JPH01165930A - Apparatus for measuring hot modulus of elasticity of ceramics - Google Patents

Apparatus for measuring hot modulus of elasticity of ceramics

Info

Publication number
JPH01165930A
JPH01165930A JP32281687A JP32281687A JPH01165930A JP H01165930 A JPH01165930 A JP H01165930A JP 32281687 A JP32281687 A JP 32281687A JP 32281687 A JP32281687 A JP 32281687A JP H01165930 A JPH01165930 A JP H01165930A
Authority
JP
Japan
Prior art keywords
sample
load
ceramics
elastic modulus
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32281687A
Other languages
Japanese (ja)
Other versions
JPH0641900B2 (en
Inventor
Teiichi Fujiwara
藤原 禎一
Toshisada Mimura
三村 歳貞
Yukihiro Irie
入江 幸宏
Nobuo Ayusawa
鮎沢 信夫
Hideo No
能 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62322816A priority Critical patent/JPH0641900B2/en
Publication of JPH01165930A publication Critical patent/JPH01165930A/en
Publication of JPH0641900B2 publication Critical patent/JPH0641900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by a method wherein a nonresistant seal mechanism extending and contracting in connection with a press rod is provided between a sample heating furnace and the press rod of a load applying apparatus and narrowing the displacement measuring space of a sample and a sample support stand to the displacement degree of the sample. CONSTITUTION:In order to apply load to the sample set to a heating oven 2 with accuracy of 1gf or less from the outside by a press rod 8, metal bellows 11 is mounted to the heating oven 2 and the pre rod insert part and a silicone rubber disc 9 is fixed to the upper part of said bellows 11 in an airtight state. The movement difference of the press rod 8 and the bellows 11 is not detected as load by a load detector 15 because not only the strain of the strain gauge part of the load detector but also the strain of the disc 9 are set to an extremely small value of several mum. Further, by setting the measuring space between the under surface of the sample 1 and the upper end of a sample support stand to a range from the bending quantity of the sample - 2mm, the flow and convection of atmospheric gas are suppressed and the generation of fluctuation is suppressed. By this method, displacement measuring accuracy can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス等の熱間弾性率測定装置に係り
、曲げたわみ方式の非接触変位測定器を使い、各種の雰
囲気で精度良く自動測定する熱間弾性率測定装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hot elastic modulus measuring device for ceramics, etc., and uses a bending deflection type non-contact displacement measuring device to automatically measure accurately in various atmospheres. The present invention relates to a hot elastic modulus measuring device.

〔従来の技術〕[Conventional technology]

ファインセラミックスが、機械部品、構造材料などの高
強度材料として熱間で使用される場合、熱間での弾性率
は、機械的強度、耐熱衝撃性などを推定するのに極めて
重要な特性である。
When fine ceramics are used in hot conditions as high-strength materials such as mechanical parts and structural materials, the modulus of elasticity in hot conditions is an extremely important property for estimating mechanical strength, thermal shock resistance, etc. .

従来技術として、発明の名称「セラミック等の熱間にお
ける変位測定装置」 (特開昭61−7452号公報)
及び共振法、超音波パルス法等がある。曲げ共振法は振
動の伝達機構の固有振動の影響が出やすく、超音波パル
ス法は振動子の耐熱性が低く、高温の測定ができない問
題がある。このうち特開昭617452号公報の「セラ
ミック等の熱間における変位測定装置」の実施例4に記
載されている熱間弾性率測定装置の従来例について説明
する。
As a prior art, the title of the invention is ``Hot Displacement Measuring Device for Ceramics, etc.'' (Japanese Unexamined Patent Publication No. 7452/1983).
There are also resonance methods, ultrasonic pulse methods, etc. The bending resonance method is easily affected by the natural vibration of the vibration transmission mechanism, and the ultrasonic pulse method has a problem in that the vibrator has low heat resistance and cannot measure high temperatures. Among these, a conventional example of a hot elastic modulus measuring device described in Embodiment 4 of ``Hot Displacement Measuring Device for Ceramics, etc.'' in Japanese Patent Application Laid-Open No. 617452 will be described.

第9図は従来のセラミックス等の熱間弾性率測定装置を
略図的に示す図、第10図はその加圧炉部分と荷重負荷
装置の正断面図を示す図、第11図は従来装置での変位
測定位置を示す図である。
Fig. 9 is a diagram schematically showing a conventional hot elastic modulus measuring device for ceramics, etc., Fig. 10 is a front cross-sectional view of the pressure furnace part and load loading device, and Fig. 11 is a diagram showing the conventional device. It is a figure showing the displacement measurement position of.

なお、図中1は試料、2は加圧炉、3は試料支持台、4
は支持ロール、5は固体走査受光素子内蔵カメラ、6は
望遠レンズ、7はフィルタ、8は加圧棒、12は荷重負
荷装置、20はパーソナルコンピュータ、23はデジタ
ル温度計、24は照明装置、25はカメラコントローラ
、26はパーソナルコンピュータインターフェース、2
7はデジタルプロッタ、28はプリンタ、30はオシロ
スコープ、33は炭化珪素発熱体である。
In addition, in the figure, 1 is the sample, 2 is the pressure furnace, 3 is the sample support stand, and 4
5 is a support roll, 5 is a camera with a built-in solid-state scanning light receiving element, 6 is a telephoto lens, 7 is a filter, 8 is a pressure rod, 12 is a load-bearing device, 20 is a personal computer, 23 is a digital thermometer, 24 is a lighting device, 25 is a camera controller, 26 is a personal computer interface, 2
7 is a digital plotter, 28 is a printer, 30 is an oscilloscope, and 33 is a silicon carbide heating element.

この熱間弾性率測定装置は、試料1 (幅10mm×厚
さ2.5mmx長さ60mm)を加熱炉2の中のアルミ
ナ製試料支持台3に設けた2個の支持ロール4の上にセ
ントし、炉2の外側に設置した荷重装置12より、加圧
棒8を介して100°C毎に1500°Cまで3点曲げ
方式で試料1の破壊強度の50〜70%に相当する荷重
を負荷する。
This hot elastic modulus measuring device is designed to place a sample 1 (width 10 mm x thickness 2.5 mm x length 60 mm) on two support rolls 4 provided on an alumina sample support 3 in a heating furnace 2. Then, from a loading device 12 installed outside the furnace 2, a load equivalent to 50 to 70% of the fracture strength of the sample 1 was applied via a pressure rod 8 every 100°C up to 1500°C using a three-point bending method. load.

その時の試料1の荷重負荷点直下のA点と支持ロールと
試料1の接点に最も近いところのB点を照明装置24で
照明し、照明装置24に対向して炉外に配置した固体走
査受光素子内蔵カメラ5と共に、作動距離460mmF
番号8の望遠レンズ6と赤外域の0.8μm〜1000
μmの波長の光を除去するフィルタ7を使い、光が試料
1によりさえぎられた暗部と光が直接届く明部を固体走
査受光素子面に望遠レンズ6で拡大投影してA点とB点
の変位を測定すると共に、オシロスコープ30上に明部
と暗部を表示する。そしてカメラコントローラ25の出
力により変位に応じたデジタル信号を出力し、この出力
信号とデジタル温度計23のデジタル信号をインターフ
ェース26を介してパーソナルコンピュータ20に入力
し、記憶演算を行わせプリンタ28に結果を打ち出すと
ともにデジタルプロッタ27に温度と弾性率の関係曲線
を書かせ、応力と試料のたわみ量の関係より熱間弾性率
を求めている。
At that time, point A, which is directly below the load application point of sample 1, and point B, which is closest to the contact point between the support roll and sample 1, are illuminated by illumination device 24, and solid-state scanning light reception is placed outside the furnace opposite to illumination device 24. Working distance 460mmF with built-in camera 5
Telephoto lens 6 with number 8 and infrared range 0.8 μm to 1000
Using a filter 7 that removes light with a wavelength of μm, the dark area where the light is blocked by the sample 1 and the bright area where the light can directly reach are enlarged and projected onto the solid-state scanning photoreceptor surface using a telephoto lens 6. While measuring the displacement, bright areas and dark areas are displayed on the oscilloscope 30. Then, a digital signal corresponding to the displacement is outputted from the camera controller 25, and this output signal and the digital signal from the digital thermometer 23 are inputted to the personal computer 20 via the interface 26, and stored and calculated, and the result is sent to the printer 28. At the same time, the digital plotter 27 is used to draw a relationship curve between temperature and elastic modulus, and the hot elastic modulus is determined from the relationship between stress and the amount of deflection of the sample.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来のセラミック等の熱間変位測定装置によ
る弾性率測定方法は、加熱炉が大気雰囲気のため酸化し
易い試料は測定できないという問題がある。本来、この
種の装置では酸化雰囲気、無酸化雰囲気の各種の雰囲気
で測定できることが望ましいが、発熱体の種類等により
制約があり、−船釣には酸化雰囲気か無酸化雰囲気のど
ちらかに限定されているのが実情である。
As described above, the conventional method of measuring elastic modulus using a hot displacement measuring device for ceramics or the like has a problem in that samples that are easily oxidized cannot be measured because the heating furnace is in an atmospheric atmosphere. Originally, it is desirable for this type of device to be able to perform measurements in various atmospheres, including oxidizing and non-oxidizing atmospheres, but there are restrictions depending on the type of heating element, etc. - For boat fishing, it is limited to either oxidizing or non-oxidizing atmospheres. The reality is that this is the case.

試料の酸化を防く方法として加熱炉を気密構造にして不
活性ガス等の雰囲気にするの必要がある。
To prevent oxidation of the sample, it is necessary to make the heating furnace airtight and create an atmosphere of inert gas or the like.

しかし、この場合第12図、第13図に示すように加熱
炉2と加圧棒8のシール部にOリング34又は金属へロ
ース11等を使うため、加圧棒8の移動時の抵抗になり
、荷重負荷精度が著しく低下する。ファインセラミック
ス等の小型試料を曲げたわみ方式で弾性率測定するには
、荷重負荷精度はIgf以下でなければならず、従来の
シール構造では加圧棒8の移動による機械的抵抗が大き
く実用にならない。また、ファインセラミックスの中に
は1000°C以上の高温で非常に酸化し易いものがあ
り、加熱炉2を気密にして99.999%純度の不活性
ガスを流しても、不活性ガス中の極く微量の酸素で酸化
することがある。
However, in this case, as shown in FIGS. 12 and 13, since an O-ring 34 or a metal alloy 11 is used for the seal between the heating furnace 2 and the pressure rod 8, the resistance when the pressure rod 8 is moved is reduced. As a result, the load application accuracy is significantly reduced. In order to measure the elastic modulus of small samples such as fine ceramics using the bending/deflection method, the load application accuracy must be less than Igf, and with the conventional seal structure, the mechanical resistance due to the movement of the pressure rod 8 is large and it is not practical. . In addition, some fine ceramics are very easily oxidized at high temperatures of 1000°C or higher, and even if the heating furnace 2 is made airtight and a 99.999% pure inert gas is flowed, the May be oxidized by trace amounts of oxygen.

一方、第9図において試料1の曲げたわみを固体走査受
光素子内蔵カメラ5で測定する場合、高温になると雰囲
気ガスの対流で試料像にゆらぎ現象が発生し、測定値が
バラつく問題がある。すなわち、試料1のたわみ変位は
、支持ロール4の上にセットした試料1の中心に荷重を
掛け、その時の荷重点直下の試料端の変位を固体走査受
光素子内蔵カメラ5を使って第11図のCのような範囲
を測定していた。
On the other hand, when measuring the bending deflection of the sample 1 in FIG. 9 using the camera 5 with a built-in solid-state scanning light-receiving element, there is a problem in that when the temperature rises, a fluctuation phenomenon occurs in the sample image due to the convection of the atmospheric gas, and the measured values vary. In other words, the deflection displacement of the sample 1 is determined by applying a load to the center of the sample 1 set on the support roll 4, and measuring the displacement of the edge of the sample directly below the load point using the camera 5 with a built-in solid-state scanning photodetector as shown in FIG. They were measuring a range like C.

しかし、この方法では固体走査受光素子内蔵カメラ5で
測定する場合、試料lの下面と試料支持台3との測定空
間が大きいため、高温域において第11図Cの部分で雰
囲気ガスにゆらぎが発生して変位測定精度が低下する原
因になっていた。
However, in this method, when measuring with the camera 5 with a built-in solid-state scanning photodetector, the measurement space between the bottom surface of the sample 1 and the sample support 3 is large, so fluctuations occur in the atmospheric gas at the part C in Figure 11 in the high temperature range. This caused a decrease in displacement measurement accuracy.

弾性率の高いファインセラミックスでは、当然のことな
がら曲げたわみ量が小さい。1例として幅5mm厚さ1
mmの試料にスパン60mmで3点曲げ方式で破壊荷重
の60%の荷重を負荷した場合の試料の最大のたわみ量
は150μm程度であり、弾性率の測定精度1%を得る
ためには、たわみ変位の測定分解能は1μmが必要であ
り、ゆらぎがあると、1μmの分解能が得られない。
Fine ceramics with a high modulus of elasticity naturally have a small amount of bending deflection. As an example, width 5mm and thickness 1
When a load of 60% of the breaking load is applied to a sample with a span of 60 mm using a three-point bending method, the maximum deflection of the sample is approximately 150 μm. A displacement measurement resolution of 1 μm is required, and if there is fluctuation, a resolution of 1 μm cannot be obtained.

本発明は上記問題点を解決するためのもので、酸化雰囲
気、無酸化雰囲気に無関係に、ゆらぎの影響なく、試料
のたわみ変位を精度よく、しかも全自動で測定すること
ができるファインセラミ・ノクス等の熱間弾性率測定装
置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems.The present invention is based on the Fine Ceramic NOX, which can accurately and fully automatically measure the deflection displacement of a sample without the influence of fluctuations, regardless of oxidizing or non-oxidizing atmosphere. The purpose of the present invention is to provide a hot elastic modulus measuring device such as the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のセラミックス等の熱間弾性率測定装置ば、試料
加熱炉の一方の側に窓と対向して照明装置を、その対向
側に窓と対向して検出装置を配置したセラミックス等の
熱間弾性率測定装置において、試料加熱炉と荷重負荷装
置の加圧棒間に、加圧棒と連動して伸縮する無抵抗シー
ル機構を設けると共に、試料と試料支持台との変位測定
空間を試料変位程度に狭くしたことを特徴とする。
The hot elastic modulus measurement device for ceramics, etc. of the present invention has a lighting device facing a window on one side of a sample heating furnace, and a detection device facing the window on the opposite side. In the elastic modulus measuring device, a non-resistance sealing mechanism that expands and contracts in conjunction with the pressurizing rod is installed between the sample heating furnace and the pressurizing rod of the load loading device, and the displacement measurement space between the sample and the sample support is connected to the sample displacement. It is characterized by being narrowed to a certain extent.

〔作用〕[Effect]

本発明のファインセラミックス等の熱間弾性率測定装置
は、コシピユータ制御の高精度荷重負荷装置に無抵抗加
圧棒シール機構を有する各種の雰囲気調整が可能な加熱
炉を配設し、試料のたわみ変位をゆらぎの影響をなくし
た試料支持台を使って非接触で精度良く測定し、ファイ
ンセラミックス等の熱間弾性率を測定することができる
。さらに、自動温度調節装置を付加することにより全自
動でファインセラミックス等の熱間弾性率を測定するこ
とが可能となる。
The hot elastic modulus measuring device for fine ceramics, etc. of the present invention is equipped with a heating furnace that has a non-resistance pressure rod sealing mechanism and can adjust various atmospheres in a high-precision load-applying device controlled by a coscipulator. Displacement can be measured accurately without contact using a sample support stand that eliminates the effects of fluctuation, and the hot elastic modulus of fine ceramics, etc. can be measured. Furthermore, by adding an automatic temperature control device, it becomes possible to measure the hot elastic modulus of fine ceramics etc. fully automatically.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明によるセラミック等の熱間弾性率測定装
置の一実施例を示す図、第2図は本発明の装置の加熱炉
と加圧棒のシール部及び試料支持台のセント状況を示す
図、第3図は本発明の試料支持台の平面図、第4図は本
発明の装置での変位測定範囲を示す図、第5図はそのA
−A断面図、第6図及び第7図は酸化防止黒鉛カバーを
示す図、第8図は本発明の装置による測定結果の一例を
示す図である。図中、第11図及び第12図と同一番号
は同一内容を示し、なお、9はシリコンゴム円板、10
は固定金物、11は金属ベローズ、13はクロスヘツド
、14は連結ロンド、15は荷重検出器、16はエツジ
、17は試料カバー、18は計測照明窓、19はリング
、21は荷重制御装置、22は熱電対、29は真空装置
、31は温度調節形、32はサイリスク電力制御装置、
33はOリング、35は穴である。
Fig. 1 shows an embodiment of the apparatus for measuring the hot elastic modulus of ceramics, etc. according to the present invention, and Fig. 2 shows the centrifugal conditions of the heating furnace, the sealing part of the pressure rod, and the sample support stand of the apparatus of the present invention. Figure 3 is a plan view of the sample support stand of the present invention, Figure 4 is a diagram showing the displacement measurement range of the device of the present invention, and Figure 5 is its A.
-A sectional view, FIGS. 6 and 7 are diagrams showing an oxidation-preventing graphite cover, and FIG. 8 is a diagram showing an example of measurement results by the apparatus of the present invention. In the figure, the same numbers as in FIGS. 11 and 12 indicate the same contents, and 9 is a silicone rubber disk, 10 is
11 is a metal bellows, 13 is a crosshead, 14 is a connecting iron, 15 is a load detector, 16 is an edge, 17 is a sample cover, 18 is a measurement lighting window, 19 is a ring, 21 is a load control device, 22 is a thermocouple, 29 is a vacuum device, 31 is a temperature control type, 32 is a Cyrisk power control device,
33 is an O-ring, and 35 is a hole.

加熱炉2の中にセントした試料1に炉外より加圧棒8に
よりIgf以下の精度で荷重を負荷するため、加熱炉2
の加圧棒挿入部に金属ベローズ11を取付け、その上部
にシリコンゴム円板9を気密になるように加圧棒8に固
定金物10で固定し、金属ベローズ11の上部を荷重負
荷装置12のクロスヘツド13に4木の連結ロッド14
で連結し、金属へローズ11の上部とクロスヘツド13
の動きを全く同しにすることにより、金属ベローズ11
の伸縮に要する力はクロスヘツド13に取付けられた荷
重検出器15には荷重として検出されない構造とした。
The heating furnace 2
A metal bellows 11 is attached to the pressure rod insertion portion of the pressure rod 8, and a silicone rubber disc 9 is airtightly fixed to the pressure rod 8 with a fixing hardware 10 on top of the metal bellows 11. 4 connecting rods 14 to crosshead 13
Connect with the upper part of the metal rose 11 and the cross head 13
By making the movements of the metal bellows 11 exactly the same,
The structure is such that the force required for expansion and contraction is not detected as a load by the load detector 15 attached to the crosshead 13.

加圧棒8と金属ベローズ11の動きの差は、荷重検出器
15のひずみゲージ部のひずみは数ミクロンであり、従
ってシリコンゴム円板9のひずみも数ミクロンで非常に
小さく荷重検出器15には荷重として検出されない。こ
れにより、試料1に負荷する荷重精度を低下させること
なく、かつ加熱炉2を完全な気密構造にすることができ
、各種の雰囲気下での測定が精度よ(行うことができる
The difference in movement between the pressure rod 8 and the metal bellows 11 is that the strain in the strain gauge part of the load detector 15 is several microns, and therefore the strain in the silicone rubber disc 9 is also very small, several microns. is not detected as a load. Thereby, the heating furnace 2 can be made into a completely airtight structure without reducing the accuracy of the load applied to the sample 1, and measurements can be performed with high accuracy under various atmospheres.

また、本発明は第4図に示すように、試料1下面と試料
支持台3の上端との測定空間を少なく、例えば試料のタ
ワミ量以上〜2 m / m以下にすることによって雰
囲気ガスの流通、対流を抑制し、ゆらぎの発生を抑制し
ている。さらに、第5図に示すように、試料支持台3の
上部に変位計測用エツジ16を設けることによって一層
変位計測精度を向上させることができる。尚、この方法
は固定走査受光素子内蔵カメラ5による変位測定だけで
なく、他の非接触変位測定装置の場合にも適用できる。
Further, as shown in FIG. 4, the present invention reduces the measurement space between the lower surface of the sample 1 and the upper end of the sample support 3, for example, by reducing the deflection of the sample to 2 m/m or less, thereby improving the flow of atmospheric gas. , suppresses convection and suppresses the occurrence of fluctuations. Furthermore, as shown in FIG. 5, by providing a displacement measurement edge 16 on the upper part of the sample support 3, the displacement measurement accuracy can be further improved. Note that this method can be applied not only to displacement measurement using the camera 5 with a built-in fixed scanning light receiving element, but also to other non-contact displacement measurement devices.

また、高温で特に酸化し易く、一般の不活性ガス雰囲気
で測定できない材料の酸化防止方法については、試料よ
り活性な黒鉛製の試料カバー17を試料1と共に、試料
支持台3にかぶせるのが有効である。
In addition, as a method for preventing oxidation of materials that are particularly susceptible to oxidation at high temperatures and cannot be measured in a general inert gas atmosphere, it is effective to cover the sample support stand 3 together with the sample 1 with a sample cover 17 made of graphite, which is more active than the sample. It is.

本発明の試料カバー17は、第6図に示すように上部に
加圧棒8が通る穴35をあけ、側面に垂直に照明及び計
測用の小窓18を設ける。穴径は加圧棒8と接触しない
範囲の穴径とすることが好ましい。または、加圧棒8と
試料カバー17との間隙(穴径差)を大きくとり、第7
図に示すように加圧棒8との穴径差の小さいリング19
を配設置1 し、試料カバー内に加熱炉中の不活性ガスの出入りを防
ぎ、試料1の酸化を防止すると共に試料カバー17と加
圧棒8の接触による荷重負荷誤差をな(することができ
る。
As shown in FIG. 6, the sample cover 17 of the present invention has a hole 35 in the upper part through which the pressure rod 8 passes, and a small window 18 for illumination and measurement is provided vertically on the side surface. It is preferable that the hole diameter is within a range that does not come into contact with the pressure rod 8. Alternatively, a large gap (difference in hole diameter) between the pressure rod 8 and the sample cover 17 may be made, and the seventh
As shown in the figure, a ring 19 with a small difference in hole diameter from the pressure rod 8
1 to prevent inert gas from entering and exiting the heating furnace inside the sample cover, preventing oxidation of the sample 1, and preventing load errors due to contact between the sample cover 17 and the pressure rod 8. can.

次に本発明の装置による弾性率の測定について説明する
Next, the measurement of elastic modulus using the apparatus of the present invention will be explained.

加熱炉2の中に配設した試料支持台3の支持ロール4の
上に試料1を載せ、測定条件をパーソナルコンピュータ
20に入力すると、コンピュータ20より温度調節計3
1に設定信号が送られ、さらに温度調節計31の信号に
よりサイリスク電力制御装置32から炭化珪素発熱体3
3に電力が送られて炉2が昇温する。この時の試料温度
を試料1の近くにセットした熱電対22で検出し、デジ
タル温度計23よりBCD出力信号でパーソナルコンピ
ュータ20に人力される。試料1の温度が予め設定した
温度になると、その温度で一定時間保持した後、パーソ
ナルコンピュータ20よす荷重制御装置21を介して荷
重負荷装置12に荷重負荷信号が送られ、試料1に加圧
棒8を介して荷重が負荷される。この時の試料1の曲げ
たわみ点と試料支持台3に設けたエツジ16の隙間を、
固体走査受光素子内蔵カメラ5とカメラ5に対向して配
設した照明装置24を使って測定し、試料1の変位を得
る。この測定は、照明装置からの光が試料1によりさえ
ぎられた暗部と光が直接届く明部を固体走査受光素子面
に望遠レンズ6で拡大投影することにより行う。
When the sample 1 is placed on the support roll 4 of the sample support stand 3 disposed in the heating furnace 2 and the measurement conditions are input into the personal computer 20, the computer 20 displays the temperature controller 3.
A setting signal is sent to the silicon carbide heating element 3 from the SiRisk power control device 32 in response to a signal from the temperature controller 31.
Electric power is sent to Furnace 3 to raise the temperature of Furnace 2. The sample temperature at this time is detected by a thermocouple 22 set near the sample 1, and is manually input to the personal computer 20 as a BCD output signal from a digital thermometer 23. When the temperature of the sample 1 reaches a preset temperature, it is maintained at that temperature for a certain period of time, and then a load signal is sent to the load application device 12 via the personal computer 20 and the load control device 21, and the sample 1 is pressurized. A load is applied via the rod 8. At this time, the gap between the bending point of the sample 1 and the edge 16 provided on the sample support stand 3 is
The displacement of the sample 1 is obtained by measuring using the camera 5 with a built-in solid-state scanning light-receiving element and the illumination device 24 disposed opposite the camera 5. This measurement is performed by enlarging and projecting the dark area where the light from the illumination device is blocked by the sample 1 and the bright area to which the light directly reaches onto the surface of the solid-state scanning light-receiving element using the telephoto lens 6.

固体走査受光素子内蔵カメラ5の信号は、カメラコント
ロールユニット25より変位に応じたデジタル出力信号
で出力する。この出力とデジタル温度計23のデジタル
信号出力、荷重検出器15の荷重信号を一般的手法によ
り作成したプログラムによりパーソナルコンピュータ・
インターフェイス26を介してパーソナルコンピュータ
20に入力し、応力とたわみ量の関係により演算を行わ
せ、デジタル出力信号27とプリンタ28により温度と
弾性率の関係を書かせる。
The signal from the camera 5 with a built-in solid-state scanning light-receiving element is output from the camera control unit 25 as a digital output signal according to the displacement. This output, the digital signal output of the digital thermometer 23, and the load signal of the load detector 15 are combined into a personal computer using a program created using a general method.
The information is inputted to the personal computer 20 via the interface 26, and calculations are performed based on the relationship between stress and the amount of deflection, and the relationship between temperature and elastic modulus is written using the digital output signal 27 and printer 28.

尚、本装置では試料支持ロール4が万一変形した場合、
変位測定誤差になるため試料1と試料支持ロール4の接
点の変位をもう一台の照明装置と一台の固定走査受光素
子内蔵カメラ(図示せず)で測定し、補正するようにす
ることも可能である。
In addition, in this device, if the sample support roll 4 is deformed,
To avoid displacement measurement errors, the displacement of the contact point between the sample 1 and the sample support roll 4 may be measured and corrected using another illumination device and a camera with a built-in fixed scanning light receiving element (not shown). It is possible.

また、高温で特に酸化し易く、一般の不活性ガス雰囲気
で測定できない材料の酸化防止方法については、試料よ
り活性な黒鉛製の試料カバー17を試料1とともに試料
支持台3にかふせるのが有効である。
Additionally, as a method for preventing oxidation of materials that are particularly susceptible to oxidation at high temperatures and cannot be measured in a general inert gas atmosphere, it is effective to cover the sample support stand 3 with a sample cover 17 made of graphite, which is more active than the sample. It is.

本発明の試料カバー17は、第6図に示すように上部に
加圧棒8が通る穴35をあけ、側面に垂直に照明及び計
測用の小窓18を設ける。穴径は加圧棒8と接触しない
範囲の穴径とすることが好ましい。または、加圧棒8と
試料カバー17との間隙(穴径差)を大きくとり、第7
図に示すように加圧棒8との穴径差の小さいリング19
を配設し、試料カバー内に加熱炉中の不活性ガスの出入
りを防ぎ、試料1の酸化を防止すると共に試料カバー1
7と加圧棒8の接触による荷重負荷誤差をなくすること
ができる。
As shown in FIG. 6, the sample cover 17 of the present invention has a hole 35 in the upper part through which the pressure rod 8 passes, and a small window 18 for illumination and measurement is provided vertically on the side surface. It is preferable that the hole diameter is within a range that does not come into contact with the pressure rod 8. Alternatively, a large gap (difference in hole diameter) between the pressure rod 8 and the sample cover 17 may be made, and the seventh
As shown in the figure, a ring 19 with a small difference in hole diameter from the pressure rod 8
is installed in the sample cover to prevent inert gas from entering and exiting the heating furnace, preventing oxidation of sample 1, and
It is possible to eliminate load loading errors caused by contact between the pressure rod 7 and the pressure rod 8.

本発明のセラミック等の熱間弾性率測定装置の測定例を
以下に説明する。
A measurement example of the apparatus for measuring hot elastic modulus of ceramics, etc. of the present invention will be explained below.

第1図及び第2図に示す本発明の装置の加熱炉2の中の
支持台の支持ロール4の上に炭化珪素質試料で幅5.0
mm、厚さ1.0mm、長さ75mmを支持ロール間隙
を60mmにしてセントし、支持台3の上に黒鉛質がカ
バー17をかぶせ、常温で加熱炉内を真空装置29で真
空にし、アルゴンガスに置換する。アルゴンガスを毎分
200m1流しなから昇温速度を毎分10℃で昇温し、
所定温度番こ到達後、その温度に10分間保持した。
A silicon carbide sample with a width of 5.0 mm is placed on the support roll 4 of the support stand in the heating furnace 2 of the apparatus of the present invention shown in FIGS. 1 and 2.
mm, thickness 1.0 mm, and length 75 mm with a support roll gap of 60 mm, cover the graphite cover 17 on the support stand 3, evacuate the inside of the heating furnace at room temperature with the vacuum device 29, and evacuate it with argon. Replace with gas. While flowing argon gas at 200ml/min, the temperature was raised at a rate of 10°C/min.
After reaching a predetermined temperature, the temperature was maintained for 10 minutes.

保持時間経過後、パーソナルコンピュータ20より荷重
負荷装置12へ信号を送り、試料1へ100g単位で5
00gまで荷重を各3回負荷した。
After the holding time has elapsed, a signal is sent from the personal computer 20 to the load loading device 12, and 5
A load up to 00 g was applied three times each.

この時の各荷重での試料のたわみ変位を作動距離460
mm、F番号8の望遠レンズ6と赤外線域の0.8μm
〜1000μmの波長の光を除去するフィルター7と固
体走査受光素子内蔵カメラ5を使い、第4図りに示す位
置を測定した。測定は常温から100°0間隔で140
0 ’Cまで行い、得られた荷重−変位のデータより下
記の計算式により弾性率を求めた。その結果を第8図に
示す。
The deflection displacement of the sample under each load at this time is the working distance of 460
mm, telephoto lens 6 with F number 8 and 0.8 μm in the infrared range
Using a filter 7 that removes light with a wavelength of ~1000 μm and a camera 5 with a built-in solid-state scanning light receiving element, the positions shown in the fourth diagram were measured. Measurements are made at 140 degrees at intervals of 100 degrees from room temperature.
The elastic modulus was determined from the load-displacement data obtained by the following calculation formula. The results are shown in FIG.

なお、弾性率は次式により求めることができる。Note that the elastic modulus can be determined using the following equation.

4、wt”y E−弾性率(Kgf/mm”) l−支持ロール間の距離(mm) P−荷重(Kgf) W−試料の幅(mm) を−試料の厚さ(mm) y−荷重点の変位量Cmm) 〔発明の効果〕 以上のように本発明によれば、コンピュータ制御の高精
度荷重装置の加圧棒と加熱炉間に無抵抗の気密機構を設
け、試料との測定空間を少なくした試料支持台を使用す
ることにより、酸素雰囲気、無酸素雰囲気に無関係にま
た、雰囲気ガスの流通、対流によるゆらぎ影響なく試料
の熱間弾性率を高精度で測定することができる。また、
試料より活性な黒鉛製の試料カバーを試料支持台に試料
とともにかぶせることにより雰囲気ガスによる試料の酸
化を一層防止することができる。さらに、自動温度調節
装置を付加することにより、全自動で熱間弾性率を測定
することが可能となる。
4, wt"y E-Modulus of elasticity (Kgf/mm") l-Distance between support rolls (mm) P-Load (Kgf) W-Sample width (mm) -Sample thickness (mm) y- (Displacement amount of load point Cmm) [Effect of the invention] As described above, according to the present invention, a non-resistance airtight mechanism is provided between the pressure rod of the computer-controlled high-precision loading device and the heating furnace, and measurement with the sample is performed. By using a sample support stand with a reduced space, the hot elastic modulus of the sample can be measured with high accuracy regardless of whether it is an oxygen atmosphere or an oxygen-free atmosphere, and without the influence of fluctuations due to atmospheric gas circulation or convection. Also,
By covering the sample support stand with the sample cover made of graphite, which is more active than the sample, oxidation of the sample due to atmospheric gas can be further prevented. Furthermore, by adding an automatic temperature control device, it becomes possible to measure the hot elastic modulus fully automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるセラミック等の熱間弾性率測定
装置の一実施例を示す図、第2図は本発明の装置の加熱
炉と加圧棒のシール部及び試料支持台のセント状況を示
す図、第3図は本発明の試料支持台の平面図、第4図は
本発明の装置での変位測定範囲を示すための図、第5図
はその側断面図、第6図及び第7図は酸化防止黒鉛カバ
ーを示す図、第8図は本発明の装置による測定結果の一
例を示す図、第9図は従来のセラミック等の熱間弾性率
測定装置を略図的に示す図、第10図は第9図の装置の
加熱炉部分と荷重負荷装置正面断面図を示す図、第11
図は従来装置での変位測定位置を示す図、第12図は加
熱炉と加圧棒のシールに0リングを使う方式の一例を示
す図、第13図は金属へローズを使う方式の一例を示す
図である。 1・・・試料、2・・・加熱炉、3・・・試料支持台、
4・・・支持ロール、5・・・固体走査受光素子内蔵カ
メラ、6・・・望遠レンズ、7・・・フィルター、8・
・・加圧棒、9・・・シリコンゴム円板、工0・・・固
定金物、11・・・金属ベローズ、12・・・荷重負荷
装置、13・・・クロスヘツド、14・・・連結ロンド
、15・・・荷重検出器、16・・・エツジ、17・・
・試料カバー、18・・・計測照明窓、19・・・リン
グ、20・・・パーソナルコンピュータ、21・・・荷
重制御装置、22・・・熱電対、23・・・デジタル温
度計、24・・・照明装置、25カメラコントローラ、
2G・・・パーソナルコンピュータインターフェイス、
27・・・デジタルプロッタ、28・・・プリンタ、2
9・・・真空装置、30・・・オシロスコープ、31・
・・温度調整計、サイリスク、32・・・サイリスク電
力制御装置、33・・・炭化珪素発熱体、34・・・0
リング、35・・・穴。 出  願  人  工業技術院長 第10図 第12図
Fig. 1 is a diagram showing an embodiment of the apparatus for measuring the hot elastic modulus of ceramics, etc. according to the present invention, and Fig. 2 is a diagram showing the state of the heating furnace, the sealing part of the pressure rod, and the sample support stand of the apparatus of the present invention. 3 is a plan view of the sample support of the present invention, FIG. 4 is a diagram showing the displacement measurement range of the device of the present invention, FIG. 5 is a side sectional view thereof, and FIGS. FIG. 7 is a diagram showing an oxidation-preventing graphite cover, FIG. 8 is a diagram showing an example of measurement results by the device of the present invention, and FIG. 9 is a diagram schematically showing a conventional hot elastic modulus measuring device for ceramics, etc. , FIG. 10 is a front cross-sectional view of the heating furnace part and load-bearing device of the apparatus shown in FIG. 9, and FIG.
Figure 12 shows an example of a method that uses an O-ring to seal the heating furnace and pressure rod, and Figure 13 shows an example of a method that uses a metal rosette. FIG. 1... Sample, 2... Heating furnace, 3... Sample support stand,
4... Support roll, 5... Camera with built-in solid-state scanning light receiving element, 6... Telephoto lens, 7... Filter, 8...
... Pressure rod, 9 ... Silicone rubber disc, Work 0 ... Fixed hardware, 11 ... Metal bellows, 12 ... Loading device, 13 ... Cross head, 14 ... Connection rond , 15... Load detector, 16... Edge, 17...
- Sample cover, 18... Measurement lighting window, 19... Ring, 20... Personal computer, 21... Load control device, 22... Thermocouple, 23... Digital thermometer, 24... ...Lighting device, 25 camera controller,
2G...Personal computer interface,
27...Digital plotter, 28...Printer, 2
9... Vacuum device, 30... Oscilloscope, 31.
...Temperature regulator, Cyrisk, 32... Cyrisk power control device, 33...Silicon carbide heating element, 34...0
Ring, 35...hole. Applicant Director of the Agency of Industrial Science and Technology Figure 10 Figure 12

Claims (5)

【特許請求の範囲】[Claims] (1)試料加熱炉の一方の側に窓と対向して照明装置を
、その対向側に窓と対向して検出装置を配置したセラミ
ックス等の熱間弾性率測定装置において、試料加熱炉と
荷重負荷装置の加圧棒間に、加圧棒と連動して伸縮する
無抵抗シール機構を設けると共に、試料と試料支持台と
の変位測定空間を試料変位程度に狭くしたことを特徴と
するセラミックス等の熱間弾性率測定装置。
(1) In an apparatus for measuring hot elastic modulus of ceramics, etc., which has a lighting device facing a window on one side of the sample heating furnace and a detection device facing the window on the opposite side, the sample heating furnace and the load Ceramics, etc., characterized in that a non-resistance sealing mechanism that expands and contracts in conjunction with the pressure rods is provided between the pressure rods of the loading device, and the displacement measurement space between the sample and the sample support is narrowed to the extent of the sample displacement. hot elastic modulus measuring device.
(2)前記無抵抗シール機構は、加熱炉に取り付けた金
属ベローズ上端を荷重負荷装置部材に連結し、かつ加圧
棒と金属ベローズの上端をゴム円板で連結している特許
請求の範囲第1項記載のセラミックス等の熱間弾性率測
定装置。
(2) The non-resistance sealing mechanism is characterized in that the upper end of the metal bellows attached to the heating furnace is connected to a load loading device member, and the pressure rod and the upper end of the metal bellows are connected by a rubber disk. A device for measuring hot elastic modulus of ceramics, etc., according to item 1.
(3)前記試料支持台に変位計測用エッジを配設した特
許請求の範囲第1項記載のセラミックス等の熱間弾性率
測定装置。
(3) The apparatus for measuring the hot elastic modulus of ceramics or the like as set forth in claim 1, wherein a displacement measuring edge is provided on the sample support stand.
(4)前記試料支持台に試料より活性な耐酸化性試料カ
バーを配設した特許請求の範囲第1項記載のセラミック
ス等の熱間弾性率測定装置。
(4) The apparatus for measuring hot elastic modulus of ceramics or the like according to claim 1, wherein an oxidation-resistant sample cover that is more active than the sample is disposed on the sample support stand.
(5)前記試料加熱炉には温度調節装置が備えられてい
る特許請求の範囲第1項記載のセラミックス等の熱間弾
性率測定装置。
(5) The apparatus for measuring hot elastic modulus of ceramics or the like according to claim 1, wherein the sample heating furnace is equipped with a temperature control device.
JP62322816A 1987-12-22 1987-12-22 Measuring device for hot elastic modulus of ceramics Expired - Lifetime JPH0641900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322816A JPH0641900B2 (en) 1987-12-22 1987-12-22 Measuring device for hot elastic modulus of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322816A JPH0641900B2 (en) 1987-12-22 1987-12-22 Measuring device for hot elastic modulus of ceramics

Publications (2)

Publication Number Publication Date
JPH01165930A true JPH01165930A (en) 1989-06-29
JPH0641900B2 JPH0641900B2 (en) 1994-06-01

Family

ID=18147935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322816A Expired - Lifetime JPH0641900B2 (en) 1987-12-22 1987-12-22 Measuring device for hot elastic modulus of ceramics

Country Status (1)

Country Link
JP (1) JPH0641900B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144343A (en) * 1989-10-31 1991-06-19 Shinagawa Refract Co Ltd Measuring system for hot displacement-load
KR20030004666A (en) * 2001-07-06 2003-01-15 현대자동차주식회사 Apparatus for estimating formability of semi-solid materials
JP2009036600A (en) * 2007-07-31 2009-02-19 Kurosaki Harima Corp Elastic modulus measuring method and instrument, and program
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2010531996A (en) * 2007-06-27 2010-09-30 コーニング インコーポレイテッド Method and apparatus for elastic modulus measurement of non-solid ceramic materials by resonance
JP2020190449A (en) * 2019-05-21 2020-11-26 株式会社ディスコ Measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604935A (en) * 1983-06-23 1985-01-11 Fuji Xerox Co Ltd Device for varying power in copying machine
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604935A (en) * 1983-06-23 1985-01-11 Fuji Xerox Co Ltd Device for varying power in copying machine
JPS617452A (en) * 1984-06-22 1986-01-14 Shinagawa Refract Co Ltd Apparatus for measurement of displacement of ceramic in hot processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144343A (en) * 1989-10-31 1991-06-19 Shinagawa Refract Co Ltd Measuring system for hot displacement-load
KR20030004666A (en) * 2001-07-06 2003-01-15 현대자동차주식회사 Apparatus for estimating formability of semi-solid materials
JP2010531996A (en) * 2007-06-27 2010-09-30 コーニング インコーポレイテッド Method and apparatus for elastic modulus measurement of non-solid ceramic materials by resonance
JP2009036600A (en) * 2007-07-31 2009-02-19 Kurosaki Harima Corp Elastic modulus measuring method and instrument, and program
JP2009128066A (en) * 2007-11-20 2009-06-11 Toyo Tanso Kk Thermal expansion coefficient measuring method and measuring device
JP2020190449A (en) * 2019-05-21 2020-11-26 株式会社ディスコ Measurement device

Also Published As

Publication number Publication date
JPH0641900B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
KR101254395B1 (en) Device for measuring level of molten metal and method thereof
EP0145115A1 (en) Thermal deformation measuring system of ceramics and the like
JP3182252U (en) Mechanical property measurement test equipment
US5731587A (en) Hot stage for scanning probe microscope
CN105910919B (en) A kind of high temperature axial compression test device and test method
JPH01165930A (en) Apparatus for measuring hot modulus of elasticity of ceramics
US5275057A (en) Clip gage attachment for frictionless measurement of displacement during high-temperature mechanical testing
JPS6195311A (en) Microscope
JP2578994B2 (en) Hot displacement-load measurement system
JP2000214058A (en) Method and device for creep test
JPH0640078B2 (en) Displacement measuring device for hot ceramics
EP0506005A3 (en) A device for measuring the dimension of an object
JP4859224B2 (en) Compression test method, compression tester, and program
CN105784002A (en) Temperature and pressure measuring device and testing method
Furness et al. The application of scanning laser extensometry to explore thermal cycling creep of metal matrix composites
JP2000356568A (en) Optical fiber strain sensor calibration device with optical fiber tensile test
JPS60190847A (en) Method and apparatus for evaluating cooling capacity of heat treatment agent
JPS617452A (en) Apparatus for measurement of displacement of ceramic in hot processing
JP2780826B2 (en) Thermal fatigue test method
JP2001264373A (en) Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
Hulse et al. High Temperature Compressive Deformation Equipment
CN110487841A (en) Measure linear expansion coefficient high temperature furnace, measuring device and method using it
JPH01245127A (en) In-pile creep testing device
JPH07198573A (en) Fine hardness meter and analogous apparatus thereto
JP2742640B2 (en) Automatic crack growth dimension measurement device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term