JP2009036523A - Roughness measuring method and roughness measuring device - Google Patents

Roughness measuring method and roughness measuring device Download PDF

Info

Publication number
JP2009036523A
JP2009036523A JP2007198519A JP2007198519A JP2009036523A JP 2009036523 A JP2009036523 A JP 2009036523A JP 2007198519 A JP2007198519 A JP 2007198519A JP 2007198519 A JP2007198519 A JP 2007198519A JP 2009036523 A JP2009036523 A JP 2009036523A
Authority
JP
Japan
Prior art keywords
transparent film
roughness
mean square
root mean
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007198519A
Other languages
Japanese (ja)
Other versions
JP5239049B2 (en
Inventor
Yoshihiro Nishimura
良浩 西村
Tsuyotaka Tatsumoto
剛隆 達本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasertec Corp
Original Assignee
Lasertec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasertec Corp filed Critical Lasertec Corp
Priority to JP2007198519A priority Critical patent/JP5239049B2/en
Publication of JP2009036523A publication Critical patent/JP2009036523A/en
Application granted granted Critical
Publication of JP5239049B2 publication Critical patent/JP5239049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure nano-scale roughness of an interference of a transparent film formed on a substrate, optically and nondestructively in a noncontact state. <P>SOLUTION: A roughness measuring device 100 for measuring root mean square roughness of the interference of the transparent film 42 formed on the substrate 41 includes a light source 11 for irradiating light of the first wavelength having coherence to a transparent film formation surface of a substrate 41 on which the transparent film is formed and a reference mirror 19; a photodetector 23 for receiving interference light formed by synthesizing measuring light reflected by the transparent film formation surface with reference light reflected by a reference plane; and a roughness calculation part 33 for calculating root mean square roughness of the transparent film formation surface from a phase difference between the measuring light and the reference light based on an intensity change of the interference light received by the photodetector 23, and determining the root mean square roughness of the interference of the transparent film 42. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粗さ測定方法及び粗さ測定装置に関し、特に詳しくは、基板上に形成された透明膜のナノスケールの表面・界面粗さを光学的に非破壊・非接触で測定する測定方法及び測定装置に関する。   The present invention relates to a roughness measuring method and a roughness measuring apparatus, and more particularly, a measuring method for optically measuring the nanoscale surface / interface roughness of a transparent film formed on a substrate in a non-destructive and non-contact manner. And a measuring apparatus.

表面粗さを検査する方法として、触針を用いる接触方法と、光等を利用した非接触方法がある。前者の接触方法では、触針を被検査面に接触させて表面を走査しなければならない。このため、被検査面の材質によっては触針で表面が損傷し、非破壊検査として使用ができない。また、透明膜が形成された基板面の表面粗さを測定する場合、透明膜を剥離しない限り、基板面を測定することはできない。   As a method for inspecting the surface roughness, there are a contact method using a stylus and a non-contact method using light or the like. In the former contact method, the surface must be scanned by bringing the stylus into contact with the surface to be inspected. For this reason, depending on the material of the surface to be inspected, the surface is damaged by the stylus and cannot be used for nondestructive inspection. Moreover, when measuring the surface roughness of the substrate surface on which the transparent film is formed, the substrate surface cannot be measured unless the transparent film is peeled off.

これに対して、後者の非接触方法は非破壊検査であるので、被検査面を損傷することがないという利点がある。この非接触方法としては、例えば、原子間力顕微鏡、偏光解析法、分光干渉法、光干渉法等が知られている。原子間力顕微鏡では、カンチレバーにより被検査面を走査する必要がある。このため、数十μm四方程度の領域を測定するのに、数十分もの膨大な時間がかかる。また、透明膜が形成された基板面の表面粗さを測定する場合、透明膜を剥離しない限り、基板面を測定することはできない。   On the other hand, since the latter non-contact method is a non-destructive inspection, there is an advantage that the surface to be inspected is not damaged. As this non-contact method, for example, an atomic force microscope, ellipsometry, spectral interferometry, optical interferometry, and the like are known. In an atomic force microscope, it is necessary to scan the surface to be inspected with a cantilever. For this reason, it takes an enormous time of several tens of minutes to measure an area of about several tens of μm square. Moreover, when measuring the surface roughness of the substrate surface on which the transparent film is formed, the substrate surface cannot be measured unless the transparent film is peeled off.

偏光解析法では、光による測定であるために、透明膜の表面と基板面の測定が可能である。しかしながら、光のスポットサイズが大きいため、横方向の空間分解能が低いという問題がある。また、分光干渉法では、透明膜の厚さを測定することは可能であるが、この結果から透明膜の表面と基板面の形状とを分離することはできない。また、表面粗さを測定するためには、基板面が平坦であると仮定する必要がある。また、この分光干渉法においても、測定スポットが大きいために、直径が数十μm程度の領域の平均的な情報しか得ることができない。白色光を用いた光干渉法では、光干渉強度に、透明膜表面の位相情報と基板面の位相情報が加算されている。このため、透明膜の表面粗さと基板面の表面粗さとを分離することができない。   Since the ellipsometry is a measurement using light, the surface of the transparent film and the substrate surface can be measured. However, since the spot size of light is large, there is a problem that the spatial resolution in the lateral direction is low. In addition, in the spectral interference method, the thickness of the transparent film can be measured, but from this result, the surface of the transparent film and the shape of the substrate surface cannot be separated. Further, in order to measure the surface roughness, it is necessary to assume that the substrate surface is flat. Also in this spectroscopic interferometry, since the measurement spot is large, only average information of a region having a diameter of about several tens of μm can be obtained. In the optical interference method using white light, the phase information on the transparent film surface and the phase information on the substrate surface are added to the optical interference intensity. For this reason, the surface roughness of the transparent film and the surface roughness of the substrate surface cannot be separated.

透明膜の種類によっては、可視光では透明であっても、i線(波長365nm)や、DUV(Deep Ultraviolet)では見えるものもある。しかし、半導体の製造工程で測定のニーズが多いのは、酸化シリコン(SiO)であると考えられる。このSiOの測定を行う場合には、波長150nm以下の紫外光が必要である。従って、このような短波長の紫外光を実現する光学系を適用することは現実的ではない。なお、透明膜の形状・膜厚の測定方法としては、特許文献1〜4に記載されている。
特開2006−138854号公報 特開2006−84334号公報 特開2004−361218号公報 特開2004−317238号公報
Depending on the type of the transparent film, there are some which are transparent with visible light but visible with i-line (wavelength 365 nm) and DUV (Deep Ultraviolet). However, it is considered that silicon oxide (SiO 2 ) has a large measurement need in the semiconductor manufacturing process. When measuring this SiO 2 , ultraviolet light having a wavelength of 150 nm or less is required. Therefore, it is not realistic to apply an optical system that realizes such short-wavelength ultraviolet light. In addition, as a measuring method of the shape and film thickness of a transparent film, it describes in patent documents 1-4.
JP 2006-138854 A JP 2006-84334 A JP 2004-361218 A JP 2004-317238 A

本発明は、このような事情を背景としてなされたものであり、本発明の目的は、基板上に形成された透明膜の界面のナノスケールの粗さを光学的に非破壊・非接触で測定する粗さ測定方法及び粗さ測定装置を提供することを目的とする。   The present invention has been made against the background of such circumstances, and the object of the present invention is to measure the nanoscale roughness of the interface of the transparent film formed on the substrate optically in a non-destructive and non-contact manner. An object of the present invention is to provide a roughness measuring method and a roughness measuring apparatus.

本発明の第1の態様に係る粗さ測定方法は、基板上に形成された透明膜の界面の二乗平均平方根粗さを測定する測定方法であって、前記透明膜が形成された前記基板の透明膜形成面及び参照面に干渉性を有する第1波長の光を照射し、前記透明膜形成面で反射された測定光と、前記参照面で反射された参照光とを合成した干渉光を受光し、前記干渉光の強度変化に基づいて、前記測定光と前記参照光との位相差から、前記透明膜形成面の二乗平均平方根粗さを算出し、前記透明膜形成面の二乗平均平方根粗さに基づいて、前記透明膜の界面の二乗平均平方根粗さを決定する。これにより、透明膜の界面の粗さを非破壊・非接触で測定することができる。   The roughness measuring method according to the first aspect of the present invention is a measuring method for measuring the root mean square roughness of the interface of the transparent film formed on the substrate, the roughness measuring method for the substrate on which the transparent film is formed. Irradiating the transparent film forming surface and the reference surface with light having a first wavelength having coherence, and combining the measurement light reflected by the transparent film forming surface and the reference light reflected by the reference surface. Based on a change in intensity of the interference light, the root mean square roughness of the transparent film forming surface is calculated from the phase difference between the measurement light and the reference light, and the root mean square of the transparent film forming surface is calculated. Based on the roughness, the root mean square roughness of the interface of the transparent film is determined. Thereby, the roughness of the interface of a transparent film can be measured by non-destructive and non-contact.

本発明の第2の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記第1波長と異なる第2波長の光を前記透明膜形成面及び前記参照面に照射し、前記第1波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さと、前記第2波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定する。これにより、透明膜の両界面の粗さを短時間で算出することができる。   The roughness measuring method according to a second aspect of the present invention is the above roughness measuring method, wherein the transparent film forming surface and the reference surface are irradiated with light having a second wavelength different from the first wavelength, Based on the root mean square roughness of the transparent film forming surface calculated by irradiating one wavelength and the root mean square roughness of the transparent film forming surface calculated by irradiating the second wavelength, The root mean square roughness of both interfaces of the transparent film is determined simultaneously. Thereby, the roughness of both interfaces of the transparent film can be calculated in a short time.

本発明の第3の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記透明膜の界面の二乗平均平方根粗さは、前記第1波長及び前記第2波長のそれぞれで求められる以下の式、

Figure 2009036523
に基づいて算出されることを特徴とする。ここで、Rq:前記透明膜形成面の二乗平均平方根粗さ、RqLayer:前記透明膜と媒質との界面の二乗平均平方根粗さ、RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ、n:前記透明膜の屈折率、n:前記媒質の屈折率、とする。このように、簡単な演算式により基板上に形成された透明膜の界面の粗さを算出することができる。 In the roughness measuring method according to the third aspect of the present invention, in the above roughness measuring method, the root mean square roughness of the interface of the transparent film is obtained for each of the first wavelength and the second wavelength. The following formula,
Figure 2009036523
It is calculated based on. Here, Rq: root mean square roughness of the transparent film forming surface, Rq Layer : root mean square roughness of the interface between the transparent film and the medium, Rq Base : root mean square of the interface between the transparent film and the substrate Square root roughness, n 1 : refractive index of the transparent film, n 0 : refractive index of the medium. Thus, the roughness of the interface of the transparent film formed on the substrate can be calculated by a simple arithmetic expression.

本発明の第4の態様に係る粗さ測定方法は、上記の粗さ測定方法において、第1媒質中での前記透明膜形成面の二乗平均平方根粗さと、前記第1媒質の屈折率と異なる第2媒質中での前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定する。これにより、透明膜の両界面の粗さを短時間で算出することができる。   The roughness measuring method according to the fourth aspect of the present invention is the above roughness measuring method, wherein the root mean square roughness of the transparent film forming surface in the first medium is different from the refractive index of the first medium. Based on the root mean square roughness of the transparent film forming surface in the second medium, the root mean square roughness of both interfaces of the transparent film is simultaneously determined. Thereby, the roughness of both interfaces of the transparent film can be calculated in a short time.

本発明の第5の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記透明膜の界面の二乗平均平方根粗さは、以下の2式、

Figure 2009036523
Figure 2009036523
に基づいて算出されることを特徴とする。ここで、Rq:前記透明膜形成面の二乗平均平方根粗さ、RqLayer:前記透明膜と前記第1媒質又は前記第2媒質との界面の二乗平均平方根粗さ、RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ、n:前記透明膜の屈折率、n:前記第1媒質の屈折率、n':前記第2媒質の屈折率とする。このように、簡単な演算式により、基板上に形成された透明膜の界面の粗さを算出することができる。 In the roughness measuring method according to the fifth aspect of the present invention, the root mean square roughness of the interface of the transparent film is the following two formulas:
Figure 2009036523
Figure 2009036523
It is calculated based on. Here, Rq: root mean square roughness of the transparent film forming surface, Rq Layer : root mean square roughness of the interface between the transparent film and the first medium or the second medium, Rq Base : the transparent film Root mean square roughness of the interface with the substrate, n 1 : refractive index of the transparent film, n 0 : refractive index of the first medium, n 0 ′: refractive index of the second medium. Thus, the roughness of the interface of the transparent film formed on the substrate can be calculated with a simple arithmetic expression.

本発明の第6の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記透明膜形成面と前記参照面との光学的距離を変動させ、前記測定光と前記参照光との間に複数の位相差を与え、前記干渉光の強度変化を生じさせることを特徴とする。これにより、位相測定を高分解能で行うことができ、透明膜の界面の粗さをより正確に測定することができる。   A roughness measuring method according to a sixth aspect of the present invention is the roughness measuring method described above, wherein an optical distance between the transparent film forming surface and the reference surface is varied, and the measurement light and the reference light are changed. A plurality of phase differences are given between them to cause an intensity change of the interference light. Thereby, phase measurement can be performed with high resolution, and the roughness of the interface of the transparent film can be measured more accurately.

本発明の第7の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記透明膜上に形成され、前記透明膜と屈折率の異なる第2透明膜を備え、前記第1波長及び前記第2波長と異なる第3波長の光をさらに照射し、前記第3波長の光を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さに基づいて、前記第2透明膜の界面の二乗平均平方根粗さを決定することを特徴とする。これにより、基板上に屈折率が異なる複数の透明膜が形成されている場合でも、それぞれの透明膜の界面の粗さを算出することができる。   A roughness measuring method according to a seventh aspect of the present invention is the above-described roughness measuring method, comprising a second transparent film formed on the transparent film and having a refractive index different from that of the transparent film, and the first wavelength. Further, based on the root mean square roughness of the transparent film forming surface calculated by further irradiating light of a third wavelength different from the second wavelength and irradiating light of the third wavelength, the second transparent It is characterized by determining the root mean square roughness of the film interface. Thereby, even when a plurality of transparent films having different refractive indexes are formed on the substrate, the roughness of the interface between the transparent films can be calculated.

本発明の第8の態様に係る粗さ測定方法は、上記の粗さ測定方法において、前記第2透明膜の界面の二乗平均平方根粗さは、前記第1波長、前記第2波長及び前記第3波長のそれぞれで求められる以下の式、

Figure 2009036523
に基づいて算出されることを特徴とする。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer1:前記第2透明膜と前記媒質との界面の二乗平均平方根粗さ
RqLayer2:前記透明膜と前記第2透明膜との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
2:前記透明膜の屈折率
:前記第2透明膜の屈折率
:前記媒質の屈折率
とする。 The roughness measuring method according to an eighth aspect of the present invention is the roughness measuring method described above, wherein the root mean square roughness of the interface of the second transparent film is the first wavelength, the second wavelength, and the second wavelength. The following formulas required for each of the three wavelengths:
Figure 2009036523
It is calculated based on.
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer1 : root mean square roughness of the interface between the second transparent film and the medium Rq Layer2 : square of the interface between the transparent film and the second transparent film Average square root roughness Rq Base : root mean square roughness n 2 of the interface between the transparent film and the substrate n 2 : refractive index of the transparent film n 1 : refractive index of the second transparent film n 0 : refractive index of the medium And

本発明の第9の態様に係る粗さ測定装置は、基板上に形成された透明膜の界面の二乗平均平方根粗さを測定するための粗さ測定装置であって、前記透明膜が形成された基板の透明膜形成面及び参照面に干渉性を有する第1波長の光を照射する光源と、前記透明膜形成面で反射された測定光と、参照面で反射された参照光とを合成した干渉光を受光する光検出器と、前記光検出器で受光された干渉光の強度変化に基づいて、前記測定光と前記参照光との位相差から、前記透明膜形成面の二乗平均平方根粗さを算出し、前記透明膜の界面の二乗平均平方根粗さを決定する算出部とを備えるものである。これにより、透明膜の界面の粗さを非破壊・非接触で測定することができる。   A roughness measuring apparatus according to a ninth aspect of the present invention is a roughness measuring apparatus for measuring a root mean square roughness of an interface of a transparent film formed on a substrate, wherein the transparent film is formed. A light source that emits light having a first wavelength having coherence to the transparent film forming surface and the reference surface of the substrate, the measurement light reflected by the transparent film forming surface, and the reference light reflected by the reference surface A photodetector that receives the interference light, and a root mean square of the transparent film forming surface based on a phase difference between the measurement light and the reference light based on a change in intensity of the interference light received by the photodetector. A calculation unit that calculates roughness and determines a root mean square roughness of the interface of the transparent film. Thereby, the roughness of the interface of a transparent film can be measured by non-destructive and non-contact.

本発明の第10の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記光源は、前記第1波長と異なる第2波長の光を前記透明膜形成面及び前記参照面に照射し、前記算出部は、前記第1波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さと、前記第2波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを決定するものであり。これにより、透明膜の両界面の粗さを短時間で算出することができる。   The roughness measuring apparatus according to a tenth aspect of the present invention is the roughness measuring apparatus, wherein the light source irradiates the transparent film forming surface and the reference surface with light having a second wavelength different from the first wavelength. The calculating unit calculates a root mean square roughness of the transparent film forming surface calculated by irradiating the first wavelength, and a square of the transparent film forming surface calculated by irradiating the second wavelength. The root mean square roughness of both interfaces of the transparent film is determined based on the mean square root roughness. Thereby, the roughness of both interfaces of the transparent film can be calculated in a short time.

本発明の第11の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記算出部は、以下の式、

Figure 2009036523
に基づいて前記透明膜の界面の二乗平均平方根粗さを算出することを特徴とするものである。ここで、Rq:前記透明膜形成面の二乗平均平方根粗さ、RqLayer:前記透明膜と媒質との界面の二乗平均平方根粗さ、RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ、n:前記透明膜の屈折率、n:前記媒質の屈折率、とする。このように、簡単な演算式により基板上に形成された透明膜の界面の粗さを算出することができる。 The roughness measuring device according to an eleventh aspect of the present invention is the roughness measuring device described above, wherein the calculation unit has the following formula:
Figure 2009036523
Based on the above, the root mean square roughness of the interface of the transparent film is calculated. Here, Rq: root mean square roughness of the transparent film forming surface, Rq Layer : root mean square roughness of the interface between the transparent film and the medium, Rq Base : root mean square of the interface between the transparent film and the substrate Square root roughness, n 1 : refractive index of the transparent film, n 0 : refractive index of the medium. Thus, the roughness of the interface of the transparent film formed on the substrate can be calculated by a simple arithmetic expression.

本発明の第12の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記算出部は、第1媒質中での前記透明膜形成面の二乗平均平方根粗さと、前記第1媒質の屈折率と異なる第2媒質中での前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定するものである。これにより、透明膜の両界面の粗さを短時間で算出することができる。
本発明の第13の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記算出部は、以下の2式、

Figure 2009036523
Figure 2009036523
に基づいて、前記透明膜の界面の二乗平均平方根粗さを算出することを特徴とするものである。ここで、Rq:前記透明膜形成面の二乗平均平方根粗さ、RqLayer:前記透明膜と前記第1媒質又は前記第2媒質との界面の二乗平均平方根粗さ、RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ、n:前記透明膜の屈折率、n:前記第1媒質の屈折率、n':前記第2媒質の屈折率とする。 The roughness measuring apparatus according to a twelfth aspect of the present invention is the roughness measuring apparatus, wherein the calculation unit includes a root mean square roughness of the transparent film forming surface in the first medium, and the first medium. The root mean square roughness of both interfaces of the transparent film is simultaneously determined based on the mean square root roughness of the transparent film forming surface in the second medium different from the refractive index of the transparent film. Thereby, the roughness of both interfaces of the transparent film can be calculated in a short time.
The roughness measuring apparatus according to the thirteenth aspect of the present invention is the roughness measuring apparatus described above, wherein the calculation unit includes the following two formulas:
Figure 2009036523
Figure 2009036523
Based on the above, the root mean square roughness of the interface of the transparent film is calculated. Here, Rq: root mean square roughness of the transparent film forming surface, Rq Layer : root mean square roughness of the interface between the transparent film and the first medium or the second medium, Rq Base : the transparent film Root mean square roughness of the interface with the substrate, n 1 : refractive index of the transparent film, n 0 : refractive index of the first medium, n 0 ′: refractive index of the second medium.

本発明の第14の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記参照面と前記透明膜形成面との光学的距離を変動させる変動機構をさらに備え、前記測定光と前記参照光との間に複数の位相差を与え、前記干渉光の強度変化を生じさせることを特徴とするものである。これにより、位相測定を高分解能で行うことができ、透明膜の界面の粗さをより正確に測定することができる。   A roughness measuring device according to a fourteenth aspect of the present invention is the above-described roughness measuring device, further comprising a fluctuation mechanism that varies an optical distance between the reference surface and the transparent film forming surface, A plurality of phase differences are provided between the reference light and the intensity of the interference light to change. Thereby, phase measurement can be performed with high resolution, and the roughness of the interface of the transparent film can be measured more accurately.

本発明の第15の態様に係る粗さ測定装置は、上記の粗さ測定装置において、前記透明膜形成面の透明膜上に、前記透明膜と屈折率の異なる第2透明膜が形成され、前記光源は、前記第1波長及び前記第2波長と異なる第3波長の光を照射し、前記算出部は、前記第3の波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さに基づいて、前記第2透明膜の界面の二乗平均平方根粗さを決定することを特徴とするものである。これにより、基板上に屈折率が異なる複数の透明膜が形成されている場合でも、それぞれの透明膜の界面の粗さを算出することができる。   In the roughness measuring apparatus according to the fifteenth aspect of the present invention, in the roughness measuring apparatus, a second transparent film having a refractive index different from that of the transparent film is formed on the transparent film on the transparent film forming surface. The light source emits light of a third wavelength different from the first wavelength and the second wavelength, and the calculation unit calculates a mean square of the transparent film formation surface calculated by irradiating the third wavelength. The root mean square roughness of the interface of the second transparent film is determined based on the square root roughness. Thereby, even when a plurality of transparent films having different refractive indexes are formed on the substrate, the roughness of the interface between the transparent films can be calculated.

本発明の第16の態様に係る粗さ測定装置は、前記算出部は、以下の式

Figure 2009036523
に基づいて前記第2透明膜の界面の二乗平均平方根粗さを算出することを特徴とするものである。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer1:前記第2透明膜と前記媒質との界面の二乗平均平方根粗さ
RqLayer2:前記透明膜と前記第2透明膜との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
2:前記透明膜の屈折率
:前記第2透明膜の屈折率
:前記媒質の屈折率
とする。
これにより、簡単な演算式により基板上に屈折率が異なる複数の透明膜が形成されている場合でも、それぞれの透明膜の界面の粗さを算出することができる。 In the roughness measuring apparatus according to the sixteenth aspect of the present invention, the calculation unit has the following formula:
Figure 2009036523
Based on the above, the root mean square roughness of the interface of the second transparent film is calculated.
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer1 : root mean square roughness of the interface between the second transparent film and the medium Rq Layer2 : square of the interface between the transparent film and the second transparent film Average square root roughness Rq Base : root mean square roughness n 2 of the interface between the transparent film and the substrate n 2 : refractive index of the transparent film n 1 : refractive index of the second transparent film n 0 : refractive index of the medium And
Thereby, even when a plurality of transparent films having different refractive indexes are formed on the substrate by a simple arithmetic expression, the roughness of the interface of each transparent film can be calculated.

本発明によれば、基板上に形成された透明膜の界面のナノスケールの粗さを光学的に非破壊・非接触で測定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nanoscale roughness of the interface of the transparent film formed on the board | substrate can be measured optically nondestructively and non-contactingly.

以下、本発明の実施の形態について図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものを実質的に同様の内容を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows preferred embodiments of the present invention, and the scope of the present invention is not limited to the following embodiments. In the following description, the same reference numerals denote the same contents.

本発明の実施の形態に係る粗さ測定装置の構成について、図1及び図2を参照して説明する。図1は、本実施の形態に係る粗さ測定装置100の構成を模式的に示す図である。図2は、本実施の形態に係る粗さ測定装置100に用いられる処理装置30の構成を示すブロック図である。本実施の形態においては、干渉計の一例として、マイケルソン型の位相シフト干渉計を用いた例について説明する。なお、干渉計については特に制限されず、ミラウ干渉計、フィゾー干渉計等、他の二光束干渉計を用いてもよい。また、位相を精密に測定できる方法であれば、位相シフト法に限定されず、どのような方法を採用してもよい。   The configuration of the roughness measuring apparatus according to the embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a configuration of a roughness measuring apparatus 100 according to the present embodiment. FIG. 2 is a block diagram showing a configuration of the processing apparatus 30 used in the roughness measuring apparatus 100 according to the present embodiment. In this embodiment, an example using a Michelson type phase shift interferometer will be described as an example of an interferometer. The interferometer is not particularly limited, and other two-beam interferometers such as a Mirau interferometer and a Fizeau interferometer may be used. Further, any method can be adopted as long as the method can accurately measure the phase without being limited to the phase shift method.

図1に示すように、本実施の形態に係る粗さ測定装置100は、光源11、波長変換部12、レンズ13、22、ビームスプリッタ14、15、測定用対物レンズ16、ステージ17、参照用対物レンズ18、参照用ミラー19、焦点調整機構20、角度調整機構21、光検出器23、処理装置30を備えている。また、図2に示すように、処理装置30は、ステージ駆動部31、波長変換制御部32、粗さ算出部33、メモリ34等を備えている。   As shown in FIG. 1, the roughness measuring apparatus 100 according to the present embodiment includes a light source 11, a wavelength conversion unit 12, lenses 13, 22, beam splitters 14, 15, a measurement objective lens 16, a stage 17, and a reference. An objective lens 18, a reference mirror 19, a focus adjustment mechanism 20, an angle adjustment mechanism 21, a photodetector 23, and a processing device 30 are provided. As shown in FIG. 2, the processing apparatus 30 includes a stage drive unit 31, a wavelength conversion control unit 32, a roughness calculation unit 33, a memory 34, and the like.

本発明に係る粗さ測定装置100では、半導体ウエハ、ガラス等の基板上に、透明膜が形成された測定対象物40の粗さを測定する。ここでは、例えば、半導体の製造工程で測定のニーズが多いSi基板の表面に酸化シリコン(SiO)が形成されたものを測定対象物40とする。図3に、測定対象物40の構成を示す。図3に示すように、測定対象物40は、基板41と、基板41上に形成された透明膜42とを備える。基板41の透明膜42で覆われた面が透明膜形成面となる。図3においては、基板41の屈折率をn、透明膜42の屈折率をn1、媒質である空気の屈折率をnとする。 In the roughness measuring apparatus 100 according to the present invention, the roughness of the measurement object 40 in which a transparent film is formed on a substrate such as a semiconductor wafer or glass is measured. Here, for example, a measurement object 40 is formed by forming silicon oxide (SiO 2 ) on the surface of a Si substrate that has many needs for measurement in a semiconductor manufacturing process. FIG. 3 shows the configuration of the measurement object 40. As shown in FIG. 3, the measurement object 40 includes a substrate 41 and a transparent film 42 formed on the substrate 41. The surface of the substrate 41 covered with the transparent film 42 becomes the transparent film forming surface. In FIG. 3, the refractive index of the substrate 41 is n 2 , the refractive index of the transparent film 42 is n 1 , and the refractive index of air as a medium is n 0 .

本発明では、透明膜形成面の見かけの二乗平均平方根粗さを算出することにより、透明膜42の界面(透明膜42と基板41との界面、透明膜42と空気(媒質)との界面)の二乗平均平方根粗さを決定する。すなわち、透明膜42表面又は基板41表面の二乗平均平方根粗さを測定する。なお、透明膜形成面の見かけの二乗平均平方根粗さとは、透明膜42の両界面(透明膜42と空気の界面と、透明膜42と基板41の界面)の情報を含んだままの位相情報から、見かけ上空気と固体(透明膜42で覆われた基板41)の界面の粗さとして算出したものである。以下の説明においては、媒質の一例として空気とした場合について説明するが、これに限定されるものではなく、アルゴンガス等他の気体中で測定してもよい。   In the present invention, by calculating the apparent root mean square roughness of the transparent film forming surface, the interface of the transparent film 42 (the interface between the transparent film 42 and the substrate 41, the interface between the transparent film 42 and air (medium)). Determine the root mean square roughness of. That is, the root mean square roughness of the surface of the transparent film 42 or the surface of the substrate 41 is measured. The apparent root mean square roughness of the transparent film forming surface is phase information that includes information on both interfaces of the transparent film 42 (the interface between the transparent film 42 and the air and the interface between the transparent film 42 and the substrate 41). From this, it is calculated as the roughness of the interface between the air and the solid (the substrate 41 covered with the transparent film 42) apparently. In the following description, a case where air is used as an example of the medium will be described. However, the present invention is not limited to this, and the measurement may be performed in another gas such as argon gas.

本実施の形態に係る粗さ測定装置100は、干渉計を利用して測定対象物40の粗さを測定する。粗さ測定装置100は、光学系の中にマイケルソン型干渉計を備えている。測定対象物40の基板41及び透明膜42でそれぞれ反射された測定光(透明膜形成面で反射された光)と、参照面となる参照用ミラー19で反射された参照光とを合成して受光している。   Roughness measuring apparatus 100 according to the present embodiment measures the roughness of measurement object 40 using an interferometer. The roughness measuring apparatus 100 includes a Michelson interferometer in the optical system. The measurement light reflected by the substrate 41 and the transparent film 42 of the measurement object 40 (light reflected by the transparent film forming surface) and the reference light reflected by the reference mirror 19 serving as the reference surface are combined. It is receiving light.

光源11としては、キセノンランプのような白色光源が用いられる。例えば、紫外から赤外域(185nm〜2000nm)に幅広い連続スペクトルを有するキセノンランプを用いることができる。なお、連続スペクトルを有する光源でなくても、水銀キセノンランプのように連続スペクトルに複数の輝線を含む光源でもよい。もちろん、光源11としては、キセノンランプに限らず、白色ダイオード、白色レーザ等を用いてもよい。後述するように、波長が選択できればどのような光源を用いてもよい。光源11から出射された光は、ビームスプリッタ15で分岐され、測定対象物40及び参照用ミラー19にそれぞれ照射される。そして、測定対象物40で反射された測定光と、参照用ミラー19で反射された参照光とは、ビームスプリッタ15で合成される。測定光と参照光との合成光は、光検出器23で受光される。そして、測定光と参照光との位相差に基づいて、測定対象物40の見かけの二乗平均平方根粗さが算出される。本発明では、この透明膜形成面の二乗平均平方根粗さから、透明膜42の表面又は界面の二乗平均平方根粗さを決定する。   As the light source 11, a white light source such as a xenon lamp is used. For example, a xenon lamp having a wide continuous spectrum in the ultraviolet to infrared region (185 nm to 2000 nm) can be used. Note that the light source may not be a light source having a continuous spectrum, but may be a light source including a plurality of bright lines in the continuous spectrum, such as a mercury xenon lamp. Of course, the light source 11 is not limited to a xenon lamp, and a white diode, a white laser, or the like may be used. As will be described later, any light source may be used as long as the wavelength can be selected. The light emitted from the light source 11 is branched by the beam splitter 15 and applied to the measurement object 40 and the reference mirror 19. Then, the measurement light reflected by the measurement object 40 and the reference light reflected by the reference mirror 19 are combined by the beam splitter 15. The combined light of the measurement light and the reference light is received by the photodetector 23. Based on the phase difference between the measurement light and the reference light, the apparent root mean square roughness of the measurement object 40 is calculated. In the present invention, the root mean square roughness of the surface or interface of the transparent film 42 is determined from the root mean square roughness of the transparent film forming surface.

まず、光源11からの光によって、測定対象物40及び参照用ミラー19を照明するための照明光学系について説明する。光源11から出射した光は、波長変換部12を通過し、所定の第1波長の光に変換される。波長変換部12としては、例えば、特定波長の光を選択的に透過させる複数のバンドパスフィルタを設けたものである。これにより、特定の波長の光を選択的に透過させる。処理装置30の波長変換制御部32は、波長変換部12の複数のバンドパスフィルタの切り替えを行うことにより、透過させる光の波長を変更する。そして、第1波長の光はレンズ13を透過して、ビームスプリッタ14に入射する。ビームスプリッタ14は、偏光状態によらずに、反射光と透過光の光量が略1:1になるように、光を分岐する。従って、第1波長の光の略半分がビームスプリッタ14で反射する。   First, an illumination optical system for illuminating the measurement object 40 and the reference mirror 19 with light from the light source 11 will be described. The light emitted from the light source 11 passes through the wavelength converter 12 and is converted into light having a predetermined first wavelength. As the wavelength converter 12, for example, a plurality of band-pass filters that selectively transmit light having a specific wavelength are provided. Thereby, light of a specific wavelength is selectively transmitted. The wavelength conversion control unit 32 of the processing device 30 changes the wavelength of light to be transmitted by switching a plurality of bandpass filters of the wavelength conversion unit 12. Then, the light having the first wavelength passes through the lens 13 and enters the beam splitter 14. The beam splitter 14 branches the light so that the amount of reflected light and transmitted light is approximately 1: 1 regardless of the polarization state. Accordingly, approximately half of the first wavelength light is reflected by the beam splitter 14.

なお、光源11として単波長のレーザ光を出射するレーザ光源を用い、波長変換部12として波長変換素子を設けてもよい。例えば、第二高調波発生により、波長変換素子に入射する光源11からの単波長の光の波長変換を行うことができる。また、光源11として、可変波長レーザを用いることも可能である。さらに、異なる波長のレーザ光を出射する複数の光源を設けて、複数の光源のうちの所望の波長の光を出射するようにしてもよい。   Note that a laser light source that emits single-wavelength laser light may be used as the light source 11, and a wavelength conversion element may be provided as the wavelength conversion unit 12. For example, wavelength conversion of single wavelength light from the light source 11 incident on the wavelength conversion element can be performed by second harmonic generation. Further, a variable wavelength laser can be used as the light source 11. Furthermore, a plurality of light sources that emit laser beams having different wavelengths may be provided, and light having a desired wavelength among the plurality of light sources may be emitted.

ビームスプリッタ14で反射された光は図1中下方に進み、ビームスプリッタ15に入射する。ビームスプリッタ15は、偏光状態によらずに、反射光と透過光の光量が略1:1になるように、光を分岐する。従って、第1波長の光の略半分がビームスプリッタ15と透過し、残りの略半分がビームスプリッタ15で反射する。従って、ビームスプリッタ15によって、入射した第1波長の光が2本の光ビームに分岐される。ビームスプリッタ15の反射面は、光軸に対して、45°傾いている。ビームスプリッタ15を透過した光は、測定用対物レンズ16に入射する。すなわち、ビームスプリッタ15で分岐された2本の光ビームのうち、一方の光ビームは測定用対物レンズ16に入射する。測定対物レンズ16は、入射した光ビームを集光して、測定対象物40に出射する。すなわち、ビームスプリッタ15を透過した光ビームは、測定用対物レンズ16によって測定対象物40上に縮小投影される。これにより、測定対象物40が第1波長の光によって照明される。   The light reflected by the beam splitter 14 travels downward in FIG. 1 and enters the beam splitter 15. The beam splitter 15 branches the light so that the amount of reflected light and transmitted light is approximately 1: 1 regardless of the polarization state. Accordingly, approximately half of the light of the first wavelength is transmitted through the beam splitter 15, and the remaining approximately half is reflected by the beam splitter 15. Therefore, the incident light having the first wavelength is split into two light beams by the beam splitter 15. The reflecting surface of the beam splitter 15 is inclined 45 ° with respect to the optical axis. The light transmitted through the beam splitter 15 enters the measurement objective lens 16. That is, one of the two light beams branched by the beam splitter 15 is incident on the measurement objective lens 16. The measurement objective lens 16 condenses the incident light beam and emits it to the measurement object 40. That is, the light beam transmitted through the beam splitter 15 is reduced and projected onto the measurement object 40 by the measurement objective lens 16. Thereby, the measuring object 40 is illuminated with the light of the first wavelength.

測定対象物40は、ステージ17上に載置されている。ステージ17はX−Y−Zステージであり、処理装置30に設けられたステージ駆動部31からの駆動信号に基づいて、測定対象物40と照明光その相対位置を移動させる。すなわち、測定対象物40を載置しているステージ17を、ピエゾ素子等の圧電素子を用いて駆動させ、測定対象物40と測定用対物レンズ16との距離を変化させる。これにより、光ビームにより測定対象物40上をZ方向にスキャンすることができる。つまり、光学距離を機械的に変化させることにより、測定光と参照光との間に複数の位相差を与えることができる。   The measurement object 40 is placed on the stage 17. The stage 17 is an XYZ stage, and moves the measurement object 40 and the relative position of the illumination light based on a drive signal from a stage drive unit 31 provided in the processing apparatus 30. That is, the stage 17 on which the measurement object 40 is placed is driven using a piezoelectric element such as a piezoelectric element, and the distance between the measurement object 40 and the measurement objective lens 16 is changed. Thereby, the measurement object 40 can be scanned in the Z direction by the light beam. That is, a plurality of phase differences can be given between the measurement light and the reference light by mechanically changing the optical distance.

なお、測定用対物レンズ16をピエゾ素子により駆動して、測定用対物レンズ16と測定対象物40との距離を変化させるようにしてもよい。また、測定用対物レンズ16と測定対象物40との距離を変える代わりに、参照用対物レンズ18と参照ミラー19との距離を変えるようにしてもよい。このように、光学距離を機械的に変える方法で測定光と参照光との間に位相差を与えることにより、無偏光の光を使うことができ、光学異方性を有する測定対象物でも偏光による測定光と参照光の位相ズレを起こすことがなく、正確に測定を行うことができる。   The measurement objective lens 16 may be driven by a piezo element to change the distance between the measurement objective lens 16 and the measurement object 40. Further, instead of changing the distance between the measurement objective lens 16 and the measurement object 40, the distance between the reference objective lens 18 and the reference mirror 19 may be changed. In this way, by providing a phase difference between the measurement light and the reference light by mechanically changing the optical distance, non-polarized light can be used, and even a measurement object having optical anisotropy can be polarized. Therefore, the measurement light and the reference light can be accurately measured without causing a phase shift.

測定光と参照光との間に複数の位相差を与える方法としては、上述したような光学距離を機械的に変える方法のほか、偏光干渉を使って位相差を与える方法がある。具体的には、測定光と参照光の偏光の回転角を考慮して、位相差板等を用い、測定光と参照光との間に複数の位相差を与えることができる。この場合、図1に示すビームスプリッタ15を偏光ビームスプリッタに置き換えて、測定光と参照光とがそれぞれp偏光とs偏光になるようにする。また、光検出器22の前にλ/4波長板を挿入して、これらのp偏光とs偏光とが干渉するようにする。なお、ガルバノミラーなどの振動ミラーや音響光学偏向器等を組み合わせて、照明光が測定対象物40上をX−Y方向に走査するようにしてもよい。   As a method of giving a plurality of phase differences between the measurement light and the reference light, there are a method of giving a phase difference using polarization interference in addition to a method of mechanically changing the optical distance as described above. Specifically, in consideration of the rotation angle of the polarization of the measurement light and the reference light, a plurality of phase differences can be given between the measurement light and the reference light using a phase difference plate or the like. In this case, the beam splitter 15 shown in FIG. 1 is replaced with a polarization beam splitter so that the measurement light and the reference light become p-polarized light and s-polarized light, respectively. Further, a λ / 4 wavelength plate is inserted in front of the photodetector 22 so that these p-polarized light and s-polarized light interfere with each other. Note that a combination of a vibrating mirror such as a galvanometer mirror, an acoustooptic deflector, or the like may be used so that the illumination light scans the measurement object 40 in the XY direction.

ビームスプリッタ15で反射した光ビームは、図1中側方に設けられた参照用対物レンズ18に入射する。すなわち、参照用対物レンズ18は、ビームスプリッタ15で分岐された2本の光ビームのうち、他方の光ビームを集光して、参照用ミラー19に入射させる。すなわち、ビームスプリッタ15で反射された光ビームは、参照用対物レンズ18によって、参照用ミラー19に縮小投影される。これによって、参照用ミラーが第1波長の光によって照明される。このように、ビームスプリッタ15によって分岐された光ビームのうちの1本が、測定対象物40を照明する照明光となり、他方が参照用ミラー19を照明する照明光となる。   The light beam reflected by the beam splitter 15 enters a reference objective lens 18 provided on the side in FIG. That is, the reference objective lens 18 condenses the other light beam of the two light beams branched by the beam splitter 15 and makes it incident on the reference mirror 19. That is, the light beam reflected by the beam splitter 15 is reduced and projected onto the reference mirror 19 by the reference objective lens 18. Thereby, the reference mirror is illuminated by the light of the first wavelength. In this way, one of the light beams branched by the beam splitter 15 becomes illumination light for illuminating the measurement object 40, and the other becomes illumination light for illuminating the reference mirror 19.

参照用ミラー19は、例えば、平坦で反射率が略100%の平面鏡である。従って、参照用ミラー19は、入射光のほとんど全てを正反射する。参照ミラーの反射率は、測定対象物の反射率と同程度であることが好ましい。測定対象物と参照ミラーの反射強度が等しいと、干渉縞の明暗のコントラストが強くなり、ノイズの少ない測定が可能となる。逆に参照ミラーと測定対象物の反射率の差が大きいと、干渉縞のコントラストが悪くなる。従って、測定対象物の反射率に合わせて、反射率の異なる参照ミラーに交換できるようになっていることが好ましい。なお、参照用対物レンズ18と、測定用対物レンズ16は、例えば、同じタイプに対物レンズであり、焦点距離や、光路長のみならず、波面収差特性等の収差特性までも等しくなっている。   The reference mirror 19 is, for example, a flat mirror that is flat and has a reflectance of approximately 100%. Therefore, the reference mirror 19 regularly reflects almost all of the incident light. The reflectance of the reference mirror is preferably approximately the same as the reflectance of the measurement object. If the reflection intensity of the object to be measured and the reference mirror are equal, the contrast of the interference fringes becomes stronger and measurement with less noise becomes possible. Conversely, when the difference in reflectance between the reference mirror and the measurement object is large, the contrast of the interference fringes is deteriorated. Therefore, it is preferable that the reference mirror can be exchanged with a different reflectance in accordance with the reflectance of the measurement object. The reference objective lens 18 and the measurement objective lens 16 are, for example, the same type of objective lens, and are equal not only in focal length and optical path length but also in aberration characteristics such as wavefront aberration characteristics.

参照用ミラー19の裏面側には、焦点調整機構20と角度調整機構21とが取り付けられている。焦点調整機構20は、焦点を調整するためのネジ等を備えている。このネジを回転させることによって、参照用ミラー19が参照用対物レンズ18の光軸に沿って、平行移動する。これにより、参照用対物レンズ18の焦点を参照用ミラー19の表面にあわせることができる。すなわち、参照用ミラー19を参照用対物レンズ18の合焦点位置に配置することができる。焦点調整機構20により焦点合わせが行われる。角度調整機構21は、参照用ミラー19の角度を調整するため、例えば、参照用ミラー19の対角に設けられたネジを備えている。このネジを回転させることによって、参照用ミラー19の反射面の角度を変化させることができる。これにより、測定光と参照光の位相差に基づく干渉縞パターンの疎密を変化させることができる。すなわち、参照用対物レンズ18の光軸に対して傾斜させると、照明位置に応じて光路差が生じる。ここで、傾斜角を大きくすると、光路長の変化が大きくなり、干渉縞パターンの密度が高くなる。このように、角度調整機構21を設けることによって、干渉縞パターンの明部と暗部のピッチを調整することができる。   A focus adjustment mechanism 20 and an angle adjustment mechanism 21 are attached to the back side of the reference mirror 19. The focus adjustment mechanism 20 includes a screw or the like for adjusting the focus. By rotating this screw, the reference mirror 19 is translated along the optical axis of the reference objective lens 18. Thereby, the focus of the reference objective lens 18 can be adjusted to the surface of the reference mirror 19. That is, the reference mirror 19 can be disposed at the focal point position of the reference objective lens 18. Focusing is performed by the focus adjusting mechanism 20. In order to adjust the angle of the reference mirror 19, the angle adjustment mechanism 21 includes, for example, a screw provided at the diagonal of the reference mirror 19. By rotating this screw, the angle of the reflecting surface of the reference mirror 19 can be changed. Thereby, the density of the interference fringe pattern based on the phase difference between the measurement light and the reference light can be changed. That is, when the reference objective lens 18 is tilted with respect to the optical axis, an optical path difference is generated according to the illumination position. Here, when the inclination angle is increased, the change in the optical path length is increased, and the density of the interference fringe pattern is increased. Thus, by providing the angle adjustment mechanism 21, the pitch between the bright part and the dark part of the interference fringe pattern can be adjusted.

次に、測定対象物40で反射した光と、参照用ミラー19で反射した光を検出するための検出光学系について説明する。上述したように、本実施の形態に係る粗さ測定装置100には、マイケルソン型干渉計が挿入されている。マイケルソン型干渉計には、測定用対物レンズ16と参照用対物レンズ18が配設されている。   Next, a detection optical system for detecting light reflected by the measurement object 40 and light reflected by the reference mirror 19 will be described. As described above, a Michelson interferometer is inserted in the roughness measuring apparatus 100 according to the present embodiment. The Michelson interferometer is provided with a measurement objective lens 16 and a reference objective lens 18.

測定対象物40で反射した測定光は、測定用対物レンズ16に入射する。そして、測定光は、測定用対物レンズ16を介して、ビームスプリッタ15に入射する。ビームスプリッタ15は、上述の通り、偏光状態によらず、入射光を略1:1に分岐する。従って、入射した測定光の略半分は、ビームスプリッタ15を透過する。一方、参照用ミラー19で反射した参照光は、参照用対物レンズ18に入射する。すなわち、参照用ミラー19は、参照用対物レンズ18で集光された光ビームを反射して、参照用対物レンズ18に参照光として入射させる。そして、参照光は、参照用対物レンズ18を介してビームスプリッタ15に入射する。入射した参照光の略半分は、ビームスプリッタ15で反射される。   The measurement light reflected by the measurement object 40 enters the measurement objective lens 16. Then, the measurement light enters the beam splitter 15 via the measurement objective lens 16. As described above, the beam splitter 15 branches the incident light substantially 1: 1 regardless of the polarization state. Accordingly, approximately half of the incident measurement light passes through the beam splitter 15. On the other hand, the reference light reflected by the reference mirror 19 enters the reference objective lens 18. That is, the reference mirror 19 reflects the light beam collected by the reference objective lens 18 and makes it incident on the reference objective lens 18 as reference light. The reference light then enters the beam splitter 15 via the reference objective lens 18. Approximately half of the incident reference light is reflected by the beam splitter 15.

従って、ビームスプリッタ15によって測定光と参照光とが合成され、1本の光ビームとなる。ここで、ビームスプリッタ15によって、合成された1本の光ビームを合成波とする。すなわち、測定光と参照光とが、ビームスプリッタ15によって合成されることによって、合成光が生成される。このように、マイケルソン型干渉計では、照明光がビームスプリッタ15で分岐されるとともに、測定対象物40で反射した測定光と、参照用ミラー19で反射された参照光とがビームスプリッタ15で1本の光ビームに合成される。   Accordingly, the measurement light and the reference light are combined by the beam splitter 15 to form one light beam. Here, one light beam combined by the beam splitter 15 is used as a combined wave. That is, the measurement light and the reference light are combined by the beam splitter 15 to generate combined light. As described above, in the Michelson interferometer, the illumination light is branched by the beam splitter 15, and the measurement light reflected by the measurement object 40 and the reference light reflected by the reference mirror 19 are transmitted by the beam splitter 15. It is synthesized into one light beam.

ビームスプリッタ15から出射した合成光は上方に進み、ビームスプリッタ14に入射する。ビームスプリッタ14は、上述の通り、偏光状態によらず、入射光を略1:1に分岐する。従って、ビームスプリッタ14に入射した合成光のうち、略半分が透過する。すなわち、ビームスプリッタ14に入射した測定光の略半分と参照光の略半分とが、ビームスプリッタ14を透過する。このビームスプリッタ14によって、合成光と照明光とを分岐することができる。すなわち、照明光の光路から合成光が分離される。   The combined light emitted from the beam splitter 15 travels upward and enters the beam splitter 14. As described above, the beam splitter 14 branches the incident light approximately 1: 1 regardless of the polarization state. Accordingly, approximately half of the combined light incident on the beam splitter 14 is transmitted. That is, approximately half of the measurement light incident on the beam splitter 14 and approximately half of the reference light pass through the beam splitter 14. By this beam splitter 14, the combined light and the illumination light can be branched. That is, the combined light is separated from the optical path of the illumination light.

照明光から分離された合成光は、レンズ22を介して光検出器23に入射する。レンズ22は、光検出器23の受光面に合成光を結像させる。光検出器23は、例えば、CCDセンサであり、検出画素となる受光素子が設けられたものを用いることができる。光検出器23では、受光した光量に応じた信号電荷が画素ごとに蓄積される。ステージ17をZ方向に駆動して測定対象物40上を走査することにより、測定光と参照光とに複数の位相差を与え、複数の干渉縞パターンを撮像することができる。   The combined light separated from the illumination light enters the photodetector 23 via the lens 22. The lens 22 forms an image of the combined light on the light receiving surface of the photodetector 23. The photodetector 23 is, for example, a CCD sensor, and can be one provided with a light receiving element serving as a detection pixel. In the photodetector 23, signal charges corresponding to the amount of received light are accumulated for each pixel. By driving the stage 17 in the Z direction and scanning the measurement object 40, a plurality of phase differences can be given to the measurement light and the reference light, and a plurality of interference fringe patterns can be imaged.

光検出器23は、入射した光の強度に応じた検出信号を処理装置30の粗さ算出部33に出力する。光検出器23からの検出信号は、処理装置30に入力される。処理装置30に出力された検出信号の強度が、測定光と参照光の位相差に応じた干渉光強度に基づくものとなる。処理装置30は、例えば、検出信号をA/D変換して、メモリ34に記憶させる。粗さ算出部33は、メモリ34に記憶された画素ごとの検出信号に対応する干渉光強度に応じた測定光と参照光との位相差から、測定対象物40の基板41上に透明膜42が形成された透明膜形成面の見かけの表面粗さを算出する。そして、透明膜形成面の見かけの表面粗さに基づいて、透明膜42と基板41との界面、透明膜42と空気との界面(透明膜42の表面)の粗さを算出する。この粗さ算出部33での処置については後述する。なお、処理装置30は物理的に単一な装置に限るものではない。   The photodetector 23 outputs a detection signal corresponding to the intensity of the incident light to the roughness calculation unit 33 of the processing device 30. A detection signal from the photodetector 23 is input to the processing device 30. The intensity of the detection signal output to the processing device 30 is based on the interference light intensity corresponding to the phase difference between the measurement light and the reference light. For example, the processing device 30 performs A / D conversion on the detection signal and stores it in the memory 34. The roughness calculation unit 33 uses the transparent film 42 on the substrate 41 of the measurement object 40 based on the phase difference between the measurement light and the reference light corresponding to the interference light intensity corresponding to the detection signal for each pixel stored in the memory 34. The apparent surface roughness of the transparent film forming surface on which is formed is calculated. Then, based on the apparent surface roughness of the transparent film forming surface, the roughness of the interface between the transparent film 42 and the substrate 41 and the interface between the transparent film 42 and air (the surface of the transparent film 42) are calculated. The treatment in the roughness calculation unit 33 will be described later. Note that the processing device 30 is not limited to a physically single device.

ここで、透明膜42に覆われた基板41の粗さ測定方法について説明する。一般的に、固体の表面粗さは、触針式の粗さ計や原子間力顕微鏡、共焦点顕微鏡、光干渉計などにより測定されている。光学式の測定法は、表面粗さを非破壊・非接触で測定できる利点があるが、透明物質からなる膜の場合は光が表面を透過するため通常は適用できない。そこで、本発明においては、上述の光干渉計を用いた、透明膜の表面粗さの測定方法を提案する。なお、以下の説明において、透明膜42表面からの反射光は、基板41からの反射光に比べて十分に弱いものとする。基板41の反射光と透明膜42内での多重反射光との干渉は、位相シフト干渉法による測定では原理的にキャンセルできる。   Here, a method for measuring the roughness of the substrate 41 covered with the transparent film 42 will be described. In general, the surface roughness of a solid is measured by a stylus roughness meter, an atomic force microscope, a confocal microscope, an optical interferometer, or the like. The optical measurement method has an advantage that the surface roughness can be measured in a non-destructive and non-contact manner, but in the case of a film made of a transparent material, it is not usually applicable because light passes through the surface. Therefore, in the present invention, a method for measuring the surface roughness of the transparent film using the above-described optical interferometer is proposed. In the following description, it is assumed that the reflected light from the surface of the transparent film 42 is sufficiently weaker than the reflected light from the substrate 41. The interference between the reflected light of the substrate 41 and the multiple reflected light in the transparent film 42 can be canceled in principle by measurement using the phase shift interferometry.

初めに、空気中での固体表面に関する1次元の表面粗さについて考える。JIS規格の二乗平均平方根粗さ(Rq)の定義を以下に示す。表面の高さ分布とその算術平均をそれぞれh(x)、<h>とする。ここで、粗さを計測する区間(基準長さ)を、0≦x≦Lnとすると、Rqは式(1)となる。

Figure 2009036523
Figure 2009036523
First, consider a one-dimensional surface roughness for a solid surface in air. The definition of the root mean square roughness (Rq) of JIS standard is shown below. The height distribution of the surface and the arithmetic mean thereof are defined as h (x) and <h>, respectively. Here, if the section (reference length) for measuring roughness is 0 ≦ x ≦ Ln, Rq is expressed by Equation (1).
Figure 2009036523
Figure 2009036523

光干渉計を使い、透明膜形成面の表面の反射光による干渉強度を測定できる場合には、反射による位相変化を表面形状に換算できるので、上記の定義式に従って、Rqを求めることができる。しかし、図3に模式的に示したような透明膜の場合は、測定された干渉強度はほとんど基板41からの反射光と考えることができる。この場合、基板41からの反射光の位相分布は、空気中における見かけの表面形状として計算することができる。従って、計算されるRqは見かけの値であり、基板41と透明膜42の表面の両方の寄与を含んでいる。すなわち、Rqは、透明膜42の両界面(透明膜42と空気の界面と、透明膜42と基板41の界面)の情報を含んだままの位相情報から算出される、空気との界面の透明膜形成面の見かけの粗さである。   When the interference intensity due to the reflected light on the surface of the transparent film forming surface can be measured using an optical interferometer, the phase change due to the reflection can be converted into the surface shape, so that Rq can be obtained according to the above definition formula. However, in the case of a transparent film as schematically shown in FIG. 3, the measured interference intensity can be considered almost as reflected light from the substrate 41. In this case, the phase distribution of the reflected light from the substrate 41 can be calculated as an apparent surface shape in the air. Therefore, the calculated Rq is an apparent value and includes the contributions of both the substrate 41 and the surface of the transparent film 42. That is, Rq is calculated from phase information that includes information on both interfaces of the transparent film 42 (the interface between the transparent film 42 and the air, and the interface between the transparent film 42 and the substrate 41). It is the apparent roughness of the film forming surface.

透明膜42と基板41の面の幾何学的な高さをそれぞれ図4のようにg(x)、f(x)とする。透明膜と基板のx=0での距離をdとし、透明膜の表面形状と基板の形状をα(x)、β(x)とする。

Figure 2009036523
Figure 2009036523
The geometrical heights of the transparent film 42 and the surface of the substrate 41 are respectively g (x) and f (x) as shown in FIG. The distance between the transparent film and the substrate at x = 0 is d 0, and the surface shape of the transparent film and the substrate shape are α (x) and β (x).
Figure 2009036523
Figure 2009036523

この場合の基板41と透明膜42のRqをそれぞれRqBase、RqLayerとすると、上述の式(1)、(2)から以下の式となる。

Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
従って、式(5)、(7)より、RqBaseとRqLayerを求めるには、それぞれβ(x)とα(x)とが分かればよく、dには依存しないことがわかる。 In this case, assuming that Rq of the substrate 41 and the transparent film 42 are Rq Base and Rq Layer , respectively, the following equations are obtained from the above equations (1) and (2).
Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
Thus, equation (5) and (7), to determine the Rq Base and Rq Layer, it may be respectively β and (x) alpha and (x) is known, the d 0 seen to be independent.

図4に示したように、透明膜42を透過し基板41からの反射光と、干渉計の参照用ミラー19からの反射光の位相差の分布をφ(x)とする。光源波長をλとし、この波長に対する空気の屈折率と透明膜の屈折率をそれぞれn、nとする。位相の変化は、空気の屈折率n=1とすると、式(9)となる。

Figure 2009036523
As shown in FIG. 4, the distribution of the phase difference between the reflected light from the substrate 41 that passes through the transparent film 42 and the reflected light from the reference mirror 19 of the interferometer is φ (x). Let λ be a light source wavelength, and let n 0 and n 1 be the refractive index of air and the refractive index of the transparent film, respectively. The change in phase is expressed by Equation (9) when the refractive index of air n 0 = 1.
Figure 2009036523

この位相変化を空気中の見かけの高さに換算すると、式(10)になる。

Figure 2009036523
これに式(9)を代入すると、以下の式(11)になる。
Figure 2009036523
When this phase change is converted into an apparent height in the air, Expression (10) is obtained.
Figure 2009036523
Substituting equation (9) into this gives equation (11) below.
Figure 2009036523

このように、h(x)はα(x)とβ(x)の一次結合で表される。従って、h(x)の算術平均は式(12)のように書ける。

Figure 2009036523
Thus, h (x) is represented by a linear combination of α (x) and β (x). Therefore, the arithmetic mean of h (x) can be written as in equation (12).
Figure 2009036523

このhと<h>を2乗平均平方根粗さの式(1)、(2)に代入して計算し、見かけのRqを求める。

Figure 2009036523
Figure 2009036523
Substituting h and <h> into the root mean square roughness formulas (1) and (2), the apparent Rq is obtained.
Figure 2009036523
Figure 2009036523

式(14)を式(1)に代入して、以下のように透明膜形成面の見かけのRqについて計算する。

Figure 2009036523
Substituting Equation (14) into Equation (1), the apparent Rq 2 of the transparent film forming surface is calculated as follows.
Figure 2009036523

このように、見かけの二乗平均平方根粗さRpは、α(x)とβ(x)の2乗平均平方根粗さの1次結合となっていることがわかる。すなわち、表面の粗さRqLayerと基板の粗さRqBaseとの1次結合となることを意味する。従って、式(16)のように、干渉計で測定された透明膜形成面の見かけの表面粗さを、透明膜42の表面の粗さと基板41の粗さの1次結合として表すことができる。

Figure 2009036523
この透明膜形成面の見かけの二乗平均平方根粗さから、透明膜42の表面又は透明膜42と基板41との界面(基板41の表面)の二乗平均平方根粗さを決定することができる。 Thus, it can be seen that the apparent root mean square roughness Rp is a linear combination of the root mean square roughness of α (x) and β (x). That is, it means a primary combination of the surface roughness Rq Layer and the substrate roughness Rq Base . Therefore, as shown in Expression (16), the apparent surface roughness of the transparent film forming surface measured by the interferometer can be expressed as a primary combination of the roughness of the surface of the transparent film 42 and the roughness of the substrate 41. .
Figure 2009036523
From the apparent root mean square roughness of the transparent film forming surface, the root mean square roughness of the surface of the transparent film 42 or the interface between the transparent film 42 and the substrate 41 (the surface of the substrate 41) can be determined.

透明膜42の表面又は透明膜42と基板41との界面の二乗平均平方根粗さは、以下の2通りの場合のように決定することができる。
(1)基板41の粗さが既知の場合
基板41の粗さが既知の場合、透明膜42の表面粗さは以下の式(17)のように書ける。

Figure 2009036523
The root mean square roughness of the surface of the transparent film 42 or the interface between the transparent film 42 and the substrate 41 can be determined as in the following two cases.
(1) When the roughness of the substrate 41 is known When the roughness of the substrate 41 is known, the surface roughness of the transparent film 42 can be written as in the following formula (17).
Figure 2009036523

この式(17)にRqBaseを代入することにより、RqLayerを算出することができる。特に、基板41の粗さが十分小さく無視できる場合には、RqLayerは以下の式(18)のように簡単になる。

Figure 2009036523
Rq Layer can be calculated by substituting Rq Base into this equation (17). In particular, when the roughness of the substrate 41 is sufficiently small and can be ignored, the Rq Layer is simplified as the following formula (18).
Figure 2009036523

また、逆に基板41の粗さが未知で、透明膜42の粗さが既知の場合も同様に、式(16)から、基板41の粗さを求めることができる。この場合には、AFM等を用いて、透明膜42の表面の二乗平均平方根粗さを測定しておくことにより、透明膜42を剥離することなく、基板41の粗さを求めることができる。   On the contrary, when the roughness of the substrate 41 is unknown and the roughness of the transparent film 42 is known, the roughness of the substrate 41 can be similarly obtained from the equation (16). In this case, the roughness of the substrate 41 can be obtained without peeling off the transparent film 42 by measuring the root mean square roughness of the surface of the transparent film 42 using AFM or the like.

(2)基板の粗さと透明膜の粗さの両方が未知の場合、
式(16)は、未知数を2つ含んでいるため、このままではこれ以上解くことはできない。ここで、透明膜の屈折率の波長依存性を利用することを考える。波長λを使った光干渉の測定と同様の測定を、異なる波長λ'で再度行う。照明光の波長を変えるために、波長変換制御部32により、波長変換部12のバンドパスフィルタを切り替える。これにより、上述した第1の波長と異なる第2の波長の照明光を照射することができる。この第2波長の照明光の波長をλ'とする。波長λ'での屈折率をn'とし、見かけの粗さRq'とすると、λ'に関する式(19)が得られる。

Figure 2009036523
(2) When both the roughness of the substrate and the roughness of the transparent film are unknown,
Since equation (16) contains two unknowns, it cannot be solved any further as it is. Here, use of the wavelength dependence of the refractive index of the transparent film is considered. The same measurement as the measurement of optical interference using the wavelength λ is performed again at a different wavelength λ ′. In order to change the wavelength of the illumination light, the wavelength conversion control unit 32 switches the bandpass filter of the wavelength conversion unit 12. Thereby, the illumination light of the 2nd wavelength different from the 1st wavelength mentioned above can be irradiated. The wavelength of the illumination light having the second wavelength is λ ′. Assuming that the refractive index at the wavelength λ ′ is n 1 ′ and the apparent roughness Rq ′, Expression (19) relating to λ ′ is obtained.
Figure 2009036523

式(16)と式(19)とから、以下の連立方程式(20)が得られる。

Figure 2009036523
この連立方程式(20)を解くことで、透明膜42の粗さと、基板41の粗さの両方が得られる。 The following simultaneous equations (20) are obtained from the equations (16) and (19).
Figure 2009036523
By solving this simultaneous equation (20), both the roughness of the transparent film 42 and the roughness of the substrate 41 are obtained.

Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523
Figure 2009036523

従って、実際に干渉計で位相測定した結果から得られる見かけの粗さの値を、2つの波長で別々に測定し、式(23)、式(24)に直接代入すれば、透明膜42の表面と基板41の二乗平均平方根粗さをそれぞれ独立に計算することができる。波長による見かけの粗さの違いは小さいが、位相シフト干渉法などの高分解能の位相測定をすることで差異を検出できると考えられる。また、透明膜42の表面反射と基板41の反射光同士の内部干渉は、位相シフト干渉法によりキャンセルできる。   Therefore, if the apparent roughness value obtained from the actual phase measurement result by the interferometer is measured separately at the two wavelengths and directly substituted into the equations (23) and (24), the transparent film 42 The root mean square roughness of the surface and the substrate 41 can be calculated independently. Although the difference in apparent roughness due to the wavelength is small, it is considered that the difference can be detected by performing high-resolution phase measurement such as phase shift interferometry. Further, the internal interference between the surface reflection of the transparent film 42 and the reflected light of the substrate 41 can be canceled by the phase shift interferometry.

なお、上述の説明においては、実際に干渉計で位相測定した結果から得られる見かけの粗さの値を、2つの波長で別々に測定し、透明膜42の表面と基板41の二乗平均平方根粗さをそれぞれ独立に計算したが、これに限定されるものではない。例えば、媒質を空気と、空気と十分屈折率の異なる他のガスとし、それぞれの媒質で別々にRqを算出することにより、透明膜42の表面と基板41の二乗平均平方根粗さを求めることができる。これにより、照明光の波長を変化させることなく、透明膜42の両界面の二乗平均平方根粗さを得ることができる。   In the above description, the apparent roughness value obtained from the result of actual phase measurement by the interferometer is measured separately at two wavelengths, and the root mean square roughness of the surface of the transparent film 42 and the substrate 41 is measured. However, the present invention is not limited to this. For example, it is possible to obtain the root mean square roughness of the surface of the transparent film 42 and the substrate 41 by calculating the Rq separately for each medium using air and another gas having a sufficiently different refractive index from the air. it can. Thereby, the root mean square roughness of both interfaces of the transparent film 42 can be obtained without changing the wavelength of the illumination light.

このように、本発明によれば、透明膜の界面の粗さを非接触・非破壊で短時間時測定することができる。また、i線やDUVを使用せず、可視光の光学系を使用することができる。基板粗さと透明膜粗さの合成式により、基板面の粗さをあらかじめ測定しておけば、干渉測定結果から透明膜の粗さを抽出することができる。逆に、透明膜の表面粗が既知であれば、透明膜を剥離することなく、基板面の粗さを抽出することも可能である。干渉測定を2つの波長について独立に行った場合には、透明膜の表面粗さと基板の表面粗さを分離することができ、基板面の粗さと透明膜の表面粗さを同時に決定することもできる。   Thus, according to the present invention, the roughness of the interface of the transparent film can be measured in a short time without contact and nondestructively. Further, a visible light optical system can be used without using i-line or DUV. If the roughness of the substrate surface is measured in advance by a synthesis formula of the substrate roughness and the transparent film roughness, the roughness of the transparent film can be extracted from the interference measurement result. On the contrary, if the surface roughness of the transparent film is known, it is possible to extract the roughness of the substrate surface without peeling off the transparent film. When the interference measurement is performed independently for two wavelengths, the surface roughness of the transparent film and the surface roughness of the substrate can be separated, and the roughness of the substrate surface and the surface roughness of the transparent film can be determined simultaneously. it can.

なお、本発明は、基板41上に透明膜42が1層のみ形成されている場合に限られるものではない。例えば、基板41上に屈折率が異なる複数の透明膜42が形成されている場合にも本発明を適用して、透明膜42の各界面の二乗平均平方根粗さを算出することができる。例えば、透明膜42上に屈折率の異なる第1透明膜が形成されている場合には、照明光の波長を2回切替えて、それぞれの波長に対応する透明膜形成面の見かけの粗さを算出し、3つの1次結合の式を得ることができる。この場合、以下の式(25)に基づいて、各波長での透明膜形成面の二乗平均平方根粗さを算出することにより3つの式を得る。

Figure 2009036523
ここで、Rq:前記透明膜形成面の二乗平均平方根粗さ、RqLayer1:前記第2透明膜と前記媒質との界面の二乗平均平方根粗さ、RqLayer2:前記透明膜と前記第2透明膜との界面の二乗平均平方根粗さ、RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ、n2:前記透明膜の屈折率、n:前記第2透明膜の屈折率、n:前記媒質の屈折率とする。この3式の連立方程式を解くことにより、基板と1層目の透明膜の界面、1層目と2層目の透明膜の界面、2層目の透明膜の表面(2層目の透明膜と空気の界面)それぞれの二乗平均平方根粗さを決定することができる。 The present invention is not limited to the case where only one layer of the transparent film 42 is formed on the substrate 41. For example, when a plurality of transparent films 42 having different refractive indexes are formed on the substrate 41, the present invention can be applied to calculate the root mean square roughness of each interface of the transparent film 42. For example, when the first transparent film having a different refractive index is formed on the transparent film 42, the wavelength of the illumination light is switched twice, and the apparent roughness of the transparent film forming surface corresponding to each wavelength is changed. It is possible to calculate and obtain three linear combinations. In this case, three equations are obtained by calculating the root mean square roughness of the transparent film forming surface at each wavelength based on the following equation (25).
Figure 2009036523
Here, Rq: root mean square roughness of the transparent film forming surface, Rq Layer1 : root mean square roughness of the interface between the second transparent film and the medium, Rq Layer2 : the transparent film and the second transparent film Mean square root roughness of the interface between the transparent film and the substrate, Rq Base : root mean square roughness of the interface between the transparent film and the substrate, n 2 : refractive index of the transparent film, n 1 : refractive index of the second transparent film. , N 0 : Refractive index of the medium. By solving these three simultaneous equations, the interface between the substrate and the first transparent film, the interface between the first and second transparent films, the surface of the second transparent film (the second transparent film) The root mean square roughness of each of the air and air interfaces) can be determined.

なお、上述したように、波長を切替える代わりに、媒質を屈折率の異なる他のガスに置き換えて、それぞれの媒質で見かけの粗さを算出することにより、基板と1層目の透明膜の界面、1層目と2層目の透明膜の界面、2層目の透明膜の表面(2層目の透明膜と空気の界面)それぞれの二乗平均平方根粗さを決定することも可能である。   As described above, instead of switching the wavelength, the medium is replaced with another gas having a different refractive index, and the apparent roughness of each medium is calculated, whereby the interface between the substrate and the first transparent film is calculated. It is also possible to determine the root mean square roughness of the interface between the first and second transparent films and the surface of the second transparent film (interface between the second transparent film and air).

また、透明基板上に形成された透明膜の界面の二乗平均平方根粗さの測定を行う場合には、マッハツェンダー干渉計、トワイマングリーン干渉計等、試料を透過した光と参照光との干渉縞強度により粗さ測定を行う二光束干渉計を用いることができる。   In addition, when measuring the root mean square roughness of the interface of the transparent film formed on the transparent substrate, interference between the light transmitted through the sample and the reference light, such as a Mach-Zehnder interferometer and a Twyman green interferometer, is performed. A two-beam interferometer that measures roughness by the fringe intensity can be used.

実施の形態に係る粗さ測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the roughness measuring apparatus which concerns on embodiment. 実施の形態に係る粗さ測定装置の処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the processing apparatus of the roughness measuring apparatus which concerns on embodiment. 測定装置測定対象物の構成を模式的に示す図である。It is a figure which shows typically the structure of a measuring device measuring object. 測定対象物の高さを示す図である。It is a figure which shows the height of a measuring object.

符号の説明Explanation of symbols

11 光源
12 波長変換部
13、22 レンズ
14、15 ビームスプリッタ
16 測定用対物レンズ
17 ステージ
18 参照用対物レンズ
19 参照用ミラー
20 焦点調整機構
21 角度調整機構
23 光検出器
30 処理装置
31 ステージ駆動部
32 波長変換制御部
33 粗さ算出部
34 メモリ
40 測定対象物
41 基板
42 透明膜
DESCRIPTION OF SYMBOLS 11 Light source 12 Wavelength conversion part 13, 22 Lens 14, 15 Beam splitter 16 Measurement objective lens 17 Stage 18 Reference objective lens 19 Reference mirror 20 Focus adjustment mechanism 21 Angle adjustment mechanism 23 Photo detector 30 Processing device 31 Stage drive part 32 Wavelength conversion control unit 33 Roughness calculation unit 34 Memory 40 Measurement object 41 Substrate 42 Transparent film

Claims (16)

基板上に形成された透明膜の界面の二乗平均平方根粗さを測定する測定方法であって、
前記透明膜が形成された前記基板の透明膜形成面及び参照面に干渉性を有する第1波長の光を照射し、
前記透明膜形成面で反射された測定光と、前記参照面で反射された参照光とを合成した干渉光を受光し、
前記干渉光の強度変化に基づいて、前記測定光と前記参照光との位相差から、前記透明膜形成面の二乗平均平方根粗さを算出し、
前記透明膜形成面の二乗平均平方根粗さに基づいて、前記透明膜の界面の二乗平均平方根粗さを決定する粗さ測定方法。
A measurement method for measuring a root mean square roughness of an interface of a transparent film formed on a substrate,
Irradiating light having a first wavelength having interference to the transparent film forming surface and the reference surface of the substrate on which the transparent film is formed,
Receiving interference light obtained by combining the measurement light reflected by the transparent film forming surface and the reference light reflected by the reference surface;
Based on the intensity change of the interference light, from the phase difference between the measurement light and the reference light, calculate the root mean square roughness of the transparent film forming surface,
The roughness measuring method which determines the root mean square roughness of the interface of the said transparent film based on the root mean square roughness of the said transparent film formation surface.
前記第1波長と異なる第2波長の光を前記透明膜形成面及び前記参照面に照射し、
前記第1波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さと、前記第2波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定する請求項1に記載の粗さ測定方法。
Irradiating the transparent film forming surface and the reference surface with light having a second wavelength different from the first wavelength;
Based on the root mean square roughness of the transparent film forming surface calculated by irradiating the first wavelength and the root mean square roughness of the transparent film forming surface calculated by irradiating the second wavelength. The roughness measurement method according to claim 1, wherein the root mean square roughness of both interfaces of the transparent film is determined simultaneously.
前記透明膜の界面の二乗平均平方根粗さは、前記第1波長及び前記第2波長のそれぞれで求められる以下の式、
Figure 2009036523
に基づいて算出されることを特徴とする請求項2に記載の粗さ測定方法。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer:前記透明膜と媒質との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
:前記透明膜の屈折率
:前記媒質の屈折率
とする。
The root mean square roughness of the interface of the transparent film is calculated by the following formulas obtained for each of the first wavelength and the second wavelength:
Figure 2009036523
The roughness measuring method according to claim 2, wherein the roughness measuring method is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer : root mean square roughness of the interface between the transparent film and the medium Rq Base : root mean square roughness n 1 of the interface between the transparent film and the substrate : Refractive index n 0 of the transparent film: Refractive index of the medium.
第1媒質中での前記透明膜形成面の二乗平均平方根粗さと、前記第1媒質の屈折率と異なる第2媒質中での前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定する請求項1に記載の粗さ測定方法。   Based on the root mean square roughness of the transparent film forming surface in the first medium and the root mean square roughness of the transparent film forming surface in the second medium different from the refractive index of the first medium, the transparent The roughness measuring method according to claim 1, wherein the root mean square roughness of both interfaces of the film is determined simultaneously. 前記透明膜の界面の二乗平均平方根粗さは、以下の2式、
Figure 2009036523
Figure 2009036523
に基づいて算出されることを特徴とする請求項4に記載の粗さ測定方法。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer:前記透明膜と前記第1媒質又は前記第2媒質との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
:前記透明膜の屈折率
:前記第1媒質の屈折率
':前記第2媒質の屈折率
とする。
The root mean square roughness of the transparent film interface is expressed by the following two formulas:
Figure 2009036523
Figure 2009036523
The roughness measuring method according to claim 4, wherein the roughness measuring method is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer : root mean square roughness of the interface between the transparent film and the first medium or the second medium Rq Base : interface between the transparent film and the substrate Root mean square roughness n 1 : Refractive index n 0 of the transparent film: Refractive index n 0 ′ of the first medium: Refractive index of the second medium.
前記透明膜形成面と前記参照面との光学的距離を変動させ、前記測定光と前記参照光との間に複数の位相差を与え、前記干渉光の強度変化を生じさせることを特徴とする請求項1〜5のいずれか1項に記載の粗さ測定方法。   The optical distance between the transparent film forming surface and the reference surface is varied to give a plurality of phase differences between the measurement light and the reference light, thereby causing a change in intensity of the interference light. The roughness measuring method of any one of Claims 1-5. 前記透明膜上に形成され、前記透明膜と屈折率の異なる第2透明膜を備え、
前記第1波長及び前記第2波長と異なる第3波長の光をさらに照射し、
前記第3波長の光を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さに基づいて、前記第2透明膜の界面の二乗平均平方根粗さを決定することを特徴とする請求項1〜6のいずれか1項に記載の粗さ測定方法。
A second transparent film formed on the transparent film and having a refractive index different from that of the transparent film;
Further irradiating light having a third wavelength different from the first wavelength and the second wavelength,
The root mean square roughness of the interface of the second transparent film is determined based on the root mean square roughness of the transparent film forming surface calculated by irradiating with the light of the third wavelength. The roughness measuring method of any one of Claims 1-6.
前記第2透明膜の界面の二乗平均平方根粗さは、前記第1波長、前記第2波長及び前記第3波長のそれぞれで求められる以下の式、
Figure 2009036523
に基づいて算出されることを特徴とする請求項7に記載の粗さ測定方法。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer1:前記第2透明膜と前記媒質との界面の二乗平均平方根粗さ
RqLayer2:前記透明膜と前記第2透明膜との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
2:前記透明膜の屈折率
:前記第2透明膜の屈折率
:前記媒質の屈折率
とする。
The root mean square roughness of the interface of the second transparent film is calculated by the following formulas obtained for each of the first wavelength, the second wavelength, and the third wavelength:
Figure 2009036523
The roughness measurement method according to claim 7, wherein the roughness measurement method is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer1 : root mean square roughness of the interface between the second transparent film and the medium Rq Layer2 : square of the interface between the transparent film and the second transparent film Average square root roughness Rq Base : root mean square roughness n 2 of the interface between the transparent film and the substrate n 2 : refractive index of the transparent film n 1 : refractive index of the second transparent film n 0 : refractive index of the medium And
基板上に形成された透明膜の界面の二乗平均平方根粗さを測定するための粗さ測定装置であって、
前記透明膜が形成された基板の透明膜形成面及び参照面に干渉性を有する第1波長の光を照射する光源と、
前記透明膜形成面で反射された測定光と、参照面で反射された参照光とを合成した干渉光を受光する光検出器と、
前記光検出器で受光された干渉光の強度変化に基づいて、前記測定光と前記参照光との位相差から、前記透明膜形成面の二乗平均平方根粗さを算出し、前記透明膜の界面の二乗平均平方根粗さを決定する算出部とを備える粗さ測定装置。
A roughness measuring device for measuring a root mean square roughness of an interface of a transparent film formed on a substrate,
A light source for irradiating light having a first wavelength having coherence on a transparent film forming surface and a reference surface of the substrate on which the transparent film is formed;
A photodetector that receives interference light obtained by combining the measurement light reflected by the transparent film forming surface and the reference light reflected by the reference surface;
Based on the intensity change of the interference light received by the photodetector, the root mean square roughness of the transparent film forming surface is calculated from the phase difference between the measurement light and the reference light, and the interface of the transparent film A roughness measuring apparatus comprising: a calculating unit that determines a root mean square roughness of
前記光源は、前記第1波長と異なる第2波長の光を前記透明膜形成面及び前記参照面に照射し、
前記算出部は、前記第1波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さと、前記第2波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを決定する請求項9に記載の粗さ測定装置。
The light source irradiates the transparent film forming surface and the reference surface with light having a second wavelength different from the first wavelength,
The calculation unit includes a root mean square roughness of the transparent film forming surface calculated by irradiating the first wavelength and a root mean square of the transparent film forming surface calculated by irradiating the second wavelength. The roughness measuring apparatus according to claim 9, wherein the root mean square roughness of both interfaces of the transparent film is determined based on the roughness.
前記算出部は、以下の式、
Figure 2009036523
に基づいて前記透明膜の界面の二乗平均平方根粗さを算出することを特徴とする請求項9又は10に記載の粗さ測定装置。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer:前記透明膜と媒質との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
:前記透明膜の屈折率
:前記媒質の屈折率
とする。
The calculation unit has the following formula:
Figure 2009036523
The roughness measuring apparatus according to claim 9 or 10, wherein the root mean square roughness of the interface of the transparent film is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer : root mean square roughness of the interface between the transparent film and the medium Rq Base : root mean square roughness n 1 of the interface between the transparent film and the substrate : Refractive index n 0 of the transparent film: Refractive index of the medium.
前記算出部は、第1媒質中での前記透明膜形成面の二乗平均平方根粗さと、前記第1媒質の屈折率と異なる第2媒質中での前記透明膜形成面の二乗平均平方根粗さとに基づいて、前記透明膜の両界面の二乗平均平方根粗さを同時に決定する請求項9に記載の粗さ測定装置。   The calculating unit calculates a root mean square roughness of the transparent film forming surface in the first medium and a root mean square roughness of the transparent film forming surface in the second medium different from the refractive index of the first medium. The roughness measuring apparatus according to claim 9, wherein the root mean square roughness of both interfaces of the transparent film is simultaneously determined based on the basis. 前記算出部は、以下の2式、
Figure 2009036523
Figure 2009036523
に基づいて、前記透明膜の界面の二乗平均平方根粗さを算出することを特徴とする請求項12に記載の粗さ測定方法。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer:前記透明膜と前記第1媒質又は前記第2媒質との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
:前記透明膜の屈折率
:前記第1媒質の屈折率
':前記第2媒質の屈折率
とする。
The calculation unit includes the following two formulas:
Figure 2009036523
Figure 2009036523
The roughness measuring method according to claim 12, wherein the root mean square roughness of the interface of the transparent film is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer : root mean square roughness of the interface between the transparent film and the first medium or the second medium Rq Base : interface between the transparent film and the substrate Root mean square roughness n 1 : Refractive index n 0 of the transparent film: Refractive index n 0 ′ of the first medium: Refractive index of the second medium.
前記参照面と前記透明膜形成面との光学的距離を変動させる変動機構をさらに備え、前記測定光と前記参照光との間に複数の位相差を与え、前記干渉光の強度変化を生じさせることを特徴とする請求項9〜13のいずれか1項に記載の粗さ測定装置。   A variation mechanism that varies an optical distance between the reference surface and the transparent film forming surface is further provided, and a plurality of phase differences are provided between the measurement light and the reference light, thereby causing a change in the intensity of the interference light. The roughness measuring apparatus according to claim 9, wherein 前記透明膜形成面の透明膜上に、前記透明膜と屈折率の異なる第2透明膜が形成され、
前記光源は、前記第1波長及び前記第2波長と異なる第3波長の光を照射し、
前記算出部は、前記第3の波長を照射することにより算出された前記透明膜形成面の二乗平均平方根粗さに基づいて、前記第2透明膜の界面の二乗平均平方根粗さを決定することを特徴とする請求項9〜14のいずれか1項に記載の粗さ測定装置。
A second transparent film having a refractive index different from that of the transparent film is formed on the transparent film on the transparent film forming surface,
The light source emits light of a third wavelength different from the first wavelength and the second wavelength,
The calculation unit determines the root mean square roughness of the interface of the second transparent film based on the root mean square roughness of the transparent film forming surface calculated by irradiating the third wavelength. The roughness measuring apparatus according to any one of claims 9 to 14, wherein:
前記算出部は、以下の式、
Figure 2009036523
に基づいて前記第2透明膜の界面の二乗平均平方根粗さを算出することを特徴とする請求項15に記載の粗さ測定装置。
ここで、
Rq:前記透明膜形成面の二乗平均平方根粗さ
RqLayer1:前記第2透明膜と前記媒質との界面の二乗平均平方根粗さ
RqLayer2:前記透明膜と前記第2透明膜との界面の二乗平均平方根粗さ
RqBase:前記透明膜と前記基板との界面の二乗平均平方根粗さ
2:前記透明膜の屈折率
:前記第2透明膜の屈折率
:前記媒質の屈折率
とする。
The calculation unit has the following formula:
Figure 2009036523
The roughness measuring apparatus according to claim 15, wherein the root mean square roughness of the interface of the second transparent film is calculated based on
here,
Rq: root mean square roughness of the transparent film forming surface Rq Layer1 : root mean square roughness of the interface between the second transparent film and the medium Rq Layer2 : square of the interface between the transparent film and the second transparent film Average square root roughness Rq Base : root mean square roughness n 2 of the interface between the transparent film and the substrate n 2 : refractive index of the transparent film n 1 : refractive index of the second transparent film n 0 : refractive index of the medium And
JP2007198519A 2007-07-31 2007-07-31 Roughness measuring method and roughness measuring apparatus Expired - Fee Related JP5239049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198519A JP5239049B2 (en) 2007-07-31 2007-07-31 Roughness measuring method and roughness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198519A JP5239049B2 (en) 2007-07-31 2007-07-31 Roughness measuring method and roughness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009036523A true JP2009036523A (en) 2009-02-19
JP5239049B2 JP5239049B2 (en) 2013-07-17

Family

ID=40438585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198519A Expired - Fee Related JP5239049B2 (en) 2007-07-31 2007-07-31 Roughness measuring method and roughness measuring apparatus

Country Status (1)

Country Link
JP (1) JP5239049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190117A1 (en) * 2015-05-25 2016-12-01 日本電気硝子株式会社 Surface roughness evaluation method, surface roughness evaluation device, and glass substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274051A (en) * 1988-09-09 1990-03-14 Fujitsu Ltd Evaluation of haze of surface of semiconductor wafer
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film
JP2003065723A (en) * 2001-08-24 2003-03-05 Toshiba Corp Optical measuring apparatus, optical measuring method, optical method for detecting thickness of film, and semiconductor manufacturing method
JP2003329586A (en) * 2002-03-07 2003-11-19 Ricoh Co Ltd Method and apparatus for predicting specular glossiness
JP2004361218A (en) * 2003-06-04 2004-12-24 Toray Eng Co Ltd Method for measuring surface profile and/or film thickness and its apparatus
JP2009115503A (en) * 2007-11-02 2009-05-28 Lasertec Corp Method and device for measuring roughness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274051A (en) * 1988-09-09 1990-03-14 Fujitsu Ltd Evaluation of haze of surface of semiconductor wafer
JPH06160071A (en) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd Apparatus for measuring thickness of wet paint film
JP2003065723A (en) * 2001-08-24 2003-03-05 Toshiba Corp Optical measuring apparatus, optical measuring method, optical method for detecting thickness of film, and semiconductor manufacturing method
JP2003329586A (en) * 2002-03-07 2003-11-19 Ricoh Co Ltd Method and apparatus for predicting specular glossiness
JP2004361218A (en) * 2003-06-04 2004-12-24 Toray Eng Co Ltd Method for measuring surface profile and/or film thickness and its apparatus
JP2009115503A (en) * 2007-11-02 2009-05-28 Lasertec Corp Method and device for measuring roughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190117A1 (en) * 2015-05-25 2016-12-01 日本電気硝子株式会社 Surface roughness evaluation method, surface roughness evaluation device, and glass substrate

Also Published As

Publication number Publication date
JP5239049B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US7545510B2 (en) Method of characterizing transparent thin-films using differential optical sectioning interference microscopy
TWI420068B (en) Interferometry for lateral metrology
US5923423A (en) Heterodyne scatterometer for detecting and analyzing wafer surface defects
TWI439661B (en) Generating model signals for interferometry
JP4521028B2 (en) Dual-use optical side meter
JP3741472B2 (en) Object surface shape measuring method and system using large equivalent wavelength
US7102761B2 (en) Scanning interferometry
JP6750793B2 (en) Film thickness measuring device and film thickness measuring method
JP2011154042A (en) Wavefront operation and improved 3d measuring apparatus
JP2021515218A (en) Multi-layer stack measurement
JP2005538359A (en) Interferometry for ellipsometry, reflected light and scattered light measurements, including characterization of thin film structures
TWI436029B (en) Three dimensional surface profilometer and microscopy, and the method using the same
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
JP5268425B2 (en) Surface shape measuring apparatus and exposure apparatus
JP3287517B2 (en) Measurement method and apparatus using interference fringes
JP2006266841A (en) Method for measuring shape and step through interference fringes
JP5428538B2 (en) Interfering device
JP3764208B2 (en) Method and apparatus for characterizing a multilayer coating structure and measuring the distance between two faces facing the coating
JP2009115503A (en) Method and device for measuring roughness
JP2009020448A (en) Surface profile measuring device and surface profile measuring method
KR102285818B1 (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
JP4988577B2 (en) Interference system with a reference surface having a specular area
JP2009115474A (en) Method and device for observing multilayer film structure
JP2012042218A (en) Defect inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees