JP2009024211A - Organic resin-coated steel material and building using the same - Google Patents

Organic resin-coated steel material and building using the same Download PDF

Info

Publication number
JP2009024211A
JP2009024211A JP2007187658A JP2007187658A JP2009024211A JP 2009024211 A JP2009024211 A JP 2009024211A JP 2007187658 A JP2007187658 A JP 2007187658A JP 2007187658 A JP2007187658 A JP 2007187658A JP 2009024211 A JP2009024211 A JP 2009024211A
Authority
JP
Japan
Prior art keywords
chemical conversion
organic resin
steel material
layer
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187658A
Other languages
Japanese (ja)
Other versions
JP4964699B2 (en
Inventor
Takao Yamazaki
隆生 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007187658A priority Critical patent/JP4964699B2/en
Publication of JP2009024211A publication Critical patent/JP2009024211A/en
Application granted granted Critical
Publication of JP4964699B2 publication Critical patent/JP4964699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic resin-coated steel material which has adhesion equal to or higher than that of a steel material subjected to a chromate treatment by a chemical conversion film formed without using the chromate treatment; and to provide a marine building using the same. <P>SOLUTION: The organic resin-coated steel material is a steel material coated with an organic resin corrosion prevention layer, in which an aluminum phosphate chemical conversion film layer formed between the organic resin corrosion prevention layer and the steel material is composed of two layers, and the chemical conversion film provided on the steel material side has an average film thickness of 1-7 μm and the chemical conversion film provided on the organic resin side has an average film thickness of 10-40 μm, and the average element composition ratio satisfies following formula: 1,000≤(Fe<SB>1</SB>×Al<SB>2</SB>)/(Fe<SB>2</SB>×Al<SB>1</SB>)≤5,000, wherein Fe<SB>1</SB>is average molarity of iron element in the chemical conversion film provided on the steel material side; Fe<SB>2</SB>is average molarity of iron element in the chemical conversion film provided on the organic resin side; Al<SB>1</SB>is average molarity of aluminum element in the chemical conversion film provided on the steel material side; and Al<SB>2</SB>is average molarity of aluminum element in the chemical conversion film provided on the organic resin side. The building using the organic resin-coated steel material is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、クロム元素を用いない化成処理を施した有機樹脂被覆鋼材及びこれを用いた建造物に関し、とりわけ、腐食の厳しい環境、例えば海浜近辺における鋼構造物の防食に適した防食技術を利用した有機樹脂被覆鋼材及びこれを用いた建造物に関する。   TECHNICAL FIELD The present invention relates to an organic resin-coated steel material subjected to chemical conversion treatment without using chromium element and a building using the same, and particularly uses an anticorrosion technique suitable for anticorrosion of a steel structure in a severely corrosive environment, for example, near a beach. The present invention relates to an organic resin-coated steel material and a building using the same.

金属(貴金属を除く)を防食する典型的な方法は塗覆装である。これは、金属表面に有機樹脂・無機樹脂を被覆するもので、被覆層が腐食要因の水、酸素、電解質を遮断するため、金属の腐食は起きないか、あるいは腐食が遅延又は低減する。通常、被覆層を厚くしたり、水・酸素・電解質の透過度の小さい有機樹脂を用いることにより、耐食性を高めることができる。もちろん、樹脂層に防錆剤・防錆顔料を添加してもよい。腐食環境が特に厳しい海浜環境等で行われる重防食用塗覆装の場合であれば、ジンクリッチペイント層あるいは有機樹脂プライマー層、中塗り層、上塗り層の多層構造とし、合計で0.5〜3mmの有機樹脂を被覆することがよく行われている。   A typical method for corrosion protection of metals (except precious metals) is coating. In this method, the metal surface is coated with an organic resin / inorganic resin, and the coating layer blocks water, oxygen, and electrolytes that are corrosive factors, so that the metal does not corrode, or the corrosion is delayed or reduced. Usually, the corrosion resistance can be increased by increasing the thickness of the coating layer or using an organic resin having a low water / oxygen / electrolyte permeability. Of course, you may add a rust preventive agent and a rust preventive pigment to a resin layer. In the case of coating for heavy anticorrosion carried out in a particularly harsh beach environment, the zinc rich paint layer or organic resin primer layer, intermediate coating layer, multi-layer structure of the top coating layer, a total of 0.5 ~ It is often performed to coat a 3 mm organic resin.

有機樹脂被覆鋼材の樹脂被覆の密着性をさらに高めるために、基材表面を化成処理することが広く行われている。化成処理には、3価、6価のクロムを含むクロメート処理が、安価で高性能であるため、一般に広く用いられている。しかし、環境負荷の点からクロム系化成処理は将来規制される可能性があり、代替処理が探索されている。   In order to further enhance the adhesion of the resin coating of the organic resin-coated steel material, chemical conversion treatment of the substrate surface is widely performed. As the chemical conversion treatment, a chromate treatment containing trivalent or hexavalent chromium is widely used because it is inexpensive and has high performance. However, chromium conversion treatment may be regulated in the future from the viewpoint of environmental load, and alternative treatments are being searched for.

この場合、代替化成処理には、従来のクロム系化成処理と同等以上の特性が望まれ、重防食用樹脂被覆鋼材であれば、耐食性、耐衝撃性、耐候性等は主に厚い有機樹脂被覆層が担うので、密着性が化成処理に対する主な要求特性である。   In this case, the alternative chemical conversion treatment is required to have characteristics equivalent to or better than those of the conventional chromium chemical conversion treatment. If it is a resin-coated steel material for heavy anticorrosion, the corrosion resistance, impact resistance, weather resistance, etc. are mainly thick organic resin coating Since the layer bears, adhesion is the main required characteristic for chemical conversion treatment.

例えば、特許文献1、2には、クロメートを含まない化成処理として、第一リン酸アルミニウム等にホウ酸等を添加した化成処理法、化成処理剤が開示されている。これらは耐食性向上を狙ったり、塗装密着性の向上を狙ったものである。   For example, Patent Documents 1 and 2 disclose chemical conversion treatment methods and chemical conversion treatment agents in which boric acid or the like is added to primary aluminum phosphate or the like as chemical conversion treatments that do not include chromate. These are aimed at improving corrosion resistance or improving paint adhesion.

特開昭51−94437号公報JP-A 51-94437 特開2003−147543号公報JP 2003-147543 A

しかし、重防食被覆鋼材は、塗装と比較し、非常に厚い樹脂層を形成するのだが、樹脂が硬化する際、収縮応力が非常に大きくなり、塗装密着性に求められる密着性よりも一段と強い密着性が要求される。このような強い密着性は、特許文献1、2に開示された技術では、達成することはできない。   However, heavy anti-corrosion coated steel forms a very thick resin layer compared to coating, but when the resin hardens, the shrinkage stress becomes very large, which is stronger than the adhesion required for coating adhesion. Adhesion is required. Such strong adhesion cannot be achieved by the techniques disclosed in Patent Documents 1 and 2.

また、クロメート処理材に匹敵する高い密着性、特に海洋中で使用する被覆鋼材では、常時、海水に接する環境における密着性(耐水密着性)に優れなければならない。   In addition, high adhesion comparable to the chromate treatment material, particularly coated steel materials used in the ocean, must always be excellent in adhesion (water-resistant adhesion) in an environment in contact with seawater.

そこで、本発明は、クロメート処理を用いない化成処理皮膜により、クロメート処理と同等以上の密着性を有する有機樹脂被覆鋼材、及び、これを用いた海洋建造物を提供することを目的とする。   Therefore, an object of the present invention is to provide an organic resin-coated steel material having adhesion equal to or higher than that of chromate treatment by a chemical conversion treatment film that does not use chromate treatment, and an offshore building using the same.

本発明の要旨とするところは、以下のとおりである。
(1) 有機樹脂防食層が被覆された鋼材であって、前記有機樹脂防食層と前記鋼材との間に形成されたリン酸アルミニウム化成処理皮膜層が、前記鋼材側に形成された鋼材側化成処理皮膜と、前記有機樹脂防食層側に形成された有機樹脂側化成処理皮膜の2層から成り、前記鋼材側化成処理皮膜の平均膜厚が1〜7μm、前記有機樹脂側化成処理皮膜の平均膜厚が10〜40μmであり、かつ、平均元素組成比率が下記(A)式を満足することを特徴とする、有機樹脂被覆鋼材。
1000≦(Fe×Al)/(Fe×Al)≦5000 ・・・(A)
Fe:鋼材側化成処理皮膜中の鉄元素の平均モル濃度
Fe:有機樹脂側化成処理皮膜中の鉄元素の平均モル濃度
Al:鋼材側化成処理皮膜中のアルミニウム元素の平均モル濃度
Al:有機樹脂側化成処理皮膜中のアルミニウム元素の平均モル濃度
(2) 海洋中の干満帯領域又はスプラッシュ領域の一方又は双方の構造部材として、少なくとも請求項1記載の有機樹脂被覆鋼材を用いてなる建造物。
The gist of the present invention is as follows.
(1) A steel material coated with an organic resin anticorrosion layer, wherein the aluminum phosphate chemical conversion coating layer formed between the organic resin anticorrosion layer and the steel material is formed on the steel material side chemical conversion It consists of two layers, a treatment film and an organic resin side chemical conversion treatment film formed on the organic resin anticorrosion layer side, the steel film side chemical conversion treatment film has an average film thickness of 1 to 7 μm, and the organic resin side chemical conversion treatment film average An organic resin-coated steel material having a film thickness of 10 to 40 μm and an average element composition ratio satisfying the following formula (A):
1000 ≦ (Fe 1 × Al 2 ) / (Fe 2 × Al 1 ) ≦ 5000 (A)
Fe 1 : Average molar concentration of iron element in steel side chemical conversion coating Fe 2 : Average molar concentration of iron element in organic resin side chemical conversion coating Al 1 : Average molar concentration of aluminum element in steel side chemical conversion coating Al 2 : Average molar concentration of aluminum element in the organic resin side chemical conversion coating (2) Using at least the organic resin-coated steel material according to claim 1 as a structural member of one or both of the tidal zone region and the splash region in the ocean A building that becomes.

本発明により、環境負荷を低減し、かつクロメート化成処理材と同等以上の耐(海)水密着性を有する樹脂被覆鋼材を提供することができる。また、この樹脂被覆鋼材を構造部材に用いると、樹脂被覆の寿命が長くなるため、鋼材の腐食速度が低減し、強度寿命を延ばすことができるため、海洋域での建造物自体の寿命が延びる。   According to the present invention, it is possible to provide a resin-coated steel material that reduces environmental load and has (sea) water adhesion equal to or higher than that of a chromate chemical conversion treatment material. In addition, when this resin-coated steel material is used as a structural member, the life of the resin coating is extended, so the corrosion rate of the steel material can be reduced and the strength life can be extended, so the life of the building itself in the marine area is extended. .

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明で用いる鋼種としては、特に限定するものではなく、普通鋼、低合金鋼や、C、Si、Mn及び窒素、酸素を制御した鋼材、及び、Cu、Ni、Cr、Mo、Nb、Ti、Al、Mg、V、Ca等の元素を添加した高合金鋼等が例示できるが、本発明では安価で汎用性の高い普通鋼でも十分な効果が得られる。   The steel types used in the present invention are not particularly limited, and include ordinary steel, low alloy steel, steel materials in which C, Si, Mn, nitrogen and oxygen are controlled, and Cu, Ni, Cr, Mo, Nb, Ti. High alloy steels to which elements such as Al, Mg, V, and Ca are added can be exemplified. However, in the present invention, sufficient effects can be obtained even with ordinary steel that is inexpensive and highly versatile.

また、鋼材の品種は、特に限定するものではないが、鋼管、形鋼、厚板、薄板等が例示でき、特に奨められる品種としては重防食被覆が適用される鋼管、鋼管杭、鋼管矢板、鋼矢板、H形鋼、線材等が例示できる。これらを構造部材に用いると、その建造物全体の寿命を延ばすことになる。   In addition, the types of steel materials are not particularly limited, but steel pipes, shaped steels, thick plates, thin plates, etc. can be exemplified, and particularly recommended types are steel pipes, steel pipe piles, steel pipe sheet piles to which heavy anti-corrosion coating is applied, Examples include steel sheet piles, H-section steel, and wire rods. If these are used for structural members, the lifetime of the entire building will be extended.

本発明に使用する鋼材は、その表面のスケール、汚染物等を除去するため、アルカリ脱脂、酸洗、サンドブラスト処理、グリッドブラスト処理、ショットブラスト処理等の下地処理を必ず行ない、化成処理皮膜層が地鉄と接するようにしなくてはならない。下地処理を行わないと、酸化物層・汚れが地鉄と化成処理皮膜層とを接するのを妨害し、密着強度が低下する。   The steel material used in the present invention must be subjected to ground treatment such as alkali degreasing, pickling, sand blasting, grid blasting, shot blasting, etc. to remove scale, contaminants, etc. It must be in contact with the railway. If the ground treatment is not performed, the oxide layer / dirt prevents the base iron and the chemical conversion coating layer from coming into contact with each other, and the adhesion strength decreases.

本発明の有機樹脂被覆鋼材は、鋼材を化成処理した後、その上に有機樹脂防食層を10μm〜10mm形成するものであるが、代表的な形態の一つとして、重防食用樹脂被覆鋼材が例示できる。これは、鋼材表面に化成処理皮膜層、樹脂プライマー層、樹脂接着層、重防食用防食層を積層して成る。この時、樹脂プライマー層と樹脂接着層を兼ねてもよい。これら樹脂層は、塗装、ライニング、ラミネートのいずれの方法でも形成できる。トップ層の樹脂は、限定するものではないが、エポキシ樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン等の樹脂(いずれも変性物も含む)を0.5〜2mm形成したものが例示できる。もう一つの最良の形態は、重防食用塗装鋼材である。これは、鋼材表面に化成処理皮膜層を形成し、その上に一層あるいは多層の塗膜を合計で200〜1000μm形成する。塗膜のバインダー樹脂は、変性も含め、エポキシ樹脂、ウレタン樹脂、フタル酸樹脂、塩化ゴム樹脂が例示でき、トップ層樹脂は、これにさらにフッ素樹脂、アクリル樹脂が加えて例示できる。   In the organic resin-coated steel material of the present invention, after chemical conversion treatment of the steel material, an organic resin anticorrosive layer is formed thereon with a thickness of 10 μm to 10 mm. It can be illustrated. This is formed by laminating a chemical conversion coating layer, a resin primer layer, a resin adhesive layer, and a heavy-duty anticorrosion layer on the steel material surface. At this time, you may serve as a resin primer layer and a resin contact bonding layer. These resin layers can be formed by any of painting, lining, and laminating methods. The resin of the top layer is not limited, but a resin in which an epoxy resin, a fluororesin, an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin or the like (all including a modified product) is formed in a thickness of 0.5 to 2 mm. It can be illustrated. Another best form is coated steel for heavy anticorrosion. This forms a chemical conversion treatment film layer on the surface of the steel material, and a total of 200 to 1000 μm of a single or multi-layer coating film is formed thereon. Examples of the binder resin for the coating film include epoxy resin, urethane resin, phthalic acid resin, and chlorinated rubber resin, including modification, and the top layer resin can be exemplified by further adding a fluororesin and an acrylic resin.

いずれも、密着性を化成処理皮膜層に、耐食性を有機樹脂防食層に主に担わせるのが望ましい。   In any case, it is desirable that the adhesion is mainly attributed to the chemical conversion coating layer and the corrosion resistance is mainly attributed to the organic resin anticorrosion layer.

本発明における化成処理皮膜層の特徴は、無機化合物層であり、密着性を向上させる官能基(水酸基、カルボニル基等)を有する樹脂・ポリマーを含有しない。これら官能基は加水分解を徐々に受ける場合があるので、恒久建造物に要求されるような超長期(30〜100年)における耐水性は、無機物質の方が優る傾向がある。しかし、無機系化成処理皮膜層の上に有機樹脂皮膜を積層する時、無機系化成処理層のポーラスな部分に有機樹脂は染み込み、その結果、有機樹脂物質を含んでいるように観察されることがあるが、この場合も、化成処理皮膜層は無機物質のみと言える。いずれの場合も、当該化成処理皮膜層は、無機系物質、即ち、イオン性物質でのみ構成されている(ここでは、シリカのSi−Oもイオン性結合とみなしている)。   The chemical conversion film layer according to the present invention is an inorganic compound layer and does not contain a resin / polymer having a functional group (such as a hydroxyl group or a carbonyl group) that improves adhesion. Since these functional groups may gradually undergo hydrolysis, the inorganic material tends to be superior in water resistance in the ultra-long term (30 to 100 years) as required for a permanent building. However, when an organic resin film is laminated on the inorganic chemical conversion coating layer, the organic resin penetrates into the porous portion of the inorganic chemical conversion coating layer, and as a result, it is observed that it contains an organic resin substance. In this case as well, it can be said that the chemical conversion film layer is only an inorganic substance. In any case, the chemical conversion coating layer is composed only of an inorganic material, that is, an ionic material (here, Si—O of silica is also regarded as an ionic bond).

無機系化成処理で、本発明でのリン酸アルミニウム系化成処理は、密着性に優れたクロムフリー化成処理として注目され、5〜50mass%の第一リン酸アルミニウム水溶液で基材を処理するものである。   In the inorganic chemical conversion treatment, the aluminum phosphate chemical conversion treatment in the present invention is attracting attention as a chromium-free chemical conversion treatment having excellent adhesion, and the substrate is treated with a 5-50 mass% aqueous solution of primary aluminum phosphate. is there.

処理液には、さらに、改質剤として酸化ホウ素、重合促進剤として酸化マグネシウムや酸化カルシウム等を添加してもよい。この場合、酸化ホウ素は、リン元素に対し、ホウ素元素換算で約4〜10mol%、また、酸化マグネシウム及び酸化カルシウムは、リン元素に対し、マグネシウム及びカルシウム元素換算で両者合計で20〜100mol%を好適に添加する。   Further, boron oxide as a modifier and magnesium oxide, calcium oxide or the like as a polymerization accelerator may be added to the treatment liquid. In this case, boron oxide is about 4 to 10 mol% in terms of boron element with respect to phosphorus element, and magnesium oxide and calcium oxide are 20 to 100 mol% in total in terms of magnesium and calcium element with respect to phosphorus element. Add suitably.

また、体質顔料として、チタニア、シリカ、ジルコニア等を、リン元素に対して、その金属元素換算で20〜60mol%添加してもよい。これら顔料の適切な種類と濃度は、化成処理皮膜を強靱にし、密着性をさらに高める。ここで言う、元素換算とは、当該物質の構成金属元素の存在量(mol)のことである。   Further, titania, silica, zirconia and the like as extender pigments may be added in an amount of 20 to 60 mol% in terms of the metal element with respect to the phosphorus element. Appropriate types and concentrations of these pigments make the chemical conversion coating tough and further improve adhesion. Here, the element conversion means the abundance (mol) of the constituent metal element of the substance.

これらの場合、当該化成処理皮膜層は、化成処理液と同じ元素を含み、さらに、通常、基材も若干溶解するので、鉄も含む。水素も含まれるが、分析機による確認・測定は困難である。   In these cases, the chemical conversion treatment film layer contains the same elements as the chemical conversion treatment solution, and usually also contains iron because the base material is also slightly dissolved. Hydrogen is also included, but confirmation and measurement with an analyzer is difficult.

また、通常、積層した有機樹脂が無機化成処理層の細孔に染み込むため、化成処理皮膜層にも炭素、窒素等が含まれる。しかし、有機樹脂には、通常、リンあるいはアルミニウムは含まれていないため有機樹脂由来の層との判別は容易である。   Moreover, since the laminated organic resin usually permeates into the pores of the inorganic chemical conversion treatment layer, the chemical conversion treatment film layer also contains carbon, nitrogen, and the like. However, since the organic resin usually does not contain phosphorus or aluminum, it can be easily distinguished from the organic resin-derived layer.

本発明では、化成処理皮膜層が、鋼材側に形成された鋼材側化成処理皮膜と、有機樹脂防食層側に形成された有機樹脂側化成処理皮膜の二層で構成され、鋼材/鋼材側化成処理皮膜の境界、鋼材側化成処理皮膜/有機樹脂側化成処理皮膜の境界は、その断面を、光学顕微鏡、電子顕微鏡で観察することにより容易に視認できるので、二層の見分けは容易である。境界が若干の幅を持つ場合、その境界幅より鋼材側が第一層目(鋼材側化成処理皮膜)、その境界幅より有機樹脂防食層側が第二層目の化成処理皮膜層(有機樹脂側化成処理皮膜)とみなす。境界が光学顕微鏡、電子顕微鏡のいずれでも認識できない場合は、一層とみなし、本発明外である。   In the present invention, the chemical conversion coating layer is composed of two layers of a steel material side chemical conversion coating formed on the steel material side and an organic resin side chemical conversion coating formed on the organic resin anticorrosion layer side. The boundary between the treatment film and the boundary between the steel material side chemical conversion treatment film / organic resin side chemical conversion treatment film can be easily recognized by observing the cross section with an optical microscope or an electron microscope, so that the two layers can be easily distinguished. When the boundary has a slight width, the steel material side is the first layer (steel material side chemical conversion coating) from the boundary width, and the organic resin anticorrosion layer side is the second chemical conversion coating layer (organic resin side chemical conversion layer) from the boundary width. Treated film). If the boundary cannot be recognized by either an optical microscope or an electron microscope, it is regarded as one layer and is outside the scope of the present invention.

鋼材側化成処理皮膜の膜厚は1〜7μm、好ましくは、3〜5μmで、1μmより薄いと処理の効果が無くなる。この範囲の厚さの皮膜であれば、皮膜は緻密な層であるが、これより厚く形成すると、緻密さが減少し、剥離起点になるため、密着性が劣化する。   The film thickness of the steel side chemical conversion treatment film is 1 to 7 μm, preferably 3 to 5 μm, and if it is thinner than 1 μm, the effect of the treatment is lost. If the film has a thickness in this range, the film is a dense layer. However, if the film is formed thicker than this, the denseness is reduced and the peeling starts, so that the adhesion is deteriorated.

有機樹脂側化成処理皮膜の膜厚は、10〜40μm、好ましくは、15〜25μmであり、この範囲外では、いずれも密着性が低下する。化成処理層の厚みから見ると、通常のリン酸塩処理とは大きく異なり、厚い。   The film thickness of the organic resin side chemical conversion treatment film is 10 to 40 μm, preferably 15 to 25 μm. From the viewpoint of the thickness of the chemical conversion treatment layer, it is significantly different from ordinary phosphate treatment and is thick.

ここで、これらの化成処理皮膜の膜厚の測定方法としては、例えば、鋼材断面の表層部分を電子顕微鏡等で観察し、化成処理皮膜の厚みを測定し、ランダムに測定した5点以上の測定値の平均値を膜厚とすることができる。   Here, as a measuring method of the film thickness of these chemical conversion treatment films, for example, the surface layer portion of the cross section of the steel material is observed with an electron microscope or the like, the thickness of the chemical conversion treatment film is measured, and five or more measurements are randomly measured. The average value can be the film thickness.

本化成処理皮膜層は、二層とも、少なくともリン、アルミニウム、鉄、酸素、水素から成る多結晶層であり、さらに添加物由来のホウ素、マグネシウム、カルシウム、チタン、ケイ素、ジルコニアを含んでもよい。有機樹脂側化成処理皮膜の方は厚いため、図1に模式的に示すように、結晶が連続せず、亀裂・細孔が生成していることも多い。   The two chemical conversion coating layers are polycrystalline layers composed of at least phosphorus, aluminum, iron, oxygen, and hydrogen, and may further contain boron, magnesium, calcium, titanium, silicon, and zirconia derived from additives. Since the organic resin side chemical conversion treatment film is thicker, as schematically shown in FIG. 1, there are many cases where crystals do not continue and cracks and pores are generated.

単なるリン酸処理では、リン酸鉄が表面に生成するが、リン酸Al水溶液で処理した場合は、FeAl(PO(OH)を主成分とする複塩が生成する。この塩は、x、y、z、uのとり方により多数の種類が考えられるが、本発明では、この二層の化成処理層組成を、鉄とアルミニウムとの元素存在比を用いて規定した。 The mere phosphate treatment, iron phosphate is formed on the surface, when treated with phosphoric acid aqueous Al solution, double salt mainly composed of Fe x Al y (PO 4) z (OH) u is generated. Although many types of this salt can be considered depending on how x, y, z, and u are taken, in the present invention, the composition of the two chemical conversion layers is defined using the element abundance ratio of iron and aluminum.

これらの元素濃度比は、皮膜断面から得られる各元素のEPMA(Electron Probe Micro Analyzer)等の元素存在量に比例するシグナルカウント数の比から計算することが可能である。本発明で規定した比率は、測定機器のセンサーの鉄元素、アルミニウム元素に対する固有の設定感度によらないため、測定が容易であり、測定誤差も小さい。   These element concentration ratios can be calculated from the ratio of the signal count number proportional to the element abundance such as EPMA (Electron Probe Micro Analyzer) of each element obtained from the film cross section. The ratio defined in the present invention does not depend on the inherent setting sensitivity of the sensor of the measuring instrument to the iron element and the aluminum element, so that the measurement is easy and the measurement error is small.

鉄/アルミニウム比率が、生成する化成処理皮膜層の複塩の組成を決め、組成が決まると皮膜物性が決まり、皮膜物性が決まると密着性が決まるため、鉄/アルミニウム比率が物性を規定する良好なパラメータと成り得ると思われる。ただし、化成処理皮膜層は多結晶のため、数μmオーダーでは局所的偏りがあり、化成処理皮膜層の断面を、鋼材表面と水平方向に、最低でも20μm、好ましくは30μm以上、500μm以下の範囲について、3〜10点測定して、平均濃度とする必要がある。   The iron / aluminum ratio determines the composition of the double salt of the chemical conversion coating layer to be produced. The film properties are determined when the composition is determined, and the adhesion is determined when the film properties are determined. It seems that it can be a serious parameter. However, because the chemical conversion coating layer is polycrystalline, there is local bias in the order of several μm, and the cross section of the chemical conversion coating layer is at least 20 μm, preferably in the range of 30 μm or more and 500 μm or less in the horizontal direction with the steel surface. It is necessary to measure 3 to 10 points to obtain an average concentration.

密着性が良好になる原因は定かではないが、いくつかの理由が推測できる。   The reason for the good adhesion is not clear, but several reasons can be guessed.

Fe/Alの大きい鋼材側化成処理皮膜層は、緻密で、鋼材との密着性に優れ、有機樹脂側化成処理皮膜層は、ポーラスなためアンカー効果(細孔に樹脂が染み込む)により樹脂密着性に優れ、両化成処理皮膜層同士は、類似した組成を有するため、密着性に優れているので、全体として強固な密着性が発現した可能性がある。   The steel side chemical conversion coating layer with a large Fe / Al is dense and excellent in adhesion to the steel material, and the organic resin side chemical conversion coating layer is porous, so the resin adhesion is achieved by the anchor effect (resin penetrates into the pores). Since both chemical conversion treatment film layers have similar compositions and are excellent in adhesiveness, there is a possibility that strong adhesiveness is expressed as a whole.

もう少し定量的に考えることもできる。FeAl(PO(OH)は無機質で、リン酸鉄よりも耐水性・密着性に優れる。そして比率Fe/Alは大きいほど緻密な皮膜になり、小さいほどポーラスな皮膜になると推測される。そのため、鋼材側化成処理皮膜のFe/Alは大きいほど、化成処理皮膜と基材との密着性が高くなるが、あまり大きくなり過ぎると、FeAl(PO(OH)自身の生成量が低下し、リン酸鉄が多く生成していることを意味する。密着性は、リン酸鉄よりもFeAl(PO(OH)の方が高いため、比率Fe/Alが大きすぎると効果が低下する。 You can think a little more quantitatively. Fe x Al y (PO 4) z (OH) u in mineral, excellent in water resistance and adhesion than iron phosphate. It is estimated that the larger the ratio Fe / Al, the denser the film, and the smaller the ratio Fe / Al, the more porous the film. Therefore, as Fe 1 / Al 1 of the steel product side chemical conversion film is large, although the adhesion between the chemical conversion film and the substrate increases, becomes too much larger, Fe x Al y (PO 4 ) z (OH) This means that the amount of u itself produced is reduced and a large amount of iron phosphate is produced. Adhesion, because of the higher Fe x Al y (PO 4) z (OH) u than iron phosphate, the effect is reduced when the ratio Fe 1 / Al 1 is too large.

また、比率Fe/Alは小さいほどポーラスな皮膜になるため、アンカー効果により樹脂との密着性に優れるが、小さ過ぎると、鉄濃度が小さいことになり、即ち、FeAl(PO(OH)自身の生成量の低下を意味し、同様に、密着性が低下するものと推察できる。 Further, the smaller the ratio Fe 2 / Al 2, the more porous the film, and the better the adhesion to the resin due to the anchor effect. However, if the ratio Fe 2 / Al 2 is too small, the iron concentration will be small, that is, Fe x Al y (PO 4 ) z (OH) This means a decrease in the amount of u itself, and it can be presumed that the adhesiveness is similarly reduced.

以上の結果、比率(Fe×Al)/(Fe×Al)は、本発明の範囲外で、物性が低下するものと思われる。 As a result, the ratio (Fe 1 × Al 2 ) / (Fe 2 × Al 1 ) is considered to be outside the scope of the present invention and the physical properties are lowered.

また、別の見地では、鉄濃度で見ると、基材、鋼材側の化成処理皮膜層、有機樹脂側の化成処理皮膜層、有機樹脂防食層の順に小さくなり、本発明の有機樹脂被覆鋼材全体では、鉄組成濃度の段階的傾斜材料となっている。これが、密着性を高める原因の一つとなっている可能性もある。   In another aspect, when viewed in terms of iron concentration, the base material, the chemical conversion coating layer on the steel material side, the chemical conversion coating layer on the organic resin side, and the organic resin anticorrosion layer become smaller in this order, and the entire organic resin coated steel material of the present invention Then, it is a graded material with an iron composition concentration. This may be one of the causes for improving the adhesion.

化成処理方法は、限定するものではないが、化成処理を二工程で構成する方法が例示できる。第一工程は、鋼材側の化成処理皮膜層を形成する化成処理工程、第二工程は、有機樹脂防食層側の化成処理層を形成する工程である。   Although the chemical conversion treatment method is not limited, a method of forming the chemical conversion treatment in two steps can be exemplified. The first step is a chemical conversion treatment step for forming a chemical conversion treatment film layer on the steel material side, and the second step is a step for forming a chemical conversion treatment layer on the organic resin anticorrosion layer side.

第一工程は、基材をリン酸アルミニウム水溶液に一定時間浸漬する。この時、リン酸イオン濃度が高いほど、あるいは浸漬時間が長いほど、形成される化成処理皮膜層中の鉄濃度は、概して高くなる傾向にある。また、リン酸を、リン酸アルミニウムのリン酸イオンに対し1〜10mass%添加してリン酸濃度を高くすることにより、鉄基材との反応を促進してもよい。生成する鉄濃度の高い化成処理皮膜は不溶性であるので、さらに水洗し、水溶性の残部成分を除去してもよい。   In the first step, the base material is immersed in an aluminum phosphate aqueous solution for a predetermined time. At this time, the higher the phosphate ion concentration or the longer the immersion time, the higher the iron concentration in the formed chemical conversion coating layer generally tends to increase. Moreover, you may accelerate | stimulate reaction with an iron base material by adding phosphoric acid to 1-10 mass% with respect to the phosphate ion of aluminum phosphate, and making phosphoric acid concentration high. Since the chemical conversion treatment film having a high iron concentration is insoluble, it may be further washed with water to remove the water-soluble remaining components.

第二工程は、リン酸アルミニウム水溶液を基材表面に塗布・乾燥するが、処理液に、前述した体質顔料、触媒等を添加してもよい。化成処理第一層目の上に処理するため、処理液に鉄が含まれていなくても、第一層目から、あるいは第一層目の欠陥部から鉄が若干溶出する。これによる鉄濃度は、リン酸Al濃度が高いほど、あるいは、処理液が乾燥するまでの濡れ時間が長いほど増加する傾向にあるが、理論的にその濃度を予測する方法はなく、予め処理液濃度、処理液付着量に対する鉄/アルミニウム比の依存性を調べ、調整する。鉄濃度の小さい化成処理皮膜層は、水性成分も含んだものだが、これは、焼付けによって脱水して不溶性になり、耐水性が向上する。焼付け温度は、180℃以上、好ましくは200〜250℃である。   In the second step, the aqueous aluminum phosphate solution is applied to the substrate surface and dried, but the extender pigment, catalyst, etc. described above may be added to the treatment liquid. Since the treatment is performed on the first layer of the chemical conversion treatment, even if the treatment liquid does not contain iron, iron is slightly eluted from the first layer or from the defective portion of the first layer. The iron concentration by this tends to increase as the Al phosphate concentration increases or as the wet time until the treatment liquid dries, but there is no theoretical method for predicting the concentration. Investigate and adjust the dependency of iron / aluminum ratio on the concentration and amount of treatment solution deposited. The chemical conversion film layer having a low iron concentration also contains an aqueous component, but this is dehydrated and insoluble by baking, and the water resistance is improved. The baking temperature is 180 ° C. or higher, preferably 200 to 250 ° C.

いずれの化成処理も、第一リン酸アルミニウムの濃度は5〜25mass%水溶液が、好ましくは、25〜35mass%が望ましい。濃度が高過ぎると、粘性が高く作業性が悪く、濃度が低過ぎると、第一工程では所定の膜厚を得る浸漬時間が長くなり、また、第二工程では付着量が小さくなる。添加物の兼ね合いから、好適に調整する。   In any chemical conversion treatment, the concentration of primary aluminum phosphate is preferably 5 to 25 mass%, and preferably 25 to 35 mass%. If the concentration is too high, the viscosity is high and the workability is poor, and if the concentration is too low, the immersion time for obtaining a predetermined film thickness is long in the first step, and the adhesion amount is small in the second step. It adjusts suitably from the balance of an additive.

処理方法は、第一工程が浸漬・水洗・乾燥、第二工程が塗布・乾燥が好適に例示できるが、化成処理皮膜が形成できるのであれば、これに限定するものではない。   The treatment method can be suitably exemplified by dipping / washing / drying in the first step and coating / drying in the second step, but is not limited thereto as long as a chemical conversion treatment film can be formed.

鋼材は、厚さ4mmの普通鋼を用い、表面をグリッドブラストで3aブラスト処理した。   The steel material was plain steel with a thickness of 4 mm, and the surface was 3a blasted with grid blasting.

化成処理工程は、組成が異なる処理液を用いて2工程で行った。第一工程は、リン酸濃度が薄いと基材との反応性が悪くなるため、第一リン酸アルミニウム25mass%水溶液を用い、条件によっては、これに無水リン酸を所定量添加した。鋼材をこの40℃の処理液に一定時間浸漬後、水洗、乾燥した。   The chemical conversion treatment step was performed in two steps using treatment liquids having different compositions. In the first step, when the phosphoric acid concentration is low, the reactivity with the substrate is deteriorated, so a 25 mass% aqueous solution of first aluminum phosphate was used, and depending on conditions, a predetermined amount of phosphoric anhydride was added thereto. The steel material was immersed in this treatment liquid at 40 ° C. for a certain time, washed with water and dried.

第二工程は、第一リン酸アルミニウム水溶液を、所定の濃度に調製し、場合により、無水第一リン酸アルミニウム(Al(HPO)に対して、酸化ホウ素なら0.8mass%、チタニアあるいはシリカなら30mass%、酸化マグネシウムなら5mass%をそれぞれ添加した。これを塗布・乾燥した。 In the second step, an aqueous first aluminum phosphate solution is prepared to a predetermined concentration, and in some cases, 0.8 mass% for boron oxide with respect to anhydrous primary aluminum phosphate (Al (H 2 PO 4 ) 3 ). In the case of titania or silica, 30 mass% was added, and in the case of magnesium oxide, 5 mass% was added. This was applied and dried.

第二工程の処理後、鋼材を炉に入れて、所定の焼付けを行った。鋼材の温度は熱電対で測定した。焼付け取り出し後は、自然冷却した。焼付温度は、最高到達温度200℃、保持時間0分とした。   After the treatment in the second step, the steel material was put into a furnace and predetermined baking was performed. The temperature of the steel material was measured with a thermocouple. After baking and taking out, it was naturally cooled. The baking temperature was a maximum temperature of 200 ° C. and a holding time of 0 minutes.

比較例のNo.3、4の化成処理は一工程、単層とした。比較例のNo.25は、第一工程で無水リン酸を多量に添加したところ、処理液が固化したため、処理を中止した。比較例のNo.1は化成処理無し、比較例のNo.2は塗布型クロメート処理で、付着量は350Cr−mg/mとした。 Comparative Example No. The chemical conversion treatments 3 and 4 were made into one step and a single layer. Comparative Example No. In No. 25, when a large amount of phosphoric anhydride was added in the first step, the treatment was solidified, so the treatment was stopped. Comparative Example No. No. 1 is no chemical conversion treatment, No. of Comparative Example. 2 is a coating type chromate treatment, and the adhesion amount was 350 Cr-mg / m 2 .

これらの処理材に無溶剤型変性エポキシプライマーを60μm塗布・焼付硬化した。次に、変性ポリオレフィン接着剤を400μm塗布・焼付硬化した。最後に、厚さ2mmのポリエチレンシートを加熱・接着した。硬化温度、接着温度は、いずれも温度は200℃とした。   These treatment materials were coated with 60 μm of solventless modified epoxy primer and baked and cured. Next, the modified polyolefin adhesive was applied to 400 μm and baked and cured. Finally, a 2 mm thick polyethylene sheet was heated and bonded. The curing temperature and adhesion temperature were both 200 ° C.

耐水性密着性試験は、以下のようにして行った。まず、約7.5cm角のサンプルの一辺に沿って、1×7.5cmの被覆を剥いで鋼面を露出させた。裏面・側面はタールエポキシ塗装した。50℃、3%塩化ナトリウム水溶液を槽に入れ、サンプルの下から空気泡を吹き込み、その泡が評価面にかかるようにサンプルを浸漬した。1ヶ月後、サンプルを取り出し、被覆をはつり、被覆を剥いだ端面からの平均剥離距離を求めた。   The water resistance adhesion test was performed as follows. First, a 1 × 7.5 cm coating was peeled along one side of a sample of about 7.5 cm square to expose the steel surface. Tar epoxy coating was applied to the back and sides. At 50 ° C., a 3% sodium chloride aqueous solution was put in a tank, air bubbles were blown from under the sample, and the sample was immersed so that the bubbles hit the evaluation surface. One month later, the sample was taken out, the coating was applied, and the average peel distance from the end face from which the coating was peeled was determined.

元素比は、樹脂被覆サンプルの断面を切り取り、樹脂に埋め込んで観察試料を作製し、これをSEM、EPMAで測定した。SEMで化成処理層の境界を確認した。EPMAを用いて、基材表面に垂直方向に50μm幅を走査して鉄とアルミニウムの信号強度を測定し、SEMで確定した各化成処理層間に相当する各層の鉄とアルミニウムの強度曲線の積分値(面積)から、(Fe×Al)/(Fe×Al)を求めた。これを5ヶ所で行って、平均の(Fe×Al)/(Fe×Al)を求めた。 The element ratio was measured by SEM and EPMA by cutting a cross section of a resin-coated sample and embedding it in a resin to prepare an observation sample. The boundary of the chemical conversion treatment layer was confirmed by SEM. Using EPMA, the signal intensity of iron and aluminum is measured by scanning 50 μm width in the direction perpendicular to the substrate surface, and the integrated value of the iron and aluminum intensity curve corresponding to each chemical conversion treatment layer determined by SEM From (Area), (Fe 1 × Al 2 ) / (Fe 2 × Al 1 ) was determined. This was performed at five locations to determine the average (Fe 1 × Al 2 ) / (Fe 2 × Al 1 ).

Figure 2009024211
Figure 2009024211

表1に結果を示した。表1より、本発明がクロメート処理と同等以上の優れた密着性を示すことが判る。   Table 1 shows the results. From Table 1, it can be seen that the present invention exhibits excellent adhesion equivalent to or better than chromate treatment.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明の一実施形態に係る有機樹脂被覆鋼材の断面模式図である。It is a cross-sectional schematic diagram of the organic resin coated steel material which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 鋼材
2 鋼材側化成処理層
3 樹脂被覆側化成処理層
4 樹脂被覆層
DESCRIPTION OF SYMBOLS 1 Steel material 2 Steel material side chemical conversion treatment layer 3 Resin coating side chemical conversion treatment layer 4 Resin coating layer

Claims (2)

有機樹脂防食層が被覆された鋼材であって、
前記有機樹脂防食層と前記鋼材との間に形成されたリン酸アルミニウム化成処理皮膜層が、前記鋼材側に形成された鋼材側化成処理皮膜と、前記有機樹脂防食層側に形成された有機樹脂側化成処理皮膜の2層から成り、
前記鋼材側化成処理皮膜の平均膜厚が1〜7μm、前記有機樹脂側化成処理皮膜の平均膜厚が10〜40μmであり、かつ、平均元素組成比率が下記(A)式を満足することを特徴とする、有機樹脂被覆鋼材。
1000≦(Fe×Al)/(Fe×Al)≦5000 ・・・(A)
Fe:鋼材側化成処理皮膜中の鉄元素の平均モル濃度
Fe:有機樹脂側化成処理皮膜中の鉄元素の平均モル濃度
Al:鋼材側化成処理皮膜中のアルミニウム元素の平均モル濃度
Al:有機樹脂側化成処理皮膜中のアルミニウム元素の平均モル濃度
A steel material coated with an organic resin anticorrosion layer,
An aluminum phosphate chemical conversion treatment film layer formed between the organic resin anticorrosion layer and the steel material, a steel material side chemical conversion treatment film formed on the steel material side, and an organic resin formed on the organic resin anticorrosion layer side It consists of two layers of side chemical conversion treatment film,
The steel material side chemical conversion treatment film has an average film thickness of 1 to 7 μm, the organic resin side chemical conversion treatment film has an average film thickness of 10 to 40 μm, and the average elemental composition ratio satisfies the following formula (A). An organic resin-coated steel material.
1000 ≦ (Fe 1 × Al 2 ) / (Fe 2 × Al 1 ) ≦ 5000 (A)
Fe 1 : Average molar concentration of iron element in steel side chemical conversion coating Fe 2 : Average molar concentration of iron element in organic resin side chemical conversion coating Al 1 : Average molar concentration of aluminum element in steel side chemical conversion coating Al 2 : Average molar concentration of aluminum element in organic resin side chemical conversion coating
海洋中の干満帯領域又はスプラッシュ領域の一方又は双方の構造部材として、少なくとも請求項1記載の有機樹脂被覆鋼材を用いてなる建造物。   A building using at least the organic resin-coated steel material according to claim 1 as a structural member of one or both of a tidal zone region and a splash region in the ocean.
JP2007187658A 2007-07-18 2007-07-18 Organic resin-coated steel and building using the same Active JP4964699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187658A JP4964699B2 (en) 2007-07-18 2007-07-18 Organic resin-coated steel and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187658A JP4964699B2 (en) 2007-07-18 2007-07-18 Organic resin-coated steel and building using the same

Publications (2)

Publication Number Publication Date
JP2009024211A true JP2009024211A (en) 2009-02-05
JP4964699B2 JP4964699B2 (en) 2012-07-04

Family

ID=40396310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187658A Active JP4964699B2 (en) 2007-07-18 2007-07-18 Organic resin-coated steel and building using the same

Country Status (1)

Country Link
JP (1) JP4964699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081670A (en) * 2010-10-13 2012-04-26 Nippon Steel Corp Organic resin coated steel
WO2016129639A1 (en) * 2015-02-13 2016-08-18 三桜工業株式会社 Coated metal pipe for vehicle piping and method for producing same
US10337660B2 (en) 2014-11-10 2019-07-02 Sanoh Industrial Co., Ltd. Coated metal pipe for vehicle piping

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194437A (en) * 1975-02-19 1976-08-19 Tetsukozairyono boseishoriho
JPS5273139A (en) * 1975-12-16 1977-06-18 Nippon Steel Corp Chemical conversion process for metallic material
JP2000265281A (en) * 1999-03-17 2000-09-26 Nkk Corp Phosphate composite-coated steel sheet excellent in corrosion resistance, lubricity and adhesion for coating material
JP2000282253A (en) * 1999-01-29 2000-10-10 Nippon Steel Corp Rust-proof treatment and rust-proof treated metallic material
JP2000309880A (en) * 1999-04-23 2000-11-07 Sumitomo Metal Ind Ltd Corrosion resistant surface treated steel sheet
JP2004197203A (en) * 2002-12-20 2004-07-15 Kobe Steel Ltd Corrosion resistant galvanized steel sheet, and production method therefor
JP2005231813A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Building Techno Service Co Ltd Operation control device for elevator also serving for wheelchair
JP2008229998A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Heavy corrosion-proof coated steel material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194437A (en) * 1975-02-19 1976-08-19 Tetsukozairyono boseishoriho
JPS5273139A (en) * 1975-12-16 1977-06-18 Nippon Steel Corp Chemical conversion process for metallic material
JP2000282253A (en) * 1999-01-29 2000-10-10 Nippon Steel Corp Rust-proof treatment and rust-proof treated metallic material
JP2000265281A (en) * 1999-03-17 2000-09-26 Nkk Corp Phosphate composite-coated steel sheet excellent in corrosion resistance, lubricity and adhesion for coating material
JP2000309880A (en) * 1999-04-23 2000-11-07 Sumitomo Metal Ind Ltd Corrosion resistant surface treated steel sheet
JP2004197203A (en) * 2002-12-20 2004-07-15 Kobe Steel Ltd Corrosion resistant galvanized steel sheet, and production method therefor
JP2005231813A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Building Techno Service Co Ltd Operation control device for elevator also serving for wheelchair
JP2008229998A (en) * 2007-03-20 2008-10-02 Jfe Steel Kk Heavy corrosion-proof coated steel material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081670A (en) * 2010-10-13 2012-04-26 Nippon Steel Corp Organic resin coated steel
US10337660B2 (en) 2014-11-10 2019-07-02 Sanoh Industrial Co., Ltd. Coated metal pipe for vehicle piping
WO2016129639A1 (en) * 2015-02-13 2016-08-18 三桜工業株式会社 Coated metal pipe for vehicle piping and method for producing same
JPWO2016129639A1 (en) * 2015-02-13 2017-11-30 三桜工業株式会社 Coated metal pipe for vehicle piping and manufacturing method thereof
US10281078B2 (en) 2015-02-13 2019-05-07 Sanoh Industrial Co., Ltd. Coated metal pipe for vehicle piping and method for producing same

Also Published As

Publication number Publication date
JP4964699B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4844197B2 (en) Manufacturing method of steel material with excellent weather resistance and paint peeling resistance
Yu et al. A review of recent developments in coating systems for hot-dip galvanized steel
JP5092932B2 (en) Marine steel structures, steel pipe piles, steel sheet piles and steel pipe sheet piles
Dhawan et al. Corrosion Preventive Materials and Corrosion Testing
JP5206386B2 (en) Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
JP2007313885A (en) Organic resin coated steel material
JP2014019908A (en) Anticorrosion coated steel material
Buchheit Corrosion resistant coatings and paints
CN104132889B (en) A kind of assay method of the solvent-free polymeric coating layer service life of resistance to Corrosion In Water Environments
JP4964699B2 (en) Organic resin-coated steel and building using the same
JP5413292B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
Balachandra et al. Development and experimental verification of innovative corrosion protection epoxy coatings for steel
JP4577238B2 (en) Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
JP5318550B2 (en) Painted steel material for ballast tanks with excellent paint film blistering resistance, and ballast tanks and ships using the same
JP2006283045A (en) Surface-treated steel
JP4648742B2 (en) Surface treated steel
JP5651912B2 (en) Method for producing resin-coated steel
JP2009209391A (en) Manufacturing method of resin-coated steel
JP4343570B2 (en) Steel base material and base material adjustment method
JP5735351B2 (en) Surface treated steel
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
JP5651911B2 (en) Method for producing resin-coated steel
JP2008229998A (en) Heavy corrosion-proof coated steel material
Lee et al. Investigation on optimum corrosion protection condition of S355ML steel with seawater temperature
JP2005349817A (en) Resin coated heavy corrosionproof steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R151 Written notification of patent or utility model registration

Ref document number: 4964699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350