JP2009026786A - Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring - Google Patents

Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring Download PDF

Info

Publication number
JP2009026786A
JP2009026786A JP2007185342A JP2007185342A JP2009026786A JP 2009026786 A JP2009026786 A JP 2009026786A JP 2007185342 A JP2007185342 A JP 2007185342A JP 2007185342 A JP2007185342 A JP 2007185342A JP 2009026786 A JP2009026786 A JP 2009026786A
Authority
JP
Japan
Prior art keywords
cleaning
iodine
semiconductor device
gold
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007185342A
Other languages
Japanese (ja)
Inventor
Koichi Kato
康一 加藤
Shunji Tagami
俊二 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2007185342A priority Critical patent/JP2009026786A/en
Publication of JP2009026786A publication Critical patent/JP2009026786A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Detergent Compositions (AREA)
  • ing And Chemical Polishing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning liquid which removes iodine and an iodine compound that remain in a semiconductor device, when etching by using an iodine based etching liquid to form a gold electrode or gold wiring in the semiconductor device, and which will not give secondary damages to the semiconductor device, and to provide a cleaning method that uses the cleaning liquid, and the high-reliability semiconductor device cleaned by this cleaning method. <P>SOLUTION: This cleaning liquid is for cleaning iodine and the iodine compound that remain in the semiconductor device, having the gold electrode or the gold wiring formed by the iodine based etching liquid, and the cleaning liquid is an aqueous solution containing thiosulfate; and this cleaning method uses the cleaning liquid, and the semiconductor device is cleaned by this cleaning method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金電極または金配線を有する半導体装置の洗浄液及び洗浄方法に関する。詳しくは、半導体装置上の金薄膜、金電極または金配線をヨウ素系エッチング液にてウェットエッチングする場合に、半導体装置に残留するヨウ素及びヨウ素化合物を除去する洗浄液及び洗浄方法に関するものである。   The present invention relates to a cleaning liquid and a cleaning method for a semiconductor device having a gold electrode or a gold wiring. Specifically, the present invention relates to a cleaning solution and a cleaning method for removing iodine and iodine compounds remaining in a semiconductor device when wet etching of a gold thin film, a gold electrode, or a gold wiring on a semiconductor device is performed with an iodine-based etching solution.

半導体装置や液晶表示素子の電極や配線を形成するための材料として、金や金合金が広く使用されている。金や金合金からなる微細な電極や配線パターンを形成する技術として、ウェットエッチング法が普及している。金や金合金に用いるエッチング液としては、ヨウ素系のエッチング液が知られている(例えば、特許文献1及び2参照)。ヨウ素系エッチング液は、金や金合金と反応しやすく、エッチング速度も速いうえ、取り扱いが容易であるという利点を有する。   Gold and gold alloys are widely used as materials for forming electrodes and wirings of semiconductor devices and liquid crystal display elements. As a technique for forming fine electrodes and wiring patterns made of gold or a gold alloy, a wet etching method has become widespread. As an etchant used for gold or a gold alloy, an iodine-based etchant is known (see, for example, Patent Documents 1 and 2). Iodine-based etchants are advantageous in that they easily react with gold and gold alloys, have a high etching rate, and are easy to handle.

しかしながら、ヨウ素系エッチング液を使用する場合、半導体装置にヨウ素及びヨウ素化合物が残留し、残留ヨウ素及びヨウ素化合物が金のマイグレーションを誘発するおそれがある。そのため、エッチングが終了したのち、半導体装置を洗浄して余分のヨウ素系エッチング液を十分に除去し、半導体装置にヨウ素及びヨウ素化合物が残留しないようにしなければならない。通常、余分のヨウ素系エッチング液の洗浄には超純水が用いられるが、必ずしも十分とは言えず、より高度の洗浄に適した薬剤が求められる。   However, when an iodine-based etching solution is used, iodine and iodine compounds may remain in the semiconductor device, and the residual iodine and iodine compounds may induce gold migration. For this reason, after the etching is completed, the semiconductor device must be cleaned to sufficiently remove excess iodine-based etching solution so that iodine and iodine compounds do not remain in the semiconductor device. Usually, ultrapure water is used for cleaning excess iodine-based etching solution, but it is not always sufficient, and a chemical suitable for higher-level cleaning is required.

しかし、当然のことながら、半導体装置に残留するヨウ素及びヨウ素化合物を洗浄するための薬剤が、半導体装置に腐食等の二次的な損傷を与えるものであってはならない。腐食等の損傷が生じると、シリコン基板面に対してほぼ垂直方向に長く伸びる微細なバンプ電極の垂直面に極端な凹凸が生じ、例えば、バンプ電極間の溝に熱硬化性の樹脂を充填する際に空隙が生じて半導体装置の信頼性を損なうおそれがある。   However, as a matter of course, chemicals for cleaning iodine and iodine compounds remaining in the semiconductor device should not cause secondary damage such as corrosion to the semiconductor device. When damage such as corrosion occurs, extreme unevenness occurs on the vertical surface of the fine bump electrode that extends in a direction substantially perpendicular to the silicon substrate surface. For example, a groove between the bump electrodes is filled with a thermosetting resin. In some cases, voids may be generated and the reliability of the semiconductor device may be impaired.

特公昭51−20976号公報Japanese Patent Publication No.51-20976 特開2003−229420号公報JP 2003-229420 A

本発明は、半導体装置に金電極または金配線を形成するためヨウ素系のエッチング液にてエッチングする際に、半導体装置に残留するヨウ素及びヨウ素化合物をほぼ完全に除去すると共に、半導体装置に二次的な損傷を与えることのない洗浄液、該洗浄液を用いる洗浄方法、及び該洗浄方法で洗浄された信頼性の高い半導体装置を提供することにある。   The present invention substantially completely removes iodine and iodine compounds remaining in a semiconductor device when etching with an iodine-based etchant to form a gold electrode or a gold wiring in the semiconductor device, It is an object of the present invention to provide a cleaning solution that does not cause any damage, a cleaning method using the cleaning solution, and a highly reliable semiconductor device cleaned by the cleaning method.

本発明者らは、鋭意研究した。その結果、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置に残留するヨウ素及びヨウ素化合物を洗浄するための洗浄液であって、該洗浄液がチオ硫酸塩を含む水溶液である洗浄液、それを用いる洗浄方法、及び該洗浄方法で洗浄された半導体装置によって前記課題が解決されることを知り、その知見に基づいて本発明を完成した。   The present inventors have intensively studied. As a result, a cleaning liquid for cleaning iodine and iodine compounds remaining in a semiconductor device having a gold electrode or a gold wiring formed with an iodine-based etching liquid, the cleaning liquid being an aqueous solution containing a thiosulfate, Knowing that the above-mentioned problems can be solved by a cleaning method using the same and a semiconductor device cleaned by the cleaning method, the present invention has been completed based on the knowledge.

本発明は以下によって構成される。
(1)ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置に残留するヨウ素及びヨウ素化合物を洗浄するための洗浄液であって、該洗浄液がチオ硫酸塩を含む水溶液であることを特徴とする洗浄液。
(2)洗浄液がチオ硫酸塩を0.5〜10重量%含有する前記(1)項記載の洗浄液。
(3)チオ硫酸塩がチオ硫酸ナトリウムである前記(1)または(2)項記載の洗浄液。
(4)ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置を前記(1)〜(3)項のいずれか1項記載の洗浄液に浸漬して残留するヨウ素及びヨウ素化合物を洗浄除去し、次いで浸漬後の半導体装置を超純水で洗浄することを特徴とする洗浄方法。
(5)前記(4)項記載の洗浄方法で洗浄された、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置。
(6)半導体装置に残留するヨウ素及びヨウ素化合物の量が、シリコンウエハ基板上面全面に金電極または金配線を有する半導体装置を形成済みの直径200mm(8インチ)のシリコンウエハ基板該1枚当り、ヨウ素換算で、1μg以下である前記(5)項記載の半導体装置。
The present invention is constituted by the following.
(1) A cleaning solution for cleaning iodine and iodine compounds remaining in a semiconductor device having a gold electrode or a gold wiring formed with an iodine-based etching solution, and the cleaning solution is an aqueous solution containing thiosulfate A characteristic cleaning solution.
(2) The cleaning liquid according to (1) above, wherein the cleaning liquid contains 0.5 to 10% by weight of thiosulfate.
(3) The cleaning liquid according to (1) or (2) above, wherein the thiosulfate is sodium thiosulfate.
(4) Washing iodine and iodine compounds remaining by immersing a semiconductor device having a gold electrode or gold wiring formed with an iodine-based etching solution in the cleaning solution according to any one of (1) to (3) above A cleaning method comprising removing and then cleaning the immersed semiconductor device with ultrapure water.
(5) A semiconductor device having a gold electrode or a gold wiring formed by an iodine-based etchant that has been cleaned by the cleaning method described in (4) above.
(6) The amount of iodine and iodine compound remaining in the semiconductor device per silicon wafer substrate with a diameter of 200 mm (8 inches) having a semiconductor device having a gold electrode or gold wiring formed on the entire upper surface of the silicon wafer substrate, The semiconductor device according to (5), wherein the amount is 1 μg or less in terms of iodine.

本発明によれば、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置に残留するヨウ素及びヨウ素化合物は、本発明の洗浄液によってほぼ完全に、還元除去できるため、金のマイグレーションが発生するおそれもなく、信頼性の高い半導体装置を得ることができる。   According to the present invention, iodine and iodine compounds remaining in a semiconductor device having a gold electrode or a gold wiring formed by an iodine-based etching solution can be reduced and removed almost completely by the cleaning solution of the present invention. A highly reliable semiconductor device can be obtained without fear of occurrence.

例えば、ICチップ等の半導体装置は、通常、シリコンウェハを基板とし、該シリコン基板上に形成された接続電極下地金属層と、該下地金属層上に形成された金や金合金からなるバンプ電極からなる。ここで、下地金属層はTi/W、Ti/N、Ti/PtまたはTiからなる下地金属基層と、金や金合金からなる下地金属表層からなる。下地金属表層は下地金属基層とバンプ電極との密着性を高めるために形成される。   For example, a semiconductor device such as an IC chip usually uses a silicon wafer as a substrate, a connection electrode base metal layer formed on the silicon substrate, and a bump electrode made of gold or a gold alloy formed on the base metal layer Consists of. Here, the base metal layer includes a base metal base layer made of Ti / W, Ti / N, Ti / Pt or Ti and a base metal surface layer made of gold or a gold alloy. The base metal surface layer is formed to improve the adhesion between the base metal base layer and the bump electrode.

まず、該シリコン基板表面全面に、スパッタリング法によって厚さが0.05〜1μmの下地金属基層を形成する。更に下地金属基層の上に厚さが0.05〜1μmの金や金合金からなる下地金属表層を形成する。この下地金属表層の表面のうち、バンプ電極を形成する予定の領域以外に、フォトリソグラフィー法によってメッキレジスト層を形成する。次に、下地金属表層の表面のバンプ電極形成予定領域にメッキ法により所定の厚さの金や金合金を析出させてバンプ電極を形成する。該バンプ電極は、シリコン基板面に対してほぼ垂直に突き出た突起状の電極となる。   First, a base metal base layer having a thickness of 0.05 to 1 μm is formed on the entire surface of the silicon substrate by sputtering. Further, a base metal surface layer made of gold or a gold alloy having a thickness of 0.05 to 1 μm is formed on the base metal base layer. A plating resist layer is formed by a photolithography method on the surface of the base metal surface layer other than the region where the bump electrode is to be formed. Next, a bump electrode is formed by depositing gold or a gold alloy having a predetermined thickness on the surface of the base metal surface layer where the bump electrode is to be formed by plating. The bump electrode is a protruding electrode protruding substantially perpendicular to the silicon substrate surface.

次に、前記のメッキレジスト層を、例えば40〜100℃に加温した剥離液104(東京応化工業製)に5〜30分間浸漬する等の方法によって剥離除去する。これによって、メッキレジスト層によって被覆されていた下地金属表層(金または金合金)が露出する。この下地金属表層をヨウ素系エッチング液によってエッチングして除去して超純水で洗浄し、その後、下地金属基層をもエッチング(例えば、Ti/W層の場合、過酸化水素水でエッチング)して除去して超純水で洗浄する。その結果、シリコン基板面に対してほぼ垂直方向に長く伸びた微細なバンプ電極を有し、該バンプ電極とシリコン基板との間に下地金属基層と下地金属表層とが介在する半導体装置が形成される。   Next, the plating resist layer is peeled and removed by a method such as dipping in a stripping solution 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) heated to 40 to 100 ° C. for 5 to 30 minutes, for example. As a result, the underlying metal surface layer (gold or gold alloy) covered with the plating resist layer is exposed. This base metal surface layer is removed by etching with an iodine-based etchant and washed with ultrapure water, and then the base metal base layer is also etched (for example, etching with hydrogen peroxide in the case of a Ti / W layer). Remove and wash with ultrapure water. As a result, a semiconductor device is formed which has fine bump electrodes extending in a direction substantially perpendicular to the silicon substrate surface, and the base metal base layer and the base metal surface layer are interposed between the bump electrodes and the silicon substrate. The

本発明において、下地金属表層(金または金合金)をエッチングするために用いられるヨウ素系エッチング液は、ヨウ素及びヨウ素化合物との水溶液またはそれにアルコール等の他の成分を加えた溶液が好適に用いられる。ヨウ素化合物としては、ヨウ化カリウム、ヨウ化アンモニウム等が上げられるが、ヨウ化カリウムが好適である。エッチングは、通常、メッキレジスト層を剥離除去した後の半導体装置の中間製品をヨウ素系エッチング液を充填したエッチング槽に浸漬して行われる。エッチングの条件は、特に限定されないが、浸漬温度20〜30℃、浸漬時間0.1〜10分が例示できる。
また、下地金属基層のエッチングは、下地金属基層がTi/W層であれば、過酸化水素水(例えば、濃度30重量%)を用いて行なうことができる。エッチングの条件は、特に限定されないが、浸漬温度30〜50℃、浸漬時間3.0〜20分が例示できる。
In the present invention, an iodine-based etching solution used for etching the base metal surface layer (gold or gold alloy) is preferably an aqueous solution of iodine and an iodine compound or a solution obtained by adding other components such as alcohol thereto. . Examples of the iodine compound include potassium iodide and ammonium iodide, and potassium iodide is preferred. Etching is usually performed by immersing the intermediate product of the semiconductor device after the plating resist layer is peeled and removed in an etching tank filled with an iodine-based etching solution. Etching conditions are not particularly limited, and examples include an immersion temperature of 20 to 30 ° C. and an immersion time of 0.1 to 10 minutes.
The etching of the base metal base layer can be performed using hydrogen peroxide water (for example, a concentration of 30% by weight) if the base metal base layer is a Ti / W layer. Although the etching conditions are not particularly limited, an immersion temperature of 30 to 50 ° C. and an immersion time of 3.0 to 20 minutes can be exemplified.

本発明において、エッチングされた後の半導体装置は、チオ硫酸塩を含む洗浄液によって表面に残留するヨウ素及びヨウ素化合物が洗浄、除去される。
本発明の洗浄液に用いられるチオ硫酸塩としては、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸リチウム等のアルカリ金属塩や、チオ硫酸アンモニウム等が例示できるが、好ましくはチオ硫酸ナトリウムである。チオ硫酸塩を含む水溶液はチオ硫酸塩を純水に溶解して調製される。
また、本発明の洗浄液におけるチオ硫酸塩の濃度は、0.5〜10重量%が好ましく、1.0〜5.0重量%がより好ましく、2.0〜4.0重量%が更に好ましい。
洗浄液におけるチオ硫酸塩の濃度が上記の範囲内であれば、エッチングされた後の半導体装置に腐食等の二次的な損傷を与えることがない。
In the present invention, iodine and iodine compounds remaining on the surface of the semiconductor device after etching are cleaned and removed by a cleaning liquid containing thiosulfate.
Examples of the thiosulfate used in the cleaning liquid of the present invention include alkali metal salts such as sodium thiosulfate, potassium thiosulfate, and lithium thiosulfate, and ammonium thiosulfate, with sodium thiosulfate being preferred. The aqueous solution containing thiosulfate is prepared by dissolving thiosulfate in pure water.
The concentration of thiosulfate in the cleaning liquid of the present invention is preferably 0.5 to 10% by weight, more preferably 1.0 to 5.0% by weight, and still more preferably 2.0 to 4.0% by weight.
If the concentration of thiosulfate in the cleaning liquid is within the above range, secondary damage such as corrosion is not caused to the etched semiconductor device.

本発明において、洗浄後の半導体装置に残留するヨウ素及びヨウ素化合物の量は、半導体装置の金電極または金配線の数や形状等により異なるが、例えば、大きさ8インチのシリコンウエハ基板の上面全面に金電極または金配線を有する半導体装置が形成される場合、上記半導体装置形成済みシリコンウエハ基板該1枚当りヨウ素換算で、好ましくは、1μg以下、より好ましくは0.5μg以下、更に好ましくは0.2μg以下である。
洗浄液で洗浄された該半導体装置は、更に超純水を充填した洗浄槽に入れて超純水で洗浄され、乾燥されて目的の半導体装置となるが、上記残留ヨウ素量の計測は、ICパックに半導体装置(基板)と超純水(比抵抗10MΩ)を封入し、オーブンにて75℃で1時間加熱し、空冷15分後ICP−MS(ICP質量分析装置)にてヨウ素量を定量分析する方法で行われる。
In the present invention, the amount of iodine and iodine compound remaining in the semiconductor device after cleaning varies depending on the number and shape of gold electrodes or gold wirings of the semiconductor device, but for example, the entire upper surface of a silicon wafer substrate having a size of 8 inches. When a semiconductor device having a gold electrode or a gold wiring is formed, the silicon wafer substrate on which the semiconductor device is formed is preferably 1 μg or less, more preferably 0.5 μg or less, and still more preferably 0 in terms of iodine per one wafer wafer. .2 μg or less.
The semiconductor device cleaned with the cleaning liquid is further put into a cleaning tank filled with ultrapure water, cleaned with ultrapure water, and dried to obtain the target semiconductor device. A semiconductor device (substrate) and ultrapure water (specific resistance 10 MΩ) are sealed in, heated in an oven at 75 ° C. for 1 hour, and air-cooled for 15 minutes, and then the amount of iodine is quantitatively analyzed by ICP-MS (ICP mass spectrometer). Is done in a way.

本発明の洗浄液を用いて、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置を洗浄する方法としては、該半導体装置を本発明の洗浄液を充填した洗浄槽に入れて洗浄液中に浸漬して、ヨウ素及びヨウ素化合物を洗浄除去し、次いで浸漬後の半導体装置を超純水で洗浄し、乾燥する方法を例示することができる。
尚、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置を洗浄する場合、先ず下地金属表層の金や金合金をエッチングして超純水で洗浄し、次いで下地金属基層のTi合金またはTiをエッチングして超純水で洗浄し、最後に本発明の洗浄液で洗浄する方法が挙げられる。また、下地金属表層の金や金合金をエッチングして超純水で洗浄した後に本発明の洗浄液で洗浄し、次いで下地金属基層のTi合金またはTiをエッチングして超純水で洗浄するだけでも、洗浄液中のチオ硫酸塩の濃度が同じなら同じ効果が得られる。
As a method of cleaning a semiconductor device having a gold electrode or a gold wiring formed with an iodine-based etching solution using the cleaning solution of the present invention, the semiconductor device is placed in a cleaning tank filled with the cleaning solution of the present invention. It is possible to exemplify a method in which iodine and iodine compounds are removed by washing, and then the semiconductor device after immersion is washed with ultrapure water and dried.
When cleaning a semiconductor device having a gold electrode or gold wiring formed with an iodine-based etchant, first, the gold or gold alloy on the base metal surface layer is etched and cleaned with ultrapure water, and then the base metal base layer Ti Examples include a method of etching an alloy or Ti, washing with ultrapure water, and finally washing with the cleaning liquid of the present invention. Also, the surface metal surface layer gold or gold alloy is etched and washed with ultrapure water, then washed with the cleaning liquid of the present invention, and then the base metal base layer Ti alloy or Ti is etched and washed with ultrapure water. If the concentration of thiosulfate in the cleaning solution is the same, the same effect can be obtained.

本発明の洗浄液を用いて、該半導体装置を洗浄する場合の、洗浄槽への浸漬時間は、半導体装置の形状、洗浄液の攪拌の状態、洗浄液の温度等によって、適宜変更可能であるが、洗浄液温度20〜30℃、洗浄時間5〜30分が目安である。
洗浄液で洗浄された該半導体装置は、更に超純水を充填した洗浄槽に入れて超純水注水下で常温20〜30℃にて5〜30分間浸漬洗浄され、スピンドライヤーにより乾燥されて、目的の半導体装置となり、更にバンプ電極間の溝に熱硬化性樹脂を充填し硬化させて封止したり、所望の寸法に成形したりして最終製品となる。
When the semiconductor device is cleaned using the cleaning liquid of the present invention, the immersion time in the cleaning tank can be appropriately changed depending on the shape of the semiconductor device, the state of stirring of the cleaning liquid, the temperature of the cleaning liquid, etc. The standard is a temperature of 20-30 ° C. and a cleaning time of 5-30 minutes.
The semiconductor device cleaned with the cleaning liquid is further placed in a cleaning tank filled with ultrapure water, immersed and washed at room temperature of 20-30 ° C. for 5-30 minutes under ultrapure water injection, dried by a spin dryer, A target semiconductor device is obtained, and a groove between the bump electrodes is filled with a thermosetting resin, cured and sealed, or formed into a desired dimension to be a final product.

以下、実施例及び比較例によって、本発明の洗浄液及び洗浄方法についてより詳細に説明するが、本発明はそれらに限定されるものではない。
尚、試験に供したサンプルは、下記の方法で作成された。
[洗浄テスト用サンプルの作成1]
先ず、大きさ8インチのシリコンウエハ(直径200mm)を基板とし、その上に下地金属基層としてTi/W(チタン/タングステン)層(約0.3μm)、下地金属表層として金層(約0.2μm)をこの順にスパッタリング法によって形成させた。この下地金属表層の表面のうち、バンプ電極を形成する予定の領域以外に、フォトリソグラフィー法によってメッキレジスト層を形成した後、下地金属表層上に電解メッキ法により、複数個(25×75μm:368640個/ウェハ、80×80μm:186240個/ウェハ、合計554880個/ウェハ)の金バンプ(メッキ厚さ:約15.0μm)を形成させた。金バンプの形状は、断面が長方形(25×75μmまたは80×80μm)の略四角柱で、その基板垂直方向高さは約15.0μmである。
次に、40〜100℃に加温した剥離液104(東京応化工業製)に5〜30分間浸漬する等の方法によって前記のメッキレジスト層を剥離除去し、メッキレジスト層によって被覆されていた下地金属表層が露出した基板を、ヨウ素系のエッチング液(ヨウ素5重量%、ヨウ化カリウム10重量%、メタノール74重量%、純水11重量%)を充填したエッチング槽(25Lのテフロン槽)に浸漬し、浸漬温度23℃、浸漬時間1分でエッチングを行ない、下地金属表層(金層)を除去した。次いでこの基板を取り出して、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下、かつ、窒素バブリングによる攪拌のもと10分間浸漬洗浄し、さらに超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下で10分間浸漬洗浄した後、過酸化水素水(31重量%)を充填したエッチング槽(25Lのテフロン槽)に浸漬し、浸漬温度43℃、浸漬時間12分でエッチングを行ない、下地金属基層(Ti/W層)を除去した。次いでこの基板を取り出し、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下、かつ、窒素バブリングによる攪拌のもと10分間浸漬洗浄した後、さらに超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下で10分間浸漬洗浄した後、スピンドライヤーにて乾燥して洗浄テスト用サンプルを作成した。
Hereinafter, the cleaning liquid and the cleaning method of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
The sample used for the test was prepared by the following method.
[Preparation of cleaning test sample 1]
First, a silicon wafer (diameter: 200 mm) having a size of 8 inches is used as a substrate, a Ti / W (titanium / tungsten) layer (about 0.3 μm) as a base metal base layer thereon, and a gold layer (about 0.00 mm as a base metal surface layer). 2 μm) was formed in this order by the sputtering method. A plating resist layer is formed by a photolithography method on the surface of the base metal surface layer other than a region where a bump electrode is to be formed, and then a plurality (25 × 75 μm: 368640) is formed on the base metal surface layer by an electrolytic plating method. Gold bumps (plating thickness: about 15.0 μm) of pieces / wafer, 80 × 80 μm: 186240 pieces / wafer, a total of 554880 pieces / wafer) were formed. The shape of the gold bump is a substantially quadrangular prism having a rectangular cross section (25 × 75 μm or 80 × 80 μm), and the height in the vertical direction of the substrate is about 15.0 μm.
Next, the plating resist layer was peeled and removed by a method such as immersing in a peeling solution 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) heated to 40 to 100 ° C. for 5 to 30 minutes, and the base coated with the plating resist layer The substrate with the metal surface layer exposed is immersed in an etching bath (25 L Teflon bath) filled with an iodine-based etching solution (iodine 5 wt%, potassium iodide 10 wt%, methanol 74 wt%, pure water 11 wt%). Then, etching was performed at an immersion temperature of 23 ° C. and an immersion time of 1 minute to remove the base metal surface layer (gold layer). Next, this substrate was taken out and placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.), stirred at 23 ° C. under 5 L / min ultrapure water injection, and stirred by nitrogen bubbling. And then immersed in ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) and immersed in ultrapure water at 5 ° C / min for 10 minutes. After cleaning, the substrate is immersed in an etching tank (25 L Teflon tank) filled with hydrogen peroxide (31% by weight), etched at an immersion temperature of 43 ° C. and an immersion time of 12 minutes, and a base metal base layer (Ti / W layer) ) Was removed. Next, this substrate was taken out, placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.), stirred at 5 ° C. under 5 L / min ultrapure water injection, and stirred by nitrogen bubbling. After 10 minutes of immersion cleaning, it was placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) and immersed for 10 minutes at 23 ° C. under 5 L / min of ultrapure water injection. After washing, the sample was washed with a spin dryer to prepare a washing test sample.

[洗浄テスト用サンプルの作成2]
洗浄テスト用サンプルの作成1のエッチングにより下地金属表層(金層)を除去した基板を、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下、かつ、窒素バブリングによる攪拌のもと10分間浸漬洗浄し、さらに超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下で10分間浸漬洗浄した後、スピンドライヤーにて乾燥して洗浄テスト用サンプルを作成した。
[Preparation of cleaning test sample 2]
Preparation of cleaning test sample The substrate from which the base metal surface layer (gold layer) has been removed by etching 1 is placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) at 23 ° C. It was immersed in ultrapure water at 5 L / min and stirred for 10 minutes under nitrogen bubbling and washed in a washing tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.). After immersing and washing at 5 ° C. under 5 L / min ultrapure water injection for 10 minutes, the sample was dried by a spin dryer to prepare a sample for washing test.

[下地金属基層の観察と幅の計測]
上記の洗浄テスト用サンプルを実施例・比較例の洗浄液で洗浄した後、該サンプルの金バンプ及び下地金属表層(金)をヨウ素系のエッチング液(ヨウ素5重量%、ヨウ化カリウム10重量%、メタノール74重量%、純水11重量%)を充填した25Lのテフロン槽に23℃で6時間浸漬することにより剥がした。次に、剥離面を電子顕微鏡で撮影し25×75μmの金バンプ下部の下地金属基層(Ti/W)の形状を観察すると共に、幅方向の寸法を図4に示す方法で計測した。計測に際して、浸食による小さな窪みは無視した。計測はウェハ内の5個所について実施し、5点の測定値から平均値、最大値、最小値を求めた。
[Observation of base metal base layer and measurement of width]
After the sample for cleaning test was washed with the cleaning liquids of Examples and Comparative Examples, the gold bump and the base metal surface layer (gold) of the sample were cleaned with iodine-based etching liquid (iodine 5 wt%, potassium iodide 10 wt%, Peeling was performed by immersing in a 25 L Teflon tank filled with methanol (74 wt%, pure water 11 wt%) at 23 ° C. for 6 hours. Next, the peeled surface was photographed with an electron microscope, the shape of the base metal base layer (Ti / W) under the 25 × 75 μm gold bump was observed, and the dimension in the width direction was measured by the method shown in FIG. During measurement, small pits due to erosion were ignored. Measurement was carried out at five locations on the wafer, and an average value, maximum value, and minimum value were obtained from the measurement values at five points.

実施例1〜4
チオ硫酸ナトリウム・5水和物(関東化学(株)製)を純水に溶解して、チオ硫酸ナトリウム濃度が表1の実施例1〜4に示す組成の洗浄液を作製した。
25Lのテフロン槽に表1の組成を有する洗浄液を22L入れ、23℃に加温した。これに上記の[洗浄テスト用サンプルの作成1]で作成した洗浄テスト用サンプル(基板)を浸漬した。浸漬時間は10分間とし、次いで洗浄テスト用基板を取り出し、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下、かつ、窒素バブリングによる攪拌のもと10分間浸漬洗浄した後、さらに超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下で10分間浸漬洗浄した後、スピンドライヤーにて乾燥した。洗浄後の残留ヨウ素量計測は、ICパックに洗浄テスト用サンプル(基板)と超純水(比抵抗10MΩ)80gを封入し、オーブンにて75℃で1時間加熱し、空冷15分後ICP−MS(ICP質量分析装置)にてヨウ素の定量分析を実施した。その結果を表1に示した。更に実施例1〜4と比較例1(チオ硫酸ナトリウム濃度:0)の結果を図1に示した。また、実施例4の下地金属基層の観察と幅の計測結果を図2、図3に示した。
Examples 1-4
Sodium thiosulfate pentahydrate (manufactured by Kanto Chemical Co., Inc.) was dissolved in pure water to prepare cleaning liquids having sodium thiosulfate concentrations as shown in Examples 1 to 4 in Table 1.
22 L of cleaning liquid having the composition shown in Table 1 was placed in a 25 L Teflon tank and heated to 23 ° C. The cleaning test sample (substrate) prepared in [Preparation of cleaning test sample 1] was immersed in this. The immersion time was 10 minutes, and then the substrate for cleaning test was taken out and placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) and injected with 5 L / min of ultrapure water at 23 ° C. After being immersed and washed for 10 minutes under stirring by nitrogen bubbling, it was further placed in a washing tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) at 23 ° C. and 5 L / min. After immersing and washing for 10 minutes under the injection of ultrapure water, it was dried with a spin dryer. The measurement of residual iodine after cleaning was carried out by enclosing a cleaning test sample (substrate) and 80 g of ultrapure water (specific resistance 10 MΩ) in an IC pack, heating in an oven at 75 ° C. for 1 hour, and air cooling 15 minutes later. Quantitative analysis of iodine was performed with MS (ICP mass spectrometer). The results are shown in Table 1. The results of Examples 1 to 4 and Comparative Example 1 (sodium thiosulfate concentration: 0) are shown in FIG. Moreover, the observation result of the base metal base layer of Example 4 and the measurement result of the width are shown in FIGS.

実施例5、6
25Lのテフロン槽に表1の組成を有する洗浄液を22L入れ、23℃に加温した。これに上記の[洗浄テスト用サンプルの作成2]で作成した洗浄テスト用サンプル(基板)を浸漬した。浸漬時間は10分間とし、次いで洗浄テスト用基板を取り出し、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下、かつ、窒素バブリングによる攪拌のもと10分間浸漬洗浄した後、過酸化水素水(31重量%)を充填したエッチング槽(25Lのテフロン槽)に浸漬し、浸漬温度43℃、浸漬時間12分でエッチングを行ない、下地金属基層(Ti/W層)を除去した。次いで洗浄テスト用基板を取り出し、超純水(比抵抗10MΩ、サニートレーディング(株)製)を充填した洗浄槽に入れて23℃にて5L/minの超純水注水下で10分間浸漬洗浄した後、スピンドライヤーにて乾燥した。洗浄後の残留ヨウ素量計測は、実施例1〜4と同様に実施した。その結果を表1に示した。
Examples 5 and 6
22 L of cleaning liquid having the composition shown in Table 1 was placed in a 25 L Teflon tank and heated to 23 ° C. The cleaning test sample (substrate) prepared in [Preparation of cleaning test sample 2] was immersed in this. The immersion time was 10 minutes, and then the substrate for cleaning test was taken out and placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.) and injected with 5 L / min of ultrapure water at 23 ° C. The sample was immersed and washed for 10 minutes under stirring by nitrogen bubbling, and then immersed in an etching tank (25 L Teflon tank) filled with hydrogen peroxide (31% by weight), soaking temperature was 43 ° C., soaking time was 12 Etching was performed in minutes, and the base metal base layer (Ti / W layer) was removed. Next, the substrate for cleaning test was taken out, placed in a cleaning tank filled with ultrapure water (specific resistance 10 MΩ, Sunny Trading Co., Ltd.), and immersed and washed at 23 ° C. under 5 L / min ultrapure water injection for 10 minutes. Then, it dried with the spin dryer. The amount of residual iodine after washing was measured in the same manner as in Examples 1 to 4. The results are shown in Table 1.

比較例1〜4
洗浄液の薬剤と濃度を表1の比較例1〜4に示すように変えた以外は実施例と同様に洗浄液を作製し、実施例と同様に試験に供した(但し、比較例4は70℃に加熱)。その結果を表1に示した。また、比較例1及び2の下地金属基層の観察と幅の計測結果を図2、図3に示した。
Comparative Examples 1-4
A cleaning solution was prepared in the same manner as in the example except that the chemicals and concentration of the cleaning solution were changed as shown in Comparative Examples 1 to 4 in Table 1, and the test was performed in the same manner as in the example (however, Comparative Example 4 was 70 ° C. To heat). The results are shown in Table 1. Moreover, the observation of the base metal base layer of Comparative Examples 1 and 2 and the measurement result of the width are shown in FIGS.

Figure 2009026786
Figure 2009026786

表1の結果より、本発明の洗浄液(実施例1〜6)では、比較例2、3のアルカリ洗浄液よりも効果的にヨウ素を除去できている。また、Ti/W層に対するダメージの有無を確認した結果、図2に示すように、本発明の洗浄液(実施例4)ではTi/W層への腐食性はなく、比較例2のアルカリ洗浄液ではTi/W層への腐食が進んでいることを確認できた。また、図3に示すように、本発明の洗浄液(実施例4)ではアルカリ洗浄液を使用した比較例2に比べてTi/W層への腐食性が明らかに小さいことが確認できた。   From the results of Table 1, the cleaning liquids (Examples 1 to 6) of the present invention can remove iodine more effectively than the alkaline cleaning liquids of Comparative Examples 2 and 3. Further, as a result of confirming the presence or absence of damage to the Ti / W layer, as shown in FIG. 2, the cleaning liquid of the present invention (Example 4) has no corrosiveness to the Ti / W layer, and the alkaline cleaning liquid of Comparative Example 2 It was confirmed that the corrosion of the Ti / W layer was progressing. Further, as shown in FIG. 3, it was confirmed that the corrosiveness to the Ti / W layer was clearly smaller in the cleaning liquid of the present invention (Example 4) than in Comparative Example 2 using the alkaline cleaning liquid.

信頼性の高い半導体装置への利用。   Use for highly reliable semiconductor devices.

洗浄液のチオ硫酸ナトリウム濃度と洗浄テストサンプル(ウェハ)当りの残留ヨウ素量を示す図である。It is a figure which shows the sodium thiosulfate density | concentration of a washing | cleaning liquid, and the residual iodine amount per washing | cleaning test sample (wafer).

洗浄用テストサンプル(基板)の下地金属表層をエッチング後、表1の洗浄液に浸漬し、乾燥後、金バンプと下地金属表層の金層を除去後、下地金属基層のTi/W(チタン/タングステン)層の外観を比較した図である。Etching the underlying metal surface layer of the cleaning test sample (substrate), immersing in the cleaning liquid of Table 1, drying, removing the gold bump and the underlying metal surface gold layer, and then Ti / W (titanium / tungsten) of the underlying metal base layer FIG. 2 is a diagram comparing the appearance of layers.

図2の下地金属基層のTi/W(チタン/タングステン)層の幅の寸法(平均値、最大値、最小値)を比較した図である。縦軸がTi/W層の幅寸法(単位:μm)It is the figure which compared the dimension (average value, maximum value, minimum value) of the width | variety of the Ti / W (titanium / tungsten) layer of the base metal base layer of FIG. The vertical axis is the width dimension of the Ti / W layer (unit: μm)

下地金属基層の幅の計測方法を示す図2の比較例2の左側サンプルの拡大図である。It is an enlarged view of the left side sample of the comparative example 2 of FIG. 2 which shows the measuring method of the width | variety of a base metal base layer.

Claims (6)

ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置に残留するヨウ素及びヨウ素化合物を洗浄するための洗浄液であり、該洗浄液がチオ硫酸塩を含む水溶液であることを特徴とする洗浄液。   A cleaning solution for cleaning iodine and iodine compounds remaining in a semiconductor device having a gold electrode or a gold wiring formed by an iodine-based etching solution, wherein the cleaning solution is an aqueous solution containing thiosulfate . 洗浄液がチオ硫酸塩を0.5〜10重量%含有する請求項1記載の洗浄液。   The cleaning liquid according to claim 1, wherein the cleaning liquid contains 0.5 to 10% by weight of thiosulfate. チオ硫酸塩がチオ硫酸ナトリウムである請求項1または2記載の洗浄液。   The cleaning liquid according to claim 1 or 2, wherein the thiosulfate is sodium thiosulfate. ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置を請求項1〜3のいずれか1項記載の洗浄液に浸漬して残留するヨウ素及びヨウ素化合物を洗浄除去し、次いで浸漬後の半導体装置を超純水で洗浄することを特徴とする洗浄方法。   A semiconductor device having a gold electrode or a gold wiring formed with an iodine-based etching solution is immersed in the cleaning solution according to any one of claims 1 to 3 to clean and remove residual iodine and iodine compounds, and then after immersion A cleaning method comprising cleaning a semiconductor device with ultrapure water. 請求項4記載の洗浄方法で洗浄された、ヨウ素系エッチング液によって形成された金電極または金配線を有する半導体装置。   A semiconductor device having a gold electrode or a gold wiring formed by an iodine-based etchant that is cleaned by the cleaning method according to claim 4. 半導体装置に残留するヨウ素及びヨウ素化合物の量が、シリコンウエハ基板上面全面に金電極または金配線を有する半導体装置を形成済みの直径200mm(8インチ)のシリコンウエハ基板該1枚当り、ヨウ素換算で、1μg以下である請求項5記載の半導体装置。   The amount of iodine and iodine compound remaining in the semiconductor device is calculated in terms of iodine per 200 mm (8 inch) diameter silicon wafer substrate on which a semiconductor device having a gold electrode or gold wiring is formed on the entire upper surface of the silicon wafer substrate. The semiconductor device according to claim 5, wherein the semiconductor device is 1 μg or less.
JP2007185342A 2007-07-17 2007-07-17 Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring Pending JP2009026786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185342A JP2009026786A (en) 2007-07-17 2007-07-17 Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185342A JP2009026786A (en) 2007-07-17 2007-07-17 Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring

Publications (1)

Publication Number Publication Date
JP2009026786A true JP2009026786A (en) 2009-02-05

Family

ID=40398362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185342A Pending JP2009026786A (en) 2007-07-17 2007-07-17 Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring

Country Status (1)

Country Link
JP (1) JP2009026786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209480A (en) * 2011-03-30 2012-10-25 Disco Abrasive Syst Ltd Processing method of electrode-embedded wafer
WO2013075879A1 (en) * 2011-11-23 2013-05-30 Agc Glass Europe Substrate with a functional layer comprising a sulphurous compound
CN111153808A (en) * 2018-11-08 2020-05-15 杭州纤纳光电科技有限公司 Method for purifying raw materials of methylamine hydroiodide and formamidine hydroiodide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209480A (en) * 2011-03-30 2012-10-25 Disco Abrasive Syst Ltd Processing method of electrode-embedded wafer
WO2013075879A1 (en) * 2011-11-23 2013-05-30 Agc Glass Europe Substrate with a functional layer comprising a sulphurous compound
US9293707B2 (en) 2011-11-23 2016-03-22 Agc Glass Europe Substrate with a functional layer comprising a sulphurous compound
CN111153808A (en) * 2018-11-08 2020-05-15 杭州纤纳光电科技有限公司 Method for purifying raw materials of methylamine hydroiodide and formamidine hydroiodide

Similar Documents

Publication Publication Date Title
KR101413380B1 (en) Method for manufacturing semiconductor die and a semiconductor device comprising the semiconductor die obtained thereby
US20050016565A1 (en) Cleaning masks
JP5276662B2 (en) Reduction of metal etch rate using stripping solution containing metal salt
KR20100061490A (en) Improved metal conservation with stripper solutions containing resorcinol
WO2006129538A1 (en) Semiconductor wafer cleaning composition containing phosphonic acid and method of cleaning
EP0052787B1 (en) Etchant composition and application thereof
JP5304637B2 (en) Etching solution and etching method
TWI460311B (en) Nickel-chromium alloy stripper for flexible wiring boards
US7468321B2 (en) Application of impressed-current cathodic protection to prevent metal corrosion and oxidation
JP2009026786A (en) Cleaning liquid and cleaning method for semiconductor device having gold electrode or gold wiring
WO2009052707A1 (en) A plasma etching residues cleaning composition
KR20060017606A (en) Removing agent composition and removing/cleaning method using same
JPH11158660A (en) Composition for removing solder and tin from printed circuit board and method therefor
JPWO2019167970A1 (en) A composition that suppresses damage to alumina and a method for manufacturing a semiconductor substrate using the same.
TWI360729B (en) Photoresist residue remover composition and semico
KR101512490B1 (en) Composition for etching a conductive layer under bump and method of forming a electro-conductive bump structure using the same
TW200540984A (en) Composition for cleaning semiconductor device
JP2006310603A (en) Cleaning liquid component for semiconductor including boron compound and cleaning method
CN109313399A (en) Aqueous solution and method for removing substances from a substrate
US20060000492A1 (en) Forming a passivating aluminum fluoride layer and removing same for use in semiconductor manufacture
TWI727025B (en) Solution and method for etching titanium based materials
JP2008216843A (en) Photoresist stripping liquid composition
JP2004211142A (en) Etchant
WO2005010947A2 (en) Cleaning masks
US20240076547A1 (en) Etching solution and etching method for gold or gold alloy