JP2012081670A - Organic resin coated steel - Google Patents
Organic resin coated steel Download PDFInfo
- Publication number
- JP2012081670A JP2012081670A JP2010230532A JP2010230532A JP2012081670A JP 2012081670 A JP2012081670 A JP 2012081670A JP 2010230532 A JP2010230532 A JP 2010230532A JP 2010230532 A JP2010230532 A JP 2010230532A JP 2012081670 A JP2012081670 A JP 2012081670A
- Authority
- JP
- Japan
- Prior art keywords
- organic resin
- chemical conversion
- steel material
- conversion treatment
- coated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
本発明は、有機樹脂被覆鋼材に関する。更に詳しくは、本発明は、有機被覆の下地処理層を有する有機樹脂被覆鋼材に関する。 The present invention relates to an organic resin-coated steel material. More specifically, the present invention relates to an organic resin-coated steel material having an organic-coated base treatment layer.
防食性能が重要な用途(例えば、海洋鋼構造物)に用いられる鋼材は、樹脂被覆によって防食することが広く行われている。通常は、耐食性や密着性を向上させるために鋼材の表面に化成処理を施し、その上に、樹脂被覆が行われている。樹脂で被覆された鋼材は、その樹脂被覆が剥離するまで防食性能を発揮するが、上記化成処理を行うことで、樹脂被覆の剥離が抑えられ、防食寿命を延長させることが可能となる。 It is widely practiced that steel materials used in applications where corrosion protection performance is important (for example, marine steel structures) are protected by resin coating. Usually, in order to improve corrosion resistance and adhesiveness, a chemical conversion treatment is performed on the surface of the steel material, and a resin coating is performed thereon. The steel material coated with the resin exhibits anticorrosion performance until the resin coating is peeled off. However, by performing the chemical conversion treatment, the peeling of the resin coating can be suppressed and the anticorrosion life can be extended.
この化成処理として、従来はクロメート処理が用いられてきたが、近年は環境対策からクロメートを用いない化成処理の開発が行われている。しかしながら、、海洋構造物に要求される耐食性、密着性、耐陰極剥離性などを、クロメート処理を用いた鋼材と同じレベルに到達させるのは容易ではなかった。このため、これらの性能を向上させるべく、過去に様々な試みがなされてきた。 Conventionally, chromate treatment has been used as this chemical conversion treatment, but recently, chemical conversion treatment not using chromate has been developed for environmental measures. However, it has not been easy to achieve the same level of corrosion resistance, adhesion, cathode peel resistance, etc. required for offshore structures as steel materials using chromate treatment. For this reason, various attempts have been made in the past to improve these performances.
例えば、特許文献1には、クロメート処理材に匹敵する被覆寿命を有するりん酸アルミ系ノンクロメート樹脂被覆鋼材が開示されている。 For example, Patent Document 1 discloses an aluminum phosphate non-chromate resin-coated steel material having a coating life comparable to a chromate-treated material.
ところが、最近では、クロメートを超える鋼材の長寿命化が要請されるようになってきているため、更なる開発が望まれている。 However, recently, since it has been demanded to extend the life of steel materials exceeding chromate, further development is desired.
本発明の目的は、従来技術における鋼材と比較して、更なる長寿命化が可能な有機樹脂被覆鋼材を提供することにある。 An object of the present invention is to provide an organic resin-coated steel material capable of further extending the life compared to steel materials in the prior art.
鋭意研究の結果、本発明者らは、(従来の樹脂種類・構成を大幅に変更しなくても)有機樹脂被覆鋼材を構成すべき「化成処理層」を適切に改良することにより、上記目的が達成可能であることを見出した。 As a result of diligent research, the present inventors have improved the above-mentioned purpose by appropriately improving the “chemical conversion treatment layer” that should constitute the organic resin-coated steel material (even if the conventional resin type and configuration are not significantly changed). Has been found to be achievable.
本発明の有機樹脂被覆鋼材は上記発見に基づくものであり、より詳しくは、
(「クレーム1」の引き写し)
The organic resin-coated steel material of the present invention is based on the above discovery, and more specifically,
(A copy of "Claim 1")
本発明において、有機樹脂被覆鋼材の長寿命化が可能な理由は、本発明者らの知見によれば、以下のように推定される。 According to the knowledge of the present inventors, the reason why the organic resin-coated steel material can be extended in the present invention is estimated as follows.
すなわち、本発明者らの知見によれば、海洋鋼構造物の長寿命化を阻む問題は、干満帯に流木等の漂流物や船舶との衝突により樹脂被覆が「そぎとられる」ことに起因することが推定された。樹脂被覆がそぎとられると、鋼材が露出した場合はもちろん、鋼材が露出するまでに至らなくても、耐食性や皮膜耐久性が劣化するため、その部分から腐食や被覆剥離が早期に始まるからである。 That is, according to the knowledge of the present inventors, the problem that hinders the extension of the life of marine steel structures is caused by the fact that the resin coating is “stripped” by collision with drifting objects such as driftwood and ships in the tidal zone. It was estimated to be. If the resin coating is stripped, the corrosion resistance and film durability will deteriorate, even if the steel material is not exposed, even if the steel material is not exposed. is there.
他方、従来使用されて来たような、通常の耐衝撃試験、すなわち、水平に置いた試験片に、錘を垂直に落下・衝突せしめ、塗膜や被覆の割れ・剥離を観察する方法においては、被覆樹脂層には強い圧縮応力がかかり、樹脂が破壊される。しかしながら、このような従来の耐衝撃試験は、上記した海洋鋼構造物用鋼材の耐食性や皮膜耐久性の評価に関しては、「必ずしも適していない」ことを本発明者らは見出した。 On the other hand, in the conventional impact resistance test that has been used in the past, that is, in a method of observing cracks / peeling of the coating film or coating by dropping and colliding the weight vertically with a horizontally placed test piece. The coating resin layer is subjected to a strong compressive stress, and the resin is destroyed. However, the present inventors have found that such a conventional impact resistance test is not necessarily suitable for the evaluation of the corrosion resistance and film durability of the steel material for marine steel structures described above.
本発明者らの知見によれば、実際に流木、漂流物、船舶等が、(評価すべき)鋼材に対して垂直に衝突することは稀で、むしろ「垂直以外」の角度を持って衝突する場合の方が多いと推定された。このような仮説に基づき、被覆樹脂には、圧縮応力に加え、大きなずれ応力が加わって起きる「こすれ破壊」が極めて重要であると、本発明者らは予測した。 According to the knowledge of the present inventors, it is rare that a driftwood, a drifting object, a ship, etc. actually collide with a steel material (to be evaluated) perpendicularly, but rather with an angle other than “vertical”. It was estimated that there were more cases. Based on such a hypothesis, the present inventors predicted that “rubbing fracture”, which occurs when a large shear stress is applied in addition to compressive stress, is extremely important for the coating resin.
この観点から、樹脂被覆の「耐こすれ破壊性」が弱いと、せっかく優れた密着性や防食性を有する化成処理を用いても、実際の「防食寿命」はむしろ低減すると本発明者らは考えた。よって、従来における、「通常の錘を垂直に落下させる」試験は、「耐こすれ破壊性」の評価試験としては、適切ではないと、本発明者らは考えた。 From this point of view, the present inventors believe that if the "rubbing resistance" of the resin coating is weak, the actual "anticorrosion life" will rather be reduced even if a chemical conversion treatment having excellent adhesion and corrosion resistance is used. It was. Therefore, the present inventors considered that the conventional test of “falling a normal weight vertically” is not appropriate as an evaluation test of “rubbing resistance”.
上記の考察に基づき、本発明者らは、後述の実施例に示すような、新たな「こすれ破壊試験法」を考案した。本発明者らが考案した「こすれ破壊試験法」によれば、後述するように、樹脂被覆の「耐こすれ破壊性」を適切に評価できることが見出された。この新たな「耐こすれ破壊性」による評価は、(従来の耐衝撃試験による評価と比較して)特に、樹脂被覆の被覆厚さが数mmにもなる場合は、その差が顕著に表れることが、本発明者らの実験により判明している。 Based on the above consideration, the present inventors have devised a new “rubbing fracture test method” as shown in the examples described later. According to the “rubbing fracture test method” devised by the present inventors, it has been found that the “rubbing fracture resistance” of the resin coating can be appropriately evaluated as described later. This new “rubbing resistance” evaluation (compared to the conventional impact resistance test), especially when the coating thickness of the resin coating is several millimeters, the difference is significant. However, it has been proved by experiments of the present inventors.
本発明者らは、上記知見(新たな「こすれ破壊試験法」)に基づき、「こすれ破壊を起こしにくい樹脂被覆」に関して更に研究を進めたところ、更に、以下の知見を得た。 Based on the above findings (new “rubbing fracture test method”), the present inventors have further researched on “resin coating that hardly causes rubbing fracture”, and further obtained the following findings.
上記の新たな「こすれ破壊」試験によれば、有機樹脂層が破壊においては、有機樹脂の分子凝集力が、「こすれ破壊性」に重要な影響を与えることが見出された。 According to the above new “rubbing fracture” test, it was found that the molecular cohesive force of the organic resin has an important influence on the “rubbing breakability” when the organic resin layer breaks.
上記知見に基づき、更に鋭意研究を行った結果、本発明者らは、分子凝集力を増大させなくても、すなわち、従来の樹脂の種類・構成を大幅に変更しなくても、化成処理層の改良により、有機樹脂被覆鋼材の長寿命化が可能となり、樹脂層のこすれ破壊を改善できることを、本発明者らは発見したのである。 As a result of further earnest research based on the above findings, the present inventors have found that the chemical conversion treatment layer can be obtained without increasing the molecular cohesion, that is, without significantly changing the type and configuration of conventional resins. The present inventors have found that the improvement of the above can extend the life of the organic resin-coated steel material and can improve the rubbing fracture of the resin layer.
本発明の有機樹脂被覆鋼材は、優れた「耐こすれ破壊性」を有する。したがって、本発明の有機樹脂被覆鋼材は、「耐こすれ破壊性」が有効な用途(例えば、特に船舶交通や漂流物の多い海域用の海洋構造物用の鋼材)において、好適な長寿命化を達成することができる。 The organic resin-coated steel material of the present invention has excellent “rubbing resistance”. Therefore, the organic resin-coated steel material of the present invention has a suitable long life in applications where the “rubbing resistance” is effective (for example, steel materials for marine structures for marine areas where there are many ship traffic and drifting objects). Can be achieved.
本発明の有機樹脂被覆鋼材は、以下の態様を有することができる。 The organic resin-coated steel material of the present invention can have the following aspects.
[1]
鋼材表面に、鋼材側から順に、りん酸鉄化成処理層、りん酸アルミ系化成処理層、有機樹脂層が積層された有機樹脂被覆鋼材であって;
前記りん酸アルミ系化成処理層がP、Al、B、及び、MgあるいはCaから選らばれる金属Mを含み、
該りん酸アルミ系化成処理層の組成が、無水酸化物換算のモル比で、Al2O3/P2O5=0.2〜0.6、B2O3/P2O5=0.01〜0.1、MO/P2O5=0.01〜0.2を与えるバインダーと、無機体質顔料とを含むことを特徴とする有機樹脂被覆鋼材。
[1]
An organic resin-coated steel material in which an iron phosphate chemical conversion treatment layer, an aluminum phosphate chemical conversion treatment layer, and an organic resin layer are laminated on the steel material surface in this order from the steel material side;
The aluminum phosphate-based chemical conversion treatment layer contains P, Al, B, and a metal M selected from Mg or Ca;
The composition of the aluminum phosphate-based chemical conversion treatment layer is Al 2 O 3 / P 2 O 5 = 0.2 to 0.6 and B 2 O 3 / P 2 O 5 = 0 in terms of a molar ratio in terms of anhydrous oxide. An organic resin-coated steel material comprising a binder giving 0.01 to 0.1 and MO / P 2 O 5 = 0.01 to 0.2 and an inorganic extender pigment.
[2]
前記りん酸鉄化成処理層の平均膜厚が0.1〜1μmである[1]に記載の有機樹脂被覆鋼材。
[2]
The organic resin-coated steel material according to [1], wherein the iron phosphate chemical conversion treatment layer has an average film thickness of 0.1 to 1 μm.
[3]
前記無機質顔料が、前記りん酸アルミ系化成処理層の乾燥皮膜に対して10〜50vol%添加されたものである[1]または[2]に記載の有機樹脂被覆鋼材。
[3]
The organic resin-coated steel material according to [1] or [2], wherein the inorganic pigment is added in an amount of 10 to 50 vol% with respect to the dry film of the aluminum phosphate chemical conversion treatment layer.
[4]
前記有機樹脂層が、化成処理層の直上に形成されるプライマー層と、ウレタンエラストマー樹脂から成るトップ層から構成されることを特徴とする[1]〜[3]のいずれかに記載の有機樹脂被覆鋼材。
[4]
The organic resin layer according to any one of [1] to [3], wherein the organic resin layer includes a primer layer formed immediately above the chemical conversion treatment layer and a top layer made of a urethane elastomer resin. Coated steel.
[5]
前記プライマー層が、エポキシ樹脂から成る[4]に記載の有機樹脂被覆鋼材。
[5]
The organic resin-coated steel material according to [4], wherein the primer layer is made of an epoxy resin.
[6]
前記プライマー層の厚みが100〜500μmである[4]または[5]に記載の有機樹脂被覆鋼材。
[6]
The organic resin-coated steel material according to [4] or [5], wherein the primer layer has a thickness of 100 to 500 μm.
[7]
前記トップ層の厚みが2〜4mmである[4]〜[6]のいずれかに記載の有機樹脂被覆鋼材。
[7]
The organic resin-coated steel material according to any one of [4] to [6], wherein the top layer has a thickness of 2 to 4 mm.
[8]
前記りん酸アルミ化成処理層の厚さが5〜40μmであることを特徴とする[1]〜[7]のいずれかに記載の有機樹脂被覆鋼材。
[8]
The organic resin-coated steel material according to any one of [1] to [7], wherein the aluminum phosphate chemical conversion treatment layer has a thickness of 5 to 40 μm.
[9]
前記金属MがMgであることを特徴とする[1]〜[8]のいずれか1項に記載の有機樹脂被覆鋼材。
[9]
The organic resin-coated steel material according to any one of [1] to [8], wherein the metal M is Mg.
[10]
前記りん酸アルミ系化成処理層中の無機体質顔料がアルミナであることを特徴とする[1]〜[9]のいずれか1項に記載の有機樹脂被覆鋼材。
[10]
The organic resin-coated steel material according to any one of [1] to [9], wherein the inorganic extender pigment in the aluminum phosphate-based chemical conversion treatment layer is alumina.
(有機樹脂被覆鋼材)
本発明の有機樹脂被覆鋼材は、鋼材と、(該鋼材の表面上から順に)その上に配置されたりん酸鉄化成処理層と、その上に配置されたりん酸アルミ系化成処理層と、その上に配置された有機樹脂層とを、少なくとも含む。このように、本発明の有機樹脂被覆鋼材においては、化成処理層が「2層構造」になっている点が重要である。
(Organic resin coated steel)
The organic resin-coated steel material of the present invention includes a steel material, an iron phosphate chemical conversion treatment layer disposed thereon (in order from the surface of the steel material), and an aluminum phosphate chemical conversion treatment layer disposed thereon. And an organic resin layer disposed thereon. Thus, in the organic resin-coated steel material of the present invention, it is important that the chemical conversion treatment layer has a “two-layer structure”.
(鋼種)
鋼種は特に限定されない。コストの点からは、SS400等の構造材用汎用鋼材である鋼種を用いることが好ましい。
(Steel grade)
The steel type is not particularly limited. From the viewpoint of cost, it is preferable to use a steel type that is a general-purpose steel for structural materials such as SS400.
(鋼材)
鋼材(すなわち、鋼種の形状)も、特に限定されない。形状の点からは、鋼管、鋼管矢板、鋼矢板、厚板等が例示できる。これら鋼材表面から錆、スケール、汚染物等を除去するため、サンドブラスト処理、グリッドブラスト処理、ショットブラスト処理等の下地処理行なって、清浄な金属表面を露出させておくことが、極めて好ましい。
(Steel)
The steel material (that is, the shape of the steel type) is not particularly limited. From the point of shape, a steel pipe, a steel pipe sheet pile, a steel sheet pile, a thick board, etc. can be illustrated. In order to remove rust, scale, contaminants, etc. from the surface of these steel materials, it is extremely preferable to perform a ground treatment such as sand blasting, grid blasting, and shot blasting to expose a clean metal surface.
(りん酸鉄化成処理層)
上記の鋼材表面上に配置されるべきりん酸鉄化成処理層(すなわち、りん酸鉄皮膜)は特に限定されない。耐こすれ破壊性の点からは、FePO4・2H2OとFe2O3、不可避に混入する前述の添加物イオンの混合物から成る、緻密で薄い微結晶皮膜であることが好ましい。このような好適なりん酸鉄化成処理層は、例えば、市販のりん酸鉄用化成処理液を使用して得ることができる。りん酸鉄化成処理層の厚さは、通常は、せいぜい0.1〜0.4μm程度である。本発明においては、(例えば、基材表面がブラスト処理され、表面のデコボコが激しい態様においては)、成膜のバラつきを考慮し、皮膜厚さが0.1〜1μmであることが好ましい。この皮膜厚さは、更には、0.1〜0.5μm(特に0.2〜0.5μm)であることが好ましい。この皮膜厚さが0.1μmより薄いと、皮膜の均一性が失われ、発明の効果が低下する傾向がある。また皮膜厚さが1μm超では、皮膜の形成が困難になり易い傾向がある。
(Iron phosphate chemical conversion treatment layer)
The iron phosphate chemical conversion treatment layer (that is, iron phosphate coating) to be disposed on the steel surface is not particularly limited. From the point of resistance to rubbing and rubbing, a dense and thin microcrystalline film composed of a mixture of FePO 4 .2H 2 O and Fe 2 O 3 and the aforementioned additive ions inevitably mixed is preferable. Such a suitable iron phosphate chemical conversion treatment layer can be obtained using, for example, a commercially available chemical conversion solution for iron phosphate. The thickness of the iron phosphate chemical conversion layer is usually about 0.1 to 0.4 μm at most. In the present invention (for example, in a mode in which the surface of the substrate is blasted and the surface is severely uneven), the film thickness is preferably 0.1 to 1 μm in consideration of variations in film formation. The film thickness is preferably 0.1 to 0.5 μm (particularly 0.2 to 0.5 μm). When this film thickness is thinner than 0.1 μm, the uniformity of the film is lost and the effect of the invention tends to be reduced. On the other hand, when the film thickness exceeds 1 μm, it tends to be difficult to form the film.
本発明において、上記のりん酸鉄化成処理層は、後述するりん酸アルミ化成処理層との相乗効果により、有機樹脂層のこすれ破壊性を充分に向上させることができる。 In the present invention, the iron phosphate chemical conversion treatment layer described above can sufficiently improve the rubbing breakability of the organic resin layer due to a synergistic effect with the aluminum phosphate chemical conversion treatment layer described later.
りん酸鉄処理以外のりん酸塩処理としては、りん酸亜鉛処理やりん酸マンガン処理などが知られ、りん酸鉄処理よりも広く用いられているが、これらは「耐こすれ破壊性」という点からは、いずれもりん酸鉄処理には劣る。 As phosphate treatments other than iron phosphate treatment, zinc phosphate treatment and manganese phosphate treatment are known and are used more widely than iron phosphate treatment. Are inferior to iron phosphate treatment.
(りん酸アルミ系化成処理層)
上述したりん酸鉄化成処理層上に配置されるべきりん酸アルミ系化成処理層の構成は、特に限定されない。耐水密着性の点からは、りん酸アルミ系化成処理層は、バインダー相中に(後述するような)無機体質顔料が分散しているものであることが好ましい。無機体質顔料としてアルミナを用いた場合、バインダー相、顔料の固相、双方にアルミが含まれることとなる。このような態様においては、例えばEPMA(電子プローブマイクロアナライザ)で断面を観察すると、バインダーにはP(りん)が含まれているが、アルミナにはPが含まれていないので、両者の相を区別することは容易である。
(Aluminum phosphate chemical conversion treatment layer)
The structure of the aluminum phosphate chemical conversion treatment layer to be disposed on the iron phosphate chemical conversion treatment layer is not particularly limited. From the viewpoint of water-resistant adhesion, the aluminum phosphate chemical conversion treatment layer is preferably one in which an inorganic extender pigment (as will be described later) is dispersed in the binder phase. When alumina is used as the inorganic extender pigment, aluminum is contained in both the binder phase and the solid phase of the pigment. In such an embodiment, for example, when the cross section is observed with EPMA (Electron Probe Microanalyzer), P (phosphorus) is contained in the binder, but P is not contained in alumina. It is easy to distinguish.
りん酸アルミ系化成処理層の付着量は、初期密着性、耐水密着性の点からは、5〜40μmが好ましい。この付着量は、10〜30μm(特に15〜25μm)であることが、より好ましい。該付着量が5μm未満では、ブラスト表面を均一に濡らすことができずにムラが発生し、こすれ破壊性にもばらつきが生じる傾向がある。該付着量が40μmを超えると、こすれ破壊性が低下する傾向がある。 The adhesion amount of the aluminum phosphate chemical conversion treatment layer is preferably 5 to 40 μm from the viewpoint of initial adhesion and water-resistant adhesion. The adhesion amount is more preferably 10 to 30 μm (particularly 15 to 25 μm). When the adhesion amount is less than 5 μm, the blast surface cannot be uniformly wetted, unevenness is generated, and the rubbing fracture property tends to vary. When the amount of adhesion exceeds 40 μm, the rubbing breakability tends to decrease.
(酸化物組成式)
バインダー相の組成の説明に入る前に、組成表記に用いた「酸化物組成式」について説明する。酸化物組成式は、含水無機酸化物の場合、その組成と等しい酸化物と水の和で表すもので、セラミック・鉱物学の分野でよく用いられている。また、本願の「特許請求の範囲」では、各組成物をP2O5に対するモル比で表現しているが、残部は、P2O5、水(水素イオンと水酸化物イオンに分かれている場合も含む)、不可避の不純物酸化物である。
(Oxide composition formula)
Before the description of the composition of the binder phase, the “oxide composition formula” used in the composition notation will be described. In the case of hydrous inorganic oxides, the oxide composition formula is expressed by the sum of oxide and water equal to the composition, and is often used in the field of ceramics and mineralogy. Further, in the “claims” of the present application, each composition is expressed by a molar ratio with respect to P 2 O 5, but the balance is divided into P 2 O 5 , water (hydrogen ions and hydroxide ions). Inevitable impurity oxide).
(バインダー)
バインダーの構成元素は、クロメート処理に匹敵する密着性・耐久性と低環境負荷を両立する元素の点からは、Al、P、B、M、O、H、であることが好ましい。これらの元素のうち、通常は、OとHは酸化物イオン、あるいは水酸化物イオンとして存在し(酸化物組成式では、通常は、併せてH2Oで表現されているが)、他の陽イオンと不定比例化合物を構成する。すなわち、本発明の化成処理バインダーは、通常は、もともと整数比で示されるような元素比率を有さない化合物である。上記の「酸化物表記」を用いた理由の一つも、ここにある。
(binder)
The constituent elements of the binder are preferably Al, P, B, M, O, and H from the viewpoint of an element that achieves both adhesion and durability comparable to chromate treatment and a low environmental load. Of these elements, O and H usually exist as oxide ions or hydroxide ions (although they are usually expressed together as H 2 O in the oxide composition formula), It constitutes an indefinite proportional compound with a cation. That is, the chemical conversion treatment binder of the present invention is usually a compound that does not have an element ratio as originally indicated by an integer ratio. This is one of the reasons for using the above "oxide notation".
(りん)
Pはりん酸塩として化成処理層の陰イオンの主成分をなし、リンは皮膜中でH2PO4 −、HPO4 2−、リン酸イオン、あるいはこのn量体(メタ燐酸イオン、ポリリン酸イオン)として存在し、アルミ(III)イオン、ホウ素(III)イオン、金属Mイオンをつなげる役目をしている。そしてIII 価ホウ素、金属Mイオンも、アルミと同様に、りん酸イオンと複雑な不定比例化合物を成している。
(Rin)
P is a main salt of anion of the chemical conversion treatment layer as a phosphate, and phosphorus is H 2 PO 4 − , HPO 4 2− , phosphate ion, or an n-mer (metaphosphate ion, polyphosphate) in the film. Ions) and serves to connect aluminum (III) ions, boron (III) ions, and metal M ions. In addition, trivalent boron and metal M ions, like aluminum, form complex indefinite proportional compounds with phosphate ions.
(アルミニウム)
Alは耐陰極剥離性・耐水密着性を向上させる主役であるが、通常は、Al(III)として存在する。本発明においては、モル比でAl2O3/P2O5=0.2〜0.6(更に好ましくは0.3〜0.5、特に好ましくは0.38〜0.41)である。本発明において、モル比でAl2O3/P2O5=0.2〜0.6の範囲では、リン酸イオンとアルミイオンの結合したネットワークに欠陥が(実質的に)存在せず、良好な成膜性と耐久性を示すことができる。このモル比が0.6を超えると、耐水密着性・造膜性が悪くなる傾向がある。他方、該モル比が0.2未満であると、耐陰極剥離性は充分なほど向上しない傾向がある。
(aluminum)
Al plays a major role in improving the cathode peel resistance and water adhesion resistance, but usually exists as Al (III). In the present invention, the molar ratio is Al 2 O 3 / P 2 O 5 = 0.2 to 0.6 (more preferably 0.3 to 0.5, particularly preferably 0.38 to 0.41). . In the present invention, in the range of Al 2 O 3 / P 2 O 5 = 0.2 to 0.6 in terms of molar ratio, there is no (substantially) a defect in the network in which phosphate ions and aluminum ions are bonded, Good film formability and durability can be exhibited. If this molar ratio exceeds 0.6, the water-resistant adhesion and film-forming properties tend to deteriorate. On the other hand, when the molar ratio is less than 0.2, the cathode peel resistance tends not to be improved sufficiently.
本発明においては、結局、バインダーの主成分は、三価アルミ及びHPO4 2−であり、若干のH2PO4 −、三価ホウ素、Mの二価イオンを含んだ混成体であることが好ましく。そして、これらの存在モル比は、通常は整数比にはならない、不定比化合物である。本発明者らの推定によれば、りん酸アルミ系化成処理層中のリン酸アルミは、(イメージ的に位置づけるのであれば)AlPO4とAl2(HPO4 2−)3の間に位置している。AlPO4とAl2(HPO4 2−)3の関係(差)は、Al2(HPO4 2−)3からH3PO4を取り去ると、AlPO4になるという関係である。正確な位置づけは、硬化時における脱水や、鉄素地との反応で微妙に変化する傾向がある。実施例たとえばNo.4〜9の場合のリン酸アルミの形態を単純な平均化学組成式で表せば、およそH1.2PO4 1.8−になる。 In the present invention, after all, the main components of the binder are trivalent aluminum and HPO 4 2− , and it is a hybrid containing some H 2 PO 4 − , trivalent boron and M divalent ions. Preferably. These molar ratios are non-stoichiometric compounds that usually do not have an integer ratio. According to the estimation of the present inventors, the aluminum phosphate in the aluminum phosphate-based chemical conversion treatment layer is located between AlPO 4 and Al 2 (HPO 4 2− ) 3 (if it is positioned imagewise). ing. The relationship (difference) between AlPO 4 and Al 2 (HPO 4 2− ) 3 is that when H 3 PO 4 is removed from Al 2 (HPO 4 2− ) 3 , it becomes AlPO 4 . The exact positioning tends to change slightly due to dehydration during curing and reaction with the iron substrate. Examples No. If the form of aluminum phosphate in the case of 4 to 9 is expressed by a simple average chemical composition formula, it becomes approximately H 1.2 PO 4 1.8− .
(ホウ素)
Bは、皮膜の焼付け時の造膜性を向上させる性質を有する。本発明においては、モル比でB2O3/P2O5=0.01〜0.1が優れる。このモル比は、0.05〜0.1(更には0.08〜0.1)であることが更に好ましい。このモル比が規定値(すなわち、0.01)より少ないと造膜性が悪くなる傾向がある。他方、規定値(すなわち、0.1)よりも多く入れても効果は飽和し、更には向上しない傾向がある。Bは、通常はIII価ホウ素として存在し、Al(III)と同様に、りん酸イオンと複雑な不定比例化合物を成している。
(Boron)
B has the property of improving the film-forming property at the time of baking of the film. In the present invention, B 2 O 3 / P 2 O 5 = 0.01 to 0.1 is excellent in terms of molar ratio. This molar ratio is more preferably 0.05 to 0.1 (more preferably 0.08 to 0.1). When this molar ratio is less than a specified value (that is, 0.01), the film forming property tends to be deteriorated. On the other hand, even if the amount is larger than the specified value (that is, 0.1), the effect is saturated and does not further improve. B is usually present as a trivalent boron, and, like Al (III), forms a complex non-proportional compound with phosphate ions.
(MgあるいはCa)
金属M(MgあるいはCa)は、無機イオン性皮膜を形成する際、皮膜を緻密にして造膜性を向上させ、下地密着力を高め、構造欠陥を減少させる効果を有する。本発明において、MO/P2O5=0.01〜0.2が効果的である。このモル比は、0.05〜0.15(更には0.07〜0.12)であることが更に好ましい。この比(MO/P2O5)が規定量(すなわち、0.01)より少ないと、前記効果が弱くなる傾向がある。他方、規定量(すなわち、0.2)より多いと密着性が低下し、また、皮膜がチョーキングを起こしたり、塗布液が急速にゲル化し、処理液の段階で製造が困難になる傾向がある。請求項2記載の樹脂被覆構成(すなわち、「有機樹脂層が、化成処理層の直上に形成されるエポキシ樹脂から成るプライマー層と、ウレタンエラストマー樹脂から成るトップ層より構成され、該プライマー層の厚みが100〜500μmであって、該トップ層の厚みが2〜4mm」である態様)の場合は、CaよりもMgの方が適している。
(Mg or Ca)
The metal M (Mg or Ca) has an effect of improving the film forming property by increasing the film density when forming the inorganic ionic film, increasing the adhesion of the base, and reducing the structural defects. In the present invention, MO / P 2 O 5 = 0.01 to 0.2 is effective. This molar ratio is more preferably 0.05 to 0.15 (more preferably 0.07 to 0.12). If this ratio (MO / P 2 O 5 ) is less than the specified amount (ie 0.01), the effect tends to be weakened. On the other hand, when the amount is larger than the specified amount (ie 0.2), the adhesiveness is lowered, and the coating tends to choke or the coating liquid rapidly gels, making it difficult to manufacture at the stage of the processing liquid. . 3. The resin coating structure according to claim 2 (that is, “the organic resin layer is composed of a primer layer made of an epoxy resin formed immediately above the chemical conversion treatment layer and a top layer made of a urethane elastomer resin, and the thickness of the primer layer” Is 100 to 500 μm and the thickness of the top layer is 2 to 4 mm ”), Mg is more suitable than Ca.
(無機体質顔料)
無機体質顔料は、リン酸アルミ化成処理皮膜の成膜性向上のために、必要に応じて添加しても良い。 耐水密着性の点からは、無機体質顔料を添加することが好ましい。りん酸アルミ化成処理液が酸性のため、酸に不溶であり、処理液によく分散するものであれば、特に制限されない。 分散性、塗布性の点からは、粒径が5〜15μmのアルミナ、チタニア、シリカ等を用いることが好ましい。これらの粒子の表面に、分散性・不溶性を向上させるための表面処理を、必要に応じて施すことができる。
(Inorganic extender pigment)
The inorganic extender pigment may be added as necessary to improve the film formability of the aluminum phosphate chemical conversion coating. From the viewpoint of water-resistant adhesion, it is preferable to add an inorganic extender pigment. Since the phosphoric acid aluminum chemical conversion treatment liquid is acidic, it is not particularly limited as long as it is insoluble in acid and well dispersed in the treatment liquid. From the viewpoint of dispersibility and coatability, it is preferable to use alumina, titania, silica or the like having a particle size of 5 to 15 μm. A surface treatment for improving dispersibility and insolubility can be applied to the surface of these particles as necessary.
無機体質顔料の添加量は、10〜50vol%( 乾燥硬化後塗膜 が基準)が好ましい。この添加量は、10〜20vol%(更には10〜16vol%)であることが更に好ましい。無機体質顔料の添加量が、10vol%より少ないと成膜性が向上し難い傾向がある。他方、該添加量が50vol%より大きいと、耐こすれ破壊性が悪くなり易い傾向がある。 The addition amount of the inorganic extender pigment is preferably 10 to 50 vol% (based on the coating film after drying and curing). This addition amount is more preferably 10 to 20 vol% (more preferably 10 to 16 vol%). When the amount of the inorganic extender pigment is less than 10 vol%, the film formability tends to be difficult to improve. On the other hand, when the added amount is larger than 50 vol%, the rubbing resistance tends to deteriorate.
(有機樹脂層)
上記のりん酸アルミ系化成処理層の上に配置されるべき有機樹脂層は、鋼材から水・酸素・電解質等の腐食因子を遮断し、鋼材の防食性を著しく向上させる機能を有する。有機樹脂層の厚さは、コストと耐久性の兼ね合いの点から、全体で1〜5mmが好ましい。この厚さは、更には1〜3mm(特に2〜3mm)が好ましい。
(Organic resin layer)
The organic resin layer to be disposed on the aluminum phosphate chemical conversion treatment layer has a function of blocking corrosion factors such as water, oxygen, and electrolyte from the steel material, and remarkably improving the corrosion resistance of the steel material. The total thickness of the organic resin layer is preferably 1 to 5 mm from the viewpoint of balance between cost and durability. This thickness is further preferably 1 to 3 mm (particularly 2 to 3 mm).
(海洋構造物用の有機樹脂層)
とりわけ、海洋構造物に用いる有機樹脂層は、密着性、耐食性、耐久性ともに非常に優れている必要がある。このため、通常は 有機樹脂層を2〜3層構造とし、化成処理層側に樹脂プライマー層として1〜2層、大気側には膜厚を厚くした保護層を設けることが一般的である。
(Organic resin layer for offshore structures)
In particular, an organic resin layer used for an offshore structure needs to have excellent adhesion, corrosion resistance, and durability. For this reason, it is general that the organic resin layer has a two- to three-layer structure, the chemical conversion treatment layer side is provided with one or two layers as a resin primer layer, and the protective layer having a thick film thickness is provided on the atmosphere side.
また、鋼管矢板のように、突起や曲率の大きい鋼面が存在する場合、有機樹脂被覆は塗装法が適しているので、塗装法で製造できる望ましい樹脂構成を請求項2の態様(すなわち、有機樹脂層が、化成処理層の直上に形成されるエポキシ樹脂から成るプライマー層と、ウレタンエラストマー樹脂から成るトップ層より構成され、該プライマー層の厚みが100〜500μmであって、該トップ層の厚みが2〜4mmである態様)である。 In addition, when a steel surface having a large protrusion or curvature such as a steel pipe sheet pile is present, the coating method is suitable for the organic resin coating, and therefore the desirable resin configuration that can be manufactured by the coating method is the aspect of claim 2 (that is, organic The resin layer is composed of a primer layer made of an epoxy resin formed immediately above the chemical conversion treatment layer and a top layer made of a urethane elastomer resin, and the thickness of the primer layer is 100 to 500 μm, and the thickness of the top layer Is an aspect of 2 to 4 mm.
(プライマー層)
プライマー層は、金属と樹脂層との密着性・接着面の耐水性を向上させるのが主な目的で、必要に応じて(本発明においては、金属とりん酸鉄化成処理層との間に)設けることができる。海洋構造物用の塗装樹脂であれば、エポキシ樹脂等が適している。この場合、エポキシ樹脂の膜厚は、100〜500μmが優れ、鋼材とトップ層を強固に接着させることができる。エポキシ樹脂の膜厚は、更には200〜500μm(特に300〜500μm)であることが好ましい。該膜厚が100μmより薄いと、腐食の起点となる塗装欠陥が多くなり、耐食性が劣化する傾向がある。他方、該膜厚が500μmより厚くても、プライマー層の接着効果が飽和する傾向がある。
(Primer layer)
The primary purpose of the primer layer is to improve the adhesion between the metal and the resin layer and the water resistance of the adhesive surface, and if necessary (in the present invention, between the metal and the iron phosphate chemical conversion treatment layer). ) Can be provided. An epoxy resin or the like is suitable for a coating resin for offshore structures. In this case, the thickness of the epoxy resin is excellent from 100 to 500 μm, and the steel material and the top layer can be firmly bonded. The film thickness of the epoxy resin is further preferably 200 to 500 μm (particularly 300 to 500 μm). When the film thickness is less than 100 μm, there are many coating defects that become the starting point of corrosion, and the corrosion resistance tends to deteriorate. On the other hand, even if the film thickness is thicker than 500 μm, the adhesion effect of the primer layer tends to be saturated.
(保護層)
保護層は、主に防食を担い、耐久性に優れ、電解質・水・酸素を遮断する樹脂層であり、必要に応じて、(最外層として)設けるのが好ましい。高耐久性、形成性、経済性の点からは、保護層は、ウレタン樹脂系、ポリオレフィン樹脂系、エポキシ樹脂系のものが好ましい。これらの変性物や、さらに硬化剤、無機顔料を好適に添加したものを、必要に応じて用いてもよい。
(Protective layer)
The protective layer is a resin layer mainly responsible for anticorrosion, excellent in durability, and blocking electrolyte, water and oxygen, and is preferably provided (as the outermost layer) if necessary. From the viewpoint of high durability, formability, and economical efficiency, the protective layer is preferably a urethane resin type, a polyolefin resin type, or an epoxy resin type. These modified products and those suitably added with a curing agent and an inorganic pigment may be used as necessary.
海洋構造物用の塗装樹脂(保護層用)であれば、ウレタンエラストマーが好適に使用可能である。該ウレタンエラストマー層は、膜厚2〜4mmが、耐こすれ破壊性、耐久性ともに両立させることが容易な膜厚範囲である。該膜厚が2mmより薄いと耐水性が劣る傾向がある。他方、膜厚が4mmより厚いと、耐こすれ破壊性が劣る傾向がある。 If it is a coating resin for marine structures (for a protective layer), a urethane elastomer can be suitably used. The urethane elastomer layer has a film thickness range of 2 to 4 mm, which makes it easy to achieve both rubbing resistance and durability. If the film thickness is thinner than 2 mm, the water resistance tends to be inferior. On the other hand, when the film thickness is thicker than 4 mm, the rubbing resistance tends to be inferior.
鋼材には、75×150×4mmの普通鋼を用い、表面をグリッドブラストで3aブラスト処理した。 The steel material was 75 × 150 × 4 mm plain steel, and the surface was 3a blasted with grid blasting.
(りん酸鉄処理)
この鋼材表面に、市販のりん酸鉄処理液(日本パーカーライジング社製、パルホス3454)をスプレー塗布・乾燥した。尚、噴霧量・処理時間によって皮膜厚さを変化させたが、1μm以上の皮膜を得ることはできなかったため、これを上限値とした。比較として、りん酸鉄処理を行わないサンプル(皮膜厚さ0μm)も用意した。また、リン酸鉄処理と異なるりん酸塩処理サンプル(比較用)として、りん酸亜鉛処理と同様に、日本パーカー製のエナレス20を推奨条件下でスプレー塗布し、作製した。
(Iron phosphate treatment)
A commercially available iron phosphate treatment solution (Nippon Parker Rising Co., Ltd., Parphos 3454) was spray-coated and dried on the surface of the steel material. Although the film thickness was changed depending on the spray amount and the treatment time, a film having a thickness of 1 μm or more could not be obtained. As a comparison, a sample not subjected to iron phosphate treatment (film thickness 0 μm) was also prepared. Further, as a phosphate-treated sample (for comparison) different from the iron phosphate treatment, Enares 20 manufactured by Nippon Parker was spray-coated under the recommended conditions in the same manner as the zinc phosphate treatment.
(りん酸アルミ系化成処理)
りん酸アルミ系化成処理には、酸化ホウ素1.5wt%含有の50mass%第一リン酸アルミニウム水溶液に対して、100wt%の水、1.8wt%の酸化マグネシウム、分散性を改善するために表面処理されたアルミナ顔料あるいはチタニア顔料を15wt%をそれぞれ添加・混合した溶液を用いた。この無機組成モル比率は、Al2O3/P2O5=0.4、B2O3/P2O5=0.05、MgO/P2O5=0.2であり、無機体質顔料は乾燥皮膜中で16vol%を占めている。
(Aluminum phosphate chemical conversion treatment)
For aluminum phosphate-based chemical conversion treatment, 100 wt% water, 1.8 wt% magnesium oxide, surface to improve dispersibility, with respect to 50 mass% primary aluminum phosphate aqueous solution containing 1.5 wt% boron oxide. A solution prepared by adding and mixing 15 wt% of the treated alumina pigment or titania pigment was used. The inorganic composition molar ratio, Al 2 O 3 / P 2 O 5 = 0.4, B 2 O 3 / P 2 O 5 = 0.05, a MgO / P 2 O 5 = 0.2 , inorganic filler The pigment accounts for 16 vol% in the dry film.
比較用(組成)のサンプルは、各物質の混合wt%を調整して製造した。 Samples for comparison (composition) were prepared by adjusting the mixed wt% of each substance.
化成処理構成の比較用には、りん酸鉄処理の代わりにりん酸亜鉛処理と施したサンプル、あるいは、発明品からりん酸鉄処理を除いたサンプル、りん酸アルミ化成処理を除いたサンプルをそれぞれ作製した。比較用(膜厚)のサンプルも同様に作製した。 For comparison of the chemical conversion treatment configuration, the sample treated with zinc phosphate treatment instead of the iron phosphate treatment, or the sample obtained by removing the iron phosphate treatment from the invention product and the sample excluding the aluminum phosphate chemical treatment, respectively. Produced. Samples for comparison (film thickness) were prepared in the same manner.
調整したリン酸アルミ系化成処理液を刷毛でぬった。処理液を付着させる量を変化させて、りん酸アルミ化成処理皮膜の膜厚を変化させた(処理しないものは0μm)。塗布後、約80℃の温風で、 2分程度乾燥した。 The adjusted aluminum phosphate chemical conversion solution was wetted with a brush. The film thickness of the aluminum phosphate chemical conversion film was changed by changing the amount of the treatment liquid attached (0 μm for the untreated film). After coating, it was dried for about 2 minutes with warm air of about 80 ° C.
皮膜厚さは、塗装断面のSEM及びEPMA観察によって求めた。まず、リン酸鉄処理を施した鋼材断面をSEM観察あるいは、EPMAのリン分布の観察から、化成処理皮膜の厚さを測定する。厚さはばらつくので、ランダムに選んだ10点を平均した。これらのりん酸鉄処理鋼材にりん酸アルミ化成処理を施した断面を、EPMAでアルミ分布を観察し、りん酸アルミ化成処理層の厚さを求めた。厚さにはバラつきがあるので、ランダムに選んだ10点を平均した。 The film thickness was determined by SEM and EPMA observation of the coating cross section. First, the thickness of a chemical conversion treatment film is measured from SEM observation of a steel material cross section subjected to iron phosphate treatment or observation of EPMA phosphorus distribution. Since the thickness varies, 10 points selected at random were averaged. The aluminum distribution was observed with EPMA for the cross section of these iron phosphate-treated steel materials subjected to aluminum phosphate conversion treatment, and the thickness of the aluminum phosphate conversion treatment layer was determined. Since the thickness varies, 10 points selected at random were averaged.
(有機樹脂被覆)
有機樹脂被覆は、プライマーとして、エポキシ樹脂塗料を所定の膜厚になるように、スプレー塗布・硬化させ、その上にカオリンクレー微粉末含有2液硬化ウレタンエラストマーをスプレー塗装で、所定の厚さになるようにポリウレタン樹脂層を形成した。
(Organic resin coating)
The organic resin coating is spray-applied and cured as a primer with an epoxy resin paint so as to have a predetermined film thickness, and then a two-component cured urethane elastomer containing kaolin clay powder is spray-coated to a predetermined thickness. A polyurethane resin layer was formed as described above.
プライマー塗装過程を省略してポリウレタンエラストマー3mmを被覆したサンプルも、比較用として作製した。 A sample coated with 3 mm of polyurethane elastomer without the primer coating process was also prepared for comparison.
(評価方法)
評価方法(こすれ破壊試験)を以下に述べる。10kgの鉄球の下に、鉛直方向に対して30度の角度を持ってサンプルを置いて固定し、サンプル中央に鉄球を自由落下・衝突させる。落下高さを、最低20cmから、10cmづつ段階的に高くして自由落下させ、樹脂被覆が鉄球のこすれによって剥離する最小高さを記録した。ここでは、樹脂被覆の一部がサンプルから脱離したものがあれば剥離と判断した。
(Evaluation methods)
The evaluation method (rubbing fracture test) is described below. A sample is placed and fixed under a 10 kg iron ball at an angle of 30 degrees with respect to the vertical direction, and the iron ball is allowed to freely fall and collide with the center of the sample. The fall height was increased from a minimum of 20 cm in steps of 10 cm and allowed to fall freely, and the minimum height at which the resin coating peeled off by rubbing the iron ball was recorded. Here, if a part of the resin coating was detached from the sample, it was judged as peeling.
また、一般性能も併せて評価した。樹脂被覆の密着性は、JIS−K5600−5−7プルオフ法で評価し、30kg/cm2以上を合格(○)とした。耐水性は、75×150mmの75mm側のサンプルの一辺から1cm幅の樹脂をはぎ取って、ベルトサンダー等で研磨して鋼面を露出させ、それを50℃の3%塩化ナトリウム水溶液に浸漬し、半年後、取出した。剥離は樹脂被覆端部から奥へ進展するので、樹脂被覆端部の隙間にたがね刃をつっこみ、金槌で、はつりながら、樹脂被覆をはぎとった。金属面が露出した領域を剥離領域とし、端部からの距離をノギスで4点測定し、平均した。剥離10mm未満を○、10mm以上15mm未満を△とした。 In addition, general performance was also evaluated. The adhesiveness of the resin coating was evaluated by a JIS-K5600-5-7 pull-off method, and 30 kg / cm 2 or more was regarded as acceptable (◯). The water resistance is obtained by stripping a 1 cm wide resin from one side of the 75 mm side sample of 75 × 150 mm, polishing with a belt sander or the like to expose the steel surface, and immersing it in a 3% sodium chloride aqueous solution at 50 ° C., It was taken out after half a year. Since the peeling progressed from the resin coating end to the back, the chisel blade was inserted into the gap at the resin coating end, and the resin coating was peeled off with a hammer. The area where the metal surface was exposed was defined as a peeled area, and the distance from the end was measured with a caliper at four points and averaged. Peeling less than 10 mm was rated as ◯, and 10 mm or more and less than 15 mm as △.
上記により得られた結果を、下記の表1に示す。 The results obtained as described above are shown in Table 1 below.
本発明の有機樹脂被覆鋼材は、海上の漂流物・船舶の衝突による樹脂被覆の脱離が低減し、鋼材はよく防食される。したがって、本発明の有機樹脂被覆鋼材は、海洋中に打設される鋼構造物基礎等に、特に好適に使用可能である。 The organic resin-coated steel material of the present invention reduces the resin coating detachment due to the collision of drifting objects and ships on the sea, and the steel material is well protected against corrosion. Therefore, the organic resin-coated steel material of the present invention can be used particularly suitably for a steel structure foundation to be placed in the ocean.
Claims (10)
前記りん酸アルミ系化成処理層がP、Al、B、及び、MgあるいはCaから選らばれる金属Mを含み、
該りん酸アルミ系化成処理層の組成が、無水酸化物換算のモル比で、Al2O3/P2O5=0.2〜0.6、B2O3/P2O5=0.01〜0.1、MO/P2O5=0.01〜0.2を与えるバインダーと、無機体質顔料とを含むことを特徴とする有機樹脂被覆鋼材。 An organic resin-coated steel material in which an iron phosphate chemical conversion treatment layer, an aluminum phosphate chemical conversion treatment layer, and an organic resin layer are laminated on the steel material surface in this order from the steel material side;
The aluminum phosphate-based chemical conversion treatment layer contains P, Al, B, and a metal M selected from Mg or Ca;
The composition of the aluminum phosphate-based chemical conversion treatment layer is Al 2 O 3 / P 2 O 5 = 0.2 to 0.6 and B 2 O 3 / P 2 O 5 = 0 in terms of a molar ratio in terms of anhydrous oxide. An organic resin-coated steel material comprising a binder giving 0.01 to 0.1 and MO / P 2 O 5 = 0.01 to 0.2 and an inorganic extender pigment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010230532A JP5594044B2 (en) | 2010-10-13 | 2010-10-13 | Organic resin coated steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010230532A JP5594044B2 (en) | 2010-10-13 | 2010-10-13 | Organic resin coated steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012081670A true JP2012081670A (en) | 2012-04-26 |
JP5594044B2 JP5594044B2 (en) | 2014-09-24 |
Family
ID=46241061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010230532A Expired - Fee Related JP5594044B2 (en) | 2010-10-13 | 2010-10-13 | Organic resin coated steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5594044B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272982A (en) * | 1996-04-09 | 1997-10-21 | Nippon Steel Corp | Low core los grain oriented silicon steel sheet and its production |
JP2007313885A (en) * | 2006-04-24 | 2007-12-06 | Nippon Steel Corp | Organic resin coated steel material |
JP2009024211A (en) * | 2007-07-18 | 2009-02-05 | Nippon Steel Corp | Organic resin-coated steel material and building using the same |
-
2010
- 2010-10-13 JP JP2010230532A patent/JP5594044B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272982A (en) * | 1996-04-09 | 1997-10-21 | Nippon Steel Corp | Low core los grain oriented silicon steel sheet and its production |
JP2007313885A (en) * | 2006-04-24 | 2007-12-06 | Nippon Steel Corp | Organic resin coated steel material |
JP2009024211A (en) * | 2007-07-18 | 2009-02-05 | Nippon Steel Corp | Organic resin-coated steel material and building using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5594044B2 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5669859B2 (en) | Inorganic phosphate anti-corrosion coating | |
CN112236485A (en) | Corrosion protection of metal substrates comprising one or more 2D material sheets | |
JP5681332B2 (en) | Paint and coated steel | |
TW201742895A (en) | Anti-corrosion composite layers | |
CN113748170A (en) | Corrosion protection of metal substrates | |
KR20140060237A (en) | Chromium-free silicate-based ceramic compositions | |
Bahremand et al. | Epoxy coating anti-corrosion properties enhancement via the steel surface treatment by nanostructured samarium oxide-poly-dopamine film | |
JP4772735B2 (en) | Organic resin coated steel | |
KR20180012739A (en) | A chromate-free ceramic coating composition | |
Ge et al. | Anticorrosion performance of an eco-friendly coating system including an epoxy tie primer with aluminum tripolyphosphates and a polyurethane topcoat for marine aluminum alloy | |
EP1479736A1 (en) | Corrosion inhibitive coatings | |
JP6745279B2 (en) | Anticorrosion pigment made of aluminum polyphosphate and rare earth | |
JP5594044B2 (en) | Organic resin coated steel | |
JP4455712B2 (en) | Coated steel with atmospheric corrosion resistance | |
WO2019146163A1 (en) | Anticorrosion-treated metallic member and coating paint | |
CN105038580A (en) | Self-curing chemically bonded phosphate zinc-rich coating | |
WO2019069722A1 (en) | Coating material and coated steel | |
JPH0575026B2 (en) | ||
JP2009024211A (en) | Organic resin-coated steel material and building using the same | |
KR101695865B1 (en) | Aqueous rust deactivator composition and aqueous rust deactivator comprising the same | |
CN105017926A (en) | Rusted-coating nanometer composite zinc-containing anticorrosive coating for steel structure | |
JP6623543B2 (en) | Organic resin coated steel | |
CN107892885A (en) | A kind of steel structures rust-proof anti-corrosion adhesive paste | |
CN214218616U (en) | Marine anti-rust paint layer structure of hyposmosis strong adhesion chlorinated rubber | |
JP5326921B2 (en) | Organic resin coated steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140721 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5594044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |