JP2009024233A - High carbon steel sheet excellent in hardenability, fatigue property and toughness, and method for producing the same - Google Patents
High carbon steel sheet excellent in hardenability, fatigue property and toughness, and method for producing the same Download PDFInfo
- Publication number
- JP2009024233A JP2009024233A JP2007189872A JP2007189872A JP2009024233A JP 2009024233 A JP2009024233 A JP 2009024233A JP 2007189872 A JP2007189872 A JP 2007189872A JP 2007189872 A JP2007189872 A JP 2007189872A JP 2009024233 A JP2009024233 A JP 2009024233A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- toughness
- less
- steel sheet
- hardenability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、産業機械や自動車の駆動系機械部品に適した焼入れ性と、熱処理後に優れた疲労特性、靭性を呈する高炭素鋼板及びその製造方法に関する。 The present invention relates to a high carbon steel sheet exhibiting hardenability suitable for industrial machinery and automobile drive system machine parts, and excellent fatigue characteristics and toughness after heat treatment, and a method for producing the same.
産業機械や自動車の駆動系機械部品に用いられる鋼材には、部品形状に加工した後に優れた焼入れ性を呈するとともに、その後、熱処理された段階で優れた疲労特性と靭性を呈することが要求される。特に、軸受け、歯車、メリヤス針等の部品は、近年、高い疲労強度を得るために焼入れ焼戻し後の断面硬さを650〜750HVの高硬度に調質して使用されている。しかし、靭性の低下や疲労強度の低下、バラツキが生じているのが現状である。 Steel materials used for industrial machinery and automotive driveline machine parts are required to exhibit excellent hardenability after being processed into parts, and to exhibit excellent fatigue characteristics and toughness after being heat treated. . In particular, parts such as bearings, gears, and knitted needles have been used in recent years by adjusting the cross-sectional hardness after quenching and tempering to a high hardness of 650 to 750 HV in order to obtain high fatigue strength. However, the present situation is that toughness, fatigue strength, and variation occur.
一般的には、疲労強度のバラツキに関しては、打抜き加工面の性状、鋼中介在物、表面傷等の影響が大きいとされている。このため、製鋼工程では鋼中介在物の低減に努めている。また、例えば打抜き加工面に傷がないようにファインブランキング加工を施したり、表面傷がある場合にはバレル研磨を施したりしている。このような対策を講じることにより、確かに改善はされているが、それでもまだ疲労強度の低下、バラツキの問題は解消できていない。
さらに、熱処理時に、同一処理バッチ内において熱処理条件に僅かな違いが生じると、靭性、疲労特性のバラツキが生じる。このため、材料面においても、高い熱処理安定性、靭性、疲労強度の改善が求められている。
Generally, regarding the variation in fatigue strength, it is said that the influence of the properties of the punched surface, inclusions in steel, surface flaws, etc. is great. For this reason, efforts are being made to reduce inclusions in steel in the steelmaking process. Further, for example, fine blanking is performed so that the punched surface is not damaged, or barrel polishing is performed when there is a surface scratch. Although such measures have certainly been improved, the problem of reduced fatigue strength and variation has not been solved.
Furthermore, if a slight difference occurs in the heat treatment conditions in the same treatment batch during the heat treatment, variations in toughness and fatigue characteristics occur. For this reason, also in terms of materials, high heat treatment stability, toughness, and improvement in fatigue strength are required.
高靭性と高疲労強度の両方の特性を引き出すために、特許文献1では、比較的大きなサイズの球状炭化物を等軸状フェライトの分散させた素材組織とすることにより、熱処理後の破壊起点を減らして靭性を向上させている。また、特許文献2では、溶体化処理時の炭素量の適正化と未溶解炭化物の大きさを小さくすることで、靭性を向上させている。
ところで、上記特許文献1,2で紹介された技術は、いずれも未溶解炭化物の大きさ及び量を制限することにより靭性を向上させようとするものである。しかしながら、疲労特性の向上については何ら触れられていない。
また、一般に産業機械部品や自動車の駆動系機械部品は、鋼板を製品形状に打抜いた後、焼入れとその後の熱処理により所要の特性を発現させて用いられている。
前記した通り、打抜き前の鋼板は打抜き加工面に傷が生じないように加工性に優れるとともに、焼入れ性も必要である。そして、焼入れ後の熱処理で靭性に加え疲労特性も向上させる必要がある。
By the way, the techniques introduced in the above Patent Documents 1 and 2 attempt to improve toughness by limiting the size and amount of undissolved carbides. However, nothing is mentioned about the improvement of fatigue characteristics.
In general, industrial machine parts and automobile drive system machine parts are used by exhibiting required characteristics by quenching and subsequent heat treatment after a steel plate is punched into a product shape.
As described above, the steel sheet before punching is excellent in workability and hardenability so as not to cause scratches on the punched surface. And it is necessary to improve fatigue characteristics in addition to toughness by heat treatment after quenching.
本発明は、このような問題を解消すべく案出されたものであり、打抜き加工性及びその後の焼入れ性に優れ、焼入れ焼戻し処理で未溶解炭化物の量及び粒度分布を容易に制御することが可能で、靭性に加え疲労特性も改善された部品を製造できる高炭素鋼板を提供することを目的とする。 The present invention has been devised to solve such problems, and is excellent in punching workability and subsequent hardenability, and can easily control the amount and particle size distribution of undissolved carbides by quenching and tempering treatment. An object of the present invention is to provide a high-carbon steel sheet capable of producing a part that is capable of producing a fatigue property in addition to toughness.
本発明の焼入れ性、疲労特性、靭性に優れた高炭素鋼板は、その目的を達成するため、C:0.50〜0.70質量%,Si:0.5質量%以下,Mn:1.0〜2.0質量%,P:0.02質量%以下,S:0.02質量%以下,Al:0.001〜0.10質量%を含み、さらにV:0.05〜0.50質量%,Ti:0.02〜0.20質量%,Nb:0.01〜0.50質量%の1種又は2種以上を含み、残部がFe及び不可避的不純物である成分組成と、炭化物の球状化率が95%以上で、しかも最大粒径が2.5μm以下の炭化物を分散させた組織を有することを特徴とする。
本発明鋼板は、さらに、Cr:0.6質量%以下,Mo:0.5質量%以下,B:0.0002〜0.01質量%の1種又は2種以上を含む成分組成とすることもできる。
The high carbon steel sheet having excellent hardenability, fatigue characteristics, and toughness according to the present invention achieves the object, so that C: 0.50 to 0.70 mass%, Si: 0.5 mass% or less, Mn: 1. 0 to 2.0% by mass, P: 0.02% by mass or less, S: 0.02% by mass or less, Al: 0.001 to 0.10% by mass, and V: 0.05 to 0.50 Component composition including one or more of mass%, Ti: 0.02 to 0.20 mass%, Nb: 0.01 to 0.50 mass%, the balance being Fe and inevitable impurities, and carbide It has a structure in which carbides having a spheroidization ratio of 95% or more and a maximum particle size of 2.5 μm or less are dispersed.
The steel sheet of the present invention further has a component composition including one or more of Cr: 0.6% by mass or less, Mo: 0.5% by mass or less, and B: 0.0002 to 0.01% by mass. You can also.
このような高炭素鋼板は、C:0.50〜0.70質量%,Si:0.5質量%以下,Mn:1.0〜2.0質量%,P:0.02質量%以下,S:0.02質量%以下,Al:0.001〜0.10質量%を含み、さらにV:0.05〜0.50質量%,Ti:0.02〜0.20質量%,Nb:0.01〜0.50質量%の1種又は2種以上を、さらに必要に応じてCr:0.6質量%以下,Mo:0.5質量%以下,B:0.0002〜0.01質量%の1種又は2種以上を含み、残部がFe及び不可避的不純物である成分組成を有する鋼に、仕上げ温度:830〜900℃,平均冷却速度:30〜45℃/s,巻取り温度:500〜680℃の条件の熱間圧延を施し、得られた熱延鋼板を酸洗した後、650〜(Ac1+20)℃の温度域に10h以上保持する焼鈍を施すことにより製造される。
熱延酸洗板焼鈍後、20%以上の冷間圧延とその後に650〜(Ac1+20)℃の温度域に10h以上保持する焼鈍を施す工程を1回又は2回を付加しても良い。
Such a high carbon steel sheet has C: 0.50 to 0.70 mass%, Si: 0.5 mass% or less, Mn: 1.0 to 2.0 mass%, P: 0.02 mass% or less, S: 0.02% by mass or less, Al: 0.001 to 0.10% by mass, V: 0.05 to 0.50% by mass, Ti: 0.02 to 0.20% by mass, Nb: One or more of 0.01 to 0.50% by mass, further Cr: 0.6% by mass or less, Mo: 0.5% by mass or less, B: 0.0002 to 0.01 as necessary Steel having a composition containing one or more of mass%, the balance being Fe and inevitable impurities, finishing temperature: 830-900 ° C., average cooling rate: 30-45 ° C./s, coiling temperature : After hot rolling under conditions of 500 to 680 ° C. and pickling the obtained hot-rolled steel sheet, 650 to (Ac1 + 20) ° C. It is produced by performing annealing for holding the degrees zone 10h or more.
After hot-rolled pickled plate annealing, a step of performing cold rolling of 20% or more and then annealing for 10 hours or more in a temperature range of 650 to (Ac1 + 20) ° C. may be added once or twice.
本発明により、高炭素鋼板の成分組成と組織、特に炭化物の球状化率及び最大粒径を調整することにより、打抜き加工が容易で、焼入れ性に優れた高炭素鋼が得られる。
このため、本発明による高炭素鋼板を素材として所望形状への打抜き加工した後、当該打抜き製品を適宜の温度で焼入れして通常の熱処理を施すと、高い靭性に加えて疲労特性が改善された駆動系機械部品等が得られる。
したがって、本発明により、簡素な打抜き加工が採用でき、しかも通常の焼入れとその後の熱処理で所望特性の信頼性の高い駆動系機械部品等を、低コストで生産性良く製造することができる。
According to the present invention, by adjusting the component composition and structure of the high-carbon steel sheet, particularly the spheroidization rate and the maximum particle size of the carbide, a high-carbon steel that can be easily punched and has excellent hardenability can be obtained.
For this reason, when the high carbon steel sheet according to the present invention is punched into a desired shape as a raw material, the punched product is quenched at an appropriate temperature and subjected to normal heat treatment to improve fatigue characteristics in addition to high toughness. Drive system mechanical parts and the like are obtained.
Therefore, according to the present invention, a simple punching process can be employed, and a highly reliable drive system mechanical component having desired characteristics can be manufactured at low cost with high productivity by ordinary quenching and subsequent heat treatment.
一般的に、高炭素鋼における靭性に関しては、熱処理時に如何なる金属組織形態により靭性向上が図れるかは必ずしも明らかになっていない。金属組織形態と靭性に関する従来の知見では、共析鋼、過共析鋼等の熱処理に際し、およそ0.6質量%程度の炭素を固溶させ、残りを未溶解炭化物として残存させる熱処理が行われている。これは炭素量が0.6質量%を超えると母組織が靭性の低いレンズ状マルテンサイト組織となるためである。
未溶解炭化物は、焼入れ時にオーステナイト結晶粒の粗大化を抑制するといわれているが、未溶解炭化物の形態や粒径が靭性に及ぼす影響は必ずしも明らかにされていない。そのため、焼入れ焼戻し後に得られる衝撃特性の安定性が低く、信頼性の高い駆動系機械部品が得られ難くなっている。
In general, regarding the toughness of high carbon steel, it is not always clear which metal structure form can improve toughness during heat treatment. In the conventional knowledge about the microstructure and toughness of the metal structure, when heat treatment of eutectoid steel, hypereutectoid steel, etc., heat treatment is performed in which about 0.6% by mass of carbon is dissolved and the remainder is left as undissolved carbide. ing. This is because if the carbon content exceeds 0.6% by mass, the parent structure becomes a lenticular martensite structure with low toughness.
Although it is said that undissolved carbide suppresses the coarsening of austenite crystal grains during quenching, the influence of the form and particle size of undissolved carbide on toughness has not necessarily been clarified. Therefore, the stability of the impact characteristics obtained after quenching and tempering is low, and it is difficult to obtain a drive system mechanical component with high reliability.
また、高炭素鋼を焼入れするとマルテンサイト組織からなる硬質の鋼材が得られるが、硬質化に伴って靭性が低下する傾向を示す。一方で、硬質な高炭素鋼は、旧オーステナイト粒を微細化すると、靭性が向上する傾向を示す。
そこで、本発明者等は、靭性、疲労特性に及ぼす未溶解炭化物の形態や粒径の影響について鋭意調査した。
Moreover, when high carbon steel is hardened, a hard steel material having a martensite structure is obtained, but the toughness tends to decrease with hardening. On the other hand, hard high carbon steel tends to improve toughness when the prior austenite grains are refined.
Therefore, the present inventors conducted extensive investigations on the influence of the form and particle size of undissolved carbides on toughness and fatigue characteristics.
その結果、焼入れ焼戻し後の金属組織において、固溶炭素量の低減によりレンズ状マルテンサイトの生成を抑制すること、破壊の起点となる大きな未溶解炭化物を低減すること、さらに旧オーステナイト結晶粒の微細化に有効な元素を添加することにより、所望形状品において、高い靭性に加えて疲労特性が向上することを見出した。
また、大きな未溶解炭化物を低減するための、焼入れ焼戻し前の素材の金属組織形態を制御する適正な製造条件の知見も得た。
As a result, in the metal structure after quenching and tempering, it is possible to suppress the formation of lenticular martensite by reducing the amount of dissolved carbon, to reduce large undissolved carbide that becomes the starting point of fracture, and to further refine the fineness of the prior austenite crystal grains It has been found that the addition of an element effective for crystallization improves fatigue characteristics in a desired shape product in addition to high toughness.
Moreover, in order to reduce a large undissolved carbide, the knowledge of the suitable manufacturing conditions which control the metal structure form of the raw material before quenching and tempering was also obtained.
具体的には、通常の焼入れ焼戻し後の未溶解炭化物の低減を容易にするために熱処理前素材の金属組織炭化物の球状化を均一なものとし、かつ炭化物粒径を小さくすることが有効である。炭化物粒径を小さくすることにより、後の熱処理時に容易に溶体化できる。また溶体化温度を可能な限り低くすることができる。
溶体化温度を低くした場合、未溶解炭化物が多く残存する方向となるが、Cr含有量を低減することにより炭化物が溶解し易くなる。さらに、V,Ti,Nb等の添加により内部破壊の起点となり難い微細な炭窒化物を形成させ、これらの微細炭窒化物によるピン止めの効果を利用し、旧オーステナイト粒を微細化する。
Specifically, in order to facilitate the reduction of undissolved carbide after normal quenching and tempering, it is effective to make the spheroidization of the metal structure carbide of the raw material before heat treatment uniform and to reduce the particle size of the carbide. . By reducing the particle size of the carbide, it is possible to easily form a solution during the subsequent heat treatment. Further, the solution temperature can be made as low as possible.
When the solution temperature is lowered, a large amount of undissolved carbide remains, but the carbide is easily dissolved by reducing the Cr content. Furthermore, the addition of V, Ti, Nb or the like forms fine carbonitrides that are unlikely to start internal destruction, and utilizes the pinning effect of these fine carbonitrides to refine the prior austenite grains.
旧オーステナイト粒の微細化を図ることによる靭性の向上に加え、未溶解炭化物量の低減と微細化による亀裂発生源の減少で靭性、疲労特性の向上が図れる。旧オーステナイト粒の微細化で焼入れ性の低下を招くが、焼入れ性を向上させるMnを多く含ませることにより、焼入れ性の確保・向上を図る。
なお、素材の球状化率を向上させ、かつ炭窒化物粒径を小さくするには、熱間圧延における仕上げ圧延以降の冷却速度及び巻取り温度を制御すればよい。
In addition to improving toughness by reducing the size of prior austenite grains, it is possible to improve toughness and fatigue characteristics by reducing the amount of undissolved carbides and reducing the number of crack sources due to refinement. Although refinement of prior austenite grains causes a decrease in hardenability, the hardenability is secured and improved by containing a large amount of Mn that improves hardenability.
In order to improve the spheroidization rate of the material and reduce the carbonitride grain size, the cooling rate and the coiling temperature after finish rolling in hot rolling may be controlled.
以上の結果から、高炭素鋼板を素材とし、打抜き加工等で所望形状に成形した後、比較的低い温度からの焼入れが可能であって、焼戻し後に優れた靭性及び疲労特性を発揮する駆動系機械部品を得るには、請求項の記載で特定したような成分組成を有し、球状化率が大きく、しかも粒径の小さい炭化物を分散させたものを用いることが有効である旨の知見を得た。
以下にその詳細を説明する。
Based on the above results, a driveline machine that uses high-carbon steel sheet as a raw material, can be quenched from a relatively low temperature after being formed into a desired shape by punching, etc., and exhibits excellent toughness and fatigue characteristics after tempering Obtaining knowledge that it is effective to obtain a component having a component composition as specified in the claims, having a high spheroidizing ratio, and having dispersed a carbide having a small particle size. It was.
Details will be described below.
まず、本発明鋼板を構成する鋼の成分組成について説明する。
C:0.50〜0.70質量%
焼き入れ焼戻し材において、硬さ650HVを安定して得るためには、少なくとも0.50質量%以上のC量が必要である。しかし、0.70質量%を超えるほどの過剰量のCが含まれると、レンズ状マルテンサイトが生成し、また旧オーステナイト結晶粒界に炭化物が析出し、靭性が低下することになる。したがって、C含有量は0.50〜0.70質量%の範囲とする。
First, the component composition of steel constituting the steel sheet of the present invention will be described.
C: 0.50 to 0.70 mass%
In the quenched and tempered material, in order to stably obtain a hardness of 650 HV, a C amount of at least 0.50 mass% or more is required. However, when an excessive amount of C exceeding 0.70% by mass is contained, lenticular martensite is generated, carbides are precipitated at the prior austenite crystal grain boundaries, and the toughness is lowered. Therefore, the C content is in the range of 0.50 to 0.70 mass%.
Si:0.5質量%以下
脱酸元素として添加される。焼入れ性を高め、フェライトの固溶強化元素として有効である。しかし、熱延や焼鈍、さらには熱処理において表面直下に内部酸化物を生じ、靭性及び疲労特性の低下の原因にもなる元素である。このため、Si含有量の上限は0.5質量%とした。なお、脱酸はMn,Al等、他の元素で補われるので、Siは無添加でも構わない。
Si: 0.5% by mass or less Added as a deoxidizing element. It enhances hardenability and is effective as a solid solution strengthening element for ferrite. However, it is an element that causes internal oxides immediately below the surface during hot rolling, annealing, and heat treatment, and also causes a decrease in toughness and fatigue properties. For this reason, the upper limit of Si content was 0.5 mass%. In addition, since deoxidation is supplemented with other elements, such as Mn and Al, Si may not be added.
Mn:1.0〜2.0質量%
Mnは焼き入れ性を確保するために必要な元素である。本発明では焼入れ焼戻し後の旧オーステナイト粒径を小さくするために、1.0質量%に満たないと焼入れ性が不十分になる。しかし、2.0質量%を超えるほどに過剰のMnを添加すると、靭性が低下する。製造コストも高くなる。
Mn: 1.0 to 2.0% by mass
Mn is an element necessary for ensuring hardenability. In the present invention, in order to reduce the prior austenite grain size after quenching and tempering, the hardenability becomes insufficient unless it is less than 1.0% by mass. However, when excess Mn is added so that it exceeds 2.0 mass%, toughness will fall. Manufacturing costs also increase.
P、S:0.02質量%以下
いずれも靭性に悪影響を及ぼす成分である。そのため、可能な限り含有量を少なくすることが好ましいが、本成分系では、上限を0.02質量%とすることで、P,Sに起因する弊害を抑えることができる。
P and S: 0.02% by mass or less are components that adversely affect toughness. For this reason, it is preferable to reduce the content as much as possible. However, in this component system, it is possible to suppress adverse effects caused by P and S by setting the upper limit to 0.02 mass%.
Al:0.001〜0.10質量%
鋼の脱酸材として有効な合金元素である。脱酸作用を発揮させるためには少なくとも0.001質量%の添加が必要である。しかしながら、過剰に含有すると鋼板の表面欠陥の原因となりやすいので、Al含有量の上限を0.10質量%とした。
Al: 0.001 to 0.10% by mass
It is an effective alloying element as a deoxidizing material for steel. In order to exert the deoxidizing action, it is necessary to add at least 0.001% by mass. However, since an excessive content tends to cause surface defects of the steel sheet, the upper limit of the Al content is set to 0.10% by mass.
V:0.05〜0.50質量%
鋼中で炭窒化物を形成し、強度および靭性を向上させるとともに、旧オーステナイト結晶粒を微細にする作用によって亀裂伝播抵抗を向上させる。このような作用・効果は、0.05質量%以上のVを含有させることにより発現する。しかしながら、0.50質量%を超えるほどの多量の含有は、強度,靭性,亀裂伝播抵抗を向上させる効果が飽和するだけであり、高価な元素のため製造コストの上昇を招く。したがって、V含有量は0.05〜0.50質量%の範囲とする。
V: 0.05-0.50 mass%
It forms carbonitrides in steel, improves strength and toughness, and improves crack propagation resistance by the action of refining prior austenite crystal grains. Such actions and effects are manifested by containing 0.05 mass% or more of V. However, the inclusion of a large amount exceeding 0.50% by mass only saturates the effect of improving the strength, toughness and crack propagation resistance, and causes an increase in manufacturing cost due to expensive elements. Therefore, the V content is in the range of 0.05 to 0.50 mass%.
Ti:0.02〜0.20質量%
熱処理時のオーステナイト結晶粒を微細化し、亀裂伝播抵抗を高める作用を呈する。また鋼中Nを固定することから、添加されたBの有効量確保にも有効である。このようなTiの作用は、0.02質量%以上で効果が顕著になる。しかし、0.20質量%を超える含有は、粗大な析出物が形成される原因となり、疲労特性の低下を招く。
Ti: 0.02 to 0.20 mass%
It has the effect of refining austenite crystal grains during heat treatment and increasing crack propagation resistance. Moreover, since N in steel is fixed, it is also effective in securing an effective amount of added B. Such an effect of Ti becomes remarkable at 0.02% by mass or more. However, the content exceeding 0.20% by mass causes coarse precipitates to be formed, resulting in deterioration of fatigue characteristics.
Nb:0.01〜0.50質量%
炭窒化物を形成し、オーステナイト粒の粗大化を抑えて靭性を向上させる作用を呈する。このようなNbの作用は、0.01重量%以上で顕著になる。しかし、0.50質量%を超えて過剰に添加すると疲労特性劣化の原因となる粗大な析出物が形成されるので、上限を0.50質量%とした。
Nb: 0.01 to 0.50 mass%
It forms carbonitrides, suppresses the coarsening of austenite grains, and exhibits the effect of improving toughness. Such an action of Nb becomes remarkable at 0.01% by weight or more. However, if excessively adding over 0.50 mass%, coarse precipitates that cause deterioration of fatigue characteristics are formed, so the upper limit was made 0.50 mass%.
Cr:0.60質量%以下
焼入れ性,強度,耐摩耗性を向上させる効果を併せ持つ。Cr含有量が0.10質量%以上でこれらの効果は十分発揮される。しかし、熱処理時の未溶解炭化物の溶体化を妨げる弊害があるので、上限を0.60質量%とした。本発明の焼入れ性は、Mnで確保するため、Cr無添加でも構わない。
Cr: 0.60 mass% or less It has the effect of improving hardenability, strength, and wear resistance. These effects are sufficiently exhibited when the Cr content is 0.10% by mass or more. However, the upper limit is set to 0.60% by mass because there is a detrimental effect on solution of undissolved carbide during heat treatment. Since the hardenability of the present invention is ensured by Mn, it is possible to add no Cr.
Mo:0.50質量%以下
鋼の焼入れ性の向上に有効な合金元素である。しかし、高価な元素であり多量に添加すると製造コスト高になることからMoの上限を0.50重量%に設定した。本発明の焼入れ性は、Mnで確保するため、Mo無添加でも構わない。
Mo: 0.50% by mass or less Mo is an alloy element effective for improving the hardenability of steel. However, since it is an expensive element and its production cost increases when added in a large amount, the upper limit of Mo is set to 0.50% by weight. Since the hardenability of the present invention is ensured by Mn, Mo may be added.
B:0.0002〜0.01質量%
必要に応じて添加される合金成分であり、焼入れ性を高めると共に、粒界破壊を抑制する作用がある。Bの添加効果は、0.0002質量%以上のB含有量で顕著になる。しかし、B含有量が0.01質量%を超えると、靭性が劣化する。
B: 0.0002 to 0.01% by mass
It is an alloy component added as necessary, and has the effect of enhancing hardenability and suppressing grain boundary fracture. The effect of addition of B becomes significant when the B content is 0.0002% by mass or more. However, when the B content exceeds 0.01% by mass, the toughness deteriorates.
炭化物の球状化率が95%以上で炭化物の最大粒径が2.5μm以下
焼鈍鋼板を素材として打抜き加工等で駆動系機械部品を得るには、駆動系機械部品への成形性と、駆動系機械部品として使用する際に所望の機械的特性を発揮することが求められる。
球状化率が高い炭化物は、球状化が不十分な炭化物と比べて打抜き加工時にミクロボイドの生成起点になり難く、局部延性がよくなる。そのため打抜き面における破断面の形成を抑制できる。十分な局部延性を呈し、良好な打抜き面性状を得るためには球状化率を大きくすることが好ましい。また、部品形状に成形した後に焼入れ焼戻しの熱処理を施して所望の機械的特性を発現させている。機械的特性の内、特に靭性,疲労特性に着目すると、破壊または亀裂の起点としての未溶解炭化物の存在が重要な位置付けとなっている。詳細は実施例に譲るが、焼入れ焼戻し後の組織にあって、未溶解炭化物を極力小さく、かつ少なくするためには、さらに旧オーステナイト粒径を小さくして粒界割れを抑制するためには、駆動系機械部品製造用素材のとしての焼鈍鋼板における球状化炭化物の面積率を95%以上とし、かつ炭化物の最大粒径を2.5μm以下にすることが必要となる。このような組織に調質することにより、加工性と焼入れ性に優れ、駆動系機械部品に成形した後の通常の焼入れ焼戻し処理により、処理後の未溶解炭化物を低減し、かつ微細にでき靭性,疲労特性の向上が図れる。
In order to obtain a drive system machine part by punching or the like using an annealed steel plate with a carbide spheroidization ratio of 95% or more and a maximum grain size of carbide of 2.5 μm or less , the formability to the drive system machine part, It is required to exhibit desired mechanical properties when used as a machine part.
A carbide having a high spheroidization rate is less likely to be a starting point for microvoid formation during punching than a carbide having insufficient spheroidization, and local ductility is improved. Therefore, formation of a fracture surface on the punched surface can be suppressed. In order to exhibit sufficient local ductility and to obtain a good punched surface property, it is preferable to increase the spheroidization rate. Further, after forming into a part shape, a heat treatment of quenching and tempering is performed to express desired mechanical properties. When focusing on toughness and fatigue characteristics among mechanical properties, the presence of undissolved carbides as the starting point of fracture or cracking is an important position. Details will be given in the examples, but in the structure after quenching and tempering, in order to reduce the undissolved carbide as much as possible, and to reduce the prior austenite grain size to suppress intergranular cracking, It is necessary that the area ratio of spheroidized carbide in an annealed steel sheet as a material for manufacturing drive train mechanical parts is 95% or more and the maximum particle size of carbide is 2.5 μm or less. By refining to such a structure, it is excellent in workability and hardenability, and the normal quenching and tempering treatment after forming into drive system machine parts reduces the undissolved carbide after treatment and makes it tough , Fatigue characteristics can be improved.
製造条件
熱間圧延においては、仕上げ温度を830〜900℃に限定する。900℃を超える温度では脱炭層が形成され熱処理品の疲労特性の低下を招く。830℃に満たない仕上げ温度では変形抵抗が高まり圧延機の負荷が大きくなりすぎる。
仕上げから巻取りまでの平均冷却速度を30〜45℃/sに限定する。平均冷却速度が45℃/sを超えると巻取温度が低くなりパーライトのラメラ間隔が小さく硬質となるため、後工程の連続酸洗などの工程での通板が困難となる。30℃/sに満たない平均冷却速度では、板形状が悪い,また通板時間が長くなり生産性が低下する。
巻取温度は、均一なパーライト組織を得るために500〜680℃に限定する。680℃を超える巻取温度では、鋼板の表面に脱炭層や粒界酸化が形成される。500℃に満たない巻取温度では、パーライトのラメラ間隔が小さく硬質となり後工程の通板が困難となる。
Manufacturing conditions In hot rolling, the finishing temperature is limited to 830-900 ° C. When the temperature exceeds 900 ° C., a decarburized layer is formed, and the fatigue characteristics of the heat-treated product are lowered. At a finishing temperature of less than 830 ° C., deformation resistance increases and the rolling mill load becomes too large.
The average cooling rate from finishing to winding is limited to 30 to 45 ° C./s. When the average cooling rate exceeds 45 ° C./s, the coiling temperature becomes low, the lamella spacing of the pearlite becomes small and hard, and it is difficult to pass the plate in a subsequent process such as continuous pickling. At an average cooling rate of less than 30 ° C./s, the plate shape is poor, and the plate passing time becomes long, resulting in a decrease in productivity.
The coiling temperature is limited to 500 to 680 ° C. in order to obtain a uniform pearlite structure. At a coiling temperature exceeding 680 ° C., a decarburized layer and grain boundary oxidation are formed on the surface of the steel sheet. When the coiling temperature is less than 500 ° C., the lamella spacing of the pearlite is small and hard, making it difficult to pass through the post-process.
駆動系機械部品は、通常焼鈍材を打抜き加工等で所望形状に成形加工した後に焼入れ焼戻しされて使用される。このため焼鈍は、金型等加工冶具寿命の劣化を抑制するため、軟質化するために必須となる。650℃〜Ac1+20℃の温度域で10h以上の加熱を行う。650℃に満たなかったり、10hに満たないと、軟質化が不十分である。Ac1+20℃を超える温度で焼鈍すると、炭化物がかえって異常成長する。
焼鈍板の球状炭化物を高球状化率化するとともに均一分散化し、かつ板厚を均一化するとともに良好な板形状を得るためには、前記焼鈍板に、冷延率20%以上の冷間圧延と前記と同じ条件の焼鈍を、1回ないし2回繰り返しても良い。
The drive system mechanical parts are usually used after being annealed and tempered after being formed into a desired shape by stamping or the like. For this reason, annealing is indispensable for softening in order to suppress deterioration of the life of a processing jig such as a mold. Heating is performed for 10 hours or more in a temperature range of 650 ° C to Ac1 + 20 ° C. If it is less than 650 ° C. or less than 10 hours, softening is insufficient. When annealing is performed at a temperature exceeding Ac1 + 20 ° C., carbides are grown abnormally.
In order to increase the spheroidizing rate of the spherical carbide of the annealed sheet, to uniformly disperse it, to equalize the sheet thickness, and to obtain a good sheet shape, the rolled sheet is cold-rolled with a cold rolling rate of 20% or more. The annealing under the same conditions as described above may be repeated once or twice.
前記した通り、駆動系機械部品は、通常焼鈍材を打抜き加工等で所望形状に成形加工した後に焼入れ焼戻しされて使用される。
本発明で提供される焼鈍鋼板も、通常の成形加工で所望部品形状に形作られた後、通常の焼入れ焼戻し処理が施されて使用される。
ところで、高炭素鋼では、高硬度で使用されるため、熱処理後の旧オーステナイトの平均粒径の大きさが靭性に大きな影響を及ぼす。本発明で提供される焼鈍鋼板は、部品形状に形作られた後の焼入れのための加熱を高すぎない温度に設定して熱処理されることが好ましい。例えば860℃を超えるような温度に加熱して焼入れ焼戻し処理を施すと、旧オーステナイトの平均粒径が15μmを超えるほどに大きくなり、粒界割れが発生し易くなる。靭性及び疲労特性を向上させるためには、焼入れ温度を860℃以下に抑えて、旧オーステナイトの平均粒径を15μm以下にすることが好ましい。より好ましくは10μm以下にする。
As described above, the drive system mechanical parts are usually used after being annealed and tempered after being formed into a desired shape by stamping or the like.
The annealed steel sheet provided by the present invention is also used after being formed into a desired part shape by a normal forming process and then subjected to a normal quenching and tempering treatment.
By the way, since high carbon steel is used with high hardness, the size of the average grain size of the prior austenite after the heat treatment greatly affects the toughness. The annealed steel sheet provided in the present invention is preferably heat-treated by setting the heating for quenching after being formed into a part shape to a temperature that is not too high. For example, when a quenching and tempering treatment is performed by heating to a temperature exceeding 860 ° C., the average grain size of the prior austenite increases to exceed 15 μm, and intergranular cracking is likely to occur. In order to improve toughness and fatigue properties, it is preferable to suppress the quenching temperature to 860 ° C. or less and to set the average grain size of the prior austenite to 15 μm or less. More preferably, it is 10 μm or less.
焼入れ後の焼戻し処理は通常の条件で行って構わない。焼入れ前の加熱で十分に溶体化されているため、未溶解炭化物は極めて少なく、かつ小さくなっている。通常、未溶解炭化物が多いと亀裂発生源の増加により靭性及び疲労特性が低下する。また未溶解炭化物が少なくても粒径の大きい未溶解炭化物が残存すると亀裂発生源となり靭性及び疲労特性を低減する。本発明者等は、焼入れ焼戻し処理後の未溶解炭化物が、面積率で1.5%以下、かつ1.5μm以上の粒径のものの分散状況が観察面積3000μm2当り3個以下であれば、靭性及び疲労特性を低減することができると考えている。
詳細は実施例に譲るが、事実、本発明焼鈍鋼板を用いると、未溶解炭化物の面積率を1.5%以下に、かつ粒径1.5μm以上の未溶解炭化物を観察面積3000μm2当り3個以下にすることができている。
The tempering treatment after quenching may be performed under normal conditions. Since it is sufficiently solutionized by heating before quenching, the amount of undissolved carbide is extremely small and small. Usually, when there are many undissolved carbides, the toughness and fatigue characteristics are reduced due to an increase in crack generation sources. Moreover, even if there is little undissolved carbide, if undissolved carbide having a large particle size remains, it becomes a crack generation source and reduces toughness and fatigue characteristics. The inventors of the present invention, if the undissolved carbide after quenching and tempering treatment is 1.5% or less in area ratio and the dispersion state of particles having a particle size of 1.5 μm or more is 3 or less per 3000 μm 2 of the observation area, We believe that toughness and fatigue properties can be reduced.
Although details are left to the examples, in fact, when the annealed steel sheet of the present invention is used, the undissolved carbide area ratio is 1.5% or less and the undissolved carbide having a particle size of 1.5 μm or more is 3 per observation area of 3000 μm 2. Can be less than
表1に示す化学成分を有する鋼を溶製し、表2,3に示す条件で熱間圧延を行い、さらに表2,3に示す条件で焼鈍ないしその後の処理を行った。熱延板の板厚は、冷延・焼鈍後の板厚が2.0mmになるよう調整した。最終焼鈍後の鋼板の球状化炭化物の面積率、球状化炭化物の最大粒径及び硬さを測定した。その結果を表4に示す。焼鈍鋼板は軟化されているので、打抜き加工等が容易に行えるようになっている。
その後、表5に示す焼入れ焼戻し条件で熱処理を行い、硬さ,マルテンサイト面積率,旧オーステナイト粒径,未溶解炭化物の面積率,未溶解炭化物1.5μm以上の個数,衝撃値,疲労限を調査した。
上記球状炭化物及び未溶解炭化物の調査は5%ピクリン酸アルコール溶液でエッチング後、画像処理機能を有するレーザー顕微鏡にて調査した。
Steels having the chemical components shown in Table 1 were melted, hot-rolled under the conditions shown in Tables 2 and 3, and further annealed or processed under the conditions shown in Tables 2 and 3. The plate thickness of the hot-rolled plate was adjusted so that the plate thickness after cold rolling and annealing was 2.0 mm. The area ratio of the spheroidized carbide, the maximum particle size of the spheroidized carbide, and the hardness of the steel plate after the final annealing were measured. The results are shown in Table 4. Since the annealed steel sheet is softened, punching and the like can be easily performed.
Then, heat treatment is performed under the quenching and tempering conditions shown in Table 5, and the hardness, martensite area ratio, prior austenite grain size, area ratio of undissolved carbide, number of undissolved carbide of 1.5 μm or more, impact value, fatigue limit investigated.
The spherical carbide and undissolved carbide were investigated with a laser microscope having an image processing function after etching with a 5% picric alcohol solution.
旧オーステナイト粒径の測定は、JIS G 0551に規定される鋼のオーステナイト結晶粒度試験方法を準じ、直線交差線分法により旧オーステナイトの平均粒径を求めた。
衝撃値は、2mmUノッチ試験片を用い、JIS Z 2242のシャルピー衝撃試験で衝撃値を求めた。衝撃値は25J/cm2以上を良好とした。
疲労限は、JIS Z 2275の金属平板の平面曲げ疲れ試験方法に準じて実施した。試験片は1号試験片を用いた。試験片は表面傷や加工面の仕上げの変動により疲労限のバラツキが生じるため焼入焼戻の後にバレル研摩と化学研摩を実施した。疲労限は1000N/mm2以上を良好とした。
焼入れ焼戻し後の組織及び特性を表6,7に示す。
The prior austenite grain size was measured according to the steel austenite grain size test method specified in JIS G 0551, and the average grain size of the prior austenite was determined by the straight line segment method.
The impact value was determined by a Charpy impact test of JIS Z 2242 using a 2 mm U notch test piece. The impact value was 25 J / cm 2 or more.
The fatigue limit was implemented according to the plane bending fatigue test method of a metal flat plate of JIS Z 2275. The test piece used the No. 1 test piece. The specimens were subjected to barrel polishing and chemical polishing after quenching and tempering because the fatigue limit varied due to surface flaws and variations in the finish of the processed surface. A fatigue limit of 1000 N / mm 2 or more was considered good.
Tables 6 and 7 show the structure and properties after quenching and tempering.
表6,7に見られる通り、本請求項1で特定される要件を備えた試料No.2,3,4,6,10,12,15,16,17,18,19,20,23,24,25,26,27,29,31は、衝撃値:25J/cm2以上、疲労限:1000N/mm2以上の高い靭性と疲労特性を有している。
一方、C量の少ないNo.1は、焼入れ焼戻し後の硬さが得られないため疲労限が低い。Cr含有量の多いNo.5は、未溶解炭化物の面積率が高くかつ大きいために衝撃値と疲労限が下限値未満である。本発明鋼であるが熱間圧延時の冷却速度が遅く巻取り温度が高いNo.7は、セメンタイトが厚く生成し、冷延焼鈍後に得られる球状化炭化物は大きくなり、その後の焼入れ焼戻し時に未溶解炭化物が多く残存する。このため、焼入れ焼戻し材の衝撃値と疲労限が下限値未満である。
As can be seen in Tables 6 and 7, the sample No. having the requirements specified in claim 1 is used. 2, 3, 4, 6, 10, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 29, 31 have an impact value of 25 J / cm 2 or more, fatigue limit : High toughness and fatigue characteristics of 1000 N / mm 2 or more.
On the other hand, no. No. 1 has a low fatigue limit because the hardness after quenching and tempering cannot be obtained. No. with high Cr content. No. 5 has an impact value and a fatigue limit of less than the lower limit values because the area ratio of undissolved carbide is high and large. Although it is steel of the present invention, the cooling rate during hot rolling is slow and the coiling temperature is high. In No. 7, cementite is formed thick, the spheroidized carbide obtained after cold rolling annealing becomes large, and a large amount of undissolved carbide remains during subsequent quenching and tempering. For this reason, the impact value and fatigue limit of the quenched and tempered material are less than the lower limit.
成分組成が本発明の規定を満たしていても、焼鈍条件IIの温度が高いNo.8は、再生パーライトが生成したために未溶解炭化物が多く残存し、焼入れ焼戻し材の衝撃値と疲労限が下限値未満である。成分組成が本発明の規定を満たしているが焼鈍条件Iの後の冷間圧延率が低いNo.9は、残存した棒状の炭化物の分断が不十分となり、焼鈍条件IIで大きな球状化炭化物が多く形成されたことにより、未溶解炭化物が多く残存し衝撃値と疲労限が下限値未満である。同じくNo.11は、焼鈍条件Iの温度が高いために多くの粗大な棒状の炭化物が形成されたことにより未溶解炭化物が多く残存し衝撃値は高いが疲労限は下限値未達である。 Even if the component composition satisfies the provisions of the present invention, the temperature of annealing condition II is high. In No. 8, since regenerated pearlite was generated, a large amount of undissolved carbide remained, and the impact value and fatigue limit of the quenched and tempered material were below the lower limit. Although the component composition satisfies the provisions of the present invention, the cold rolling ratio after annealing condition I is low. In No. 9, the remaining rod-like carbide was not sufficiently divided, and a large amount of large spheroidized carbide was formed under the annealing condition II, so that a large amount of undissolved carbide remained and the impact value and fatigue limit were below the lower limit. Similarly, no. In No. 11, since the temperature of the annealing condition I is high, many coarse rod-like carbides are formed, so that a lot of undissolved carbides remain and the impact value is high, but the fatigue limit does not reach the lower limit.
No.13,14,21,22は、本請求項の規定を満たしているが、焼入時の加熱温度が高いために旧オーステナイト粒径が大きくなり衝撃値が下限値未達である。No.28は熱間圧延において、冷却速度が大きく、巻取り温度が低いため、鋼板が硬質となり後工程の通板不可となり、熱間圧延工程以降の評価は中止した。また、No.30は、焼鈍温度が低く硬質となり打抜き加工時の金型寿命が劣化するため焼入れ焼戻し後の評価は中止した。さらに、No.32は、C量が規定外のため未溶解炭化物が多く残存し衝撃値と疲労限が下限値未達である。No.33はV,Ti,Nbが添加されていないため旧オーステナイトが大きく衝撃値と疲労限が下限値未達である。No.34は、V添加量が少ないために旧オーステナイト粒径が大きく衝撃値と疲労限が下限値未達である。 No. Nos. 13, 14, 21, and 22 satisfy the provisions of the present claim, but because the heating temperature at the time of quenching is high, the prior austenite grain size increases and the impact value does not reach the lower limit. No. In hot rolling, since the cooling rate was high and the coiling temperature was low in hot rolling, the steel plate became hard, and subsequent plate passing was impossible, and evaluation after the hot rolling step was stopped. No. No. 30 was hardened because the annealing temperature was low and the die life at the time of punching was deteriorated, so the evaluation after quenching and tempering was stopped. Furthermore, no. In No. 32, since the amount of C is not specified, a large amount of undissolved carbide remains, and the impact value and fatigue limit do not reach the lower limit. No. In No. 33, V, Ti, and Nb are not added, so the prior austenite is large and the impact value and fatigue limit are below the lower limit. No. No. 34 has a large amount of prior austenite grain size due to a small amount of V added, and the impact value and fatigue limit do not reach the lower limit.
No.35は、Mn量が下限未満であり、焼入れ不良が認められたために疲労限が下限値未達である。No.36は、Si量が高いために鋼板の表層に粒界酸化が生じ疲労限が下限値未達である。No.37は、C量,Cr量が高いために未溶解炭化物が多く残存し、衝撃値は高いが疲労限が下限値未達である。
以上で見られるように、請求項1で規定された成分組成と炭化物の分散形態を有した高炭素焼鈍鋼板は、硬さも低いので成形加工性に優れ(表4の硬さ参照)、かつ焼入れ性に優れる(表6,7のマルテンサイト面積率参照)とともに焼戻し後に残存する未溶解炭化物が少なく、しかも小さいために、疲労特性や靭性に優れた駆動系機械部品を安価に製造できることが理解される。
No. In No. 35, the amount of Mn is less than the lower limit, and because the quenching failure is recognized, the fatigue limit does not reach the lower limit. No. In No. 36, since the Si amount is high, grain boundary oxidation occurs in the surface layer of the steel sheet, and the fatigue limit does not reach the lower limit. No. No. 37 has a high amount of C and Cr, so that a large amount of undissolved carbide remains, and the impact value is high, but the fatigue limit does not reach the lower limit.
As can be seen from the above, the high carbon annealed steel sheet having the component composition defined in claim 1 and the dispersion form of carbide is excellent in formability because of its low hardness (see hardness in Table 4) and quenching. It is understood that driveline mechanical parts with excellent fatigue characteristics and toughness can be manufactured at low cost because they have excellent properties (see the martensite area ratios in Tables 6 and 7), and there are few undissolved carbides remaining after tempering and they are small. The
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189872A JP5030280B2 (en) | 2007-07-20 | 2007-07-20 | High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007189872A JP5030280B2 (en) | 2007-07-20 | 2007-07-20 | High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009024233A true JP2009024233A (en) | 2009-02-05 |
JP5030280B2 JP5030280B2 (en) | 2012-09-19 |
Family
ID=40396327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007189872A Active JP5030280B2 (en) | 2007-07-20 | 2007-07-20 | High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5030280B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011012317A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | Soft high-carbon steel sheet which causes little punching burr and method for manufacturing the same |
WO2011089845A1 (en) * | 2010-01-22 | 2011-07-28 | Jfeスチール株式会社 | Method for producing hot-rolled high carbon steel sheet |
WO2014196586A1 (en) * | 2013-06-05 | 2014-12-11 | 日新製鋼株式会社 | Steel sheet for steel belt and process for manufacturing same, and steel belt |
JP2015190036A (en) * | 2014-03-28 | 2015-11-02 | 日新製鋼株式会社 | Steel sheet for fiber machine component and manufacturing method therefor |
WO2016190370A1 (en) * | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
WO2016190396A1 (en) * | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
KR20170075783A (en) | 2015-08-14 | 2017-07-03 | 가부시키가이샤 도쿠슈 긴조쿠 엑셀 | High carbon cold-rolled steel sheet and method of manufacturing the same |
WO2019163828A1 (en) * | 2018-02-23 | 2019-08-29 | Jfeスチール株式会社 | High-carbon cold-rolled steel sheet and production method therefor |
US10837077B2 (en) | 2015-05-26 | 2020-11-17 | Nippon Steel Corporation | Steel sheet and method for production thereof |
WO2021090472A1 (en) | 2019-11-08 | 2021-05-14 | 株式会社特殊金属エクセル | High-carbon cold-rolled steel sheet and production method therefor, and mechanical parts made of high-carbon steel |
WO2024141228A1 (en) * | 2022-12-30 | 2024-07-04 | Hilti Aktiengesellschaft | Steel alloy, article of manufacture and method |
WO2024169713A1 (en) * | 2023-02-17 | 2024-08-22 | 宝山钢铁股份有限公司 | Bearing steel for vehicle hub and manufacturing method for bearing steel |
EP4435132A1 (en) * | 2023-03-22 | 2024-09-25 | Hilti Aktiengesellschaft | Steel alloy, article of manufacture and method |
-
2007
- 2007-07-20 JP JP2007189872A patent/JP5030280B2/en active Active
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011012317A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | Soft high-carbon steel sheet which causes little punching burr and method for manufacturing the same |
WO2011089845A1 (en) * | 2010-01-22 | 2011-07-28 | Jfeスチール株式会社 | Method for producing hot-rolled high carbon steel sheet |
JP2011149062A (en) * | 2010-01-22 | 2011-08-04 | Jfe Steel Corp | Method for producing high carbon hot-rolled steel sheet |
JPWO2014196586A1 (en) * | 2013-06-05 | 2017-02-23 | 日新製鋼株式会社 | Steel plate for steel belt, method for producing the same and steel belt |
WO2014196586A1 (en) * | 2013-06-05 | 2014-12-11 | 日新製鋼株式会社 | Steel sheet for steel belt and process for manufacturing same, and steel belt |
CN105378119A (en) * | 2013-06-05 | 2016-03-02 | 日新制钢株式会社 | Steel sheet for steel belt and process for manufacturing same, and steel belt |
US11261935B2 (en) | 2013-06-05 | 2022-03-01 | Nippon Steel Nisshin Co., Ltd. | Process for manufacturing a steel sheet, and steel belt made therefrom |
JP2015190036A (en) * | 2014-03-28 | 2015-11-02 | 日新製鋼株式会社 | Steel sheet for fiber machine component and manufacturing method therefor |
CN107614726A (en) * | 2015-05-26 | 2018-01-19 | 新日铁住金株式会社 | Steel plate and its manufacture method |
WO2016190370A1 (en) * | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
JP6119923B1 (en) * | 2015-05-26 | 2017-04-26 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP6119924B1 (en) * | 2015-05-26 | 2017-04-26 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
WO2016190396A1 (en) * | 2015-05-26 | 2016-12-01 | 新日鐵住金株式会社 | Steel sheet and method for producing same |
US10837077B2 (en) | 2015-05-26 | 2020-11-17 | Nippon Steel Corporation | Steel sheet and method for production thereof |
CN107614726B (en) * | 2015-05-26 | 2020-02-07 | 日本制铁株式会社 | Steel sheet and method for producing same |
KR20170075783A (en) | 2015-08-14 | 2017-07-03 | 가부시키가이샤 도쿠슈 긴조쿠 엑셀 | High carbon cold-rolled steel sheet and method of manufacturing the same |
KR20200108067A (en) * | 2018-02-23 | 2020-09-16 | 제이에프이 스틸 가부시키가이샤 | High carbon cold rolled steel sheet and manufacturing method thereof |
CN111742076A (en) * | 2018-02-23 | 2020-10-02 | 杰富意钢铁株式会社 | High carbon cold rolled steel sheet and method for manufacturing same |
WO2019163828A1 (en) * | 2018-02-23 | 2019-08-29 | Jfeスチール株式会社 | High-carbon cold-rolled steel sheet and production method therefor |
CN111742076B (en) * | 2018-02-23 | 2022-01-21 | 杰富意钢铁株式会社 | High carbon cold rolled steel sheet and method for manufacturing same |
KR102398707B1 (en) | 2018-02-23 | 2022-05-16 | 제이에프이 스틸 가부시키가이샤 | High carbon cold rolled steel sheet and manufacturing method thereof |
US11365460B2 (en) | 2018-02-23 | 2022-06-21 | Jfe Steel Corporation | High-carbon cold rolled steel sheet and method for manufacturing same |
WO2021090472A1 (en) | 2019-11-08 | 2021-05-14 | 株式会社特殊金属エクセル | High-carbon cold-rolled steel sheet and production method therefor, and mechanical parts made of high-carbon steel |
KR20210056880A (en) | 2019-11-08 | 2021-05-20 | 가부시키가이샤 도쿠슈 긴조쿠 엑셀 | High-carbon cold-rolled steel sheet, manufacturing method thereof, and high-carbon steel machine parts |
WO2024141228A1 (en) * | 2022-12-30 | 2024-07-04 | Hilti Aktiengesellschaft | Steel alloy, article of manufacture and method |
WO2024169713A1 (en) * | 2023-02-17 | 2024-08-22 | 宝山钢铁股份有限公司 | Bearing steel for vehicle hub and manufacturing method for bearing steel |
EP4435132A1 (en) * | 2023-03-22 | 2024-09-25 | Hilti Aktiengesellschaft | Steel alloy, article of manufacture and method |
Also Published As
Publication number | Publication date |
---|---|
JP5030280B2 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5030280B2 (en) | High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
JP5812048B2 (en) | High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same | |
TWI591187B (en) | High-carbon cold-rolled steel sheet and its manufacturing method | |
JP5484103B2 (en) | Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts | |
JP2007291495A (en) | Hot-rolled ultrasoft high-carbon steel plate and process for production thereof | |
JP5280324B2 (en) | High carbon steel sheet for precision punching | |
JP5725263B2 (en) | Hard cold rolled steel sheet and method for producing the same | |
JP2013057114A (en) | Medium carbon steel plate having excellent workability and hardenability and method for producing the same | |
JP2017179596A (en) | High carbon steel sheet and manufacturing method therefor | |
JP4696853B2 (en) | Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet | |
JP2000265240A (en) | Carbon steel sheet excellent in fine blankability | |
JPWO2015146174A1 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JPWO2019151048A1 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP2012237052A (en) | Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same | |
JP5739689B2 (en) | Mechanical structural member | |
JP2005240135A (en) | Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel | |
JP5489497B2 (en) | Method for producing boron steel sheet with excellent hardenability | |
JP2009242918A (en) | Component for machine structure having excellent rolling fatigue property, and method for producing the same | |
JP4964492B2 (en) | Medium carbon steel sheet and method for producing the same | |
JP5601861B2 (en) | Manufacturing method of boron steel rolled annealed steel sheet | |
JP2021116477A (en) | High carbon steel sheet | |
JP5439735B2 (en) | Machine structural parts having excellent rolling fatigue characteristics and manufacturing method thereof | |
WO2012144495A1 (en) | Steel for cold punching, and element obtained therefrom for steel belt | |
JP2018141184A (en) | Carbon steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120625 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120625 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5030280 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |