JPH07164184A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPH07164184A
JPH07164184A JP34093993A JP34093993A JPH07164184A JP H07164184 A JPH07164184 A JP H07164184A JP 34093993 A JP34093993 A JP 34093993A JP 34093993 A JP34093993 A JP 34093993A JP H07164184 A JPH07164184 A JP H07164184A
Authority
JP
Japan
Prior art keywords
wire
flux
toughness
oxide
cored wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34093993A
Other languages
Japanese (ja)
Other versions
JP3377271B2 (en
Inventor
Hirotoshi Ishide
博俊 石出
Tsukasa Yoshimura
司 吉村
Kazushi Suda
一師 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34093993A priority Critical patent/JP3377271B2/en
Publication of JPH07164184A publication Critical patent/JPH07164184A/en
Application granted granted Critical
Publication of JP3377271B2 publication Critical patent/JP3377271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the flux cored wire for gas shielded arc welding which is improved in low-temp. toughness by assuring good welding workability, drastically decreasing the amt. of the oxygen in weld metal and precipitating a large amt. of Ti oxides constituting the nuclei for forming intra-granular ferrite. CONSTITUTION:This flux cored wire contains, by weight % of the total weight of the wire, 4.0 to 7.0% TiO2, 0.2 to 1.6% Si, 1.8 to 2.4% Mn, 0.3 to 0.5% Mg, 0.04 to 0.06% Ti, 0.006 to 0.012% B and <=8.0% oxide (including TiO2), and further, contains 0.03 to 0.06% C and 0.3 to 0.5% Ni at need in the flux filled in the wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接作業性が良好でか
つ優れた低温靱性の溶接金属を得ることができるガスシ
ールドアーク溶接用フラックス入りワイヤに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux-cored wire for gas shielded arc welding, which has good welding workability and can obtain a weld metal having excellent low temperature toughness.

【0002】[0002]

【従来の技術】チタニヤ系フラックスを充填材として使
用し、シールドガスとして、炭酸ガス、アルゴン、ヘリ
ウム等の単体あるいは混合ガスを使用するガスシールド
アーク溶接用フラックス入りワイヤは、優れたビード外
観、ビード形状を与えると共に溶接作業性、作業能率の
向上が得られるため、軟鋼や50キロ級高張力鋼の構造
物等の溶接に広く用いられている。しかし、チタニヤ系
のフラックスの最大の欠点は、溶接金属中の酸素量が多
く低温靱性が低いことである。
Flux-cored wire for gas shield arc welding, which uses a titania-based flux as a filler and a single or mixed gas such as carbon dioxide, argon, helium, etc. as a shield gas, has an excellent bead appearance and bead. It is widely used for welding structures such as mild steel and high-strength steel of 50 kg class because it gives a shape and improves workability and work efficiency. However, the biggest drawback of the titania-based flux is that the amount of oxygen in the weld metal is large and the low temperature toughness is low.

【0003】特公昭56−6840号公報においては、
チタニヤ系フラックスにTi、Bを添加して、靱性改善
が図られているが、−40℃で良好な靱性が得られなか
った。さらに、チタニヤ系フラックス入りワイヤの特性
を維持しつつ、その欠点である低温靱性を改善する方法
として、特公昭59−44159号公報において、従来
700〜900ppm程度あった溶接金属中の酸素量を
Mg、Ti、Bの複合添加により、500ppm以下に
することによって低温靱性を改善する技術が提案された
が、−40℃で良好な靱性が得られなかった。
In Japanese Patent Publication No. 56-6840,
Although Ti and B were added to the titania-based flux to improve toughness, good toughness was not obtained at -40 ° C. Further, as a method of improving the low temperature toughness, which is a drawback thereof, while maintaining the characteristics of the titania-based flux-cored wire, in JP-B-59-44159, the amount of oxygen in the weld metal, which has been about 700 to 900 ppm, is conventionally used. , Ti, and B were added together to reduce the low temperature toughness to 500 ppm or less, but good toughness was not obtained at -40 ° C.

【0004】[0004]

【発明が解決しようとする課題】本発明は、チタニヤ系
フラックスの特徴である良好な溶接作業性を確保し、か
つ低温靱性をより低温域まで確保することを目的とした
もので、Si、Mn、Mg、Ti、B、TiO2 、酸化
物量さらにC、Niを規定することにより、チタニヤ系
フラックスの最大の欠点であった溶接金属中の酸素量を
大幅に低減し、あわせて粒内フェライトの生成核となる
Ti酸化物を多量に析出することにより、低温靱性を改
善して従来ワイヤの欠点を解消し、適用分野を拡大する
ことのできるフラックス入りワイヤを提供するものであ
る。
SUMMARY OF THE INVENTION The present invention is intended to secure good welding workability, which is a characteristic of titania-based flux, and to secure low temperature toughness in a lower temperature range. , Mg, Ti, B, TiO 2 , the amount of oxides, and C and Ni, drastically reduced the oxygen content in the weld metal, which was the greatest drawback of the titania-based flux. By precipitating a large amount of Ti oxide, which is a generation nucleus, to improve the low temperature toughness, eliminate the defects of the conventional wire, and provide a flux-cored wire that can be applied to a wider range of fields.

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、鋼製外皮にフラックスを充填してな
るガスシールドアーク溶接用フラックス入りワイヤにお
いて、充填フラックス中にワイヤ全重量に対して重量%
で、TiO2 :4.0〜7.0%、Si:0.2〜1.
6%、Mn:1.8〜2.4%、Mg:0.3〜0.5
%、Ti:0.04〜0.06%、B:0.006〜
0.012%、酸化物:8.0%以下(TiO2 を含
む)を含有することを特徴とするガスシールドアーク溶
接用フラックス入りワイヤである。またここにおいて、
充填フラックス中に、ワイヤ全重量に対して重量%でさ
らに、C:0.03〜0.06%を含有すること、充填
フラックス中に、ワイヤ全重量に対して重量%でさら
に、Ni:0.3〜0.5%を含有することも特徴とす
る。
Means for Solving the Problems The present invention is to solve the above problems, and in a flux-cored wire for gas shield arc welding, comprising a steel shell filled with flux, the total weight of the wire in the filled flux is To% by weight
In, TiO 2: 4.0~7.0%, Si : 0.2~1.
6%, Mn: 1.8 to 2.4%, Mg: 0.3 to 0.5
%, Ti: 0.04 to 0.06%, B: 0.006 to
A flux-cored wire for gas shield arc welding, which contains 0.012% and oxide: 8.0% or less (including TiO 2 ). Also here,
The filling flux further contains C: 0.03 to 0.06% by weight based on the total weight of the wire, and the filling flux further contains Ni: 0 by weight% based on the total weight of the wire. It is also characterized by containing 0.3 to 0.5%.

【0006】[0006]

【作用】上述した如く、チタニヤ系フラックス入りワイ
ヤは、溶接作業性が優れている点に最大の特徴がある
が、従来のワイヤ組成に単に粒内フェライト生成に有効
とされているTi、Bを複合添加しても、溶接金属中の
酸素量は低減せず、また多量の粒内フェライトが生成さ
れず、粒界フェライトおよびラス状のベイナイト組織が
生成したため、低温靱性は改善できなかった。そこで本
発明者等はさらに実験を重ね以下の事実を見出した。
As described above, the titania-based flux-cored wire has the greatest feature in that it has excellent welding workability. However, Ti and B, which are simply effective in forming intragranular ferrite in the conventional wire composition, are used. Even with the combined addition, the amount of oxygen in the weld metal was not reduced, a large amount of intragranular ferrite was not formed, and grain boundary ferrite and lath-like bainite structure were formed, so the low temperature toughness could not be improved. Therefore, the present inventors further conducted experiments and found the following facts.

【0007】(1)粒内フェライトの生成核は、Ti酸
化物であること。
(1) The generation nucleus of intragranular ferrite is Ti oxide.

【0008】(2)この生成核となるTi酸化物は、溶
融プール形成時に、チタニヤ系フラックスの主成分であ
るTiO2 が添加した脱酸剤により還元され生成したT
iが、凝固過程で再び酸化されてTi酸化物となったも
のである。そして、酸化されて形成したTi酸化物と残
留しているSi、Mnとが酸化還元反応中に凝固した物
質であり、Ti酸化物にSi、Mnが突き刺さった形態
で存在する。
(2) The Ti oxide, which is the nuclei for formation, is reduced and formed by the deoxidizing agent added with TiO 2 which is the main component of the titania-based flux when the molten pool is formed.
i is oxidized again into Ti oxide in the solidification process. The oxidized Ti oxide and the remaining Si and Mn are solidified during the redox reaction, and Si and Mn are present in the Ti oxide in a pierced form.

【0009】(3)粒内フェライトの生成核にならない
Ti酸化物は、粒内フェライトの生成核と同様TiO2
が還元されてTiとなりさらにTi酸化物となる。しか
し、Ti酸化物形成後残留しているAlと酸化還元反応
中に凝固した物質であり、Ti酸化物に多量のAlが突
き刺さった形態で存在する。さらに、Alの突き刺さっ
た形態をしたTi酸化物は、Ti酸化物が粗大化する。
(3) Ti oxide that does not serve as a nucleus for forming intragranular ferrite has the same TiO 2 content as the nucleus for forming intragranular ferrite.
Are reduced to Ti to form Ti oxide. However, it is a substance solidified during the redox reaction with Al remaining after the formation of Ti oxide, and a large amount of Al is present in the Ti oxide. Further, in the Ti oxide having a form in which Al is stuck, the Ti oxide becomes coarse.

【0010】(4)強脱酸剤であるAlをワイヤ中に0
〜0.12%の範囲で添加する実験をしたところ、Al
添加量の増加に伴い、大型の複合酸化物を形成し靱性が
劣化する。
(4) Al, which is a strong deoxidizer, is not added to the wire.
When an experiment was performed to add Al in the range of 0.12%,
As the addition amount increases, a large complex oxide is formed and the toughness deteriorates.

【0011】(5)脱酸剤が不足すると、凝固過程でB
が酸化消耗するため粒界フェライトの生成を抑制するフ
リーBが少なくなり、粒界フェライトが生成する。
(5) When the deoxidizing agent is insufficient, B is generated in the coagulation process.
Is consumed by oxidation, the amount of free B that suppresses the generation of grain boundary ferrite decreases, and grain boundary ferrite is generated.

【0012】そこで、低温靱性改善のため溶接金属中の
酸素量を低減し、さらに多量の粒内フェライトを生成さ
せて高靱化をはかるためには、酸素源となる酸化物を制
限すること、粒内フェライトの生成核となるTi酸化物
の源となるTiO2 添加量を適正にすること、脱酸剤S
i、Mn、Mg、Tiの適正添加が重要であることがわ
かった。それによって、溶接金属中の酸素量を低減し、
粒内フェライトを多量に生成させ低温靱性を改善するこ
とに成功した。以下に本発明における成分限定理由につ
いて述べる。
Therefore, in order to reduce the amount of oxygen in the weld metal in order to improve the low temperature toughness and generate a large amount of intragranular ferrite to achieve high toughness, the oxide serving as the oxygen source is limited. The amount of TiO 2 that is a source of Ti oxide that serves as a generation nucleus of intragranular ferrite is made appropriate, and the deoxidizer S
It was found that proper addition of i, Mn, Mg and Ti is important. This reduces the amount of oxygen in the weld metal,
We succeeded in improving the low temperature toughness by producing a large amount of intragranular ferrite. The reasons for limiting the components in the present invention will be described below.

【0013】TiO2 :4.0〜7.0% TiO2 は、チタニヤ系フラックス入りワイヤの主成分
であり溶接ビードに対するスラグ形成剤及びアーク安定
剤としての性質を示す。また、粒内フェライトの生成核
となるTi酸化物は、溶融プール形成時に、TiO2
還元され生成したTiが凝固過程で再び酸化されてTi
酸化物となったものである。さらに、酸化されたTi酸
化物と残留している脱酸剤(Mn、Si)と複合酸化物
を形成する。このTi酸化物を一定量確保すれば、高靱
性の得られる粒内フェライト組織になるが、ワイヤ全重
量に対して4.0%未満では有効なTi酸化物が確保で
きず、粒界フェライトを生成させるため高靱性が得られ
ない。また、7.0%を超えると溶接金属中に酸素量が
増加し靱性が低下するため、TiO2 は4.0〜7.0
%とした。
TiO 2 : 4.0-7.0% TiO 2 is a main component of the titania-based flux-cored wire and exhibits properties as a slag forming agent and an arc stabilizer for welding beads. In addition, the Ti oxide, which serves as the nuclei for the generation of intragranular ferrite, is generated by the reduction of TiO 2 during the formation of the molten pool, and the generated Ti is oxidized again during the solidification process.
It is an oxide. Further, a complex oxide is formed with the oxidized Ti oxide and the remaining deoxidizing agent (Mn, Si). If a certain amount of this Ti oxide is secured, an intragranular ferrite structure with high toughness is obtained, but if it is less than 4.0% with respect to the total weight of the wire, an effective Ti oxide cannot be secured and grain boundary ferrite is formed. Since it is generated, high toughness cannot be obtained. Further, if it exceeds 7.0%, the amount of oxygen increases in the weld metal and the toughness decreases, so that TiO 2 is 4.0 to 7.0.
%.

【0014】Si:0.2〜0.6% 脱酸剤として使用し、溶接金属の酸素量を低減させる上
で効果がある。しかし、0.2%未満では脱酸が不足し
ブローホールが発生し、また0.6%を超えると靱性を
低下させるので、その範囲を0.2〜0.6%とした。
Si: 0.2-0.6% Used as a deoxidizing agent and effective in reducing the oxygen content of the weld metal. However, if it is less than 0.2%, deoxidation is insufficient and blowholes are generated, and if it exceeds 0.6%, toughness decreases, so the range was made 0.2 to 0.6%.

【0015】Mn:1.8〜2.4% 脱酸を促進させ溶融金属の流動性を改善する上で効果が
あり、また強度を改善する上でも効果がある。さらに、
組織制御の上から粒内フェライトの生成を助ける。1.
8%未満では、粒界フェライトが多量に生成し、靱性が
劣化する。一方、2.4%以上ではラス状ベイナイトが
生成し靱性が劣化するので、1.8〜2.4%とした。
Mn: 1.8 to 2.4% It is effective in promoting deoxidation and improving the fluidity of the molten metal, and also in improving the strength. further,
Helps to form intragranular ferrite for structural control. 1.
If it is less than 8%, a large amount of grain boundary ferrite is generated and the toughness deteriorates. On the other hand, if it is 2.4% or more, lath-like bainite is formed and the toughness deteriorates, so the content was made 1.8 to 2.4%.

【0016】Mg:0.3〜0.5% Mgは高温のアーク中において酸素と反応し、ワイヤ先
端の溶滴の段階で脱酸反応が行われる。その結果、脱酸
生成物が溶融池内に残留せず、さらには溶融池内で反応
するSi、Mnの脱酸反応を助け、溶接金属の酸素量を
減少させる上で効果がある。しかし、0.3%未満で
は、上記効果が不足し、また0.5%を超えるとアーク
長が過大となり立向溶接において溶融金属が垂れ下が
り、ビード形成が不可能となるので0.3〜0.5%と
した。
Mg: 0.3-0.5% Mg reacts with oxygen in a high temperature arc, and a deoxidation reaction is performed at the stage of droplets at the tip of the wire. As a result, the deoxidation product does not remain in the molten pool, and further, it assists the deoxidation reaction of Si and Mn that react in the molten pool, and is effective in reducing the oxygen content of the weld metal. However, if it is less than 0.3%, the above effect is insufficient, and if it exceeds 0.5%, the arc length becomes excessive and the molten metal hangs down in vertical welding, so that bead formation becomes impossible. It was set to 0.5%.

【0017】Ti:0.04〜0.06% Tiは強脱酸剤であり溶接金属の酸化消耗を抑制する。
また、TiNを形成し、Nを固定するため、BがBNに
なることを妨げ、γ粒界で粒界フェライトの生成を抑制
するフリーBを確保する上で必要な成分である。しか
し、0.04%未満では、ほとんどが酸化消耗し、溶接
金属中にTiNの形成ができないために粒界フェライト
の抑制ができず、多量の粒界フェライトが生成し、靱性
が劣化する。また0.06%を超えるとTiCを形成
し、溶接金属が硬化するために靱性が劣化する。したが
って、Tiは0.04〜0.06%とした。
Ti: 0.04 to 0.06% Ti is a strong deoxidizer and suppresses the oxidative consumption of the weld metal.
Further, since TiN is formed and N is fixed, B is a component necessary for preventing B from becoming BN and ensuring free B that suppresses the generation of grain boundary ferrite at the γ grain boundary. However, if it is less than 0.04%, most of it is consumed by oxidation and TiN cannot be formed in the weld metal, so grain boundary ferrite cannot be suppressed, a large amount of grain boundary ferrite is generated, and toughness deteriorates. Further, if it exceeds 0.06%, TiC is formed and the weld metal is hardened, so that the toughness deteriorates. Therefore, Ti is set to 0.04 to 0.06%.

【0018】B:0.006〜0.012% Bは、γ粒界においてフリーBとすることによりγ粒界
から成長する粒界フェライトの生成を抑制し、粒内フェ
ライトの生成を助ける効果がある。しかし、0.006
%未満では、粒界フェライト抑制効果がなく靱性改善に
は効果がない。また、0.012%を超えると炭化物を
形成し、靱性が劣化するため0.006〜0.012%
とした。
B: 0.006 to 0.012% B has the effect of suppressing the generation of grain boundary ferrite growing from the γ grain boundary by making it free B in the γ grain boundary, and assisting the generation of intragranular ferrite. is there. However, 0.006
If it is less than%, there is no effect of suppressing the grain boundary ferrite and no effect of improving the toughness. If it exceeds 0.012%, carbides are formed and the toughness deteriorates, so 0.006 to 0.012%
And

【0019】酸化物:8.0%以下 本発明では、スラグ形成剤として、TiO2 の他、Si
2 、FeO、Al23 、ZrO2 、Na2 O、K2
Oの酸化物を併用することができるが、酸化物の添加の
総和が8.0%を超えると、スラグ生成量を多くさせる
と共にスラグ巻き込みを起こし易く、かつ溶接金属中の
酸素量を増加させて靱性を劣化させるため、酸化物の添
加量を8.0%以下にした。
Oxide: 8.0% or less In the present invention, as a slag forming agent, in addition to TiO 2 , Si
O 2 , FeO, Al 2 O 3 , ZrO 2 , Na 2 O, K 2
O oxides can be used together, but if the total addition of oxides exceeds 8.0%, the amount of slag produced is increased and slag entrainment easily occurs, and the amount of oxygen in the weld metal is increased. In order to deteriorate the toughness, the amount of oxide added was set to 8.0% or less.

【0020】C:0.03〜0.06% Cは、強度調整のため添加することが好ましい。添加量
が0.03%未満では強度が得られず、さらに粒界フェ
ライトが多量に生成し、靱性を劣化させる。また、0.
06%を超えると、炭化物を形成し硬化し、さらにラス
状のベイナイト組織になって靱性を劣化させるため0.
03〜0.06%とした。
C: 0.03 to 0.06% C is preferably added for strength adjustment. If the addition amount is less than 0.03%, the strength cannot be obtained, and a large amount of grain boundary ferrite is generated to deteriorate the toughness. Also, 0.
If it exceeds 06%, carbides are formed and hardened, and a lath-like bainite structure is formed to deteriorate toughness.
It was set to 03 to 0.06%.

【0021】Ni:0.3〜0.5% Niはマトリックス中に固溶し高靱性が得られるため添
加することが好ましい。しかし、0.3%未満では効果
がなく、0.5%を超えると高温割れが発生しやすくな
るので0.3〜0.5%とした。
Ni: 0.3 to 0.5% Ni is preferably added because it forms a solid solution in the matrix to obtain high toughness. However, if it is less than 0.3%, there is no effect, and if it exceeds 0.5%, hot cracking tends to occur, so the content was made 0.3 to 0.5%.

【0022】鋼製外皮としては、充填加工性の点から深
絞り性の良好な冷間圧延鋼材または熱間圧延鋼材が用い
られる。また、フラックスの充填率は特に限定されない
が、伸線性を考慮して、ワイヤ重量に対して10〜30
%の範囲が最も適当である。なおワイヤの断面形状には
何ら制限がなく、2.0mm以下の細径の場合は比較的
単純な円筒状のものがよく、また2.4〜3.2mm程
度の太径ワイヤの場合はフープを内部へ複雑に折り込ん
だ構造のものが一般的である。またシームレスワイヤに
おいてはCu等メッキ処理を施すことも有効である。さ
らに溶接対象鋼種は低温用鋼の溶接に適用することも可
能である。
As the steel shell, cold rolled steel or hot rolled steel having good deep drawability is used from the viewpoint of filling workability. The filling rate of the flux is not particularly limited, but considering wire drawability, it is 10 to 30 with respect to the wire weight.
The range of% is most suitable. There is no limitation on the cross-sectional shape of the wire, and a relatively simple cylindrical shape is preferable for a small diameter of 2.0 mm or less, and a hoop for a large diameter wire of about 2.4 to 3.2 mm. It is common for the structure to be complicatedly folded inside. It is also effective to apply a plating treatment such as Cu to the seamless wire. Further, the steel type to be welded can be applied to the welding of low temperature steel.

【0023】[0023]

【実施例】表1にワイヤの組成を、また表2に試験結果
を示す。表1、表2において、No.1〜8は比較例、
No.9〜18が本発明のワイヤの実施例である。いず
れも軟鋼外皮を用いて、1.2mm径に仕上げたワイヤ
を使用し、JIS Z3313に準じて溶着金属を作成
し、引張試験及び衝撃試験を実施した。溶接条件は直流
逆極性で溶接電流:270A、アーク電圧:27V、溶
接速度:25cm/分で、シールドガス:Ar−20%
CO2 25リットル/分、チップー母材間距離:20m
mであり、母材は板厚20mmのJIS G3106
SM490Bで積層法は6層12パスである。
EXAMPLES Table 1 shows the composition of the wire, and Table 2 shows the test results. In Tables 1 and 2, No. 1 to 8 are comparative examples,
No. 9 to 18 are examples of the wire of the present invention. In each case, a wire finished with a diameter of 1.2 mm using a mild steel outer shell was used to prepare a weld metal according to JIS Z3313, and a tensile test and an impact test were performed. The welding conditions are direct current reverse polarity, welding current: 270 A, arc voltage: 27 V, welding speed: 25 cm / min, shielding gas: Ar-20%.
CO 2 25 liter / min, distance between chip and base metal: 20 m
m, and the base material is JIS G3106 with a plate thickness of 20 mm.
The SM490B stacking method is 6 layers 12 passes.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2の試験結果から明らかなように、比較
例であるNo.1はTiO2 量が少なく、スラグ被包性
が悪い。さらにB量が少ないため粒内フェライトの生成
が少なく靱性が劣る。No.2は、TiO2 、酸化物量
多く、さらに脱酸剤のTiを添加していないため、溶着
金属中の酸素量が多く靱性が劣る。
As is clear from the test results in Table 2, No. No. 1 had a small amount of TiO 2 and had poor slag encapsulation. Furthermore, since the amount of B is small, the generation of intragranular ferrite is small and the toughness is poor. No. No. 2 has a large amount of TiO 2 and oxides, and does not contain Ti as a deoxidizer, and therefore has a large amount of oxygen in the deposited metal and is inferior in toughness.

【0027】No.3は、脱酸剤であるSiの添加量が
少なく、Mgの添加がないため、脱酸力が低下して、溶
着金属中の酸素量が多く靱性が劣る。No.4は、Si
の添加量が多く、窒化物及び炭化物を形成し、良好な靱
性が得られなかった。No.5は、Ti添加量が過剰に
なり炭化物を形成し良好な靱性が得られなかった。
No. In No. 3, since the addition amount of Si, which is a deoxidizing agent, is small and Mg is not added, the deoxidizing power is lowered, the amount of oxygen in the deposited metal is large, and the toughness is poor. No. 4 is Si
However, good toughness was not obtained due to the formation of nitrides and carbides. No. In No. 5, an excessive amount of Ti was added to form carbides, and good toughness was not obtained.

【0028】No.6は、Ti添加がなされなかったた
め、TiNが生成されずBNが生成し、γ粒界で粒界フ
ェライトを抑制するフリーBが形成されないため粒界フ
ェライトが多量に生成し、靱性が劣化した。さらに、M
nの添加量が多いため過脱酸がおこり、ピット、ブロー
ホールが発生した。No.7は、Mgの添加量が少ない
ために、脱酸不足で溶着金属中の酸素量が多く良好な靱
性が得られなかった。No.8は、Mgの添加量が多い
ために、アーク長が長くなり、立向溶接において溶融金
属が垂れ下がり、ビード形成が不可能となった。
No. In No. 6, since Ti was not added, TiN was not generated and BN was generated, and free B that suppresses the grain boundary ferrite was not formed at the γ grain boundary, so that a large amount of grain boundary ferrite was generated and the toughness was deteriorated. Furthermore, M
Since a large amount of n was added, over-deoxidation occurred and pits and blow holes were generated. No. In No. 7, since the addition amount of Mg was small, deoxidation was insufficient and the amount of oxygen in the deposited metal was large, so that good toughness was not obtained. No. In No. 8, since the amount of Mg added was large, the arc length became long, the molten metal drooped in vertical welding, and it became impossible to form beads.

【0029】一方、本発明範囲であるNo.9〜18の
ワイヤでは溶接作業性が良好で、図1に示すように溶着
金属中の酸素量を420ppm以下にでき、性能特に−
40℃における低温靱性にすぐれていることを確認し
た。
On the other hand, No. 1 within the scope of the present invention. The wire Nos. 9 to 18 have good welding workability, and as shown in FIG. 1, the amount of oxygen in the deposited metal can be 420 ppm or less, and the performance is particularly low.
It was confirmed that the low temperature toughness at 40 ° C. was excellent.

【0030】[0030]

【発明の効果】本発明のガスシールドアーク溶接用フラ
ックス入りワイヤは、以上のように構成されており、溶
接作業性に優れたチタニヤ系フラックス入りワイヤで添
加成分の組み合わせおよび添加量を規定することによ
り、溶接金属中の酸素量を低減し、さらに粒内フェライ
トを形成する生成核となるTi酸化物を多量に生成させ
溶接金属中に多量の粒内フェライトを生成することによ
って低温靱性を改善できる。
EFFECTS OF THE INVENTION The flux-cored wire for gas shielded arc welding of the present invention is constituted as described above, and the combination of the additive components and the addition amount of the titania-based flux-cored wire having excellent welding workability are defined. By this, the low temperature toughness can be improved by reducing the amount of oxygen in the weld metal, and by further producing a large amount of Ti oxide, which serves as a production nucleus for forming intragranular ferrite, to produce a large amount of intragranular ferrite in the weld metal. .

【図面の簡単な説明】[Brief description of drawings]

【図1】溶着金属中の酸素量と vE-40 との関係を示す
グラフ
FIG. 1 is a graph showing the relationship between the amount of oxygen in the deposited metal and vE- 40.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼製外皮にフラックスを充填してなるガ
スシールドアーク溶接用フラックス入りワイヤにおい
て、充填フラックス中にワイヤ全重量に対して重量%
で、 TiO2 :4.0〜7.0% Si :0.2〜1.6% Mn :1.8〜2.4% Mg :0.3〜0.5% Ti :0.04〜0.06% B :0.006〜0.012% 酸化物 :8.0%以下(TiO2 を含む) を含有することを特徴とするガスシールドアーク溶接用
フラックス入りワイヤ。
1. A flux-cored wire for gas shield arc welding, comprising a steel shell filled with flux, wherein the weight of the filled flux is relative to the total weight of the wire.
In, TiO 2: 4.0~7.0% Si: 0.2~1.6% Mn: 1.8~2.4% Mg: 0.3~0.5% Ti: 0.04~0 .06% B: .006 to .012% oxide: 8.0% or less gas shielded arc welding flux cored wire, characterized by containing (including TiO 2).
【請求項2】 充填フラックス中に、ワイヤ全重量に対
して重量%でさらに、 C:0.03〜0.06% を含有することを特徴とする請求項1記載のガスシール
ドアーク溶接用フラックス入りワイヤ。
2. The flux for gas shielded arc welding according to claim 1, wherein the filling flux further contains C: 0.03 to 0.06% by weight% with respect to the total weight of the wire. Cored wire.
【請求項3】 充填フラックス中に、ワイヤ全重量に対
して重量%でさらに、 Ni:0.3〜0.5% を含有することを特徴とする請求項1または2記載のガ
スシールドアーク溶接用フラックス入りワイヤ。
3. The gas shielded arc welding according to claim 1, wherein the filling flux further contains Ni: 0.3 to 0.5% by weight with respect to the total weight of the wire. Wire for flux.
JP34093993A 1993-12-10 1993-12-10 Flux-cored wire for gas shielded arc welding Expired - Fee Related JP3377271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34093993A JP3377271B2 (en) 1993-12-10 1993-12-10 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34093993A JP3377271B2 (en) 1993-12-10 1993-12-10 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH07164184A true JPH07164184A (en) 1995-06-27
JP3377271B2 JP3377271B2 (en) 2003-02-17

Family

ID=18341695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34093993A Expired - Fee Related JP3377271B2 (en) 1993-12-10 1993-12-10 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3377271B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833530B2 (en) 2001-04-09 2004-12-21 Kiswel, Ltd. Flux cored wire for gas shielded arc welding
JP2009018337A (en) * 2007-07-13 2009-01-29 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding
JP2009028765A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Weld metal and titania-based flux cored wire
JP2009028764A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Weld metal and titania-based flux cored wire
JP2009061474A (en) * 2007-09-06 2009-03-26 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding
KR100909022B1 (en) * 2007-12-27 2009-07-22 현대종합금속 주식회사 Titania-based Flux Filling Wire for Gas Shield Arc Welding
JP2010017717A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Flux-filled wire
JP2010142873A (en) * 2008-12-22 2010-07-01 Kobe Steel Ltd Flux-cored wire
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
KR101436118B1 (en) * 2012-10-30 2014-09-01 현대종합금속 주식회사 Flux cored wire for Gas shielded arc welding
US9211613B2 (en) 2009-12-16 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Flux-cored wire for gas shield arc welding use enabling all-position welding
EP3075487A1 (en) 2015-03-30 2016-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux cored wire for gas shielded arc welding
JP2017094360A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP2018034170A (en) * 2016-08-29 2018-03-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833530B2 (en) 2001-04-09 2004-12-21 Kiswel, Ltd. Flux cored wire for gas shielded arc welding
JP2009018337A (en) * 2007-07-13 2009-01-29 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding
JP2009028765A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Weld metal and titania-based flux cored wire
JP2009028764A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Weld metal and titania-based flux cored wire
JP2009061474A (en) * 2007-09-06 2009-03-26 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding
KR100909022B1 (en) * 2007-12-27 2009-07-22 현대종합금속 주식회사 Titania-based Flux Filling Wire for Gas Shield Arc Welding
JP2010017717A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Flux-filled wire
JP2010142873A (en) * 2008-12-22 2010-07-01 Kobe Steel Ltd Flux-cored wire
JP2011025271A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Flux-cored wire
KR101144577B1 (en) * 2009-07-23 2012-05-15 가부시키가이샤 고베 세이코쇼 Flux cored wire
US9211613B2 (en) 2009-12-16 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Flux-cored wire for gas shield arc welding use enabling all-position welding
KR101436118B1 (en) * 2012-10-30 2014-09-01 현대종합금속 주식회사 Flux cored wire for Gas shielded arc welding
EP3075487A1 (en) 2015-03-30 2016-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux cored wire for gas shielded arc welding
KR20160117264A (en) 2015-03-30 2016-10-10 가부시키가이샤 고베 세이코쇼 Flux cored wire for gas shielded arc welding
JP2017094360A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP2018034170A (en) * 2016-08-29 2018-03-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding

Also Published As

Publication number Publication date
JP3377271B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP6338593B2 (en) Welding wire for manufacturing ultra-high strength flux cored arc welded joints with excellent impact toughness
US5365036A (en) Flux cored gas shielded electrode
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
JP3377271B2 (en) Flux-cored wire for gas shielded arc welding
CN102489902B (en) Metal powder type flux-cored wire used for welding high-impact-toughness steel
JP2000233296A (en) Metallic core welding wire rod
CN108406159A (en) A kind of high tenacity titanium alkaline seamless flux-cored wire suitable for all-position welding
JP4035335B2 (en) Combined arc and laser welding process
CN102489895B (en) Gas protective flux cored wire for welding vanadium-containing heat resistant steel
CN102489901B (en) Gas protective welding flux cored wire for welding heat resistant steel
JP2002361486A (en) Flux cored wire for gas-shielded arc welding
JP2908585B2 (en) Flux-cored wire for gas shielded arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JPH07276088A (en) Mag welding flux cored wire for low temperature steel
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
CN114161024A (en) Metal powder type flux-cored wire and preparation method and application thereof
JPH03146295A (en) Flux cored wire for gas shielded arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JPH09277088A (en) Flux cored wire for gas shielded metal-arc welding
JPH10180488A (en) Flux cored wire for electro gas arc welding
JPH05269592A (en) Flux cored wire for gas shielded arc welding
JPH03291192A (en) Flux cored wire for gas shielded arc welding
JPH03169485A (en) High current density welding method and flux-cored wire
CN114769938B (en) Metal flux-cored wire and preparation method and application thereof
JPH05269593A (en) Flux cored wire for gas shielded metal-arc welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees