可能であり、加圧体110の変位から間接的に供試体Aの中央部の変位を測定せざるを得ない。従って、上述したような各種ファクターによる歪み量の測定誤差の影響の問題は依然として残る。   However, since the elastic modulus measurement of refractories and ceramics is performed for the purpose of evaluating heat-resistant spalling properties in hot conditions, it is often necessary to test the elastic modulus in hot temperatures of several hundred degrees Celsius or higher. . Under such a high temperature, it is impossible to measure by attaching a strain gauge to the specimen A, and it is necessary to indirectly measure the displacement of the central part of the specimen A from the displacement of the pressurizing body 110. I do not get. Therefore, the problem of the influence of the measurement error of the distortion amount due to various factors as described above still remains.

そこで、本発明の目的は、三点曲げ法による曲げ弾性率の測定において、供試体と加圧体との接触面における微小な凹凸の変化、供試体と加圧体との接触状態の変化、供試体内部のキャビテーションの圧潰、加圧体自体の圧力による歪み、加圧装置の剛性などの測定装置に起因するファクターを除去し、精度よく曲げ弾性率の測定を行うことが可能な弾性率測定方法及び弾性率測定装置を提供することにある。   Therefore, the object of the present invention is to measure the bending elastic modulus by the three-point bending method, change in minute irregularities on the contact surface between the specimen and the pressure body, change in the contact state between the specimen and the pressure body, Elastic modulus measurement that enables accurate measurement of bending elastic modulus by removing factors caused by measurement devices such as crushing of cavitation inside the specimen, distortion due to pressure of the pressurized body itself, rigidity of the pressure device, etc. It is to provide a method and an elastic modulus measuring apparatus.

〔1〕本発明における曲げ弾性率測定試験の原理
まず、本発明において用いる三点曲げ法による曲げ弾性率の測定の原理について簡単に説明する。測定装置に起因する誤差のない理想的な測定系においては、供試体に加える応力Pと供試体の歪みWとの関係は、式(1)のようになる。
[1] Principle of bending elastic modulus measurement test in the present invention First, the principle of measuring the bending elastic modulus by the three-point bending method used in the present invention will be briefly described. In an ideal measurement system free from errors caused by the measuring apparatus, the relationship between the stress P applied to the specimen and the strain W of the specimen is as shown in Equation (1).

しかしながら、実際に耐火物資料供試体として応力と歪みの関係を三点曲げ法により測定すると、図1に示したような測定結果が得られる。図1(a),(b)は、同一の材料からなる供試体の三点曲げ法による実験結果である。図1(a)は供試体幅bが20mm、図1(b)は供試体幅bが40mmである。横軸は加圧体の変位を表す。また、縦軸は加圧体に加えた荷重を表す。図1(b)の供試体は図1(a)の供試体に比べて幅が2倍となっているため、同一の応力を加えるために図1(b)で加える荷重は図1(a)で加える荷重の2倍となっている。   However, when the relationship between stress and strain is actually measured by a three-point bending method as a refractory material specimen, a measurement result as shown in FIG. 1 is obtained. 1 (a) and 1 (b) show the experimental results obtained by the three-point bending method for specimens made of the same material. 1A shows a specimen width b of 20 mm, and FIG. 1B shows a specimen width b of 40 mm. The horizontal axis represents the displacement of the pressurized body. The vertical axis represents the load applied to the pressurized body. Since the specimen of FIG. 1 (b) has a width twice that of the specimen of FIG. 1 (a), the load applied in FIG. 1 (b) to apply the same stress is shown in FIG. ) Is twice the load applied.

図1から分かるように、実際に測定される加圧体の応力と加圧体の変位の関係は直線とはならず曲線となる。また、1回目の加圧を行う場合の曲線は、1回目の降圧以降の曲線と大きくずれる現象が一般に観測される。   As can be seen from FIG. 1, the relationship between the actually measured stress of the pressure body and the displacement of the pressure body is not a straight line but a curve. Further, it is generally observed that the curve when the first pressurization is largely deviated from the curve after the first pressure drop.

以上の実験結果に基づき、本発明者は、三点曲げ法による曲げ弾性率試験の測定系を次式(4)のような単純なモデルでモデル化した。   Based on the above experimental results, the present inventor has modeled a measurement system for a flexural modulus test by a three-point bending method using a simple model such as the following equation (4).

Figure 2009036600
Figure 2009036600

式(4)において、右辺第2項は、測定装置その他の擾乱要因(供試体内部のキャビテーションの圧潰、供試体と加圧体との接触面における微小な凹凸の変化などの影響も含む。以下「測定装置系」という。)により生じる変位の項を表す。式(4)では、加圧体を含む測定装置系を1つの弾性体で置き換えており、測定装置系は、応力に比例して測定装置系の歪みが大きくなると仮定している。   In Expression (4), the second term on the right side includes the influence of a disturbance factor such as a measurement device (crushing cavitation inside the specimen, or a minute unevenness on the contact surface between the specimen and the pressurized body). It represents the term of displacement caused by "measurement device system". In the equation (4), the measuring device system including the pressurizing body is replaced with one elastic body, and the measuring device system assumes that the strain of the measuring device system increases in proportion to the stress.

更に、種々の実験の結果、式(4)の右辺第2項は、供試体の硬さによっても変化するという知見を得た。すなわち、供試体が柔らかく曲げ弾性率Eが小さい場合には、測定装置系は供試体に比べて十分に硬いため、測定系の歪みは殆どなく測定に影響しない。それに対して、供試体が測定系と同程度に硬い場合、すなわち供試体の曲げ弾性率が大きい場合、測定系の歪みが大きくなり、その影響が変位の測定値にも現れる。このような現象をモデル式に組み込むため、右辺第2項は、第1項のS/EIの大きさに反比例すると仮定し、式(4)を更に次式(5)のようにおいた。 Furthermore, as a result of various experiments, it has been found that the second term on the right side of Equation (4) also changes depending on the hardness of the specimen. That is, when the specimen is soft and the flexural modulus E is small, the measuring apparatus system is sufficiently harder than the specimen, so there is almost no distortion of the measuring system and the measurement is not affected. On the other hand, when the specimen is as hard as the measurement system, that is, when the flexural modulus of the specimen is large, the distortion of the measurement system becomes large, and the influence thereof also appears in the displacement measurement value. In order to incorporate such a phenomenon into the model formula, it is assumed that the second term on the right side is inversely proportional to the magnitude of S 3 / EI of the first term, and formula (4) is further replaced by the following formula (5).

Figure 2009036600
ここで、kは測定装置に固有の定数である。図7にEI/Sと装置変位Wとの関係を測定した結果を示す。
Figure 2009036600
Here, k is a constant specific to the measuring apparatus. FIG. 7 shows the results of measuring the relationship between EI / S 3 and the apparatus displacement W.

なお、このkは装置の各構成部品の接合部間(及び測定試料のとの接合部)のクリアランスや歪み,それら構成部品自体の歪み,それらに影響を及ぼす温度等の要素の変動等の総和として現れるものと考えられる。   This k is the sum of the clearance and distortion between the joints of each component of the device (and the joint with the measurement sample), the distortion of these components themselves, and the variation of factors such as temperature affecting them. It is thought that it appears as.

次に、式(5)のように測定系をモデル化した上で、次に、測定系の影響を排除して曲げ弾性率Eを求める方法について説明する。なお、以下の説明において、曲げ試験機は図8の曲げ試験機と同様のものを使用することとする。   Next, a method for obtaining the flexural modulus E after eliminating the influence of the measurement system after modeling the measurement system as shown in Equation (5) will be described. In the following description, the bending tester is the same as the bending tester shown in FIG.

まず、同じ材料により、長さLが同じで幅bが異なる断面が矩形の棒状の供試体X,Yを用意する。供試体Xの幅をb,厚さをh、供試体Yの幅をb,厚さをhとする。また、幅b,bの比をA=b/bとおく。そして、この2つの供試体X,Yについて、同一の範囲で応力を変化させて、加圧体に加える応力変化ΔPとそれに対する加圧体の変位量ΔWを測定する。例えば、応力をσs0からσs2(σs0<σs2)の間で変化させ、応力がσs1及びσs2(σs0<σs1<σs2)となる2点で変位δW,δWを測定し、ΔP=σs2−σs1,ΔW=δW−δWとする。各供試体X,Yについて、観測される応力と歪みの関係は式(5)より次式(6a),(6b)のように表される。 First, rod-shaped specimens X and Y having the same material and the same length L but different widths b are prepared. The width of the specimen X is b 1 , the thickness is h 1 , the width of the specimen Y is b 2 , and the thickness is h 2 . Further, the ratio of the widths b 1 and b 2 is set to A = b 2 / b 1 . Then, with respect to the two specimens X and Y, the stress is changed in the same range, and the stress change ΔP applied to the pressurizing body and the displacement amount ΔW of the pressurizing body relative thereto are measured. For example, the stress was varied between the sigma s0 from σ s2 (σ s0 <σ s2 ), stress sigma s1 and σ s2 (σ s0 <σ s1 <σ s2) become displaced at two points .delta.W 1, .delta.W 2 And ΔP = σ s2 −σ s1 and ΔW = δW 2 −δW 1 . The relationship between the observed stress and strain for each specimen X and Y is expressed by the following equations (6a) and (6b) from the equation (5).

Figure 2009036600
Figure 2009036600

ここで、ΔW,ΔWは、それぞれ、供試体X,Yに対して測定された変位量、I,Iは、それぞれ、供試体X,Yの断面二次モーメントであり、式(6c)で表される。 Here, ΔW 1 and ΔW 2 are displacement amounts measured for the specimens X and Y, respectively, and I 1 and I 2 are cross-sectional secondary moments of the specimens X and Y, respectively. 6c).

=Abを式(6b)に代入して式(6a)(6b)からkの項を消去することにより、曲げ弾性率Eは次のように求めることができる。 By substituting b 2 = Ab 1 into equation (6b) and eliminating the term k from equations (6a) and (6b), the flexural modulus E can be obtained as follows.

Figure 2009036600
Figure 2009036600

上式(7)は、測定装置に固有の定数kを含まないため、測定装置の歪みの影響はこれにより排除されることが分かる。   Since the above equation (7) does not include the constant k inherent to the measurement apparatus, it can be understood that the influence of the distortion of the measurement apparatus is eliminated by this.

〔2〕本発明の構成及び作用
弾性率測定方法に係る本発明の第1の構成は、棒状の供試体の両端付近の下部を、水平に置かれた2つの支持体で2点支持するとともに、当該供試体中央部を加圧体で加圧して該加圧体の変位を測定することでその供試体中央部の変位量を計測し、当該供試体材料の曲げ弾性率を測定する弾性率測定方法であって、同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体のそれぞれに対し、当該供試体の中央部に加える応力の変化量ΔPに対する該中央部の変位量ΔW,ΔWを測定する変位測定ステップと、2つの前記支持体の間隔をS、前記第1及び第2の供試体の厚さをh,h、前記第1及び第2の供試体の幅をb,b、前記第1及び第2の供試体の幅の比を1:Aとしたときに、式(7),(6c)の演算により、各供試体の曲げ弾性率Eを算出する弾性率算出ステップと、を有することを特徴とする。
[2] Configuration and operation of the present invention The first configuration of the present invention relating to the elastic modulus measuring method is to support the lower part near both ends of the rod-shaped specimen at two points supported horizontally. The elastic modulus is measured by measuring the displacement of the central part of the specimen by measuring the displacement of the central part by pressing the central part of the specimen with a pressurized body and measuring the displacement of the pressurized body. A measurement method for each of the first and second specimens made of the same material and having the same length and different widths, and the center of the change ΔP of the stress applied to the center of the specimen. Displacement measuring step for measuring the displacement amounts ΔW 1 , ΔW 2 of the portion, the distance between the two supports is S, the thicknesses of the first and second specimens are h 1 , h 2 , the first and second the width of the second specimen b 1, b 2, a ratio of the first and second specimen width was 1: a To come formula (7), and having a an elastic modulus calculating step of calculating by calculation, each specimen of the flexural modulus E of (6c).

こように、同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体について、印加応力の変化量ΔPと変位量ΔW,ΔWを測定し、式(7),(6c)の演算を行って曲げ弾性率を求めることで、供試体と加圧体との接触面における微小な凹凸の変化、供試体と加圧体との接触状態の変化、供試体内部のキャビテーションの圧潰、加圧体自体の圧力による歪み、加圧装置の剛性などの測定装置に起因するファクターが排除され、精度よく曲げ弾性率の測定を行うことが可能となる。 In this way, for the first and second specimens made of the same material and having the same length but different widths, the applied stress change amount ΔP and the displacement amounts ΔW 1 and ΔW 2 are measured, and the equation (7 ) And (6c) to obtain the flexural modulus, the change in minute irregularities on the contact surface between the specimen and the pressure body, the change in the contact state between the specimen and the pressure body, the specimen Factors caused by the measuring device such as crushing of the internal cavitation, distortion due to the pressure of the pressurizing body itself, and rigidity of the pressurizing device are eliminated, and the bending elastic modulus can be measured with high accuracy.

尚、供試体の厚さh,hは同じ値としてもよいし、異なる値としてもよいが、測定条件を共通化しできるだけ余分な誤差要因を排除する観点からは、厚さh,hは同じ値とすることが好ましい。 The thicknesses h 1 and h 2 of the specimen may be the same value or different values. However, from the viewpoint of sharing the measurement conditions and eliminating the extra error factors as much as possible, the thicknesses h 1 and h 2 2 is preferably the same value.

弾性率測定方法に係る本発明の第2の構成は、前記第1の構成において、前記変位測定ステップにおいては、前記第1の供試体の中央部に加える2つの異なる応力σs1,σs2(σs1<σs2)の間での当該供試体の中央部の変位量ΔWを測定する第1の測定ステップと、前記第2の供試体の中央部に加える前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔWを測定する第2の測定ステップと、を有することを特徴とする。 According to the second configuration of the present invention relating to the elastic modulus measuring method, in the first configuration, in the displacement measuring step, two different stresses σ s1 and σ s2 (which are applied to the central portion of the first specimen) a first measurement step of measuring the displacement ΔW 1 of the central portion of the specimen between σ s1s2 ) and the stresses σ s1 and σ s2 applied to the central portion of the second specimen. And a second measuring step for measuring a displacement amount ΔW 2 of the central portion of the specimen between the two.

これにより、第1及び第2の供試体は同一の応力条件で応力と変位の関係が測定されるため、応力に対する非線形な変形現象による測定誤差を極力抑えることができる。   Thereby, since the relationship between stress and displacement is measured under the same stress condition in the first and second specimens, measurement errors due to nonlinear deformation phenomena with respect to stress can be suppressed as much as possible.

ここで、印加応力σs1,σs2の値については、供試体の破壊応力、必要な測定範囲、供試体のクリープ変形の大きさなどを考慮して、必要な範囲に任意に設定することができる。しかしながら、印加応力σs1,σs2の値は、変位が測定可能な範囲内とする必要があり、低圧値σs1については0[Pa]以上、高圧値σs2については供試体の曲げ破壊応力よりも小さい値とする。尚、σs1=0[Pa]とすると、減圧時に加圧装置内の加圧体と他の部品との間などに再びクリアランスが生じたり、供試体内の圧潰されたキャビテーションが復元したり、供試体の遅延弾性成分(粘弾性体の場合)の影響が大きくなったりするため、低圧値σs1については0[Pa]よりも大きな値に設定することが好ましい。 Here, the values of the applied stresses σ s1 and σ s2 may be arbitrarily set within the required range in consideration of the fracture stress of the specimen, the necessary measurement range, the magnitude of creep deformation of the specimen, and the like. it can. However, the values of the applied stresses σ s1 and σ s2 need to be within the range in which the displacement can be measured, the low pressure value σ s1 is 0 [Pa] or more, and the high pressure value σ s2 is the bending fracture stress of the specimen. Is set to a smaller value. When σ s1 = 0 [Pa], a clearance is generated again between the pressurizing body in the pressurizing device and other parts during decompression, or the crushed cavitation in the test specimen is restored, Since the influence of the delay elastic component (in the case of a viscoelastic body) of the specimen increases, the low pressure value σ s1 is preferably set to a value larger than 0 [Pa].

なお,高圧値σs2については,供試体とする材料の利用方法すなわちその使用条件,具備条件・特性等,材料の有する特性等,個々の必要性や所与の条件に応じた応力領域の弾性率を得るために,個別に設定すればよい。 Note that the high pressure value σ s2 is the elasticity of the stress region according to individual needs and given conditions, such as the method of use of the material used as the specimen, that is, its use conditions, equipment conditions, characteristics, etc. It can be set individually to obtain the rate.

弾性率測定方法に係る本発明の第3の構成は、前記第1又は2の構成において、前記第1及び第2の測定ステップにおいては、前記変位量ΔW,ΔWの測定を行う前に、前記第1又は第2の供試体の中央部に加える応力を、当該供試体の曲げ強度以下の所定の圧力まで昇圧させた後に、前記応力σs1以下に減圧させる昇降圧過程を、少なくとも1回以上行う誤差除去ステップを行うことを特徴とする。 According to the third configuration of the present invention relating to the elastic modulus measurement method, in the first or second configuration, in the first and second measurement steps, before the displacement amounts ΔW 1 and ΔW 2 are measured. The pressure applied to the central part of the first or second specimen is increased to a predetermined pressure not higher than the bending strength of the specimen and then reduced or reduced to the stress σ s1 or lower. It is characterized in that an error removing step is performed more than once.

このように、供試体の中央部の変位量ΔW,ΔWを測定する前に、上記誤差除去ステップを行うことによって、供試体と加圧体の間やその他加圧器機内に存在するクリアランスが押潰されたり、供試体表面の凹凸が潰れたり、供試体内部に存在するキャビテーションが圧潰されたりするなど、様々な非可逆的な変化が重畳した誤差要因(図1(a),(b)の1回目昇圧過程に現れているような非可逆的要因)を除去することができる。 As described above, by performing the error removal step before measuring the displacement amounts ΔW 1 and ΔW 2 of the central part of the specimen, the clearance existing between the specimen and the pressurizer and other in the pressurizer machine can be obtained. Error factors with various irreversible changes superimposed, such as crushing, crushing irregularities on the surface of the specimen, crushing cavitation existing inside the specimen (FIGS. 1A and 1B) Irreversible factors as appearing in the first step-up process).

弾性率測定方法に係る本発明の第4の構成は、前記第2又は3の構成において、前記第1及び第2の測定ステップにおいては、前記第1又は第2の供試体に対して、
(1)当該供試体の中央部に対し加える応力をσs1からσs2(σs1<σs2)に、時間区間[0,T]で定義される所定の時間関数σ(t)に従って時間Tで昇圧させるとともに、応力がσs1及びσs2となる各時点で当該供試体の変位δW (up),δW (up)を測定し、その差(δW (up)−δW (up))を応力σs1,σs2間での昇圧変位ΔW(up)として算出する昇圧過程測定ステップ;
(2)当該供試体の中央部に対し加える応力をσs2からσs1に、前記時間関数σ(t)を時間反転させた関数σ(T−t)に従って時間Tで降圧させるとともに、応力がσs2及びσs1となる各時点で当該供試体の変位δW (down),δW (down)を測定し、その差(δW (down)−δW (down))を応力σs1,σs2間での降圧変位ΔW(down)として算出する降圧過程測定ステップ;
(3)及び、前記昇圧変位ΔW(up)と前記降圧変位ΔW(down)との平均値を、前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔW又はΔWとして算出する平均変位算出ステップ;を有することを特徴とする。
According to the fourth configuration of the present invention relating to the elastic modulus measurement method, in the second or third configuration, in the first and second measurement steps, with respect to the first or second specimen,
(1) The stress applied to the central portion of the specimen is changed from σ s1 to σ s2s1s2 ) according to a predetermined time function σ s (t) defined by the time interval [0, T]. While increasing the pressure at T, the displacements δW 1 (up) and δW 2 (up) of the specimen are measured at each time point when the stress becomes σ s1 and σ s2, and the difference (δW 2 (up) −δW 1 ( up) ) ) as a pressure increase displacement ΔW (up) between the stresses σ s1 and σ s2 ;
(2) The stress applied to the central portion of the specimen is lowered from time σ s2 to σ s1 and time T according to the function σ s (T−t) obtained by reversing the time function σ s (t). The displacements δW 2 (down) and δW 1 (down) of the specimen are measured at each time point when the stress becomes σ s2 and σ s1, and the difference (δW 2 (down) −δW 1 (down) ) is determined as the stress σ. a step-down process measuring step for calculating as step-down displacement ΔW (down) between s1 and σs2 ;
(3) The average value of the step- up displacement ΔW (up) and the step-down displacement ΔW (down) is calculated as the displacement amount ΔW 1 or ΔW of the central portion of the specimen between the stresses σ s1 and σ s2. An average displacement calculating step of calculating as 2 .

このように、第1及び第2の供試体について、昇圧過程では印加応力σを時間関数σ(t)に従って時間Tで昇圧させ、降圧過程では応力σ(t)をその時間反転関数σ(T−t)に従って時間Tで降圧させ、昇圧変位変位δW (up),δW (up)と降圧変位δW (down),δW (down)との平均値ΔW,ΔWを算出し、これらの平均値を用いて式(7)による曲げ弾性率Eの計算を行うことで、塑性変形の影響をキャンセルさせるとともに、遅延弾性の影響を小さくすることができる。 As described above, for the first and second specimens, the applied stress σ s is increased at the time T according to the time function σ s (t) in the pressure increasing process, and the stress σ s (t) is converted to the time reversal function in the pressure decreasing process. The pressure is decreased at time T according to σ s (T−t), and average values ΔW 1 , ΔW of the pressure increase displacement displacements δW 1 (up) , δW 2 (up) and the pressure decrease displacements δW 2 (down) , δW 1 (down) By calculating 2 and calculating the flexural modulus E according to equation (7) using these average values, the influence of plastic deformation can be canceled and the influence of delayed elasticity can be reduced.

弾性率測定装置に係る本発明の第1の構成は、棒状の供試体の両端付近の下部を支持する一対の支持体と、前記両支持体の上部に置かれた供試体の中央部を上面から加圧する加圧体と、前記加圧体に加圧力を与える加圧シリンダと、前記加圧体の変位を計測する変位検出器と、前記加圧シリンダの発生する応力を計測する圧力センサと、測定条件データ及び測定データを記憶する記憶手段と、曲げ弾性率の測定結果を出力する出力手段と、前記加圧シリンダの加圧力制御、並びに前記加圧体の変位及び発生応力の計測制御を行う制御装置と、を備えた、供試体材料の曲げ弾性率を測定する弾性率測定装置であって、前記制御装置は、試験対象である、同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体の幅b,b及び厚さh,h、前記両支持体の間隔S、並びに変位測定を行う際の供試体に加える応力の変化量ΔPの値を設定し、前記記憶手段に格納する測定条件設定手段と、前記両支持体上に前記第1又は第2の供試体が載せられた状態において、前記加圧シリンダにより、当該供試体の中央部に加える応力を前記変化量ΔPだけ変化させるとともに、その変化の間の当該供試体の中央部の変位量ΔW,ΔWを計測し、該変位量ΔW,ΔWを前記記憶手段に格納する変位計測手段と、前記記憶手段に格納された2つの前記支持体の間隔S、前記第1及び第2の供試体の厚さh,h、前記第1及び第2の供試体の幅b,b、変位測定を行う際の供試体に加える前記応力の変化量ΔP、及び前記第1及び第2の供試体の中央部の前記変位量ΔW,ΔWに基づいて、次式(3),(4),(5)の演算を実行することにより、各供試体の曲げ弾性率Eを算出し、前記出力手段に出力する弾性率算出手段と、を備えたことを特徴とする。 The first configuration of the present invention relating to the elastic modulus measuring apparatus is a pair of supports that support lower portions near both ends of a rod-shaped specimen, and a central portion of the specimen placed above the two supports on the top surface. A pressure body that pressurizes the pressure body, a pressure cylinder that applies pressure to the pressure body, a displacement detector that measures the displacement of the pressure body, and a pressure sensor that measures the stress generated by the pressure cylinder; Storage means for storing the measurement condition data and measurement data, output means for outputting the measurement result of the flexural modulus, pressurizing control of the pressurizing cylinder, and measurement control of displacement and generated stress of the pressurizing body. An elastic modulus measuring device for measuring the flexural modulus of a specimen material, the control device being made of the same material to be tested and having equal length and width different first and second specimen of width b 1, b 2及The thickness h 1, h 2, and sets the values of both interval S of the support, as well as the variation ΔP of the stress applied to the specimen when performing displacement measurement, the measurement condition setting means for storing in the storage means, In the state where the first or second specimen is placed on both the supports, the pressure cylinder changes the stress applied to the central part of the specimen by the change amount ΔP, and the change the specimen displacement amount [Delta] W 1 of the central portion of between measures the [Delta] W 2, the displacement amount [Delta] W 1, a displacement measuring means for storing [Delta] W 2 in the storage means, the storage means stored in the two of the Specimens used when measuring the distance S between the supports, the thicknesses h 1 and h 2 of the first and second specimens, the widths b 1 and b 2 of the first and second specimens, and the displacement The amount of change ΔP in the stress to be applied and the central part of the first and second specimens Based on the displacement amounts ΔW 1 and ΔW 2 , the bending elastic modulus E of each specimen is calculated by executing the following expressions (3), (4), and (5), and output to the output means: And an elastic modulus calculating means.

Figure 2009036600
Figure 2009036600

この構成によれば、まず、測定者は、測定条件設定手段により、第1及び第2の供試体の厚さh,h、長さL、幅b,b、両支持体の間隔S、変位測定を行う際の供試体に加える応力の変化量ΔPを設定して、記憶手段に格納させる。次に、変位計測手段により、第1及び第2の供試体のそれぞれに対し、当該供試体の中央部に加える応力の変化量ΔPに対する該中央部の変位量ΔW,ΔWを測定する。そして、弾性率算出手段は、式(7),(6c)の演算により、各供試体の曲げ弾性率Eを算出する。これにより、により、供試体と加圧体との接触面における微小な凹凸の変化、供試体と加圧体との接触状態の変化、供試体内部のキャビテーションの圧潰、加圧体自体の圧力による歪み、加圧装置の剛性などの測定装置に起因するファクターが排除され、精度よく曲げ弾性率の測定を行うことが可能となる。 According to this configuration, first, the measurer uses the measurement condition setting means to measure the thicknesses h 1 and h 2 , the length L, the widths b 1 and b 2 of the first and second specimens, The interval S and the amount of change ΔP of the stress applied to the specimen when performing displacement measurement are set and stored in the storage means. Next, displacement amounts ΔW 1 and ΔW 2 of the central portion with respect to a change amount ΔP of stress applied to the central portion of the specimen are measured for each of the first and second specimens by the displacement measuring means. Then, the elastic modulus calculating means calculates the bending elastic modulus E of each specimen by the calculation of the equations (7) and (6c). Due to this, due to changes in minute irregularities on the contact surface between the specimen and the pressurized body, changes in the contact state between the specimen and the pressurized body, crushing of cavitation inside the specimen, the pressure of the pressurized body itself Factors caused by the measuring device such as strain and rigidity of the pressing device are eliminated, and the bending elastic modulus can be measured with high accuracy.

弾性率測定装置に係る本発明の第2の構成は、前記第1の構成において、前記測定条件設定手段は、前記第1及び第2の供試体の幅b,b及び厚さh,h、前記両支持体の間隔S、並びに変位測定を行う際の供試体に加える2つの異なる応力値σs1,σs2(σs1<σs2)の値を設定し、前記記憶手段に格納するものであり、前記変位計測手段は、前記両支持体上に前記第1又は第2の供試体が載せられた状態において、前記加圧シリンダにより、当該供試体の中央部に加える応力をσs1とσs2との間で変化させ、その変化の間の当該供試体の中央部の変位量ΔW,ΔWを計測し、該変位量ΔW,ΔWを前記記憶手段に格納するものであることを特徴とする。 The second configuration of the present invention relating to the elastic modulus measuring apparatus is the first configuration, wherein the measurement condition setting means includes widths b 1 and b 2 and a thickness h 1 of the first and second specimens. , H 2 , the distance S between the two supports, and two different stress values σ s1 , σ s2s1s2 ) applied to the specimen when measuring the displacement are set in the storage means The displacement measuring means applies stress applied to the central portion of the specimen by the pressure cylinder in a state where the first or second specimen is placed on both supports. varied between sigma s1 and sigma s2, the displacement amount [Delta] W 1 of the central portion of the specimen during the change, the [Delta] W 2 is measured and stored displacement amount [Delta] W 1, the [Delta] W 2 in the storage means It is characterized by being.

弾性率測定装置に係る本発明の第3の構成は、前記第1又は2の構成において、前記制御装置は、前記変位計測手段が変位量の計測を行うに先立ち、前記加圧シリンダを制御して、前記第1又は第2の供試体の中央部に加える応力を、当該供試体の曲げ強度以下の所定の圧力まで昇圧させた後に、前記応力σs1以下に減圧させる昇降圧過程を、少なくとも1回以上行う誤差除去手段を備えていることを特徴とする。 According to a third configuration of the present invention relating to the elastic modulus measuring device, in the first or second configuration, the control device controls the pressurizing cylinder before the displacement measuring unit measures the amount of displacement. Then, after increasing the stress applied to the central portion of the first or second specimen to a predetermined pressure below the bending strength of the specimen, the step-up / step-down process of reducing the pressure to the stress σ s1 or less is at least It is characterized by having an error removing means for performing at least once.

弾性率測定装置に係る本発明の第4の構成は、前記第2又は3の構成において、前記変位計測手段は、前記ピストンを制御することにより、前記第1又は第2の供試体の中央部に対し加える応力をσs1からσs2(σs1<σs2)に、時間区間[0,T]で定義される所定の時間関数σ(t)に従って時間Tで昇圧させる昇圧制御手段と、前記昇圧制御手段による応力の昇圧時において、応力がσs1及びσs2となる各時点で当該供試体の変位δW (up),δW (up)を測定し、その差(δW (up)−δW (up))を応力σs1,σs2間での昇圧変位ΔW(up)として算出し、前記記憶手段に格納する昇圧過程測定手段と、前記ピストンを制御することにより、前記第1又は第2の供試体の中央部に対し加える応力をσs2からσs1に、前記時間関数σ(t)を時間反転させた関数σ(T−t)に従って時間Tで降圧させる降圧制御手段と、前記降圧制御手段による応力の降圧時において、応力がσs2及びσs1となる各時点で当該供試体の変位δW (down),δW (down)を測定し、その差(δW (down)−δW (down))を応力σs1,σs2間での降圧変位ΔW(down)として算出し、前記記憶手段に格納する降圧過程測定手段と、前記記憶手段に記憶された、前記昇圧変位ΔW(up)及び前記降圧変位ΔW(down)の平均値を、前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔW又はΔWとして算出し、前記記憶手段に格納する平均変位算出手段と、を備えたことを特徴とする。 According to a fourth configuration of the present invention relating to the elastic modulus measuring device, in the second or third configuration, the displacement measuring means controls the piston, thereby controlling the central portion of the first or second specimen. Boosting control means for boosting the stress applied to σ s1 to σ s2s1s2 ) at time T according to a predetermined time function σ s (t) defined by time interval [0, T]; When the stress is boosted by the boost control means, the displacements δW 1 (up) and δW 2 (up) of the specimen are measured at each time point when the stress becomes σ s1 and σ s2, and the difference (δW 2 (up) ) −δW 1 (up) ) is calculated as the pressure increase displacement ΔW (up) between the stresses σ s1 and σ s2 , and the pressure increase process measurement means stored in the storage means and the piston are controlled to Pair with the center of the 1st or 2nd specimen Stresses sigma s1 from the sigma s2 addition, the step-down control means for step-down in the time function sigma s (t) the time function was reversed σ s (T-t) according to the time T, the step-down of the stress due to the step-down control unit In time, the displacements δW 2 (down) and δW 1 (down) of the specimen are measured at each time point when the stress becomes σ s2 and σ s1, and the difference (δW 2 (down) −δW 1 (down) ) Is calculated as a step-down displacement ΔW (down) between the stresses σ s1 and σ s2 and stored in the storage unit, and the step- up displacement ΔW (up) and the step-down stored in the storage unit An average displacement calculating means for calculating an average value of the displacement ΔW (down) as a displacement amount ΔW 1 or ΔW 2 of the central portion of the specimen between the stresses σ s1 and σ s2 and storing it in the storage means; With It is characterized by that.

プログラムに係る本発明の第1の構成は、棒状の供試体の両端付近の下部を支持する一対の支持体と、前記両支持体の上部に置かれた供試体の中央部を上面から加圧する加圧体と、前記加圧体に加圧力を与える加圧シリンダと、前記加圧体の変位を計測する変位検出器と、前記加圧シリンダの発生する応力を計測する圧力センサと、測定条件データ及び測定データを記憶する記憶手段と、曲げ弾性率の測定結果を出力する出力手段と、前記加圧シリンダの加圧力制御、並びに前記加圧体の変位及び発生応力の計測制御を行うコンピュータと、を備えた、供試体材料の曲げ弾性率を測定する弾性率測定システムにおいて、前記コンピュータに読み込んで実行することにより、前記コンピュータを、請求項5乃至8の何れか一に記載の弾性率測定装置の制御装置として機能させることを特徴とする。   According to the first configuration of the present invention relating to the program, a pair of supports that support lower portions near both ends of a rod-shaped specimen and a central portion of the specimen placed above the two supports are pressurized from above. A pressure body, a pressure cylinder that applies pressure to the pressure body, a displacement detector that measures the displacement of the pressure body, a pressure sensor that measures the stress generated by the pressure cylinder, and measurement conditions Storage means for storing data and measurement data, output means for outputting the measurement result of the flexural modulus, computer for controlling the pressurizing force of the pressurizing cylinder, and measuring and controlling the displacement and generated stress of the pressurizing body, An elastic modulus measurement system for measuring a bending elastic modulus of a specimen material, comprising: a computer that reads and executes the elastic modulus measurement device according to any one of claims 5 to 8. Wherein the function as location of the control device.

以上のように、本発明に係る弾性率測定方法及び弾性率測定装置によれば、同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体について、印加応力の変化量ΔPと変位量ΔW,ΔWを測定し、式(7),(6c)の演算を行って曲げ弾性率を求める構成としたことにより、供試体と加圧体との接触面における微小な凹凸の変化、供試体と加圧体との接触状態の変化、供試体内部のキャビテーションの圧潰、加圧体自体の圧力による歪み、加圧装置の剛性などの測定装置に起因するファクターが排除され、精度よく曲げ弾性率の測定を行うことが可能となる。 As described above, according to the elastic modulus measuring method and the elastic modulus measuring apparatus according to the present invention, the applied stress of the first and second specimens made of the same material and having the same length and different widths can be obtained. By measuring the change ΔP and the displacements ΔW 1 and ΔW 2 and calculating the bending elastic modulus by calculating the equations (7) and (6c), the contact surface between the specimen and the pressurizing body is obtained. There are factors due to the measuring device such as minute irregularities, changes in contact state between the specimen and the pressurized body, crushing of cavitation inside the specimen, distortion due to the pressure of the pressurized body itself, and rigidity of the pressurized device. This eliminates the need to accurately measure the flexural modulus.

また、供試体中央部の変位量ΔW,ΔWを測定する前に、誤差除去ステップを行うことで、様々な非可逆的な変化が重畳した誤差要因が除去される。従って、精度の高い弾性率の測定が可能となる。 Further, by performing an error removal step before measuring the displacement amounts ΔW 1 and ΔW 2 of the central part of the specimen, an error factor in which various irreversible changes are superimposed is removed. Therefore, it is possible to measure the elastic modulus with high accuracy.

また、第1及び第2の供試体について、昇圧過程では印加応力σを時間関数σ(t)に従って時間Tで昇圧させ、降圧過程では応力σ(t)をその時間反転関数σ(T−t)に従って時間Tで降圧させ、昇圧変位変位δW (up),δW (up)と降圧変位δW (down),δW (down)との平均値ΔW,ΔWを算出し、これらの平均値を用いて式(7)による曲げ弾性率Eの計算を行うことで、塑性変形の影響をキャンセルさせるとともに、遅延弾性の影響を小さくすることができる。従って、より精度の高い弾性率の測定が可能となる。 For the first and second specimens, the applied stress σ s is boosted at time T according to the time function σ s (t) in the pressure increasing process, and the stress σ s (t) is converted to its time reversal function σ s in the pressure decreasing process. According to (T−t), the pressure is decreased at time T, and average values ΔW 1 and ΔW 2 of the pressure increase displacement displacements δW 1 (up) and δW 2 (up) and the pressure decrease displacements δW 2 (down) and δW 1 (down) are obtained. By calculating and calculating the flexural modulus E according to Equation (7) using these average values, the influence of plastic deformation can be canceled and the influence of delayed elasticity can be reduced. Accordingly, it is possible to measure the elastic modulus with higher accuracy.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図2は、本発明の実施例1に係る弾性率測定装置1の全体構成を表す図である。弾性率測定装置1は、供試体TPに三点加圧を行い供試体TPの曲げ変位を計測する機械的構成部分2と、測定の制御を行う制御構成部分3との2つの部分から構成されている。尚、機械的構成部分2に関しては、従来の三点曲げ試験を行う加圧装置の構成と同様であり、図2にはその一例が示されている。   FIG. 2 is a diagram illustrating the overall configuration of the elastic modulus measuring apparatus 1 according to the first embodiment of the invention. The elastic modulus measuring apparatus 1 is composed of two parts: a mechanical component part 2 that applies three-point pressurization to the specimen TP and measures the bending displacement of the specimen TP, and a control constituent part 3 that controls the measurement. ing. The mechanical component 2 is the same as that of a conventional pressurizing device that performs a three-point bending test, and an example thereof is shown in FIG.

機械的構成部分2は、プレス下板4、プレス上板5、支柱6、載荷台7、油圧ラムシリンダ(加圧シリンダ)8、油圧ラムピストン9、試料支持台10、加圧体11、ロードセル(圧力センサ)12、変位検出器13、断熱気密容器14、ヒータ15、及び温度センサ16を備えている。   The mechanical component 2 includes a press lower plate 4, a press upper plate 5, a support column 6, a loading table 7, a hydraulic ram cylinder (pressure cylinder) 8, a hydraulic ram piston 9, a sample support table 10, a pressure body 11, and a load cell. (Pressure sensor) 12, displacement detector 13, heat-insulated airtight container 14, heater 15, and temperature sensor 16 are provided.

プレス下板4は床面に弾性率測定装置1を固定する土台部分をなす。プレス上板5は、弾性率測定装置1の天井部分をなす。プレス下板4とプレス上板5とは、その左右側方で支柱6,6により強固に連結されている。   The press lower plate 4 forms a base portion for fixing the elastic modulus measuring device 1 to the floor surface. The press upper plate 5 forms a ceiling portion of the elastic modulus measuring device 1. The press lower plate 4 and the press upper plate 5 are firmly connected to each other on the left and right sides by support columns 6 and 6.

プレス下板4の上面中央部には、載荷台7が設置されている。一方、プレス上板5の下面中央部には、油圧ラムシリンダ8と油圧ラムピストン9が強固に固定されている。油圧ラムシリンダ8及び油圧ラムピストン9は、供試体TPを加圧する押圧力を発生させる装置である。油圧ラムピストン9は、油圧ラムシリンダ8のバレル内を上下に移動する。また、油圧ラムシリンダ8のバレル上部とバレル下部には、作動液体に圧力を伝達するための加圧管9a,9bが連通されている。各加圧管9a,9bには、作動液体を加圧する加圧装置9c,9dが設けられている。加圧装置9c,9dが、それぞれ、バレル内上部及びバレル内下部の作動液体に圧力P,Pを加えることで、油圧ラムピストン9に加圧力を発生させる。 A loading table 7 is installed at the center of the upper surface of the press lower plate 4. On the other hand, a hydraulic ram cylinder 8 and a hydraulic ram piston 9 are firmly fixed to the center of the lower surface of the press upper plate 5. The hydraulic ram cylinder 8 and the hydraulic ram piston 9 are devices that generate a pressing force that pressurizes the specimen TP. The hydraulic ram piston 9 moves up and down in the barrel of the hydraulic ram cylinder 8. Further, pressurizing pipes 9 a and 9 b for transmitting pressure to the working liquid are communicated with the upper and lower barrels of the hydraulic ram cylinder 8. The pressurizing tubes 9a and 9b are provided with pressurizing devices 9c and 9d for pressurizing the working liquid. Pressure device 9c, 9d, respectively, by applying a pressure P 1, P 2 to the working liquid in the lower inner upper and a barrel the barrel, to generate a pressure in the hydraulic ram piston 9.

載荷台7の上面中央には試料支持台10が設置されている。また、試料支持台10に対向して、油圧ラムピストン9の下面にはロードセル12を介して加圧体11が設けられている。試料支持台10の上面は、左右が突出し中央部が凹没した形状に構成されており、左右の凸部の上面は平坦に形成され、その平坦面に断面半円状の溝が形成されている。そして、その溝に、供試体TPの両端を支持する丸棒状の支持体10a,10bが設置されている。設置された状態において、支持体10a,10bは平行である。供試体TPは断面が矩形の棒状に形成されており、その両端付近の下面を支持体10a,10bにより支持した状態で断熱気密容器14内に設置される。一方、加圧体11は、前後にやや扁平な形状をしており、下部断面形状が先細りとなりその先端が円弧状に形成されている。この円弧状の加圧体11下端部は、供試体TPの上面中央部に接触している。また、試料支持台10及び加圧体11は、窒化珪素及び炭化珪素の硬度の高い耐火部材で構成されている。   A sample support 10 is installed at the center of the upper surface of the loading table 7. A pressure body 11 is provided on the lower surface of the hydraulic ram piston 9 via a load cell 12 so as to face the sample support 10. The upper surface of the sample support 10 is configured to protrude left and right and the center portion is recessed. The upper surfaces of the left and right protrusions are formed flat, and a groove having a semicircular cross section is formed on the flat surface. Yes. And in the groove | channel, round bar-shaped support body 10a, 10b which supports the both ends of specimen TP is installed. In the installed state, the supports 10a and 10b are parallel. The specimen TP is formed in the shape of a rod having a rectangular cross section, and is installed in the heat insulating and airtight container 14 with the lower surfaces near both ends thereof supported by the supports 10a and 10b. On the other hand, the pressurizing body 11 has a slightly flat shape in the front-rear direction, the lower cross-sectional shape is tapered, and the tip is formed in an arc shape. The lower end of the arcuate pressure member 11 is in contact with the center of the upper surface of the specimen TP. Moreover, the sample support 10 and the pressurization body 11 are comprised with the refractory member with high hardness of silicon nitride and silicon carbide.

供試体TPの上面は、加圧体11を介して油圧ラムピストン9により加圧される。また、供試体TPの下面は、支持体10a,10b及び試料支持台10を介して載荷台7で抑えられている。ロードセル12は、油圧ラムピストン9により供試体TPに加えられる加圧力を検出する。   The upper surface of the specimen TP is pressurized by the hydraulic ram piston 9 via the pressurizing body 11. Further, the lower surface of the specimen TP is held down by the loading table 7 through the supports 10a and 10b and the sample support 10. The load cell 12 detects the pressure applied to the specimen TP by the hydraulic ram piston 9.

油圧ラムピストン9の底面と載荷台7の上面には、水平方向の延出部材13a,13bが延設されている。そして。この延出部材13a,13bの先端の間には、変位検出器13が設置されている。変位検出器13は、延出部材13a,13bの間隔を測定するゲージであり、ここではリニアゲージを使用している。これにより、加圧体11の上端と試料支持台10の下端との距離の変位を精密に測定することができる。   On the bottom surface of the hydraulic ram piston 9 and the top surface of the loading table 7, horizontal extending members 13a and 13b are extended. And then. A displacement detector 13 is installed between the ends of the extending members 13a and 13b. The displacement detector 13 is a gauge that measures the distance between the extending members 13a and 13b. Here, a linear gauge is used. Thereby, the displacement of the distance between the upper end of the pressurizing body 11 and the lower end of the sample support 10 can be accurately measured.

加圧体11の下部と試料支持台10の上部は、断熱気密容器14で囲繞されており、断熱気密容器14内は半気密状態とされている。この断熱気密容器14には、給気管14aと排気管14bが連通されている。給気管14aからは、アルゴン等の不活性ガスや窒素ガスなどが断熱気密容器14内に送気される。また、断熱気密容器14内の余分な気体は、排気管14bから排出される。これにより、断熱気密容器14内は常に不活性雰囲気に保つことが可能である。   The lower part of the pressurizing body 11 and the upper part of the sample support 10 are surrounded by a heat-insulating and airtight container 14, and the inside of the heat insulating and airtight container 14 is in a semi-airtight state. An air supply pipe 14a and an exhaust pipe 14b are communicated with the heat insulating airtight container 14. From the air supply pipe 14a, an inert gas such as argon, nitrogen gas, or the like is supplied into the heat insulating airtight container 14. Moreover, the excess gas in the heat insulation airtight container 14 is discharged | emitted from the exhaust pipe 14b. Thereby, the inside of the heat insulation airtight container 14 can always be kept in an inert atmosphere.

また、断熱気密容器14内には、供試体TPの側面全体を取り囲むように、ヒータ15が設けられている。また、供試体TPの近傍の雰囲気温度を測定する温度センサ16が設けられている。ヒータ15は、供試体TPの周囲の空気を加熱して、供試体TPを過熱状態とする。これにより、供試体TPを高温に加熱した状態での曲げ試験が可能となる。   Further, a heater 15 is provided in the heat insulating and airtight container 14 so as to surround the entire side surface of the specimen TP. Further, a temperature sensor 16 for measuring the ambient temperature in the vicinity of the specimen TP is provided. The heater 15 heats the air around the specimen TP to bring the specimen TP into an overheated state. Thereby, the bending test in the state which heated test piece TP to high temperature is attained.

一方、制御構成部分3は、制御ボード21及びコンピュータ22により構成されている。制御ボード21は、加圧装置9c,9dの加圧出力の制御、ロードセル12による応力検出、変位検出器13による変位検出、ヒータ15による加熱制御、温度センサ16による供試体TP近傍の温度検出などの制御を行う回路が搭載されている。また、コンピュータ22は、プログラムに従って、制御ボード21により各制御や測定の制御を実行する。   On the other hand, the control component 3 includes a control board 21 and a computer 22. The control board 21 controls the pressure output of the pressure devices 9c and 9d, detects the stress by the load cell 12, detects the displacement by the displacement detector 13, controls the heating by the heater 15, detects the temperature in the vicinity of the specimen TP by the temperature sensor 16, and the like. A circuit for controlling the above is mounted. Further, the computer 22 executes control and measurement control by the control board 21 according to the program.

図3は、本発明の実施例1の弾性率測定装置1の機能構成を表すブロック図である。図3において、機械的構成部分2及び制御構成部分3、並びに、ヒータ15,ロードセル12,温度センサ16,加圧装置9c,9d,及び変位検出計13は、図2の同符号の構成部分に対応している。   FIG. 3 is a block diagram illustrating a functional configuration of the elastic modulus measuring apparatus 1 according to the first embodiment of the present invention. In FIG. 3, the mechanical component 2 and the control component 3, the heater 15, the load cell 12, the temperature sensor 16, the pressurizing devices 9c and 9d, and the displacement detector 13 are the components having the same reference numerals in FIG. It corresponds.

制御構成部分3は、機能的には、入力装置31,測定条件設定手段32,測定条件記憶手段33,加熱制御手段34,誤差除去手段35,変位計測手段36,測定結果記憶手段37,弾性率算出手段38,出力制御手段39,及びディスプレイ40を備えている。   Functionally, the control component 3 includes an input device 31, measurement condition setting means 32, measurement condition storage means 33, heating control means 34, error removal means 35, displacement measurement means 36, measurement result storage means 37, elastic modulus. A calculation means 38, an output control means 39, and a display 40 are provided.

入力装置31は、測定者がコンピュータ22に指示を入力する装置であり、キーボードやマウス等で構成される。   The input device 31 is a device by which a measurer inputs an instruction to the computer 22 and includes a keyboard, a mouse, and the like.

測定条件設定手段32は、ディスプレイ40に入力画面を表示して測定者に対し三点曲げ試験の測定条件の入力を促すと共に、入力装置31から入力された測定条件を測定条件記憶手段33に格納する。測定条件記憶手段33は、測定条件を一時的に記憶する部分であり、RAMやハードディスクなどにより構成される。   The measurement condition setting means 32 displays an input screen on the display 40 to prompt the measurer to input measurement conditions for the three-point bending test, and stores the measurement conditions input from the input device 31 in the measurement condition storage means 33. To do. The measurement condition storage means 33 is a part for temporarily storing the measurement conditions, and is constituted by a RAM, a hard disk or the like.

ここで、「測定条件」には、三点曲げ試験における供試体TPの加熱温度Θ、最大加圧時の圧力(以下「最大加圧力」という。)σs2、低圧における変位測定を行うときの圧力(以下「低圧測定点圧力」という。)σs1、加圧力を低圧にするときの最小加圧力σs0、装置誤差除去操作の繰り返し回数N、測定する2つの供試体TPの長さL,厚さh,h,幅b,b,及び支持体10a,10b間の距離Sなどのパラメータが含まれる。 Here, the “measurement conditions” include the heating temperature Θ of the specimen TP in the three-point bending test, the pressure at the time of maximum pressurization (hereinafter referred to as “maximum applied pressure”) σ s2 , and the displacement measurement at low pressure. Pressure (hereinafter referred to as “low pressure measuring point pressure”) σ s1 , minimum applied pressure σ s0 when the applied pressure is reduced to low pressure, the number of repetitions N of the apparatus error elimination operation, the length L of the two specimens TP to be measured, Parameters such as thicknesses h 1 and h 2 , widths b 1 and b 2 , and distance S between the supports 10a and 10b are included.

加熱制御手段34は、測定条件記憶手段33に格納された三点曲げ試験における加熱温度Θに従って、温度センサ16の検出温度を参照してヒータ15を制御することにより、供試体TPの加熱制御を行う。   The heating control means 34 controls the heating of the specimen TP by controlling the heater 15 with reference to the temperature detected by the temperature sensor 16 in accordance with the heating temperature Θ in the three-point bending test stored in the measurement condition storage means 33. Do.

誤差除去手段35は、ロードセル12の検出する圧力を参照して加圧装置9c,9dを制御することにより、供試体TPに加える圧力を、最大加圧力σs2まで昇圧させた後、最小加圧力σs0まで減圧させる昇降圧過程を、N回実行する。ここで、Nは1以上の整数であり、適当な値に設定することができる。 The error removal means 35 refers to the pressure detected by the load cell 12 and controls the pressurization devices 9c and 9d to increase the pressure applied to the specimen TP to the maximum pressure σ s2 and then the minimum pressure The step-up / step-down process for reducing the pressure to σ s0 is executed N times. Here, N is an integer of 1 or more and can be set to an appropriate value.

変位計測手段36は、供試体TPの中央部を加圧体11により加圧しながら、圧力とそれに対する供試体TPの変位を、ロードセル12及び変位検出計13で測定する制御を行う。   The displacement measuring means 36 performs control to measure the pressure and the displacement of the specimen TP with the load cell 12 and the displacement detector 13 while pressurizing the central portion of the specimen TP with the pressurizing body 11.

測定結果記憶手段37は、変位計測手段36により検出される測定データ及び曲げ弾性率データを記憶する。   The measurement result storage unit 37 stores measurement data and bending elastic modulus data detected by the displacement measurement unit 36.

弾性率算出手段38は、変位計測手段36が出力する圧力及び変位のデータに基づき、供試体TPの曲げ弾性率を算出し、測定結果記憶手段37に格納する。   The elastic modulus calculation means 38 calculates the bending elastic modulus of the specimen TP based on the pressure and displacement data output from the displacement measurement means 36 and stores it in the measurement result storage means 37.

出力制御手段39は、弾性率算出手段38により算出された曲げ弾性率データを、ディスプレイ40に出力する。   The output control unit 39 outputs the bending elastic modulus data calculated by the elastic modulus calculating unit 38 to the display 40.

以上のように構成された本実施例に係る弾性率測定装置1について、以下それによる三点曲げ試験による弾性率測定方法について説明する。   The elastic modulus measuring apparatus 1 according to the present embodiment configured as described above will be described below with respect to an elastic modulus measuring method using a three-point bending test.

図4は、弾性率測定方法の全体の流れを表すフローチャートである。ここでは、材質,厚さ,長さが同じで幅の異なる2つの供試体TP1,TP2に対する三点曲げ試験を行うことにより、材料の曲げ弾性率の測定を行う。   FIG. 4 is a flowchart showing the overall flow of the elastic modulus measurement method. Here, the bending elastic modulus of the material is measured by performing a three-point bending test on two specimens TP1 and TP2 having the same material, thickness, and length but different widths.

ステップS1において、測定条件設定手段32は、ディスプレイ40に測定条件設定画面を表示する。測定者は、この画面に従って、入力装置31により曲げ試験の測定条件を設定する。測定条件が入力されると、測定条件設定手段32は、それらの測定条件を測定条件記憶手段33に保存する。   In step S <b> 1, the measurement condition setting unit 32 displays a measurement condition setting screen on the display 40. The measurer sets the measurement conditions for the bending test using the input device 31 in accordance with this screen. When the measurement conditions are input, the measurement condition setting unit 32 stores the measurement conditions in the measurement condition storage unit 33.

ここで、最大加圧力σs2は、供試体TPの曲げ破壊応力以下とする。供試体TPの曲げ破壊応力については、あらかじめ別途破壊試験などを行って測定しておく。 Here, the maximum pressure σ s2 is set to be equal to or less than the bending fracture stress of the specimen TP. The bending fracture stress of the specimen TP is measured by performing a separate fracture test in advance.

そして、試料支持台10上の支持体10a,10bの上に、厚さh,幅bの供試体TP1を設置する。 Then, a specimen TP1 having a thickness h 1 and a width b 1 is placed on the supports 10a and 10b on the sample support 10.

ステップS2において、加熱制御手段34は、測定条件記憶手段33に保存された加熱温度Θに従って、ヒータ15の通電制御を行う。これにより、供試体TP1は、温度Θに加熱された状態となる。   In step S <b> 2, the heating control unit 34 performs energization control of the heater 15 in accordance with the heating temperature Θ stored in the measurement condition storage unit 33. As a result, the specimen TP1 is heated to the temperature Θ.

ステップS3において、誤差除去手段35は、加圧装置9c,9dにより、供試体TP1に加える圧力を徐々に昇圧させる。そして、ロードセル12により検出される圧力がσs2となった時点で昇圧を止める。次いで、ステップS4において、誤差除去手段35は、加圧装置9c,9dにより、供試体TP1に加える圧力を徐々に降圧させる。そして、ロードセル12により検出される圧力がσs0となった時点で降圧を止める。このステップS3,S4の昇降圧過程を、以下「誤差除去処理」という。 In step S3, the error removing means 35 gradually increases the pressure applied to the specimen TP1 by the pressurizing devices 9c and 9d. The pressure increase is stopped when the pressure detected by the load cell 12 reaches σ s2 . Next, in step S4, the error removing means 35 gradually lowers the pressure applied to the specimen TP1 by the pressurizing devices 9c and 9d. Then, the pressure reduction is stopped when the pressure detected by the load cell 12 reaches σ s0 . The step-up / step-down process in steps S3 and S4 is hereinafter referred to as “error removal process”.

ステップS5において、誤差除去処理の繰り返し回数がN回に達していない場合は、再びステップS3に戻り、N回に達した場合には、次のステップS5に移行する。これにより、誤差除去処理は、最初に設定された繰り返し回数Nだけ反復して実行される。   In step S5, if the number of repetitions of the error removal processing has not reached N times, the process returns to step S3 again. If it has reached N times, the process proceeds to the next step S5. As a result, the error removal process is repeatedly executed by the number of repetitions N set initially.

ステップS6において、変位計測手段36は、加圧装置9c,9dにより、ロードセル12により検出される圧力がσs1となるまで、供試体TP1に加える圧力を一定の昇圧速度v=(σs2−σs1)/Tで昇圧させる。ステップS7において、変位計測手段36は、変位検出計13が検出する圧力σs1における供試体TP1の変位δW(up)(σs1)を取り込み、測定結果記憶手段37に保存する。ステップS8において、変位計測手段36は、加圧装置9c,9dにより、ロードセル12により検出される圧力がσs2となるまで、さらに継続して一定の昇圧速度vで供試体TPに加える圧力を昇圧させる。そして、ロードセル12により検出される圧力がσs2となった時点で昇圧を止め、降圧に移る。ステップS9において、変位計測手段36は、変位検出計13が検出する圧力σs2における供試体TP1の変位δW(σs2)を取り込み、測定結果記憶手段37に保存する。以上のステップS6〜S9の過程を以下「昇圧測定過程」という。 In step S6, the displacement measuring means 36 applies a constant pressure increase speed v = (σ s2 −σ) until the pressure detected by the load cell 12 becomes σ s1 by the pressurizing devices 9c and 9d. The voltage is increased by s1 ) / T. In step S7, the displacement measuring means 36 takes the displacement of the specimen TP1 in pressure sigma s1 displacement detecting meter 13 detects δW (up) (σ s1) , is stored in the measurement result storage unit 37. In step S8, the displacement measuring means 36 further increases the pressure applied to the specimen TP at a constant pressure increase speed v until the pressure detected by the load cell 12 reaches σ s2 by the pressurizing devices 9c and 9d. Let Then, when the pressure detected by the load cell 12 reaches σ s2 , the pressure increase is stopped and the pressure decreases . In step S9, the displacement measuring means 36, the displacement detecting meter 13 captures a displacement δW (σ s2) of the specimen TP1 in pressure sigma s2 to detect, is stored in the measurement result storage unit 37. The process of steps S6 to S9 described above is hereinafter referred to as a “step-up measurement process”.

ステップS10において、変位計測手段36は、加圧装置9c,9dにより、ロードセル12により検出される圧力がσs1となるまで、一定の降圧速度−vで供試体TPに加える圧力を徐々に降圧させる。ステップS11において、変位計測手段36は、変位検出計13が検出する圧力σs1における供試体TPの変位δW(down)(σs1)を取り込み、測定結果記憶手段37に保存する。ステップS12において、変位計測手段36は、加圧装置9c,9dにより、ロードセル12により検出される圧力がσs0となるまで、さらに継続して一定の降圧速度−vで供試体TPに加える圧力を降圧させる。そして、ロードセル12により検出される圧力がσs0となった時点で降圧を止める。以上のステップS10〜S12の過程を以下「降圧測定過程」という。 In step S10, the displacement measuring means 36 gradually lowers the pressure applied to the specimen TP at a constant step-down speed −v until the pressure detected by the load cell 12 becomes σ s1 by the pressurizing devices 9c and 9d. . In step S11, the displacement measuring means 36, the displacement detecting meter 13 takes in displacement δW specimens TP in the pressure sigma s1 detecting (down) (σ s1), is stored in the measurement result storage unit 37. In step S12, the displacement measuring means 36 continues to apply pressure applied to the specimen TP at a constant step-down speed −v until the pressure detected by the load cell 12 becomes σ s0 by the pressurizing devices 9c and 9d. Decrease the pressure. Then, the pressure reduction is stopped when the pressure detected by the load cell 12 reaches σ s0 . The process of steps S10 to S12 described above is hereinafter referred to as “step-down measurement process”.

既に説明したように、一般に、同じ圧力σs1における供試体TPの変位であっても、昇圧測定過程で測定される変位δW(up)(σs1)と降圧測定過程で測定される変位δW(down)(σs1)とは、同じ値にはならない。そこで、弾性率算出手段38は、圧力σs1と圧力σs2との間の供試体TP1の平均変位ΔWを、次式により計算し、その結果を測定結果記憶手段37に格納する。 As described above, in general, even when the specimen TP is displaced at the same pressure σ s1, the displacement δW (up)s1 ) measured in the pressure increase measurement process and the displacement δW ( down)s1 ) is not the same value. Therefore, the elastic modulus calculation means 38 calculates the average displacement ΔW 1 of the specimen TP1 between the pressure σ s1 and the pressure σ s2 by the following equation, and stores the result in the measurement result storage means 37.

Figure 2009036600
Figure 2009036600

ステップS13において、供試体TPの交換のために、加熱制御手段34はヒータ15への通電を遮断し、断熱気密容器14内の温度を降温させる。また、弾性率算出手段38は、ディスプレイ40上に供試体TPの交換を促す表示を行う。   In step S13, in order to replace the specimen TP, the heating control means 34 cuts off the power supply to the heater 15 and lowers the temperature in the heat insulating and airtight container 14. In addition, the elastic modulus calculation means 38 displays on the display 40 a prompt for exchanging the specimen TP.

測定者は、断熱気密容器14内の温度が十分に下がった後、供試体TP1を厚さh,幅bの供試体TP2に取り替える。そして、弾性率測定装置1は、今度は供試体TP2について、上記ステップS2〜S12の操作を実行し、供試体TP2の平均変位ΔWを式(25)と同様に計算する。 The measurer replaces the specimen TP1 with a specimen TP2 having a thickness h 2 and a width b 2 after the temperature in the heat-insulated airtight container 14 has sufficiently decreased. The elastic modulus measuring apparatus 1, now for specimen TP2, perform the operations in steps S2 through S12, similarly calculated the average displacement [Delta] W 2 of the specimen TP2 and equation (25).

ステップS14において、弾性率算出手段38は、測定結果記憶手段37に保存されたΔW,ΔWに基づいて、次式により供試体TPの曲げ弾性率Eを算出し、測定結果記憶手段37に保存する。 In step S < b > 14, the elastic modulus calculation means 38 calculates the bending elastic modulus E of the specimen TP based on ΔW 1 and ΔW 2 stored in the measurement result storage means 37 according to the following equation, and stores it in the measurement result storage means 37. save.

Figure 2009036600
Figure 2009036600

最後に、ステップS15において、出力制御手段39は、算出された曲げ弾性率を、ディスプレイ40に表示するし、三点曲げ試験処理を終了する。   Finally, in step S15, the output control means 39 displays the calculated bending elastic modulus on the display 40, and ends the three-point bending test process.

以上の処理により、加圧体11の加圧による測定装置系の弾性変形の影響を除去し、供試体TPの塑性変形の影響も除去して、供試体TPを構成する物質の曲げ弾性率Eを測定することができる。   By the above process, the influence of the elastic deformation of the measuring device system due to the pressurization of the pressurizing body 11 is removed, the influence of the plastic deformation of the specimen TP is also removed, and the bending elastic modulus E of the substance constituting the specimen TP is removed. Can be measured.

最後に、本発明に係る弾性率測定方法の精度検証を行うため、実際に耐火物材料を用いて曲げ弾性率Eを測定した実験結果について説明する。   Finally, in order to verify the accuracy of the elastic modulus measurement method according to the present invention, experimental results obtained by actually measuring the bending elastic modulus E using a refractory material will be described.

(実験例)
まず、式(5)の仮定、すなわち、供試体の曲げ弾性率に比例して測定系の歪みが大きくなることを検証するため、供試体に応力をかけたときに観測される加圧体の変位と歪みゲージにより直接測定した供試体の変位との比較を行った。
(Experimental example)
First, in order to verify the assumption of formula (5), that is, that the strain of the measurement system increases in proportion to the bending elastic modulus of the specimen, the pressure of the pressurized body observed when stress is applied to the specimen. A comparison was made between the displacement and the displacement of the specimen measured directly with a strain gauge.

三点曲げ試験の試験条件は次の通りである。   The test conditions for the three-point bending test are as follows.

Figure 2009036600
Figure 2009036600

測定系は、図2で説明した弾性率測定装置1を使用した。変位検出器13により検出される変位W’と、供試体の底面に貼り付けた歪みゲージにより直接測定される供試体の変位Wを同時に測定し、コンピュータに取り込んだ。測定系の歪みW”はW”=W’−Wにより算出される。また、変位W’に占める測定系の歪みW”の比を「装置剛性比」と呼び、rsysと記す。rsysは次式により定義される。 As the measurement system, the elastic modulus measuring apparatus 1 described with reference to FIG. 2 was used. The displacement W ′ detected by the displacement detector 13 and the displacement W of the specimen measured directly by the strain gauge attached to the bottom surface of the specimen were simultaneously measured and incorporated into a computer. The distortion W ″ of the measurement system is calculated by W ″ = W′−W. Further, the ratio of the strain W ″ of the measurement system to the displacement W ′ is referred to as “apparatus stiffness ratio” and is expressed as r sys . r sys is defined by the following equation.

Figure 2009036600
装置剛性比rsysは式((5)の右辺全体の値に占める右辺第2項(EI/Sk)の値の割合を示している。
Figure 2009036600
The device rigidity ratio r sys indicates the ratio of the value of the second term (EI / S 3 k) on the right side to the value on the entire right side of the equation (5).

また、歪みゲージにより直接測定される供試体の変位Wから、式(3)により算出される供試体の正確な弾性率を「歪みゲージ弾性率」と呼び、Eと記す。 Further, the displacement W of specimen to be measured directly by the strain gage, the exact elastic modulus of the specimen which is calculated by the equation (3) is referred to as "strain gauge modulus", referred to as E 1.

図5に、歪みゲージ弾性率Eと装置剛性比rsysとの関係を測定した結果を示す。供試体材料としては耐火物材料を用いた。また、図5(b)には、横軸をEI(Iは供試体の断面2次モーメント)としてプロットした結果を示す。図5の測定結果から、装置剛性比rsysはEIとの相関が大きく、rsysは一次近似ではEI/(1+EI)にほぼ比例していると考えてよい。 FIG. 5 shows the result of measuring the relationship between the strain gauge elastic modulus E 1 and the apparatus stiffness ratio r sys . A refractory material was used as a specimen material. FIG. 5B shows the result of plotting the horizontal axis as E 1 I (I is the secondary moment of section of the specimen). From the measurement results of FIG. 5, it can be considered that the apparatus stiffness ratio r sys has a large correlation with E 1 I, and r sys is substantially proportional to E 1 I / (1 + E 1 I) in the first-order approximation.

図6は、歪みゲージにより求めた弾性率と、式(7)により求めた弾性率(換算弾性率)との比較を示した図である。図6より、本発明の測定方法により求められる弾性率Eは、歪みゲージ弾性率Eとよい一致を示すことが分かる。 FIG. 6 is a diagram showing a comparison between the elastic modulus obtained by the strain gauge and the elastic modulus (converted elastic modulus) obtained by the equation (7). From FIG. 6, the elastic modulus E, which is determined by measurement methods of the present invention, it is seen that a good match with the strain gauge elastic modulus E 1.

三点曲げ法による応力と変位の測定結果の例である。It is an example of the measurement result of the stress and displacement by a three-point bending method. 本発明の実施例1に係る弾性率測定装置1の全体構成を表す図である。It is a figure showing the whole elastic modulus measuring device 1 composition concerning Example 1 of the present invention. 本発明の実施例1の弾性率測定装置1の機能構成を表すブロック図である。It is a block diagram showing the function structure of the elasticity measuring apparatus 1 of Example 1 of this invention. 弾性率測定方法の全体の流れを表すフローチャートである。It is a flowchart showing the whole flow of an elastic modulus measuring method. 歪みゲージ弾性率Eと装置剛性比rsysとの関係を測定した結果である。Is the result of the relationship between the strain gauge elastic modulus E 1 and device rigidity ratio r sys was measured. 歪みゲージにより求めた弾性率と、式(7)により求めた弾性率(換算弾性率)との比較を示した図である。It is the figure which showed the comparison with the elastic modulus calculated | required with the strain gauge, and the elastic modulus (converted elastic modulus) calculated | required by Formula (7). EI/Sと装置変位Wとの関係を測定した結果である。The result of measuring the relation between the EI / S 3 and the device displacement W. 三点曲げ法による曲げ弾性率の測定を行う弾性率測定装置を示す図であるIt is a figure which shows the elastic modulus measuring apparatus which measures the bending elastic modulus by a three-point bending method 三点曲げ試験の各種パラメータを表す図である。It is a figure showing the various parameters of a three-point bending test.

符号の説明Explanation of symbols

1 弾性率測定装置
2 機械的構成部分
3 制御構成部分
4 プレス下板
5 プレス上板
6 支柱
7 載荷台
8 油圧ラムシリンダ
9 油圧ラムピストン
9a,9b 加圧管
9c,9d 加圧装置
10 試料支持台
10a,10b 支持体
11 加圧体
12 ロードセル
13 変位検出器
13a,13b 延出部材
14 断熱気密容器
14a 給気管
14b 排気管
15 ヒータ
16 温度センサ
TP 供試体
DESCRIPTION OF SYMBOLS 1 Elastic modulus measuring device 2 Mechanical component 3 Control component 4 Press lower plate 5 Press upper plate 6 Post 7 Loading platform 8 Hydraulic ram cylinder 9 Hydraulic ram piston 9a, 9b Pressurizing pipe 9c, 9d Pressurizing device 10 Sample support stand 10a, 10b Support body 11 Pressurizing body 12 Load cell 13 Displacement detectors 13a, 13b Extension member 14 Insulating airtight container 14a Air supply pipe 14b Exhaust pipe 15 Heater 16 Temperature sensor TP Specimen

Claims (9)

棒状の供試体の両端付近の下部を、水平に置かれた2つの支持体で2点支持するとともに、当該供試体中央部を加圧体で加圧して該加圧体の変位を測定することでその供試体中央部の変位量を計測し、当該供試体材料の曲げ弾性率を測定する弾性率測定方法であって、
同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体のそれぞれに対し、当該供試体の中央部に加える応力の変化量ΔPに対する該中央部の変位量ΔW,ΔWを測定する変位測定ステップと、
2つの前記支持体の間隔をS、前記第1及び第2の供試体の厚さをh,h、前記第1及び第2の供試体の幅をb,b、前記第1及び第2の供試体の幅の比を1:Aとしたときに、次式(1),(2)の演算により、各供試体の曲げ弾性率Eを算出する弾性率算出ステップと、
を有する弾性率測定方法。
Figure 2009036600
The lower part of both ends of the rod-shaped specimen is supported at two points by two horizontally placed supports, and the center of the specimen is pressurized with a pressurized body to measure the displacement of the pressurized body. Measuring the amount of displacement at the center of the specimen and measuring the elastic modulus of the specimen material,
For each of the first and second specimens made of the same material and having the same length and different widths, the displacement amount ΔW 1 of the central portion with respect to the change amount ΔP of the stress applied to the central portion of the specimen. , ΔW 2 , a displacement measuring step;
The distance between the two supports is S, the thicknesses of the first and second specimens are h 1 , h 2 , the widths of the first and second specimens are b 1 , b 2 , the first And when the ratio of the width of the second specimen is 1: A, the elastic modulus calculation step of calculating the bending elastic modulus E of each specimen by the calculation of the following formulas (1) and (2);
A method for measuring elastic modulus.
Figure 2009036600
前記変位測定ステップにおいては、
前記第1の供試体の中央部に加える2つの異なる応力σs1,σs2(σs1<σs2)の間での当該供試体の中央部の変位量ΔWを測定する第1の測定ステップと、
前記第2の供試体の中央部に加える前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔWを測定する第2の測定ステップと、
を有することを特徴とする請求項1記載の弾性率測定方法。
In the displacement measuring step,
A first measurement step of measuring a displacement amount ΔW 1 of the central portion of the specimen between two different stresses σ s1 and σ s2s1s2 ) applied to the central portion of the first specimen. When,
A second measuring step for measuring a displacement amount ΔW 2 of the central part of the specimen between the stresses σ s1 and σ s2 applied to the central part of the second specimen;
The elastic modulus measurement method according to claim 1, wherein:
前記第1及び第2の測定ステップにおいては、前記変位量ΔW,ΔWの測定を行う前に、前記第1又は第2の供試体の中央部に加える応力を、当該供試体の曲げ強度以下の所定の圧力まで昇圧させた後に、前記応力σs1以下に減圧させる昇降圧過程を、少なくとも1回以上行う誤差除去ステップを行うことを特徴とする請求項1又は2記載の弾性率測定方法。 In the first and second measurement steps, before measuring the displacement amounts ΔW 1 and ΔW 2 , the stress applied to the central part of the first or second specimen is applied to the bending strength of the specimen. 3. The elastic modulus measuring method according to claim 1, wherein an error removing step is performed in which a step-up / step-down process for reducing the pressure to the stress σ s1 or less is performed at least once after the pressure is increased to the following predetermined pressure. . 前記第1及び第2の測定ステップにおいては、前記第1又は第2の供試体に対して、
(1)当該供試体の中央部に対し加える応力をσs1からσs2(σs1<σs2)に、時間区間[0,T]で定義される所定の時間関数σ(t)に従って時間Tで昇圧させるとともに、応力がσs1及びσs2となる各時点で当該供試体の変位δW (up),δW (up)を測定し、その差(δW (up)−δW (up))を応力σs1,σs2間での昇圧変位ΔW(up)として算出する昇圧過程測定ステップ;
(2)当該供試体の中央部に対し加える応力をσs2からσs1に、前記時間関数σ(t)を時間反転させた関数σ(T−t)に従って時間Tで降圧させるとともに、応力がσs2及びσs1となる各時点で当該供試体の変位δW (down),δW (down)を測定し、その差(δW (down)−δW (down))を応力σs1,σs2間での降圧変位ΔW(down)として算出する降圧過程測定ステップ;
(3)及び、前記昇圧変位ΔW(up)と前記降圧変位ΔW(down)との平均値を、前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔW又はΔWとして算出する平均変位算出ステップ;
を有することを特徴とする請求項2又は3に記載の弾性率測定方法。
In the first and second measurement steps, for the first or second specimen,
(1) The stress applied to the central portion of the specimen is changed from σ s1 to σ s2s1s2 ) according to a predetermined time function σ s (t) defined by the time interval [0, T]. While increasing the pressure at T, the displacements δW 1 (up) and δW 2 (up) of the specimen are measured at each time point when the stress becomes σ s1 and σ s2, and the difference (δW 2 (up) −δW 1 ( up) ) ) as a pressure increase displacement ΔW (up) between the stresses σ s1 and σ s2 ;
(2) The stress applied to the central portion of the specimen is lowered from time σ s2 to σ s1 and time T according to the function σ s (T−t) obtained by reversing the time function σ s (t). The displacements δW 2 (down) and δW 1 (down) of the specimen are measured at each time point when the stress becomes σ s2 and σ s1, and the difference (δW 2 (down) −δW 1 (down) ) is determined as the stress σ. a step-down process measuring step for calculating as step-down displacement ΔW (down) between s1 and σs2 ;
(3) The average value of the step- up displacement ΔW (up) and the step-down displacement ΔW (down) is calculated as the displacement amount ΔW 1 or ΔW of the central portion of the specimen between the stresses σ s1 and σ s2. Average displacement calculation step calculated as 2 ;
The elastic modulus measuring method according to claim 2, wherein:
棒状の供試体の両端付近の下部を支持する一対の支持体と、
前記両支持体の上部に置かれた供試体の中央部を上面から加圧する加圧体と、
前記加圧体に加圧力を与える加圧シリンダと、
前記加圧体の変位を計測する変位検出器と、
前記加圧シリンダの発生する応力を計測する圧力センサと、
測定条件データ及び測定データを記憶する記憶手段と、
曲げ弾性率の測定結果を出力する出力手段と、
前記加圧シリンダの加圧力制御、並びに前記加圧体の変位及び発生応力の計測制御を行う制御装置と、
を備えた、供試体材料の曲げ弾性率を測定する弾性率測定装置であって、
前記制御装置は、
試験対象である、同一の材料で作られた、長さが等しく幅が異なる第1及び第2の供試体の幅b,b及び厚さh,h、前記両支持体の間隔S、並びに変位測定を行う際の供試体に加える応力の変化量ΔPの値を設定し、前記記憶手段に格納する測定条件設定手段と、
前記両支持体上に前記第1又は第2の供試体が載せられた状態において、前記加圧シリンダにより、当該供試体の中央部に加える応力を前記変化量ΔPだけ変化させるとともに、その変化の間の当該供試体の中央部の変位量ΔW,ΔWを計測し、該変位量ΔW,ΔWを前記記憶手段に格納する変位計測手段と、
前記記憶手段に格納された2つの前記支持体の間隔S、前記第1及び第2の供試体の厚さh、前記第1及び第2の供試体の幅b,b、変位測定を行う際の供試体に加える前記応力の変化量ΔP、及び前記第1及び第2の供試体の中央部の前記変位量ΔW,ΔWに基づいて、次式(3),(4),(5)の演算を実行することにより、各供試体の曲げ弾性率Eを算出し、前記出力手段に出力する弾性率算出手段と、
を備えた弾性率測定装置。
Figure 2009036600
A pair of supports that support the lower portions near both ends of the rod-shaped specimen;
A pressurizing body that pressurizes the central portion of the specimen placed on top of the two supports from above;
A pressure cylinder for applying pressure to the pressure body;
A displacement detector for measuring the displacement of the pressure member;
A pressure sensor for measuring the stress generated by the pressure cylinder;
Storage means for storing measurement condition data and measurement data;
Output means for outputting the measurement result of the flexural modulus;
A control device for controlling the pressurizing force of the pressurizing cylinder, and measuring and controlling the displacement and generated stress of the pressurizing body;
An elastic modulus measuring apparatus for measuring the flexural modulus of a specimen material, comprising:
The controller is
The widths b 1 and b 2 and the thicknesses h 1 and h 2 of the first and second specimens made of the same material and having the same length but different widths, the distance between the two supports. S, and a measurement condition setting means for setting a value of a change amount ΔP of stress applied to the specimen when performing displacement measurement, and storing the value in the storage means;
In the state where the first or second specimen is placed on both the supports, the pressure cylinder changes the stress applied to the central part of the specimen by the change amount ΔP, and the change A displacement measuring means for measuring the displacement amounts ΔW 1 and ΔW 2 of the central part of the specimen in between and storing the displacement amounts ΔW 1 and ΔW 2 in the storage means;
The distance S between the two supports stored in the storage means, the thickness h of the first and second specimens, the widths b 1 and b 2 of the first and second specimens, and the displacement measurement. Based on the amount of change ΔP of the stress applied to the specimen when performing and the displacements ΔW 1 , ΔW 2 of the central part of the first and second specimens, the following equations (3), (4), Calculating the elastic modulus E of each specimen by executing the operation of (5), and outputting the elastic modulus to the output means;
An elastic modulus measuring device.
Figure 2009036600
前記測定条件設定手段は、前記第1及び第2の供試体の幅b,b及び厚さh,h、前記両支持体の間隔S、並びに変位測定を行う際の供試体に加える2つの異なる応力値σs1,σs2(σs1<σs2)の値を設定し、前記記憶手段に格納するものであり、
前記変位計測手段は、前記両支持体上に前記第1又は第2の供試体が載せられた状態において、前記加圧シリンダにより、当該供試体の中央部に加える応力をσs1とσs2との間で変化させ、その変化の間の当該供試体の中央部の変位量ΔW,ΔWを計測し、該変位量ΔW,ΔWを前記記憶手段に格納するものであることを特徴とする請求項5記載の弾性率測定装置。
The measurement condition setting means is used for the specimens when the widths b 1 and b 2 and the thicknesses h 1 and h 2 of the first and second specimens, the interval S between the two supports, and the displacement measurement are performed. Two different stress values to be applied σ s1 and σ s2s1s2 ) are set and stored in the storage means,
In the state where the first or second specimen is placed on the both supports, the displacement measuring means applies stress applied to the central part of the specimen by the pressure cylinder as σ s1 and σ s2 . characterized in that varied between the displacement amount [Delta] W 1 of the central portion of the specimen during the change, and measuring the [Delta] W 2, is for storing displacement amount [Delta] W 1, the [Delta] W 2 in the storage means The elastic modulus measuring apparatus according to claim 5.
前記制御装置は、前記変位計測手段が変位量の計測を行うに先立ち、前記加圧シリンダを制御して、前記第1又は第2の供試体の中央部に加える応力を、当該供試体の曲げ強度以下の所定の圧力まで昇圧させた後に、前記応力σs1以下に減圧させる昇降圧過程を、少なくとも1回以上行う誤差除去手段を備えていることを特徴とする請求項5又は6記載の弾性率測定装置。 Prior to the displacement measuring means measuring the displacement, the control device controls the pressure cylinder to apply a stress applied to the central portion of the first or second specimen to bend the specimen. 7. The elasticity according to claim 5, further comprising an error removing means for performing a step-up / step-down process of increasing the pressure to a predetermined pressure below the strength and then reducing the pressure to the stress σ s1 or less at least once. Rate measuring device. 前記変位計測手段は、
前記ピストンを制御することにより、前記第1又は第2の供試体の中央部に対し加える応力をσs1からσs2(σs1<σs2)に、時間区間[0,T]で定義される所定の時間関数σ(t)に従って時間Tで昇圧させる昇圧制御手段と、
前記昇圧制御手段による応力の昇圧時において、応力がσs1及びσs2となる各時点で当該供試体の変位δW (up),δW (up)を測定し、その差(δW (up)−δW (up))を応力σs1,σs2間での昇圧変位ΔW(up)として算出し、前記記憶手段に格納する昇圧過程測定手段と、
前記ピストンを制御することにより、前記第1又は第2の供試体の中央部に対し加える応力をσs2からσs1に、前記時間関数σ(t)を時間反転させた関数σ(T−t)に従って時間Tで降圧させる降圧制御手段と、
前記降圧制御手段による応力の降圧時において、応力がσs2及びσs1となる各時点で当該供試体の変位δW (down),δW (down)を測定し、その差(δW (down)−δW (down))を応力σs1,σs2間での降圧変位ΔW(down)として算出し、前記記憶手段に格納する降圧過程測定手段と、
前記記憶手段に記憶された、前記昇圧変位ΔW(up)及び前記降圧変位ΔW(down)の平均値を、前記応力σs1,σs2の間での当該供試体の中央部の変位量ΔW又はΔWとして算出し、前記記憶手段に格納する平均変位算出手段と、
を備えたことを特徴とする請求項6又は7記載の弾性率測定装置。
The displacement measuring means includes
By controlling the piston, the stress applied to the central portion of the first or second specimen is defined from σ s1 to σ s2s1s2 ) in the time interval [0, T]. Boost control means for boosting at time T according to a predetermined time function σ s (t);
When the stress is increased by the pressure increase control means, the displacements δW 1 (up) and δW 2 (up) of the specimen are measured at each time point when the stress becomes σ s1 and σ s2, and the difference (δW 2 (up) ) −δW 1 (up) ) is calculated as the pressure increase displacement ΔW (up) between the stresses σ s1 and σ s2 , and is stored in the storage means.
By controlling the piston, the stress applied to the central portion of the first or second specimen is changed from σ s2 to σ s1 and the time function σ s (t) is time-reversed function σ s (T A step-down control means for stepping down at time T according to -t);
When the stress is lowered by the step-down control means, the displacements δW 2 (down) and δW 1 (down) of the specimen are measured at each time point when the stress becomes σ s2 and σ s1, and the difference (δW 2 (down) ) −δW 1 (down) ) is calculated as a step-down displacement ΔW (down) between the stresses σ s1 and σ s2 and stored in the storage unit;
The average value of the step- up displacement ΔW (up) and the step-down displacement ΔW (down) stored in the storage means is the displacement amount ΔW 1 at the center of the specimen between the stresses σ s1 and σ s2. Or mean displacement calculating means for calculating as ΔW 2 and storing it in the storage means;
The elastic modulus measuring apparatus according to claim 6 or 7, further comprising:
棒状の供試体の両端付近の下部を支持する一対の支持体と、
前記両支持体の上部に置かれた供試体の中央部を上面から加圧する加圧体と、
前記加圧体に加圧力を与える加圧シリンダと、
前記加圧体の変位を計測する変位検出器と、
前記加圧シリンダの発生する応力を計測する圧力センサと、
測定条件データ及び測定データを記憶する記憶手段と、
曲げ弾性率の測定結果を出力する出力手段と、
前記加圧シリンダの加圧力制御、並びに前記加圧体の変位及び発生応力の計測制御を行うコンピュータと、
を備えた、供試体材料の曲げ弾性率を測定する弾性率測定システムにおいて、
前記コンピュータに読み込んで実行することにより、前記コンピュータを、請求項5乃至8の何れか一に記載の弾性率測定装置の制御装置として機能させることを特徴とするプログラム。
A pair of supports that support the lower portions near both ends of the rod-shaped specimen;
A pressurizing body that pressurizes the central portion of the specimen placed on top of the two supports from above;
A pressure cylinder for applying pressure to the pressure body;
A displacement detector for measuring the displacement of the pressure member;
A pressure sensor for measuring the stress generated by the pressure cylinder;
Storage means for storing measurement condition data and measurement data;
Output means for outputting the measurement result of the flexural modulus;
A computer for controlling the pressurizing force of the pressurizing cylinder and measuring and controlling the displacement and generated stress of the pressurizing body;
In an elastic modulus measuring system for measuring a bending elastic modulus of a specimen material, comprising:
A program which causes the computer to function as a control device of the elastic modulus measuring device according to any one of claims 5 to 8 by being read and executed by the computer.
JP2007200247A 2007-07-31 2007-07-31 Elastic modulus measuring method, elastic modulus measuring apparatus, and program Expired - Fee Related JP4895302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200247A JP4895302B2 (en) 2007-07-31 2007-07-31 Elastic modulus measuring method, elastic modulus measuring apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200247A JP4895302B2 (en) 2007-07-31 2007-07-31 Elastic modulus measuring method, elastic modulus measuring apparatus, and program

Publications (2)

Publication Number Publication Date
JP2009036600A true JP2009036600A (en) 2009-02-19
JP4895302B2 JP4895302B2 (en) 2012-03-14

Family

ID=40438652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200247A Expired - Fee Related JP4895302B2 (en) 2007-07-31 2007-07-31 Elastic modulus measuring method, elastic modulus measuring apparatus, and program

Country Status (1)

Country Link
JP (1) JP4895302B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185792A (en) * 2009-02-12 2010-08-26 Fujitsu Ltd Measuring instrument, measuring method and measuring program
CN103913383A (en) * 2014-04-24 2014-07-09 株洲时代新材料科技股份有限公司 Bending performance detection method and device in electromagnetic wire stretching state
CN104330300A (en) * 2014-11-24 2015-02-04 重庆大学 Method for indirectly measuring thermal-damage coupling strength of ultrahigh-temperature ceramic material
CN107702980A (en) * 2017-11-08 2018-02-16 昆明理工大学 Modulus of elasticity, bending rigidity Multifunction composite experiment device
CN109490090A (en) * 2018-11-19 2019-03-19 长安大学 A kind of rubber material elasticity modulus measuring device and measuring method
JP2020190449A (en) * 2019-05-21 2020-11-26 株式会社ディスコ Measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239743A (en) * 1985-08-15 1987-02-20 Nec Corp Bending tester for measuring modulus of longitudinal elasticity of membrane
JPS6331143A (en) * 1986-07-24 1988-02-09 Nec Corp Socket for semiconductor device
JPS63212839A (en) * 1987-02-28 1988-09-05 Fuji Koon Seisakusho:Kk Apparatus for measuring young's modulus of plate material
JPH01165930A (en) * 1987-12-22 1989-06-29 Agency Of Ind Science & Technol Apparatus for measuring hot modulus of elasticity of ceramics
JP2001013050A (en) * 1999-06-30 2001-01-19 Shimadzu Corp Material testing machine
JP2003232709A (en) * 2001-12-05 2003-08-22 Toray Res Center:Kk Method for measuring modulus of elasticity in thin film
JP2005017054A (en) * 2003-06-25 2005-01-20 Shimadzu Corp Apparatus for measuring fracture toughness by three-point bending test

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239743A (en) * 1985-08-15 1987-02-20 Nec Corp Bending tester for measuring modulus of longitudinal elasticity of membrane
JPS6331143A (en) * 1986-07-24 1988-02-09 Nec Corp Socket for semiconductor device
JPS63212839A (en) * 1987-02-28 1988-09-05 Fuji Koon Seisakusho:Kk Apparatus for measuring young's modulus of plate material
JPH01165930A (en) * 1987-12-22 1989-06-29 Agency Of Ind Science & Technol Apparatus for measuring hot modulus of elasticity of ceramics
JP2001013050A (en) * 1999-06-30 2001-01-19 Shimadzu Corp Material testing machine
JP2003232709A (en) * 2001-12-05 2003-08-22 Toray Res Center:Kk Method for measuring modulus of elasticity in thin film
JP2005017054A (en) * 2003-06-25 2005-01-20 Shimadzu Corp Apparatus for measuring fracture toughness by three-point bending test

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185792A (en) * 2009-02-12 2010-08-26 Fujitsu Ltd Measuring instrument, measuring method and measuring program
CN103913383A (en) * 2014-04-24 2014-07-09 株洲时代新材料科技股份有限公司 Bending performance detection method and device in electromagnetic wire stretching state
CN104330300A (en) * 2014-11-24 2015-02-04 重庆大学 Method for indirectly measuring thermal-damage coupling strength of ultrahigh-temperature ceramic material
CN104330300B (en) * 2014-11-24 2016-08-17 重庆大学 Superhigh temperature ceramic material heat-damage stiffness of coupling indirect measurement method
CN107702980A (en) * 2017-11-08 2018-02-16 昆明理工大学 Modulus of elasticity, bending rigidity Multifunction composite experiment device
CN109490090A (en) * 2018-11-19 2019-03-19 长安大学 A kind of rubber material elasticity modulus measuring device and measuring method
JP2020190449A (en) * 2019-05-21 2020-11-26 株式会社ディスコ Measurement device
JP7271063B2 (en) 2019-05-21 2023-05-11 株式会社ディスコ measuring device

Also Published As

Publication number Publication date
JP4895302B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4895302B2 (en) Elastic modulus measuring method, elastic modulus measuring apparatus, and program
KR100418700B1 (en) Ball indenter based on FEA solutions for property evaluation
Boulanger et al. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels
JP4942579B2 (en) Test management method and indentation tester in indentation tester
Zhang et al. Rapid determination of fatigue life based on temperature evolution
Verstraete et al. Evaluation and interpretation of ductile crack extension in SENT specimens using unloading compliance technique
CN106248502A (en) The method that cantilever beam bending obtains material elastic plastic mechanical properties
JP6142074B2 (en) Fatigue testing equipment
Knauss et al. Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear
Corigliano et al. Thermographic analysis during tensile tests and fatigue assessment of S355 steel
JP6314787B2 (en) Material testing machine
Jalali et al. Creep of metallic materials in bending
JP4859224B2 (en) Compression test method, compression tester, and program
JP4061341B2 (en) Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus
CN105738223A (en) Experiment device and testing method of uniaxial BREE solution
JP2006153865A (en) Stress measurement method and intensity evaluation method utilizing infrared imager
JPH03267736A (en) Method and device for dynamic brakage fatigue test of brittle material
JP2005017054A (en) Apparatus for measuring fracture toughness by three-point bending test
JP2009250866A (en) Testing device, testing method of fatigue test, and crack evolution testing method
JP2004144549A (en) Non-breaking high-temperature creep damage evaluation method
Peroni et al. Evaluation of dynamic fracture toughness in ductile steel by means of a split Hopkinson pressure bar 3PB technique
Scott-Emuakpor et al. Fatigue Behavior Comparisons Between Ultrasonic and Servohydraulic Axial Testing Procedures
Regodic et al. Development of omega deformeter
JP3749418B2 (en) Control method and material test apparatus in material test apparatus
JPH07248285A (en) Device for evaluating surface physical properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees