JP2009033100A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009033100A
JP2009033100A JP2008053316A JP2008053316A JP2009033100A JP 2009033100 A JP2009033100 A JP 2009033100A JP 2008053316 A JP2008053316 A JP 2008053316A JP 2008053316 A JP2008053316 A JP 2008053316A JP 2009033100 A JP2009033100 A JP 2009033100A
Authority
JP
Japan
Prior art keywords
circuit board
semiconductor device
thermal expansion
electronic component
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053316A
Other languages
Japanese (ja)
Other versions
JP5012577B2 (en
Inventor
Masahiro Ishibashi
正博 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008053316A priority Critical patent/JP5012577B2/en
Publication of JP2009033100A publication Critical patent/JP2009033100A/en
Application granted granted Critical
Publication of JP5012577B2 publication Critical patent/JP5012577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which does not use Sn-Pb based solder and which has less warpages. <P>SOLUTION: The semiconductor device 1 includes a circuit board 2, electronic component 3, and a lead-free soldered jointing member 4. The circuit board 2 has a circuit board side electrode 5. The electronic component 3 is mounted on the circuit board 2. The lead-free soldered jointing member 4 consists of metal other than lead, and connects the circuit board side electrode 5 of the circuit board 2 and the electronic component 3. A thermal expansion suppressing member 6 for suppressing the thermal expansion of the circuit board 2 is provided in the circuit board 2. Moreover, a stress-relaxing member 7 for relaxing the stresses generated in the circuit board side electrode 5 of the circuit board 2 is provided at the circuit board side electrode 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回路基板と電子部品とで構成された半導体装置の構造に関する。   The present invention relates to a structure of a semiconductor device composed of a circuit board and an electronic component.

半導体装置は、回路基板および回路基板に載置された電子部品で構成されており、回路基板と電子部品とは、はんだによって接合されている。はんだに供給される熱によって、はんだと接続されている回路基板および電子部品は熱膨張する。通常、電子部品は基板としてシリコンを含んでおり、回路基板にはシリコンの熱膨張係数(3×10-6[/℃])より大きい熱膨張係数(15×10-6[/℃])を有する樹脂材料が多く使用されている。熱膨張係数が異なる部材同士を接合し、その接合された材料に温度変化を与えた場合には、部材に反りが生じる。部材間の熱膨張係数の差が大きく、かつ温度変化量が大きいほど、部材の反りの量は大きくなる。半導体装置は、電子部品と回路基板をはんだで接続後、室温まで冷却して使用する。このため、半導体装置には、回路基板と電子部品との間の熱膨張係数の差に起因する反りが生じる。 The semiconductor device is composed of a circuit board and an electronic component placed on the circuit board, and the circuit board and the electronic component are joined by solder. The circuit board and the electronic component connected to the solder are thermally expanded by the heat supplied to the solder. Usually, an electronic component contains silicon as a substrate, and the circuit substrate has a thermal expansion coefficient (15 × 10 −6 [/ ° C.]) larger than that of silicon (3 × 10 −6 [/ ° C.]). Many resin materials are used. When members having different thermal expansion coefficients are joined together and a temperature change is given to the joined materials, the members warp. The greater the difference in thermal expansion coefficient between members and the greater the amount of temperature change, the greater the amount of warping of the member. A semiconductor device is used by connecting an electronic component and a circuit board with solder and then cooling to room temperature. For this reason, the semiconductor device is warped due to a difference in thermal expansion coefficient between the circuit board and the electronic component.

この反りをなくすために、変形しやすい(すなわち応力緩和しやすい)Sn−Pb系はんだを接合材として使用することで、回路基板および電子部品の内部に生じる応力を好適に緩和させることが広く行われてきた。   In order to eliminate this warpage, it is widely practiced to suitably relieve the stress generated in the circuit board and the electronic component by using Sn-Pb solder that is easily deformed (that is, stress is easily relieved) as a bonding material. I have been.

例えば、特許文献1で開示される半導体装置(図4参照)は、Sn−Pb系はんだ105によってデイスク102と接合される半導体素子101と、Sn−Pb系はんだ105によってデイスク102と接合される絶縁基板103とで構成されている。デイスク102にはCu−C材が用いられ、炭素繊維の含有量を変えることで熱膨張係数を半導体素子101または絶縁基板103に近付けている。さらに、デイスク102の内部で生じる応力を緩和させる機能を有するCuメッキをデイスク102の表面に施している。以上のように半導体装置を構成することで、半導体素子101と絶縁基板103との間の熱膨張係数の差に基づいて生じる半導体装置全体の反りをなくすことができている。
特開昭57−130441号公報
For example, the semiconductor device disclosed in Patent Document 1 (see FIG. 4) includes a semiconductor element 101 bonded to the disk 102 by the Sn—Pb solder 105 and an insulation bonded to the disk 102 by the Sn—Pb solder 105. And a substrate 103. A Cu—C material is used for the disk 102, and the thermal expansion coefficient is brought close to that of the semiconductor element 101 or the insulating substrate 103 by changing the content of carbon fiber. Further, Cu plating having a function of relieving stress generated inside the disk 102 is applied to the surface of the disk 102. By configuring the semiconductor device as described above, it is possible to eliminate the warpage of the entire semiconductor device that occurs based on the difference in thermal expansion coefficient between the semiconductor element 101 and the insulating substrate 103.
Japanese Patent Laid-Open No. 57-130441

しかし、特許文献1に開示された半導体装置には次のような問題がある。すなわち、接合材としてSn−Pb系はんだが使えないという問題である。その理由は、Pb(鉛)は人体に有害であり、近年は欧州連合や中国などで規制が厳しく日本国内でも使用を自粛しているためである。   However, the semiconductor device disclosed in Patent Document 1 has the following problems. That is, there is a problem that Sn—Pb solder cannot be used as a bonding material. The reason is that Pb (lead) is harmful to the human body, and in recent years, regulations are severe in the European Union, China, etc., and the use is restricted in Japan.

上記事情により、電子部品と電子部品が載置される回路基板とを有する従来の代表的な半導体装置の接合には、鉛を含まない鉛フリーはんだが用いられている。   Due to the above circumstances, lead-free solder that does not contain lead is used for the joining of a conventional typical semiconductor device having an electronic component and a circuit board on which the electronic component is placed.

しかしながら、鉛フリーはんだは通常、Sn−Pb系はんだよりも固く、力を受けても変形しにくい(すなわち応力緩和しにくい)。はんだに外部熱源から供給される熱が回路基板および電子部品に伝導されることで、回路基板および電子部品は熱膨張する。しかし、回路基板(例えば、構成材料が樹脂)の熱膨張係数は電子部品(例えば、構成材料がシリコン)の熱膨張係数より大きいため、回路基板の熱膨張量は、電子部品の熱膨張量よりも大きくなる。すなわち、回路基板と電子部品との間に熱膨張量の差が生じる。また、電子部品が載置される側の回路基板の一部とその反対側の回路基板の他部とに供給される熱量に非均一性がなければ、回路基板は一様に熱膨張し、変形しようとする。しかし、電子基板が載置される側の回路基板の一部の熱膨張に伴う変形は、上記の変形しにくい鉛フリーはんだによって拘束される。そのため、この回路基板の一部は、その反対側にある回路基板の他部よりも熱膨張量は小さくなる。ゆえに、回路基板内において熱膨張量の差が発生する。さらに、回路基板および電子部品の熱膨張に伴う変形が変形しにくい鉛フリーはんだにより拘束されるため、上記の回路基板と電子部品との間の熱膨張量の差が緩和されない。したがって、回路基板と電子部品との間の熱膨張量の差と回路基板内における熱膨張量の差とにより、回路基板には電子部品側に湾曲するような反りが発生する。   However, lead-free solder is usually harder than Sn—Pb solder, and is not easily deformed even when subjected to a force (ie, stress relaxation is difficult). The heat supplied to the solder from an external heat source is conducted to the circuit board and the electronic component, so that the circuit board and the electronic component are thermally expanded. However, since the thermal expansion coefficient of the circuit board (for example, the constituent material is resin) is larger than that of the electronic component (for example, the constituent material is silicon), the thermal expansion amount of the circuit board is larger than the thermal expansion amount of the electronic component. Also grows. That is, a difference in thermal expansion occurs between the circuit board and the electronic component. In addition, if there is no non-uniformity in the amount of heat supplied to a part of the circuit board on the side where the electronic component is placed and the other part of the circuit board on the opposite side, the circuit board expands uniformly, Try to transform. However, deformation accompanying thermal expansion of a part of the circuit board on the side where the electronic board is placed is restrained by the lead-free solder that is difficult to deform. For this reason, a part of the circuit board has a smaller amount of thermal expansion than the other part of the circuit board on the opposite side. Therefore, a difference in thermal expansion occurs in the circuit board. Furthermore, since deformation due to thermal expansion of the circuit board and the electronic component is restrained by lead-free solder that is difficult to deform, the difference in thermal expansion amount between the circuit board and the electronic component is not reduced. Therefore, the circuit board is warped to be bent toward the electronic component due to the difference in thermal expansion between the circuit board and the electronic component and the difference in thermal expansion within the circuit board.

また、鉛フリーはんだは通常、Sn−Pb系はんだよりも融点が約40℃高い。これにより、鉛フリーはんだを溶融させるには、外部熱源から鉛フリーはんだに供給される熱量をSn−Pb系はんだの場合に比べて大きくする必要がある。そのため、鉛フリーはんだと接続された回路基板にこの熱の一部が伝導されることで、回路基板は、この熱伝導の熱量に比例して内部温度が上昇する。回路基板内のこの温度上昇によって、回路基板は熱膨張する。したがって、回路基板のこの熱膨張は、先に回路基板に発生した反りをさらに増大させてしまうことになる。この湾曲した回路基板を常温まで冷却した際、回路基板は弾性体であるため回路基板には元の形状(反りがない形状)に戻ろうとする復元力が働く。しかし、鉛フリーはんだは変形しにくいという性質があるため、回路基板の変形は鉛フリーはんだに拘束され、回路基板は元の形状に戻ることができない。これにより、回路基板の反りは維持されてしまう。その結果、回路基板を含む半導体装置全体には常温においても大きな反りが生じることになる。反りが大きな半導体装置は、電極を設けてさらに他の回路基板等の部品にはんだ等で接続する場合に、接続不良の原因となる。   In addition, lead-free solder usually has a melting point about 40 ° C. higher than that of Sn—Pb solder. Thus, in order to melt the lead-free solder, it is necessary to increase the amount of heat supplied from the external heat source to the lead-free solder as compared with the case of Sn—Pb solder. Therefore, when a part of this heat is conducted to the circuit board connected to the lead-free solder, the internal temperature of the circuit board rises in proportion to the amount of heat conduction. This temperature rise in the circuit board causes the circuit board to thermally expand. Therefore, this thermal expansion of the circuit board further increases the warp previously generated on the circuit board. When this curved circuit board is cooled to room temperature, since the circuit board is an elastic body, a restoring force is exerted on the circuit board to return to the original shape (a shape without warping). However, since lead-free solder has a property that it is difficult to deform, the deformation of the circuit board is restrained by the lead-free solder, and the circuit board cannot return to its original shape. Thereby, the curvature of a circuit board will be maintained. As a result, the entire semiconductor device including the circuit board is greatly warped even at room temperature. A semiconductor device having a large warp causes a connection failure when it is provided with electrodes and further connected to other components such as a circuit board with solder or the like.

本発明は、上記事情に鑑みてなされたものであり、Sn−Pb系はんだが使用されておらず、反りが少ない半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device in which Sn—Pb solder is not used and warping is small.

本発明の一態様の半導体装置は、電極を有している回路基板と、回路基板に載置されている電子部品と、鉛以外の金属からなり、回路基板の電極と電子部品とを接続している接続手段と、を有し、回路基板の熱膨張を抑制する熱膨張抑制手段が回路基板内に設けられているとともに、回路基板の電極内に生じる応力を緩和する応力緩和手段が電極に設けられている。   A semiconductor device of one embodiment of the present invention includes a circuit board having electrodes, an electronic component placed on the circuit board, and a metal other than lead, and connects the electrode of the circuit board and the electronic component. A thermal expansion suppressing means for suppressing thermal expansion of the circuit board is provided in the circuit board, and a stress relaxation means for relaxing stress generated in the electrode of the circuit board is provided on the electrode. Is provided.

本発明によれば、回路基板内に熱膨張抑制手段が設けられていることにより、回路基板内における熱膨張量の差に起因する半導体装置の反りが少なくなる。さらに、応力緩和手段が回路基板の電極に設けられていることにより、回路基板と電子部品との間の熱膨張量の差に起因する半導体装置の反りが少なくなる。したがって、鉛以外の金属からなる接続手段、熱膨張抑制手段および応力緩和手段により、Sn−Pb系はんだが使用されておらず、反りが少ない半導体装置を提供することができる。   According to the present invention, since the thermal expansion suppressing means is provided in the circuit board, the warp of the semiconductor device due to the difference in the thermal expansion amount in the circuit board is reduced. Furthermore, since the stress relaxation means is provided on the electrode of the circuit board, the warp of the semiconductor device due to the difference in thermal expansion between the circuit board and the electronic component is reduced. Therefore, the Sn—Pb solder is not used by the connecting means made of a metal other than lead, the thermal expansion suppressing means, and the stress relaxing means, and a semiconductor device with little warpage can be provided.

本発明を実施するための最良の形態について図面を参照して詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る半導体装置を示す断面図である。半導体装置1は、回路基板2と、電子部品3と、鉛以外の金属からなる鉛フリーはんだ接続部材4とで構成されている。   FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. The semiconductor device 1 includes a circuit board 2, an electronic component 3, and a lead-free solder connecting member 4 made of a metal other than lead.

回路基板2は、電子部品3が載置されている側である第1の面21と、第1の面21の反対側に位置する第2の面22とを有している。第2の面21と第2の面22とが平行であることで、回路基板2は薄板の形状を有している。さらに、回路基板2は、基板側電極5と、回路基板2の熱膨張を抑制する熱膨張抑制手段として機能する熱膨張抑制部材6とを有している。   The circuit board 2 has a first surface 21 on which the electronic component 3 is placed and a second surface 22 located on the opposite side of the first surface 21. Since the second surface 21 and the second surface 22 are parallel, the circuit board 2 has a thin plate shape. Further, the circuit board 2 includes a board-side electrode 5 and a thermal expansion suppressing member 6 that functions as a thermal expansion suppressing unit that suppresses thermal expansion of the circuit board 2.

電子部品3は、トランジスタ、電界効果トランジスタ、サイリスタ、ダイオード、発光ダイオードなどの能動素子として機能する半導体素子8を含む電子回路素子と、部品電極9とにより構成されている。電子部品3は、回路基板2に載置されている。電子部品3の部品電極9は、鉛フリーはんだ接続部材4によって回路基板2の基板側電極5に接合されている。さらに、回路基板2の基板側電極5と電子部品3の部品電極9とを介して、半導体素子8には外部電源(不図示)から電力が供給される。半導体素子8にはシリコンが使用されている。一方、回路基板2には、シリコンの熱膨張係数よりも大きい熱膨張係数を有する樹脂材料が使用されている。   The electronic component 3 includes an electronic circuit element including a semiconductor element 8 that functions as an active element such as a transistor, a field effect transistor, a thyristor, a diode, and a light emitting diode, and a component electrode 9. The electronic component 3 is placed on the circuit board 2. The component electrode 9 of the electronic component 3 is joined to the board-side electrode 5 of the circuit board 2 by a lead-free solder connection member 4. Furthermore, electric power is supplied to the semiconductor element 8 from an external power source (not shown) via the substrate-side electrode 5 of the circuit board 2 and the component electrode 9 of the electronic component 3. Silicon is used for the semiconductor element 8. On the other hand, a resin material having a thermal expansion coefficient larger than that of silicon is used for the circuit board 2.

基板側電極5は、鉛フリーはんだ接続部材4を向いて開放した内側空間を有する凹部を有する。この凹部は、基板側電極5の略U字状の表面51によって形成されている。開放した内側空間には、基板側電極5内に生じる応力を緩和する応力緩和手段として機能する応力緩和部材7が充填されている。基板側電極5は、回路基板2の第1の面21上に設けられており、鉛フリーはんだ接続部材4を介して電子部品3の部品電極9と電気的に接続する。   The substrate-side electrode 5 has a recess having an inner space that opens toward the lead-free solder connection member 4. This recess is formed by a substantially U-shaped surface 51 of the substrate-side electrode 5. The opened inner space is filled with a stress relaxation member 7 that functions as a stress relaxation means for relaxing the stress generated in the substrate-side electrode 5. The board-side electrode 5 is provided on the first surface 21 of the circuit board 2 and is electrically connected to the component electrode 9 of the electronic component 3 through the lead-free solder connection member 4.

応力緩和部材7は、導電性を有しており、鉛フリーはんだ接続部材4と電気的に接続する充填部材である。さらに、応力緩和部材7のヤング率は、基板側電極5のヤング率よりも低い。そのため、応力緩和部材7は、基板側電極5よりも変形しやすい。応力緩和部材7は、融点がSn−Pb系はんだ並みに低いSn―In系、Sn―Cu系、Sn―Zn系またはSn―Bi系等のはんだ材料でできているのが好ましい。または、応力緩和部材7は、金属が混入されることで導電性を発揮する粘弾性高分子(すなわちエラストマー)材料でできているのが好ましい。外部熱源から供給される熱によって鉛フリーはんだ接続部材4は熱膨張する。鉛フリーはんだ接続部材4の熱膨張に伴い、鉛フリーはんだ接続部材4と接続している基板側電極5内には、その熱膨張に抵抗するように応力が生じる。しかし、応力緩和部材7は、ヤング率が基板側電極5よりも低いので、基板側電極5よりも変形しやすい。応力緩和部材7が基板側電極5よりも容易に変形することで、従来の応力緩和部材7が設けられておらず、鉛フリーはんだ接続部材4の熱膨張が直接的に基板側電極5の変形を促す場合に比べ、基板側電極5内に生じる応力は緩和される。ゆえに、基板側電極5内に生じる応力が緩和されることにより、基板側電極5の変形量は小さくなる。そのため、基板側電極5を有する電子部品3側の回路基板2の変形量も小さくなる。ゆえに、電子部品3側の回路基板2と電子部品3との間の変形量の差は従来に比べ減少する。したがって、熱せられた状態での半導体装置1の反りを少なくすることができる。熱間時の半導体装置1を常温まで冷却した際には、回路基板2は弾性体であるため回路基板2には元の形状(反りがない形状)に戻ろうとする復元力が働く。応力緩和部材7は、常温時でも変形しやすい性質を有しているため、回路基板2内の基板側電極5の復元力による変形を受容できる。したがって、回路基板2は元の形状へ復元することができ、回路基板2と電子部品3との間の熱膨張量の差に起因する回路基板2の常温時の反りを低減することができる。   The stress relaxation member 7 has conductivity and is a filling member that is electrically connected to the lead-free solder connection member 4. Further, the Young's modulus of the stress relaxation member 7 is lower than the Young's modulus of the substrate side electrode 5. Therefore, the stress relaxation member 7 is more easily deformed than the substrate side electrode 5. The stress relaxation member 7 is preferably made of a solder material such as Sn—In, Sn—Cu, Sn—Zn, or Sn—Bi, whose melting point is as low as that of Sn—Pb solder. Alternatively, the stress relaxation member 7 is preferably made of a viscoelastic polymer (that is, elastomer) material that exhibits conductivity when a metal is mixed therein. The lead-free solder connection member 4 is thermally expanded by heat supplied from an external heat source. Along with the thermal expansion of the lead-free solder connection member 4, stress is generated in the substrate-side electrode 5 connected to the lead-free solder connection member 4 so as to resist the thermal expansion. However, since the stress relaxation member 7 has a Young's modulus lower than that of the substrate-side electrode 5, it is more likely to be deformed than the substrate-side electrode 5. Since the stress relaxation member 7 deforms more easily than the substrate side electrode 5, the conventional stress relaxation member 7 is not provided, and the thermal expansion of the lead-free solder connection member 4 directly deforms the substrate side electrode 5. The stress generated in the substrate-side electrode 5 is relieved compared to the case where prompting is promoted. Therefore, the amount of deformation of the substrate side electrode 5 is reduced by relaxing the stress generated in the substrate side electrode 5. Therefore, the deformation amount of the circuit board 2 on the electronic component 3 side having the board-side electrode 5 is also reduced. Therefore, the difference in deformation amount between the circuit board 2 on the electronic component 3 side and the electronic component 3 is reduced as compared with the prior art. Therefore, the warp of the semiconductor device 1 in a heated state can be reduced. When the hot semiconductor device 1 is cooled to room temperature, the circuit board 2 is an elastic body, so that the circuit board 2 has a restoring force to return to the original shape (a shape without warping). Since the stress relaxation member 7 has the property of being easily deformed even at room temperature, it can accept deformation due to the restoring force of the substrate-side electrode 5 in the circuit substrate 2. Therefore, the circuit board 2 can be restored to its original shape, and the warpage of the circuit board 2 at room temperature due to the difference in thermal expansion between the circuit board 2 and the electronic component 3 can be reduced.

熱膨張抑制部材6は、回路基板2の熱膨張係数より低い熱膨張係数を有しており、例えばシリコンを好適に用いることができる。熱膨張抑制部材6は、回路基板2の厚さ方向と直交する方向に回路基板2内に板状部材として設けられている。熱膨張抑制部材6は、回路基板2内において第1の面21よりも第2の面22に近い位置に配置されている。さらに、熱膨張抑制部材6は、単層の板に限定されず、一つの板の上に別の板が載置された複数の層の板で構成された板状部材であってもよい。熱膨張抑制部材6の位置には、熱膨張係数に関わりなく、回路基板2のヤング率より高いヤング率の材料を用いてもよい。この場合、電子部品3と回路基板2との間の熱膨張係数の違いにより半導体装置1の反りが大きくなろうとして、応力緩和部材7に高い応力が生じることになる。しかし、一般に応力が高いほど応力緩和が生じやすくなるため、回路基板2の反りの増大を抑えることができる。また、板状部材の厚さを変化させたり、板状部材の位置を厚さ方向にずらしたりする(図1のずらし量10を参照)ことにより、半導体装置1の反り量を調整することができる。回路基板2に電子部品3を載置し、鉛フリーはんだ接続部材4により回路基板2と電子部品3とを接合する際に、外部熱源から鉛フリーはんだ接続部材4に供給される熱により回路基板2は膨張する。しかし、回路基板2の熱膨張係数より小さい熱膨張係数を有する熱膨張抑制部材6が、回路基板2内の第1の面21よりも第2の面22に近い位置に設けられている。これにより、同じ温度差の状況下では熱膨張抑制部材6の熱膨張量は、回路基板2の熱膨張量よりも小さくなる。さらに、従来の熱膨張量が大きかった第2の面22側の回路基板2は、熱膨張抑制部材6によって変形が拘束される。ゆえに、第2の面22側の回路基板2の熱膨張量は、従来の熱膨張抑制部材6がない場合に比べて減少する。そのため、第1の面21側の回路基板2の一部と第2の面22側の回路基板2の他部との間の熱膨張量の差は小さくなることで、従来に比べ回路基板2の電子部品3側へ湾曲するような反りは少なくなる。したがって、回路基板2内における熱膨張量の差に起因する熱間時の半導体装置1の反りを低減することができる。   The thermal expansion suppressing member 6 has a thermal expansion coefficient lower than the thermal expansion coefficient of the circuit board 2 and, for example, silicon can be suitably used. The thermal expansion suppressing member 6 is provided as a plate-like member in the circuit board 2 in a direction orthogonal to the thickness direction of the circuit board 2. The thermal expansion suppressing member 6 is disposed in the circuit board 2 at a position closer to the second surface 22 than the first surface 21. Furthermore, the thermal expansion suppressing member 6 is not limited to a single-layer plate, and may be a plate-like member composed of a plurality of layers of plates in which another plate is placed on one plate. A material having a Young's modulus higher than the Young's modulus of the circuit board 2 may be used at the position of the thermal expansion suppressing member 6 regardless of the thermal expansion coefficient. In this case, high stress is generated in the stress relaxation member 7 in an attempt to increase the warp of the semiconductor device 1 due to the difference in thermal expansion coefficient between the electronic component 3 and the circuit board 2. However, since stress relaxation generally tends to occur as the stress increases, an increase in warpage of the circuit board 2 can be suppressed. Further, the amount of warpage of the semiconductor device 1 can be adjusted by changing the thickness of the plate-like member or by shifting the position of the plate-like member in the thickness direction (see the shift amount 10 in FIG. 1). it can. When the electronic component 3 is placed on the circuit board 2 and the circuit board 2 and the electronic component 3 are joined by the lead-free solder connection member 4, the circuit board is heated by heat supplied to the lead-free solder connection member 4 from an external heat source. 2 expands. However, the thermal expansion suppressing member 6 having a thermal expansion coefficient smaller than that of the circuit board 2 is provided at a position closer to the second surface 22 than the first surface 21 in the circuit board 2. Thereby, under the same temperature difference, the thermal expansion amount of the thermal expansion suppressing member 6 is smaller than the thermal expansion amount of the circuit board 2. Furthermore, the deformation of the circuit board 2 on the second surface 22 side, which has a large amount of thermal expansion, is restrained by the thermal expansion suppressing member 6. Therefore, the thermal expansion amount of the circuit board 2 on the second surface 22 side is reduced as compared with the case where the conventional thermal expansion suppressing member 6 is not provided. Therefore, the difference in the amount of thermal expansion between a part of the circuit board 2 on the first surface 21 side and the other part of the circuit board 2 on the second surface 22 side is reduced. The warp that curves toward the electronic component 3 is reduced. Therefore, it is possible to reduce the warp of the semiconductor device 1 due to the difference in the amount of thermal expansion in the circuit board 2 during the hot time.

鉛フリーはんだ接続部材4は、回路基板2の基板側電極5と電子部品3の部品電極9とを接続する接続手段として機能している。鉛フリーはんだ接続部材4には、一般的に広く用いられるSn−3Ag−0.5Cu組成のはんだが使用されている。この組成のはんだは、Sn−Pb系はんだよりも固く、力を受けても変形しにくい(すなわち、応力緩和しにくい)。   The lead-free solder connection member 4 functions as a connection means for connecting the substrate-side electrode 5 of the circuit board 2 and the component electrode 9 of the electronic component 3. For the lead-free solder connecting member 4, a solder of Sn-3Ag-0.5Cu composition that is generally widely used is used. The solder having this composition is harder than the Sn—Pb solder, and is not easily deformed even when a force is applied (that is, it is difficult to relax the stress).

図2は、従来の代表的なSn−37Pbはんだに加わる外力によるはんだの変形しやすさと、本発明の実施形態で規定するSn−3Ag−0.5Cu鉛フリーはんだのそれとを比較した応力緩和試験の結果である。応力緩和試験は室温において、ひずみ速度10-3[1/sec]の条件で、ひずみが1.5%に達するまで引っ張った後に、クロスヘッドを停止させて応力を測定した。ここで、ひずみは伸び量を元の長さで割った比であり、応力は荷重を断面積で割った比である。6時間後の応力は、Sn−37Pbはんだが5[MPa]であるのに対して、Sn−3Ag−0.5Cu鉛フリーはんだは15[MPa]と、3倍高い応力が残っている様子がわかる。このため、電子部品3と回路基板2とをSn−3Ag−0.5Cu鉛フリーはんだを用いた鉛フリーはんだ接続部材4で接続した場合には、はんだが力によって変形し難い。そのため、半導体装置1には従来の半導体装置よりも大きな反りが生じやすい。 FIG. 2 is a stress relaxation test comparing the ease of solder deformation due to external force applied to a conventional representative Sn-37Pb solder and that of Sn-3Ag-0.5Cu lead-free solder defined in the embodiment of the present invention. Is the result of In the stress relaxation test, the tensile test was performed until the strain reached 1.5% at room temperature under a strain rate of 10 −3 [1 / sec], and then the crosshead was stopped to measure the stress. Here, the strain is a ratio obtained by dividing the elongation amount by the original length, and the stress is a ratio obtained by dividing the load by the cross-sectional area. The stress after 6 hours is 5 [MPa] for Sn-37Pb solder, while 15 [MPa] for Sn-3Ag-0.5Cu lead-free solder, 3 times higher stress remains. Recognize. For this reason, when the electronic component 3 and the circuit board 2 are connected by the lead-free solder connecting member 4 using Sn-3Ag-0.5Cu lead-free solder, the solder is not easily deformed by force. For this reason, the semiconductor device 1 is more likely to be warped than the conventional semiconductor device.

この課題を解決するために、本発明の実施形態の半導体装置1では、応力緩和部材7として、Sn−In系、Sn−Cu系、Sn−Zn系、Sn−Bi系はんだ等が使用されている。応力緩和試験を行うことで、残留応力が少ない特性を有する応力緩和材料を選択している。こうすることにより、電子部品3と回路基板2との間の熱膨張の違いによって、半導体装置1に反りが生じる。しかし、応力緩和部材7が力を受けて変形するため、半導体装置1の反りは従来に比べ格段に小さくなる。なお、応力緩和部材7に最も効率よく応力緩和を生じさせるために、半導体装置1の反りの中立面が鉛フリーはんだ部材9の高さの範囲内に来るように調整することができるようにした。   In order to solve this problem, in the semiconductor device 1 according to the embodiment of the present invention, Sn—In, Sn—Cu, Sn—Zn, Sn—Bi solder or the like is used as the stress relaxation member 7. Yes. By performing the stress relaxation test, a stress relaxation material having a characteristic of low residual stress is selected. By doing so, the semiconductor device 1 is warped due to the difference in thermal expansion between the electronic component 3 and the circuit board 2. However, since the stress relaxation member 7 is deformed by receiving a force, the warp of the semiconductor device 1 is remarkably reduced as compared with the related art. In order to generate the stress relaxation most efficiently in the stress relaxation member 7, the neutral surface of the warp of the semiconductor device 1 can be adjusted so as to be within the height range of the lead-free solder member 9. did.

半導体装置1の反りや中立面の様子は、汎用の有限要素法解析ソフト等を用いた熱応力解析により調べた。
(実施例1、2)
次に、具体的な実施例により本発明の実施形態の構造を説明する。
The state of warpage or neutral surface of the semiconductor device 1 was examined by thermal stress analysis using general-purpose finite element method analysis software or the like.
(Examples 1 and 2)
Next, the structure of the embodiment of the present invention will be described using specific examples.

半導体素子18がシリコンであり、鉛フリーはんだ接続部材14がSn−Ag−Cu系はんだである場合の例を図3に示した。応力緩和部材17にSn−In系はんだを、熱膨張抑制部材16にベアのシリコンを使用した。汎用の有限要素法解析ソフトANSYSを用いて、Sn−Ag−Cu系はんだの融点220℃で電子部品13と回路基板12とを接続し、室温まで冷却したときの半導体装置11の反りを計算した。この反りが最も小さくなるように、ずらし量20を調整した。なお、熱応力解析の応力シミュレーションに用いる有限要素法解析ソフトはANSYSに限るものではない。すなわち、I−DEAS、N
astran、ABAQUS、MARC、Pro/ENGINEER等の有限要素法解析ソフトを用いてもよい。
An example in which the semiconductor element 18 is silicon and the lead-free solder connecting member 14 is Sn-Ag-Cu solder is shown in FIG. An Sn—In solder was used for the stress relaxation member 17, and bare silicon was used for the thermal expansion suppression member 16. Using the general-purpose finite element method analysis software ANSYS, the warpage of the semiconductor device 11 was calculated when the electronic component 13 and the circuit board 12 were connected at a melting point of 220 ° C. of Sn—Ag—Cu solder and cooled to room temperature. . The shift amount 20 was adjusted so that this warpage was minimized. Note that the finite element method analysis software used for the stress simulation of the thermal stress analysis is not limited to ANSYS. That is, I-DEAS, N
Finite element analysis software such as astran, ABAQUS, MARC, Pro / ENGINEER may be used.

図5は、有限要素法計算用の解析モデルである。要素と呼ばれる微小領域により、約6000に分割している。熱膨張抑制部材16の幅は、半導体素子18と同じであり、厚さは半導体素子18の1/5である。回路基板12の下面の中央の点を反りの基準点21とし、上下方向に移動しないように拘束した。   FIG. 5 is an analysis model for finite element calculation. It is divided into about 6000 by a minute area called an element. The width of the thermal expansion suppressing member 16 is the same as that of the semiconductor element 18, and the thickness is 1/5 of the semiconductor element 18. The center point of the lower surface of the circuit board 12 was set as a warp reference point 21 and restrained so as not to move in the vertical direction.

図6は、汎用の有限要素法解析ソフトANSYSを用いて、半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反りを計算した例である。反り量を等高線図で示した変形図22に、変形前の外郭線図23を重ねて示した。わかりやすくするために、変形量を実際の5倍にして表示した。回路基板12の反りは60μm程度と小さなものである。   FIG. 6 shows an example in which the warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature is calculated using general-purpose finite element method analysis software ANSYS. A modified diagram 22 showing the amount of warpage in a contour map is shown by superposing an outline diagram 23 before the deformation. In order to make it easy to understand, the amount of deformation was displayed five times the actual amount. The warp of the circuit board 12 is as small as about 60 μm.

比較のために、応力緩和部材17も熱膨張抑制部材16も使用しない従来の場合の反り量を図7に示した。図6と同様に、半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反り量を等高線図で示した。変形量は実際の5倍にして表示している。回路基板12は凸に反り、最も反りが大きいのは回路基板12の端部であり、460μm程度であった。   For comparison, the amount of warpage in the conventional case in which neither the stress relaxation member 17 nor the thermal expansion suppressing member 16 is used is shown in FIG. Similar to FIG. 6, the amount of warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature is shown by a contour map. The amount of deformation is displayed 5 times the actual amount. The circuit board 12 warps convexly, and the end of the circuit board 12 has the largest warpage, which is about 460 μm.

図8は、本発明の実施例2の説明図である。実施例1(図6)と同様に、応力緩和部材17にSn−In系はんだを用い、熱膨張抑制部材16にベアのシリコンを使用しているが、熱膨張抑制部材16を回路基板12の厚さ中央に設けた場合の例である。図6と同様に、半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反り量を等高線図で示した。変形量は実際の5倍にして表示している。回路基板12は従来(図7)と同様に凸に反っている。最も反りが大きい回路基板12の端部では、反り量は280μm程度であった。従来(図7)に比べて、回路基板12の反りが40%低減している。応力緩和部材17にSn−In系はんだを用い、熱膨張抑制部材16にベアのシリコンを使用することにより、回路基板12の反りは低減できることがわかる。この回路基板12の反りは、熱膨張抑制部材16を設ける厚さ方向の位置によって変化する。反りが最も小さくなるように、ずらし量20を調整したものが実施例1(図5、図6)である。実施例1では、図5に示すように、回路基板12の厚さ中央から下方へ30μmずらしている。これは、回路基板12の厚さの1/3に相当する。こうすることにより、実施例1は従来に比べて回路基板12の反り量が1/8に低減している。   FIG. 8 is an explanatory diagram of Embodiment 2 of the present invention. As in the first embodiment (FIG. 6), Sn—In solder is used for the stress relaxation member 17 and bare silicon is used for the thermal expansion suppressing member 16, but the thermal expansion suppressing member 16 is attached to the circuit board 12. It is an example in the case of providing in the thickness center. Similar to FIG. 6, the amount of warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature is shown by a contour map. The amount of deformation is displayed 5 times the actual amount. The circuit board 12 is warped convexly as in the prior art (FIG. 7). At the end of the circuit board 12 with the largest warpage, the warpage amount was about 280 μm. Compared to the prior art (FIG. 7), the warpage of the circuit board 12 is reduced by 40%. It can be seen that warpage of the circuit board 12 can be reduced by using Sn—In solder for the stress relaxation member 17 and bare silicon for the thermal expansion suppressing member 16. The warp of the circuit board 12 varies depending on the position in the thickness direction where the thermal expansion suppressing member 16 is provided. In Example 1 (FIGS. 5 and 6), the shift amount 20 is adjusted so that the warpage is minimized. In the first embodiment, as shown in FIG. 5, the circuit board 12 is shifted by 30 μm downward from the thickness center. This corresponds to 1/3 of the thickness of the circuit board 12. By doing so, the warpage amount of the circuit board 12 is reduced to 1/8 in the first embodiment as compared with the conventional example.

このように、電極に応力緩和手段を設け、回路基板内の適切な位置に熱膨張抑制手段を設けることにより、回路基板の反りを大幅に低減することができる。
(実施例3、4)
次に、他の実施例により本発明の実施形態の構造を説明する。
As described above, the stress relaxation means is provided on the electrode, and the thermal expansion suppressing means is provided at an appropriate position in the circuit board, whereby the warpage of the circuit board can be greatly reduced.
(Examples 3 and 4)
Next, the structure of the embodiment of the present invention will be described using another example.

図9は、応力緩和部材24にゴム系の樹脂を用い、熱膨張抑制部材25に熱膨張係数が小さいSi34を使用した半導体装置であり、鉛フリーはんだ接続部材14の間に、アンダーフィルと呼ばれる補強のための樹脂を充填した場合の、有限要素法計算用の解析モデルである。約7000の要素に分割している。熱膨張抑制部材25の幅は電子部品13とほぼ同じであり、厚さは半導体素子18の1/5である。補強用樹脂26は、電子部品13の端まで充填されており、ぬれ性により端部では回路基板12との間でフィレット形状を成している。 FIG. 9 shows a semiconductor device in which a rubber-based resin is used for the stress relaxation member 24 and Si 3 N 4 having a small thermal expansion coefficient is used for the thermal expansion suppressing member 25. This is an analysis model for finite element calculation when a reinforcing resin called fill is filled. It is divided into about 7000 elements. The width of the thermal expansion suppressing member 25 is substantially the same as that of the electronic component 13, and the thickness is 1/5 of the semiconductor element 18. The reinforcing resin 26 is filled up to the end of the electronic component 13 and forms a fillet shape with the circuit board 12 at the end due to wettability.

図10は、半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反りを計算した例である。反り量を等高線図で示した変形図22に、変形前の外郭線図23を重ねて示し、変形量は実際の5倍にして表示した。半導体装置11は全体的に凸に反っており、回路基板12の反りは端部で最も大きく、90μm程度である。   FIG. 10 shows an example in which the warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature is calculated. The deformation diagram 22 in which the amount of warpage is shown in a contour map is superimposed on the outline diagram 23 before the deformation, and the deformation amount is displayed five times the actual amount. The semiconductor device 11 is generally warped convexly, and the warp of the circuit board 12 is the largest at the end, and is about 90 μm.

比較のために、実施例3(図9、図10)において、応力緩和部材24も熱膨張抑制部材25も使用しない従来の場合の反り量を図11に示した。半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反り量を等高線図で示し、変形量は実際の5倍にして表示している。回路基板12は凸に反り、最も反りが大きいのは回路基板12の端部であり、350μm程度であった。   For comparison, in Example 3 (FIGS. 9 and 10), the amount of warpage in the conventional case in which neither the stress relaxation member 24 nor the thermal expansion suppression member 25 is used is shown in FIG. The amount of warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature is shown by a contour map, and the amount of deformation is shown five times the actual amount. The circuit board 12 warps in a convex manner, and the end of the circuit board 12 has the largest warpage, which is about 350 μm.

図12は、本発明の実施例4の説明図である。実施例3(図9、図10)において、熱膨張抑制部材25の幅を電子部品13ではなく半導体素子18と同じにした場合の有限要素法計算用の解析モデルである。   FIG. 12 is an explanatory diagram of Embodiment 4 of the present invention. In Example 3 (FIG. 9, FIG. 10), it is an analysis model for finite element calculation when the width | variety of the thermal expansion suppression member 25 is made the same not with the electronic component 13 but with the semiconductor element 18. FIG.

図13は、本発明の実施例4の場合に、半導体装置11全体の温度をはんだの融点から室温まで低下させたときに生じる半導体装置11の反りを計算した例である。反り量を等高線図で示した変形図22に、変形前の外郭線図23を重ねて示し、変形量は実際の5倍にして表示した。半導体装置11は全体的に凸に反っており、回路基板12の反りは端部で最も大きく、140μm程度であった。従来(図11)に比べて、回路基板12の反りが半分以下に低減している。応力緩和部材24にゴム系の樹脂を用い、熱膨張抑制部材25にSi34を使用することにより、鉛フリーはんだ接続部材14の間に補強用樹脂を充填した場合であっても、回路基板12の反りを低減できることがわかる。この回路基板12の反りは、熱膨張抑制部材25を設ける幅によって変化する。 FIG. 13 is an example of calculating the warpage of the semiconductor device 11 that occurs when the temperature of the entire semiconductor device 11 is lowered from the melting point of the solder to room temperature in the case of the fourth embodiment of the present invention. The deformation diagram 22 in which the amount of warpage is shown in a contour map is superimposed on the outline diagram 23 before the deformation, and the deformation amount is displayed five times the actual amount. The semiconductor device 11 is generally warped convexly, and the warp of the circuit board 12 is the largest at the end, being about 140 μm. Compared to the conventional case (FIG. 11), the warp of the circuit board 12 is reduced to less than half. Even when the lead-free solder connecting member 14 is filled with a reinforcing resin by using a rubber-based resin for the stress relaxation member 24 and Si 3 N 4 for the thermal expansion suppressing member 25, the circuit It can be seen that the warpage of the substrate 12 can be reduced. The warp of the circuit board 12 varies depending on the width at which the thermal expansion suppressing member 25 is provided.

反りが最も小さくなるように、この熱膨張抑制部材25の幅を調整したものが実施例3(図9、図10)である。実施例3では、図9に示すように、熱膨張抑制部材25の幅を電子部品13とほぼ同じにしている。こうすることにより、実施例3は従来(図11)に比べて回路基板12の反り量が1/3以下に低減している。   In Example 3 (FIGS. 9 and 10), the width of the thermal expansion suppressing member 25 is adjusted so that the warpage is minimized. In Example 3, as shown in FIG. 9, the width of the thermal expansion suppressing member 25 is made substantially the same as that of the electronic component 13. By doing so, the warpage amount of the circuit board 12 is reduced to 1/3 or less in the third embodiment as compared with the conventional example (FIG. 11).

このように、電極に応力緩和手段を設け、回路基板内の適切な位置に熱膨張抑制手段を設けることにより、回路基板の反りを大幅に低減することができる。   As described above, the stress relaxation means is provided on the electrode, and the thermal expansion suppressing means is provided at an appropriate position in the circuit board, whereby the warpage of the circuit board can be greatly reduced.

本発明の一実施形態に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の応力緩和部材の材料試験結果を説明する図である。It is a figure explaining the material test result of the stress relaxation member of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施例に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on one Example of this invention. 従来の半導体装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the conventional semiconductor device. 本発明の実施例1に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 1 of this invention. 従来の半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the conventional semiconductor device. 本発明の実施例2に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 2 of this invention. 本発明の実施例3に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 3 of this invention. 本発明の実施例3に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 3 of this invention. 従来の半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the conventional semiconductor device. 本発明の実施例4に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 4 of this invention. 本発明の実施例4に係る半導体装置の有限要素法計算の説明図である。It is explanatory drawing of the finite element method calculation of the semiconductor device which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1、11 半導体装置
2、12 回路基板
3、13 電子部品
4、14 鉛フリーはんだ接続部材
5、15 基板側電極
6 熱膨張抑制部材
7 応力緩和部材
21 反りの基準点
22 変形図
23 変形前の外郭線図
24 ゴム系樹脂
25 Si34
26 補強用樹脂
DESCRIPTION OF SYMBOLS 1, 11 Semiconductor device 2, 12 Circuit board 3, 13 Electronic component 4, 14 Lead-free solder connection member 5, 15 Substrate side electrode 6 Thermal expansion suppression member 7 Stress relaxation member 21 Warp reference point 22 Deformation figure 23 Before deformation Outline diagram 24 Rubber resin 25 Si 3 N 4
26 Resin for reinforcement

Claims (7)

電極を有している回路基板と、
前記回路基板に載置されている電子部品と、
鉛以外の金属からなり、前記回路基板の前記電極と前記電子部品とを接続している接続手段と、
を有し、
前記回路基板の熱膨張を抑制する熱膨張抑制手段が該回路基板内に設けられているとともに、前記電極内に生じる応力を緩和する応力緩和手段が該電極に設けられている、
半導体装置。
A circuit board having electrodes;
An electronic component mounted on the circuit board;
A connection means comprising a metal other than lead, and connecting the electrode of the circuit board and the electronic component;
Have
Thermal expansion suppression means for suppressing thermal expansion of the circuit board is provided in the circuit board, and stress relaxation means for relaxing stress generated in the electrode is provided in the electrode.
Semiconductor device.
前記熱膨張抑制手段は、前記回路基板の厚さ方向と直交する方向に設けられた板状部材であり、
前記板状部材は、前記回路基板の熱膨張係数より低い熱膨張係数を有しているとともに、該回路基板内において前記電子部品が載置されている面の反対側の面に近い位置に配置されている、
請求項1に記載の半導体装置。
The thermal expansion suppression means is a plate-like member provided in a direction orthogonal to the thickness direction of the circuit board,
The plate-like member has a thermal expansion coefficient lower than the thermal expansion coefficient of the circuit board, and is disposed at a position close to the surface on the opposite side of the surface on which the electronic component is placed in the circuit board. Being
The semiconductor device according to claim 1.
前記板状部材は、前記回路基板のヤング率より高いヤング率の材料でできている、請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the plate member is made of a material having a Young's modulus higher than that of the circuit board. 前記板状部材は、単層または複数の層で構成されている、請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the plate-like member includes a single layer or a plurality of layers. 前記電極は、前記接続手段を向いて開放した内側空間を有する凹部を有し、
前記応力緩和手段は、前記内側空間内に充填された導電性の充填部材であり、
前記充填部材は、前記接続手段と電気的に接続し、前記電極のヤング率より低いヤング率を有している、
請求項1から4のいずれか1項に記載の半導体装置。
The electrode has a recess having an inner space opened toward the connection means,
The stress relaxation means is a conductive filling member filled in the inner space,
The filling member is electrically connected to the connecting means and has a Young's modulus lower than that of the electrode.
The semiconductor device according to claim 1.
前記充填部材は、Sn―In系、Sn―Cu系、Sn―Zn系またはSn―Bi系のはんだ材料でできている、請求項5に記載の半導体装置。   The semiconductor device according to claim 5, wherein the filling member is made of a Sn—In based, Sn—Cu based, Sn—Zn based or Sn—Bi based solder material. 前記充填部材は、粘弾性高分子材料でできている、請求項5に記載の半導体装置。   The semiconductor device according to claim 5, wherein the filling member is made of a viscoelastic polymer material.
JP2008053316A 2007-07-05 2008-03-04 Semiconductor device Expired - Fee Related JP5012577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053316A JP5012577B2 (en) 2007-07-05 2008-03-04 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007177478 2007-07-05
JP2007177478 2007-07-05
JP2008053316A JP5012577B2 (en) 2007-07-05 2008-03-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009033100A true JP2009033100A (en) 2009-02-12
JP5012577B2 JP5012577B2 (en) 2012-08-29

Family

ID=40403241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053316A Expired - Fee Related JP5012577B2 (en) 2007-07-05 2008-03-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5012577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009334A (en) * 2009-06-24 2011-01-13 Fujitsu Ltd Printed circuit board, printed circuit board fabrication method, and electronic device including printed circuit board
WO2017163925A1 (en) * 2016-03-24 2017-09-28 ソニー株式会社 Semiconductor device, solid-state imaging device, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130441A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Integrated circuit device
JP2000077554A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Semiconductor device
JP2001196496A (en) * 2000-01-13 2001-07-19 Shinko Electric Ind Co Ltd Multilayer wiring board, wiring board, method of forming multilayer wiring board and wiring board and semiconductor device
JP2002033349A (en) * 2001-06-07 2002-01-31 Matsushita Electric Ind Co Ltd Method for mounting semiconductor element and circuit board
JP2002185094A (en) * 2000-12-15 2002-06-28 Mitsubishi Electric Corp Bga package mounting board
JP2003282769A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Chip mounting substrate, its manufacturing method, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130441A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Integrated circuit device
JP2000077554A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Semiconductor device
JP2001196496A (en) * 2000-01-13 2001-07-19 Shinko Electric Ind Co Ltd Multilayer wiring board, wiring board, method of forming multilayer wiring board and wiring board and semiconductor device
JP2002185094A (en) * 2000-12-15 2002-06-28 Mitsubishi Electric Corp Bga package mounting board
JP2002033349A (en) * 2001-06-07 2002-01-31 Matsushita Electric Ind Co Ltd Method for mounting semiconductor element and circuit board
JP2003282769A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Chip mounting substrate, its manufacturing method, and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009334A (en) * 2009-06-24 2011-01-13 Fujitsu Ltd Printed circuit board, printed circuit board fabrication method, and electronic device including printed circuit board
US8642896B2 (en) 2009-06-24 2014-02-04 Fujitsu Limited Printed circuit board, printed circuit board fabrication method, and electronic device including printed circuit board
WO2017163925A1 (en) * 2016-03-24 2017-09-28 ソニー株式会社 Semiconductor device, solid-state imaging device, and electronic device

Also Published As

Publication number Publication date
JP5012577B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4525636B2 (en) Power module
JP5084829B2 (en) Semiconductor device mounting structure manufacturing method, semiconductor device mounting method, and pressure tool
US8004075B2 (en) Semiconductor power module including epoxy resin coating
JP4893096B2 (en) Circuit board and semiconductor module using the same
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
JP4893095B2 (en) Circuit board and semiconductor module using the same
JP6580259B2 (en) Power semiconductor device
JP5061442B2 (en) Insulated circuit board and insulated circuit board with cooling sink
JP2006179538A (en) Semiconductor power module
JP5370460B2 (en) Semiconductor module
JP5218621B2 (en) Circuit board and semiconductor module using the same
JP2007266150A (en) Thermally conductive bonding material, semiconductor package, heat spreader, semiconductor chip, and method of joining semiconductor chip and heat spreader
JP7016015B2 (en) Mounting structure
JP4620553B2 (en) Manufacturing method of semiconductor device
JP5012577B2 (en) Semiconductor device
JP6885274B2 (en) Joint structure
JP2007250712A (en) Semiconductor device and method of manufacturing same
JP2007326137A (en) Lead-free solder material, semi-conductor device, and manufacturing method of semi-conductor device
WO2010008033A1 (en) Wiring board, chip component mounting structure and chip component mounting method
JP5098902B2 (en) Electronic components
JP3551114B2 (en) Semiconductor device mounting structure and method
JP2007044699A (en) Joined structure
JP5487847B2 (en) Electronic device package, manufacturing method thereof, and electronic apparatus
JP2011258835A (en) Mounting structure, electronic component, circuit board, board assembly, electronic equipment, and stress relaxation member
JP2008078679A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees