JP2009028765A - Weld metal and titania-based flux cored wire - Google Patents

Weld metal and titania-based flux cored wire Download PDF

Info

Publication number
JP2009028765A
JP2009028765A JP2007196796A JP2007196796A JP2009028765A JP 2009028765 A JP2009028765 A JP 2009028765A JP 2007196796 A JP2007196796 A JP 2007196796A JP 2007196796 A JP2007196796 A JP 2007196796A JP 2009028765 A JP2009028765 A JP 2009028765A
Authority
JP
Japan
Prior art keywords
mass
weld metal
titania
cored wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007196796A
Other languages
Japanese (ja)
Other versions
JP5345770B2 (en
Inventor
Masaki Shimamoto
正樹 島本
Hitoshi Ishida
斉 石田
Yoshihito Ishizaki
圭人 石▲崎▼
Koichi Sakamoto
浩一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007196796A priority Critical patent/JP5345770B2/en
Priority to KR1020080049380A priority patent/KR20090012045A/en
Priority to CN2008101302130A priority patent/CN101352790B/en
Publication of JP2009028765A publication Critical patent/JP2009028765A/en
Application granted granted Critical
Publication of JP5345770B2 publication Critical patent/JP5345770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titania-based flux cored wire capable of forming weld metal having high temperature cracking resistance equivalent or higher than that of solid wire, and obtaining this weld metal at high welding workability (all position welding). <P>SOLUTION: The weld metal formed by the titania-based flux cored wire comprises, by mass, ≥0.029% C, and B, C, Mn, N, P, S, Si and Ti in such an amount, based on the total mass% of the weld metal that when they are respectively represented by [B], [C], [Mn], [N], [P], [S], [Si] and [Ti], the solidus temperature Ts defined by the following expression becomes ≥1,355°C, Ts=1,538-8,903×[B]-982×[C]-6.64×[Mn]-511×[N]-368×[P]-3,603×[S]-47.0×[Si]-205×[Ti]-17. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、TiO(チタニヤ)系フラックス入りワイヤ(以下,FCW:Flux Cored Wire)で溶接された溶接金属及びこのチタニヤ系フラックス入りワイヤに関し、特に、溶接金属の耐高温割れ性を、ソリッドワイヤと同等又はそれ以上に改善する技術に関する。 The present invention relates to a weld metal welded with a TiO 2 (titania) flux-cored wire (hereinafter referred to as FCW: Flux Cored Wire) and the titania flux-cored wire. It is related with the technology which improves to the same level or more.

造船、橋梁などの大型溶接構造物を製作する分野では、溶接の能率化を図るために、中板厚板鋼板で構成される突合せ継手の溶接にあたり、継手の狭開先化を図る一方、1パス当たりの溶着量を多くして1〜3パス程度のできるだけ少ないパス数で溶接を完了させるようにするため、ガスシールドアーク溶接による少パス大入熱で施工する高能率溶接法が採用されている。このような高能率溶接法では、溶接用ワイヤに、ソリッドワイヤに比べて溶着速度が大きいFCWが多用されている。   In the field of manufacturing large-scale welded structures such as shipbuilding and bridges, in order to improve the efficiency of welding, when welding butt joints composed of medium-thick steel plates, the joints are narrowed while 1 In order to increase the amount of welding per pass and complete welding with as few passes as possible, such as 1 to 3 passes, a high-efficiency welding method is adopted, where construction is performed with a small heat input by gas shield arc welding. Yes. In such a high-efficiency welding method, FCW, which has a higher welding speed than a solid wire, is frequently used as a welding wire.

このチタニヤ系の全姿勢用FCWは、1つのワイヤで全姿勢溶接できるだけでなく、良好な溶接作業性、高能率性、及び良好な溶接金属性能などの特徴をも有している(特許文献1)。   This titania-based FCW for all positions can be welded in all positions with one wire, and also has features such as good welding workability, high efficiency, and good weld metal performance (Patent Document 1). ).

しかし、チタニヤ系FCWの欠点の一つとして、チタニヤ系FCWは、ソリッドワイヤに比較して、耐高温割れ性能、特に、開先初層部及び狭隘部の溶接時の耐高温割れ性能が劣るという点が挙げられる。このような現状において、溶接金属の高温割れ性能の向上に関する研究がなされている(例えば、非特許文献1)。この非特許文献1の刊行物においては、P、S、及びB等の元素が耐高温割れ性を著しく劣化させること、また、この高温割れの防止としてMnの添加が有効であること等が記載されている。これらのP、S及びB等の元素は、溶接金属が凝固するときに最終凝固部に凝集して低融点の共晶となる。この共晶の部分は溶融状態で残留し、周囲からの凝固収縮を受け、凝固完了後に割れを発生させるものと推察される。   However, as one of the disadvantages of the titania FCW, the titania FCW is inferior to the solid wire in hot crack resistance, particularly hot crack resistance when welding the groove first layer portion and the narrow portion. A point is mentioned. Under such circumstances, research has been conducted on improving the hot cracking performance of weld metal (for example, Non-Patent Document 1). In the publication of Non-Patent Document 1, it is described that elements such as P, S, and B significantly deteriorate hot cracking resistance, and that addition of Mn is effective for preventing this hot cracking. Has been. These elements such as P, S, and B aggregate in the final solidified portion when the weld metal solidifies to form a low-melting eutectic. This eutectic portion remains in a molten state, and is presumed to undergo solidification shrinkage from the surroundings and generate cracks after completion of solidification.

一方、特許文献2においては、溶接金属に対するNb添加による組成的過冷と、AlとTi添加による核生成触媒効果の複合効果による溶接金属中央部での柱状晶の等軸晶化とにより、高温割れを抑制している。   On the other hand, in Patent Document 2, compositional supercooling due to Nb addition to the weld metal and equiaxed crystallization of columnar crystals at the center of the weld metal due to the combined effect of the nucleation catalytic effect due to the addition of Al and Ti. The crack is suppressed.

特開2002−137090号公報JP 2002-137090 A 特開2004−358552号公報JP 2004-358552 A 溶接学会誌第49巻(1980年)第1号第19乃至23頁及び第44巻(1975年)第7号第20乃至25頁等Journal of the Japan Welding Society, Vol. 49 (1980), No. 1, pages 19 to 23 and Vol. 44 (1975), No. 7, pages 20 to 25, etc. 金属材料、vol.17,NO.7,18乃至24頁Metal materials, vol. 17, NO. 7, pages 18-24

しかしながら、前述の如く,非特許文献1に開示されたチタニヤ系FCWは、近時のチタニヤ系フラックス入りワイヤの耐高温割れ性能に対する要求を満足させるものではない。近時、耐高温割れ性能として、具体的には、ソリッドワイヤと同等の耐高温割れ性能が要求されている。   However, as described above, the titania-based FCW disclosed in Non-Patent Document 1 does not satisfy the recent requirements for the high temperature crack resistance of the titania-based flux-cored wire. Recently, as hot cracking resistance, specifically, hot cracking resistance equivalent to that of solid wire is required.

また、特許文献2においては、Alを過剰に添加しており、このような過剰のAl添加は、溶接金属の延性の低下の原因となるため、望ましくない。   Further, in Patent Document 2, Al is excessively added, and such excessive Al addition is not desirable because it causes a decrease in the ductility of the weld metal.

このように、良好な作業性を有し、ソリッドワイヤレベルの耐高温割れ性能を有するチタニヤ系FCWは従来存在していない。   As described above, there is no conventional titania FCW having good workability and high-temperature crack resistance at a solid wire level.

本発明はかかる問題点に鑑みてなされたものであって、ソリッドワイヤと同等又はそれ以上の耐高温割れ性能を有する溶接金属及びこの溶接金属を高溶接作業性(全姿勢溶接)で得ることができるチタニヤ系フラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of such problems, and is capable of obtaining a weld metal having a high temperature crack resistance equivalent to or higher than that of a solid wire, and obtaining this weld metal with high welding workability (all-position welding). An object of the present invention is to provide a titania-based flux-cored wire.

本発明に係る溶接金属は、チタニヤ系フラックス入りワイヤにより溶接された溶接金属において、Cの含有量を0.029質量%以上とし、溶接金属全質量に対する質量%で、B,C、Mn、N、P、S、Si、Tiの含有量を夫々[B],[C]、[Mn]、[N]、[P]、[S]、[Si]、[Ti]としたとき、下記数式1で定義される固相線温度Tsが、1355℃以上となるように、前記各成分を含有することを特徴とする。   The weld metal according to the present invention is a weld metal welded with a titania-based flux-cored wire, and the content of C is 0.029 mass% or more, and is mass% with respect to the total mass of the weld metal. B, C, Mn, N , P, S, Si, Ti content is [B], [C], [Mn], [N], [P], [S], [Si], [Ti] The solid phase temperature Ts defined by 1 is 1355 ° C. or higher, and each component is contained.

Figure 2009028765
Figure 2009028765

本発明に係る溶接金属は、B:0.005質量%以下(0は含まない)、N:0.0045乃至0.02質量%、Ti:0.025乃至0.1質量%、Mn:1.0乃至1.7質量%、Si:0.2乃至0.7質量%、C:0.05乃至0.09質量%、及びO:0.05乃至0.09質量%を含有し、更にCu,Ni,Cr,Mo,Al,Nb,及びVからなる群から選択された少なくとも1種の元素を0.5質量%以下(0は含まない)含有し、残部がFe及び不可避的不純物からなる組成を有することが好ましい。   The weld metal according to the present invention has B: 0.005 mass% or less (excluding 0), N: 0.0045 to 0.02 mass%, Ti: 0.025 to 0.1 mass%, Mn: 1 0.0 to 1.7% by mass, Si: 0.2 to 0.7% by mass, C: 0.05 to 0.09% by mass, and O: 0.05 to 0.09% by mass, It contains at least one element selected from the group consisting of Cu, Ni, Cr, Mo, Al, Nb, and V in an amount of 0.5% by mass or less (excluding 0), with the balance being Fe and inevitable impurities. It is preferable to have a composition.

本発明に係るチタニヤ系フラックス入りワイヤは、鋼製外皮にフラックスを充填してなり、普通鋼を溶接対象として、請求項1乃至3のいずれか1項に記載の溶接金属を得るためのチタニヤ系フラックス入りワイヤであって、ワイヤ全質量あたり、N:0.001乃至0.022質量%、TiO:5乃至7質量%、Mn:2.30乃至3.75質量%、及びC:0.030乃至0.055質量%を含有し、更にワイヤ全質量に対す含有量(質量%)で、B、C、Mn、N、P、S、Si、Ti、TiOの含有量を夫々[B]、[C]、[Mn]、[N]、[P]、[S]、[Si]、[Ti]、[TiO]としたとき、下記数式2で定義される固相線温度Tsが1355℃以上となるように、前記各成分を含有することを特徴とする。 A titania-based flux-cored wire according to the present invention is obtained by filling a steel outer shell with a flux, and using ordinary steel as a welding target, a titania-based wire for obtaining a weld metal according to any one of claims 1 to 3. a flux-cored wire, the wire total mass, N: 0.001 to 0.022 wt%, TiO 2: 5 to 7 wt%, Mn: 2.30 to 3.75 wt%, and C: 0. The content of B, C, Mn, N, P, S, Si, Ti, and TiO 2 is contained in the content (mass%) with respect to the total mass of the wire. ], [C], [Mn], [N], [P], [S], [Si], [Ti], [TiO 2 ], the solidus temperature Ts defined by Equation 2 below. Each component is contained so that the temperature becomes 1355 ° C. or higher. .

Figure 2009028765
Figure 2009028765

このチタニヤ系フラックス入りワイヤにおいて、更に、B:0.0155質量%以下(0は含まない)、Si:0.85質量%以下(0は含まない)、又はTi:0.60質量%以下(0は含まない)を含有することが好ましい。   In this titania-based flux-cored wire, B: 0.0155 mass% or less (0 is not included), Si: 0.85 mass% or less (0 is not included), or Ti: 0.60 mass% or less ( 0 is not included).

本発明においては、溶接金属成分の含有量をもとに数式1にて算出される固相線温度を1355℃以上とすることにより、溶接金属の耐高温割れ性能を改善することができる。   In the present invention, the hot cracking resistance of the weld metal can be improved by setting the solidus temperature calculated by Equation 1 based on the content of the weld metal component to 1355 ° C. or higher.

本発明によれば、耐高温割れ性能が優れた溶接金属を得ることができると共に、この溶接金属を得るためのチタニヤ系フラックス入りワイヤとして、全姿勢溶接における溶接作業性が向上したフラックス入りワイヤを得ることができる。   According to the present invention, it is possible to obtain a weld metal having excellent hot cracking resistance, and as a titania-based flux cored wire for obtaining this weld metal, a flux cored wire having improved welding workability in all-position welding. Obtainable.

以下、本発明について、添付の図面を参照して具体的に説明する。先ず、本発明の溶接金属の成分添加理由及び組成限定理由について説明する。   Hereinafter, the present invention will be specifically described with reference to the accompanying drawings. First, the reasons for adding components and limiting the composition of the weld metal of the present invention will be described.

「B:0.005質量%以下(0は含まない)」
Bは、溶接金属部の靭性を向上させる元素として添加されているが、Bの含有量が0.005質量%を超えると、耐高温割れ性が劣るため、0.005質量%以下とすることが望ましい。
“B: 0.005% by mass or less (excluding 0)”
B is added as an element for improving the toughness of the weld metal part. However, if the content of B exceeds 0.005% by mass, the hot cracking resistance is inferior, so that it is 0.005% by mass or less. Is desirable.

「N:0.0045乃至0.02質量%」
Nは溶接金属部の強度を確保する元素である。また、NはBをBNとして固定化することにより、耐高温割れ感受性を改善する効果がある。しかし、これらの効果は、Nが0.0045質量%未満ではその効果十分ではない。一方、N含有量が0.02質量%を超えると、溶接金属部の靱性を著しく低下させる。このため、Nは0.0045乃至0.02質量%とすることが望ましい。
“N: 0.0045 to 0.02 mass%”
N is an element that ensures the strength of the weld metal part. N has the effect of improving the hot cracking resistance by fixing B as BN. However, these effects are not sufficient when N is less than 0.0045% by mass. On the other hand, when N content exceeds 0.02 mass%, the toughness of a weld metal part will fall remarkably. For this reason, N is preferably 0.0045 to 0.02 mass%.

「Ti:0.025乃至0.1質量%」
Tiは脱酸剤として、及び作業性向上のために添加されるが、Tiが0.025質量%未満ではその効果は十分ではなく、逆にTiを0.1質量%を超えて含有すると、溶接金属の靱性が低下する。このため、Tiは0.025乃至0.1質量%とすることが望ましい。
“Ti: 0.025 to 0.1% by mass”
Ti is added as a deoxidizer and for improving workability. However, when Ti is less than 0.025% by mass, the effect is not sufficient, and conversely, when Ti is contained in excess of 0.1% by mass, The toughness of the weld metal decreases. For this reason, Ti is preferably 0.025 to 0.1% by mass.

「Mn:1.0乃至1.7質量%」
Mnは脱酸剤及び溶接金属の機械的性質を調整するために添加するが、Mnが1.0質量%未満では溶接金属の靱性(衝撃値)が低い。また、Mnが1.7質量%を超えると、溶接金属の強度が高くなりすぎる。従って、Mn量は1.0乃至1.7質量%とすることが好ましい。
“Mn: 1.0 to 1.7% by mass”
Mn is added to adjust the mechanical properties of the deoxidizer and the weld metal, but if Mn is less than 1.0% by mass, the toughness (impact value) of the weld metal is low. Moreover, when Mn exceeds 1.7 mass%, the intensity | strength of a weld metal will become high too much. Therefore, the amount of Mn is preferably 1.0 to 1.7% by mass.

「Si:0.2乃至0.7質量%」
Siは脱酸剤及び溶接金属の流動性を調整して溶接ビードのなじみを良くするために添加する。しかし、Siが0.2質量%未満では、ビードが凸ビードになり易く、また、脱酸不足によるブローホール(気孔)が多発する。一方、Siが0.7質量%を超えると、溶接金属の強度が高くなりすぎて、溶接金属の靭性が著しく低下すると共に、耐高温割れ性が悪化する。従って、Si量は、好ましくは、0.2乃至0.7質量%とする。
“Si: 0.2 to 0.7 mass%”
Si is added to adjust the fluidity of the deoxidizer and the weld metal to improve the fit of the weld bead. However, if Si is less than 0.2% by mass, the beads are likely to be convex beads, and blow holes (pores) due to insufficient deoxidation frequently occur. On the other hand, when Si exceeds 0.7 mass%, the strength of the weld metal becomes too high, and the toughness of the weld metal is remarkably lowered, and the hot crack resistance is deteriorated. Therefore, the Si amount is preferably 0.2 to 0.7% by mass.

「C:0.029質量%以上、好ましくは、C:0.05乃至0.09質量%」
Cは溶接金属の強度を増加させる元素であり、このため、0.029質量%以上添加することが必要である。また、Cが0.05質量%未満では、所望の強度を得ることができない。一方、Cが0.09質量%を超えると、溶接金属の靭性が低下するため、望ましくない。このため、好ましくは、C量は0.05乃至0.09質量%とする。
“C: 0.029 mass% or more, preferably C: 0.05 to 0.09 mass%”
C is an element that increases the strength of the weld metal. For this reason, it is necessary to add 0.029% by mass or more. If C is less than 0.05% by mass, the desired strength cannot be obtained. On the other hand, if C exceeds 0.09% by mass, the toughness of the weld metal decreases, which is not desirable. For this reason, the amount of C is preferably 0.05 to 0.09 mass%.

「O:0.05乃至0.09質量%」
一般に、鋼材中の酸素は、靭性及び展性特性を低下させる傾向があり、Oを0.09質量%以下とすることが望ましい。その一方で、これとは反対に、溶接金属内に0.05質量%以上の酸素を含有することで、微細に分散された介在物が形成され、良好な靱性が得られる。以上から、酸素含有量は、0.05乃至0.09質量%とすることが好ましい。
“O: 0.05 to 0.09 mass%”
In general, oxygen in a steel material tends to lower toughness and malleability characteristics, and it is desirable that O be 0.09% by mass or less. On the other hand, by containing 0.05 mass% or more of oxygen in the weld metal, finely dispersed inclusions are formed and good toughness is obtained. From the above, the oxygen content is preferably 0.05 to 0.09 mass%.

「Ts≦1355℃」
溶接金属の高温割れ性能に関する研究(例えば、非特許文献2)においては、溶接金属の高温割れの発生機構について以下のように開示されている。溶接金属が凝固を開始すると,凝固中に極めて延性が低い凝固脆性温度領域(BTR)が存在し、固相と液相が混在するこの温度域(BTR)で,低融点元素が液相中に偏析し、この凝固完了直前に存在する低融点元素の液相領域が収縮ひずみに対抗しきれなくなることで割れが発生する。そこで、高温割れ抑制方法として、凝固脆性温度領域(BTR)を縮小させることが効果的であると考えられている。
“Ts ≦ 1355 ° C.”
In research on hot cracking performance of weld metal (for example, Non-Patent Document 2), the generation mechanism of hot cracking of weld metal is disclosed as follows. When the weld metal begins to solidify, there is a solidification brittle temperature region (BTR) with very low ductility during solidification, and in this temperature region (BTR) where the solid phase and the liquid phase coexist, the low melting point element is in the liquid phase. Segregation occurs, and cracks occur when the liquid phase region of the low melting point element that exists immediately before the completion of solidification cannot resist the shrinkage strain. Therefore, it is considered effective to reduce the solidification brittle temperature region (BTR) as a method for suppressing hot cracking.

しかし、本発明者等による実験研究の結果、溶接金属部の組成から液相の融点を見積もる手法では、実際に高温割れが発生する凝固完了部の液相の融点を偏析などの影響から正確に評価することはできないことが判明した。その結果、正確な高温割れ抑制指標を得ることができておらず、耐高温割れ性を改善した溶接ワイヤを開発できていない現状にあった。そこで本発明者は、突合せ継手のように少パス大入熱でのガスシールドアーク溶接において、初層ビードの耐高温割れ性を改善するために種々の実験を行い、また、溶接金属部の冷却速度及び溶接金属成分の拡散、固相と液相との間の成分の分配、溶接金属の柱状晶の凝固形態を考慮し、溶接金属成分の偏析度合いを算出した結果、数式1で定義されるパラメータTs(固相線温度)が初層ビードの耐高温割れ性に影響を与えるパラメータであることを知見した。そして、このパラメータTsをもとに種々の実験を行った結果、Tsを1355℃以上の範囲に制御することが、初層ビードの耐高温割れ性を改善することに極めて有効であることを見出した。   However, as a result of experimental research by the present inventors, in the method of estimating the melting point of the liquid phase from the composition of the weld metal part, the melting point of the liquid phase in the solidified part where hot cracking actually occurs is accurately determined from the influence of segregation and the like. It was found that it cannot be evaluated. As a result, an accurate hot cracking suppression index has not been obtained, and a welding wire with improved hot cracking resistance has not been developed. Therefore, the present inventor conducted various experiments to improve the hot crack resistance of the first layer bead in gas shielded arc welding with a large heat input with a small pass like a butt joint, and also cooled the weld metal part. As a result of calculating the segregation degree of the weld metal component in consideration of the speed and diffusion of the weld metal component, the distribution of the component between the solid phase and the liquid phase, and the solidification form of the columnar crystal of the weld metal, the equation 1 is defined. It was found that the parameter Ts (solidus temperature) is a parameter that affects the hot cracking resistance of the first layer bead. As a result of various experiments based on this parameter Ts, it was found that controlling Ts to a range of 1355 ° C. or higher is extremely effective in improving the hot crack resistance of the first layer bead. It was.

「Cu,Ni,Cr,Mo,Al,Nb,V:0.5質量%以下(0を含まない)」
また、本発明においては、溶接金属の強度及び靱性を調整するために、Cu,Ni,Cr,Mo,Al,Nb,Vの少なくとも1種類以上を、0.5質量%以下の範囲内であれば、固相線温度Tsに影響を及ぼさないため、含有してもよい。
“Cu, Ni, Cr, Mo, Al, Nb, V: 0.5% by mass or less (excluding 0)”
In the present invention, in order to adjust the strength and toughness of the weld metal, at least one of Cu, Ni, Cr, Mo, Al, Nb, and V should be within a range of 0.5% by mass or less. For example, it may be contained because it does not affect the solidus temperature Ts.

「P:0.015質量%以下」
Pは不純物元素であるが、P含有量が0.015質量%を超えると、著しく耐高温割れ性が劣るため、Pは0.015質量%以下とすることが望ましい。
“P: 0.015 mass% or less”
P is an impurity element, but if the P content exceeds 0.015% by mass, the hot cracking resistance is remarkably inferior, so P is preferably 0.015% by mass or less.

「S:0.015質量%以下」
Sは不純物元素であるが、S含有量が0.015質量%を超えると、著しく耐高温割れ性が劣るため、Sは0.015質量%以下とすることが望ましい。
“S: 0.015 mass% or less”
S is an impurity element, but when the S content exceeds 0.015% by mass, the hot cracking resistance is remarkably inferior, so S is preferably 0.015% by mass or less.

次に,本発明に係るチタニヤ系フラックス入りワイヤについて説明する。このチタニヤ系フラックス入りワイヤは、B:0.0155質量%以下(0は含まない)、P:0.025質量%以下、S:0.021質量%以下、N:0.002乃至0.022質量%、Ti:0乃至0.60質量%、TiO:5乃至7質量%、Mn:2.30乃至3.75質量%、Si:0.85質量%以下(0は含まない)、C:0.030乃至0.055質量%の組成を有する。これらのワイヤ組成は、溶接金属への歩留を考慮して、溶接金属の組成を所定のものにするために決定される。 Next, the titania-based flux cored wire according to the present invention will be described. This titania-based flux-cored wire has B: 0.0155 mass% or less (excluding 0), P: 0.025 mass% or less, S: 0.021 mass% or less, N: 0.002 to 0.022 mass%, Ti: 0 to 0.60 wt%, TiO 2: 5 to 7 wt%, Mn: 2.30 to 3.75 wt%, Si: 0.85 wt% or less (0 is not included), C : It has a composition of 0.030 to 0.055 mass%. These wire compositions are determined in order to make the composition of the weld metal predetermined in consideration of the yield to the weld metal.

なお、フラックス入りワイヤにおいて、B源としては、Fe−B,Fe−Si−B、B等がある。P,Sは、鋼製外皮及びフラックス原料の不純物から、ワイヤ中に含まれる。N源は、鋼製外皮及びチッ化クロム、チッ化チタン、フラックス原料の不純物等から、ワイヤ中に含まれる。Ti源としては、金属Ti,Fe−Ti等がある。TiO源はルチール、チタン酸カルシウム、チタン酸カリガラス、及びルコキシン等がある。なお、TiOはその下限値(5質量%)よりも低くなると、立向の作業性が劣化し、上限値(7質量%)を超えると、溶接金属の酸素量が高くなる傾向にある。Mn源としては、鋼製外皮中のMn、フラックス中の金属Mn,Fe−Mn,Fe−Si−Mn等がある。Si源としては、鋼製外皮中のSi、フラックス中のFe−Si,Fe−Si−Mb,Fe−Si−B,Fe−Si−Mg,REM−Ca−Si等がある。C源としては、鋼製外皮中のC,フラックス中のC単体、鉄粉及び金属粉のC等がある。 In the flux-cored wire, examples of the B source include Fe—B, Fe—Si—B, and B 2 O 3 . P and S are contained in the wire from impurities of the steel outer shell and the flux raw material. The N source is contained in the wire from the steel outer sheath, chromium nitride, titanium nitride, impurities of the flux raw material, and the like. Examples of the Ti source include metal Ti and Fe—Ti. Examples of TiO 2 sources include rutile, calcium titanate, potassium titanate glass, and lucoxin. Incidentally, TiO 2 is becomes lower than a lower limit value (5 wt%), degraded workability TatsuMuko, exceeds the upper limit value (7 wt%), there is a tendency that the oxygen content in the weld metal increases. Examples of the Mn source include Mn in the steel outer shell, metal Mn, Fe—Mn, and Fe—Si—Mn in the flux. Examples of the Si source include Si in the steel outer shell, Fe-Si, Fe-Si-Mb, Fe-Si-B, Fe-Si-Mg, and REM-Ca-Si in the flux. Examples of the C source include C in the steel outer shell, C simple substance in the flux, iron powder, and metal powder C.

本発明のワイヤ中のFeは80質量%以上含有されており、そのFe源は、鋼製外皮、鉄粉、Fe合金中のFe等がある。その他残部は、前述のB,P,S,N,Ti,TiO,Mn,Si,C源として使用する原料の該当成分以外の成分と、金属Cu,Ni,Cr,Mo,Al,Nb,Mg,V,Ca,Zn等の不可避的不純物と、スラグ生成剤とを含む。なお、スラグ生成剤としては、SiO,CaO,NaO,ZrO,KO,Al,LiO,Bi,KSiF,CaF,BaF,NaF,V,FeO,Nb,Cr,Fe,SnO,SrF,AlF,MgF,LiF,CaCO,MgCO,BaCO,LiCO,NaCO,SrCO等がある。また、フラックス入りワイヤのフラックス充填率は、ワイヤ全質量の10〜20質量%である。 Fe in the wire of the present invention is contained in an amount of 80% by mass or more, and the Fe source includes steel outer skin, iron powder, Fe in Fe alloy, and the like. The rest is composed of components other than the corresponding components of the raw materials used as the B, P, S, N, Ti, TiO 2 , Mn, Si, and C sources, and metals Cu, Ni, Cr, Mo, Al, Nb, Inevitable impurities such as Mg, V, Ca, Zn and a slag forming agent are included. As the slag-forming agent, SiO 2, CaO, Na 2 O, ZrO 2, K 2 O, Al 2 O 3, Li 2 O, Bi 2 O 3, K 2 SiF 6, CaF 2, BaF 2, NaF , V 2 O 5 , FeO, Nb 2 O 5 , Cr 2 O 3 , Fe 2 O 3 , SnO 2 , SrF 2 , AlF 3 , MgF 2 , LiF, CaCO 3 , MgCO 3 , BaCO 3 , Li 2 CO 3 , Na 2 CO 3 , Sr 2 CO 3 and the like. Moreover, the flux filling rate of the flux-cored wire is 10 to 20% by mass of the total mass of the wire.

なお、溶接対象母材は、例えば、溶接構造用圧延鋼板(SM400B、SM490A)又は造船用鋼板(AH32,DH36)等の普通鋼である。これらの鋼種の組成の一例を下記表1に示す。   The base material to be welded is, for example, plain steel such as a rolled steel plate for welded structure (SM400B, SM490A) or a steel plate for shipbuilding (AH32, DH36). An example of the composition of these steel types is shown in Table 1 below.

Figure 2009028765
Figure 2009028765

次に、本発明の実施例の特性を本発明の範囲から外れる比較例と比較して、本発明の効果について説明する。   Next, the effects of the present invention will be described by comparing the characteristics of the examples of the present invention with comparative examples that depart from the scope of the present invention.

溶接条件は以下のとおりである。
・溶接姿勢:下向
・シールドガス:100体積%CO
・溶接電流:240A
・溶接電圧:30V
・溶接速度:375mm/分
・ワイヤ径:1.2mm
・供試鋼板:SM400B
・開先形状:35°V開先
・開先ギャップ=4mm
The welding conditions are as follows.
・ Welding posture: Downward ・ Shielding gas: 100 volume% CO 2
・ Welding current: 240A
・ Welding voltage: 30V
-Welding speed: 375 mm / min-Wire diameter: 1.2 mm
・ Test steel plate: SM400B
・ Groove shape: 35 ° V groove ・ Gap gap = 4mm

なお、溶接速度375mm/分は目標値であり、実際の溶接試験では、多少の速度差が生じた。各実施例・比較例における溶接速度は表2−2中に示した。但し、この表2−2に示す程度の溶接速度のばらつきでは、試験結果に及ぼす影響は小さい。なお、試験対象の鋼種は、SM400B鋼(組成は表1参照)である。   The welding speed of 375 mm / min is a target value, and in the actual welding test, a slight speed difference occurred. The welding speed in each example and comparative example is shown in Table 2-2. However, the variation in the welding speed as shown in Table 2-2 has a small effect on the test result. The steel type to be tested is SM400B steel (see Table 1 for composition).

この溶接試験で得られた溶接金属の組成(質量%)を下記表2−1,2−2に示す。また、使用したチタニヤ系フラックス入りワイヤの組成を下記表3−1,3−2に示す。   The compositions (mass%) of the weld metal obtained in this welding test are shown in Tables 2-1 and 2-2 below. Moreover, the composition of the used titania-based flux-cored wire is shown in Tables 3-1 and 3-2 below.

Figure 2009028765
Figure 2009028765

Figure 2009028765
Figure 2009028765

Figure 2009028765
Figure 2009028765

Figure 2009028765
Figure 2009028765

図1は耐高温割れ性能試験に使用する溶接母材の開先形状を示す断面図である。図1に示すように、溶接母材1はV形状の開先を有し、このV形状の開先部の裏面には、裏当材としての耐火物2が配置され、この耐火物2はアルミニウムテープ3で母材1の裏面に貼着されている。このV形状の開先角度を35°として、裏あて材が配置されている部分のルート間隔を4mmとした。そして、溶接電流240A,運棒方法はストレート、繰り返し数を2回として、片面溶接し、その初層溶接について、X線透過試験(JISZ3104)にて内部割れを確認し、その全長を測定した。割れ率は、割れ率W=(割れトータル長さ)/(溶接長)×100により算出される。   FIG. 1 is a cross-sectional view showing a groove shape of a weld base material used for a hot crack resistance test. As shown in FIG. 1, the weld base material 1 has a V-shaped groove, and a refractory 2 as a backing material is disposed on the back surface of the V-shaped groove portion. The aluminum tape 3 is attached to the back surface of the base material 1. The groove angle of this V shape was set to 35 °, and the route interval of the portion where the backing material was arranged was set to 4 mm. Then, the welding current 240A, the rod method was straight, the number of repetitions was two, single-sided welding was performed, and the initial layer welding was checked for internal cracks in an X-ray transmission test (JISZ3104), and the total length was measured. The crack ratio is calculated by the crack ratio W = (total crack length) / (weld length) × 100.

この溶接試験における耐高温割れ性能の結果を、前述の表2−1,2−2に合わせて示す。表2−1,2−2の耐高温割れ性の欄では、割れ率Wが5.0%未満で、従来の品質が最も高い汎用ワイヤより割れ率が小さいものには○、割れ率Wが5.0質量%以上で、従来の汎用ワイヤと同程度のものには×を付して、評価結果を表した。   The results of the hot crack resistance in this welding test are shown in Tables 2-1 and 2-2. In the column of hot cracking resistance in Tables 2-1 and 2-2, the crack rate W is less than 5.0%, and the crack rate W is smaller than the conventional wire having the highest quality, the crack rate W An evaluation result was expressed by adding x to 5.0 mass% or more and the same level as that of a conventional general-purpose wire.

表2−1、2−2に示すように,固相線温度Tsが1355℃未満である比較例1乃至5は、いずれも、割れ率が5%を超えるものであり、耐高温割れ性が劣るものであった。なお、比較例4,5が従来の汎用ワイヤであり、その割れ率は夫々8.0%、9.0%である。比較例としては掲げていないが、従来の汎用ワイヤのうち、品質が最も高いワイヤを使用しても、その割れ率は5.0%とするのが限界であった。   As shown in Tables 2-1 and 2-2, all of Comparative Examples 1 to 5 in which the solidus temperature Ts is less than 1355 ° C. have a cracking ratio exceeding 5%, and have high-temperature cracking resistance. It was inferior. In addition, Comparative Examples 4 and 5 are conventional general-purpose wires, and their crack rates are 8.0% and 9.0%, respectively. Although not listed as a comparative example, even when a wire having the highest quality among the conventional general-purpose wires is used, the crack rate is limited to 5.0%.

また、図2は横軸に固相線温度Tsをとり、縦軸に割れ率をとって、表2−1,2−2及び表3−1,3−2に示す関係(実施例6乃至23と比較例1乃至5の全てのデータ)をグラフ化したものである。この図2に示されているように、固相線温度Tsが1355℃以上である場合に、それ以外のものに比較して割れ率が極めて小さくなっている。   Further, in FIG. 2, the horizontal axis indicates the solidus temperature Ts, and the vertical axis indicates the cracking rate, and relationships shown in Tables 2-1 and 2-2 and Tables 3-1 and 3-2 (Examples 6 to 3). 23 and all data of Comparative Examples 1 to 5) are graphed. As shown in FIG. 2, when the solidus temperature Ts is 1355 ° C. or higher, the cracking rate is extremely small as compared with the other cases.

耐高温割れ性試験に使用する溶接母材の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the weld base material used for a hot cracking resistance test. 比較例1〜5、実施例6〜23の固相線温度と、割れ率との関係を示すグラフ図である。It is a graph which shows the relationship between the solidus temperature of Comparative Examples 1-5 and Examples 6-23, and a crack rate.

符号の説明Explanation of symbols

1;母材
2;耐火材
3;アルミニウムテープ
1; Base material 2; Refractory material 3; Aluminum tape

Claims (5)

チタニヤ系フラックス入りワイヤにより溶接された溶接金属において、Cの含有量を0.029質量%以上とし、溶接金属全質量に対する質量%で、B,C、Mn、N、P、S、Si、Tiの含有量を夫々[B],[C]、[Mn]、[N]、[P]、[S]、[Si]、[Ti]としたとき、下記数式で定義される固相線温度Tsが、1355℃以上となるように、前記各成分を含有することを特徴とする溶接金属。
Ts=1538−8903×[B]−982×[C]−6.64×[Mn]−511×[N]−368×[P]−3603×[S]−47.0×[Si]−205×[Ti]−17
In a weld metal welded with a titania-based flux-cored wire, the C content is 0.029% by mass or more, and B, C, Mn, N, P, S, Si, Ti in mass% with respect to the total mass of the weld metal. When the contents of [B], [C], [Mn], [N], [P], [S], [Si], and [Ti] are respectively defined, the solidus temperature defined by the following formula A weld metal comprising the above components so that Ts is 1355 ° C. or higher.
Ts = 1538-8903 × [B] −982 × [C] −6.64 × [Mn] −511 × [N] −368 × [P] −3603 × [S] −47.0 × [Si] − 205 × [Ti] -17
N:0.0045乃至0.02質量%、Ti:0.025乃至0.1質量%、Mn:1.0乃至1.7質量%、Si:0.2乃至0.7質量%、C:0.05乃至0.09質量%、及びO:0.05乃至0.09質量%を含有し、更にCu,Ni,Cr,Mo,Al,Nb,及びVからなる群から選択された少なくとも1種の元素を0.5質量%以下(0は含まない)含有し、残部がFe及び不可避的不純物からなることを特徴とする請求項1に記載の溶接金属。 N: 0.0045 to 0.02 mass%, Ti: 0.025 to 0.1 mass%, Mn: 1.0 to 1.7 mass%, Si: 0.2 to 0.7 mass%, C: 0.05 to 0.09 mass%, and O: 0.05 to 0.09 mass%, and at least one selected from the group consisting of Cu, Ni, Cr, Mo, Al, Nb, and V 2. The weld metal according to claim 1, wherein the element contains 0.5% by mass or less of a seed element (0 is not included), and the balance is Fe and inevitable impurities. B:0.005質量%以下(0は含まない)を含有することを特徴とする請求項2に記載の溶接金属。 B: 0.005 mass% or less (0 is not included) is contained, The weld metal of Claim 2 characterized by the above-mentioned. 鋼製外皮にフラックスを充填してなり、普通鋼を溶接対象として、請求項1乃至3のいずれか1項に記載の溶接金属を得るためのチタニヤ系フラックス入りワイヤであって、ワイヤ全質量あたり、N:0.001乃至0.022質量%、TiO:5乃至7質量%、Mn:2.30乃至3.75質量%、及びC:0.030乃至0.055質量%を含有し、更にワイヤ全質量に対す含有量(質量%)で、B、C、Mn、N、P、S、Si、Ti、TiOの含有量を夫々[B]、[C]、[Mn]、[N]、[P]、[S]、[Si]、[Ti]、[TiO]としたとき、下記数式で定義される固相線温度Tsが1355℃以上となるように、前記各成分を含有することを特徴とするチタニヤ系フラックス入りワイヤ。
Ts=1538−2938×[B]−1640×[C]−3.05×[Mn]−327×[N]−261×[P]−2594×[S]−26.3×[Si]−17.5×[Ti]−1.95×[TiO]−25.5
A titania-based flux-cored wire for obtaining a weld metal according to any one of claims 1 to 3, wherein a steel outer shell is filled with a flux, and ordinary steel is used as a welding object. , N: 0.001 to 0.022 wt%, TiO 2: 5 to 7 wt%, Mn: 2.30 to 3.75 wt%, and C: contains 0.030 to 0.055 wt%, Further, the content of B, C, Mn, N, P, S, Si, Ti, and TiO 2 in the content (% by mass) with respect to the total mass of the wire is [B], [C], [Mn], [ N], [P], [S], [Si], [Ti], [TiO 2 ], each of the above-mentioned components so that the solidus temperature Ts defined by the following formula is 1355 ° C. or higher. A titania-based flux-cored wire comprising:
Ts = 1538−2938 × [B] −1640 × [C] −3.05 × [Mn] −327 × [N] −261 × [P] −2594 × [S] −26.3 × [Si] − 17.5 × [Ti] −1.95 × [TiO 2 ] −25.5
更に、B:0.0155質量%以下(0は含まない)、Si:0.85質量%以下(0は含まない)、又はTi:0.60質量%以下(0は含まない)を含有することを特徴とする請求項4に記載のチタニヤ系フラックス入りワイヤ。 Furthermore, B: 0.0155 mass% or less (0 is not included), Si: 0.85 mass% or less (0 is not included), or Ti: 0.60 mass% or less (0 is not included). The titania-based flux-cored wire according to claim 4.
JP2007196796A 2007-07-27 2007-07-27 Titanya flux cored wire Expired - Fee Related JP5345770B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007196796A JP5345770B2 (en) 2007-07-27 2007-07-27 Titanya flux cored wire
KR1020080049380A KR20090012045A (en) 2007-07-27 2008-05-28 Weld metal and titania-based flux cored wire
CN2008101302130A CN101352790B (en) 2007-07-27 2008-06-16 Welded metal and titanium dioxide flux-cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196796A JP5345770B2 (en) 2007-07-27 2007-07-27 Titanya flux cored wire

Publications (2)

Publication Number Publication Date
JP2009028765A true JP2009028765A (en) 2009-02-12
JP5345770B2 JP5345770B2 (en) 2013-11-20

Family

ID=40305945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196796A Expired - Fee Related JP5345770B2 (en) 2007-07-27 2007-07-27 Titanya flux cored wire

Country Status (3)

Country Link
JP (1) JP5345770B2 (en)
KR (1) KR20090012045A (en)
CN (1) CN101352790B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245519A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Weld metal excellent in hot crack resistance
CN103286475A (en) * 2013-03-08 2013-09-11 秦皇岛威尔德特种焊业有限责任公司 Flux-cored wire for surfacing repair and cold hardening resistance for hot rolled support roll
CN109804092A (en) * 2016-10-11 2019-05-24 Posco公司 Flux-cored wire cold-rolled steel sheet and its manufacturing method
CN110039219A (en) * 2019-05-20 2019-07-23 丹阳市华龙特钢有限公司 A kind of high-wearing feature welding material and preparation method thereof
CN112894199A (en) * 2021-01-20 2021-06-04 浙江鸿途焊接科技有限公司 Consumable electrode gas shielded welding flux-cored wire for ultralow-temperature high manganese steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351641B2 (en) * 2009-07-23 2013-11-27 株式会社神戸製鋼所 Flux cored wire
JP5671364B2 (en) * 2011-02-09 2015-02-18 株式会社神戸製鋼所 Weld metal with excellent creep properties
CN102886620B (en) * 2012-10-25 2015-12-02 银锐明 The boron alloyed high-toughness wear-resistant flux-cored wire of a kind of nitrogen
CN109664046B (en) * 2018-07-11 2021-04-09 江苏科技大学 (Ti, Al) N reinforced self-protection flux-cored wire utilizing air to permeate N
US20240149365A1 (en) * 2021-03-18 2024-05-09 Jfe Steel Corporation Gas-shielded arc welding method, welded joint, and welded joint production method
CN117512463B (en) * 2024-01-08 2024-03-12 河北科技大学 Medium manganese steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577086A (en) * 1991-09-20 1993-03-30 Kobe Steel Ltd Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JPH05269592A (en) * 1992-03-25 1993-10-19 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas shielded arc welding
JPH079191A (en) * 1993-04-26 1995-01-13 Nippon Steel Corp Mag welding flux cored wire having less welding deformation
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2001254141A (en) * 2000-03-09 2001-09-18 Kobe Steel Ltd Weld metal excellent in thougness
JP2004090042A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux cored wire for gas shielded arc welding of low alloy steel excellent in resistance to hydrochloric acid and sulfuric acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106862B (en) * 1985-09-07 1988-02-24 福建师范大学 Tin solder wire with an active core
JP3586362B2 (en) * 1997-08-22 2004-11-10 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
CN1085127C (en) * 1999-09-29 2002-05-22 冶金工业部钢铁研究总院 Welding wire with metallic flux core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577086A (en) * 1991-09-20 1993-03-30 Kobe Steel Ltd Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JPH05269592A (en) * 1992-03-25 1993-10-19 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas shielded arc welding
JPH079191A (en) * 1993-04-26 1995-01-13 Nippon Steel Corp Mag welding flux cored wire having less welding deformation
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2001254141A (en) * 2000-03-09 2001-09-18 Kobe Steel Ltd Weld metal excellent in thougness
JP2004090042A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux cored wire for gas shielded arc welding of low alloy steel excellent in resistance to hydrochloric acid and sulfuric acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245519A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Weld metal excellent in hot crack resistance
CN103286475A (en) * 2013-03-08 2013-09-11 秦皇岛威尔德特种焊业有限责任公司 Flux-cored wire for surfacing repair and cold hardening resistance for hot rolled support roll
CN109804092A (en) * 2016-10-11 2019-05-24 Posco公司 Flux-cored wire cold-rolled steel sheet and its manufacturing method
CN109804092B (en) * 2016-10-11 2020-10-20 Posco公司 Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
CN110039219A (en) * 2019-05-20 2019-07-23 丹阳市华龙特钢有限公司 A kind of high-wearing feature welding material and preparation method thereof
CN112894199A (en) * 2021-01-20 2021-06-04 浙江鸿途焊接科技有限公司 Consumable electrode gas shielded welding flux-cored wire for ultralow-temperature high manganese steel

Also Published As

Publication number Publication date
KR20090012045A (en) 2009-02-02
JP5345770B2 (en) 2013-11-20
CN101352790B (en) 2011-11-30
CN101352790A (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP5345770B2 (en) Titanya flux cored wire
JP4531118B2 (en) Flux-cored wire for welding duplex stainless steel to refine solidified grains
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
US10870178B2 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP2011140064A (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP7010675B2 (en) Flux-filled wire for gas shielded arc welding and welding method
JP2002511023A (en) Flux core wire for gas flow shield welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5236309B2 (en) Flux-cored wire for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
JP6110800B2 (en) Stainless steel flux cored wire
JP6566928B2 (en) Stainless steel flux cored wire
JP6434381B2 (en) Stainless steel flux cored wire
JP3934399B2 (en) Flux-cored wire for austenitic stainless steel welding that refines solidified crystal grains
JP6140069B2 (en) Stainless steel flux cored wire
KR20220002564A (en) Flux Cored Wire and Welding Method
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP5409459B2 (en) Flux-cored wire for welding austenitic stainless steel
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
JP5096062B2 (en) Weld metal and titania-based flux-cored wire
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5345770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees