JP2009022865A - Precipitation status measuring method in water treatment system - Google Patents

Precipitation status measuring method in water treatment system Download PDF

Info

Publication number
JP2009022865A
JP2009022865A JP2007187813A JP2007187813A JP2009022865A JP 2009022865 A JP2009022865 A JP 2009022865A JP 2007187813 A JP2007187813 A JP 2007187813A JP 2007187813 A JP2007187813 A JP 2007187813A JP 2009022865 A JP2009022865 A JP 2009022865A
Authority
JP
Japan
Prior art keywords
sludge
concentration
value
sedimentation
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187813A
Other languages
Japanese (ja)
Inventor
Takao Ogawa
尊夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Original Assignee
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWA KANKYO KENKYUSHO KK, Ogawa Kankyo Kenkyusho KK filed Critical OGAWA KANKYO KENKYUSHO KK
Priority to JP2007187813A priority Critical patent/JP2009022865A/en
Publication of JP2009022865A publication Critical patent/JP2009022865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method allowing stable wastewater treatment by early detecting precipitation defect in a gravity precipitation solid/liquid separation operation. <P>SOLUTION: Sludge concentration at a plurality of points in the vertical direction in a precipitation tank is measured at a timing linking with the movement of a sludge scraper. When a deviation value of the sludge concentration distribution below the sludge interface, or an aging variation rate of the deviation value exceeds thresholds set respectively in advance, the precipitation defect is determined. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、廃水中の濁質または浮遊固形物を重力沈殿分離する水処理システムにおいて、廃水を沈殿槽に導き、浮遊固形物を沈殿分離する操作が適正におこなわれているか否かを測定して、廃水処理の安定化に資する測定方法に関する。   The present invention measures whether or not the operation of leading the waste water to the sedimentation tank and precipitating and separating the floating solid is properly performed in the water treatment system for separating the turbidity or the floating solid in the waste water by gravity precipitation. The present invention relates to a measurement method that contributes to stabilization of wastewater treatment.

浮遊固形物を含有する廃水を沈殿槽に導き、重力沈殿分離する操作は活性汚泥処理や凝集沈殿処理などで広くおこなわれている基本技術であり、プロセスを安定的に稼動させるうえで、沈殿槽での沈殿分離状態の管理が重要である。管理手段として、実験室においては、シリンダーでの汚泥の沈降性テストでの汚泥容量(SV)や汚泥容量指標(SVI)などの指標により汚泥の沈降性を管理する方法があり、実際の沈殿槽では、沈殿槽への混合液の流入量、混合液の浮遊固形物濃度、上澄液の浮遊固形物濃度と排出量、排出される沈殿汚泥の浮遊固形物濃度と排出量、沈殿槽内の上澄液相と汚泥相の境界の汚泥界面の位置、などを測定管理する方法がある。なかでも汚泥界面の位置の測定管理は、実際の沈殿分離操作の結果を直接反映する指標として用いられている。   The operation of guiding wastewater containing suspended solids to the sedimentation tank and separating it by gravity sedimentation is a basic technology widely used in activated sludge treatment and coagulation sedimentation treatment. It is important to manage the precipitate separation state. In the laboratory, there is a method for managing the sedimentation rate of sludge using an index such as sludge volume (SV) or sludge volume index (SVI) in a sludge sedimentation test in a cylinder. The amount of mixed liquid flowing into the sedimentation tank, the concentration of suspended solids in the liquid mixture, the concentration and discharge of suspended solids in the supernatant, the concentration and discharge of suspended solids in the discharged sludge, There is a method for measuring and managing the position of the sludge interface between the supernatant liquid phase and the sludge phase. In particular, the measurement control of the position of the sludge interface is used as an index that directly reflects the result of the actual sedimentation operation.

混合液の汚泥濃度を測定する自動計器として、光の透過率や反射率を利用した計器や超音波を利用した計器などがすでに広く実用化されている。また沈殿槽内の汚泥界面を自動検出測定する計器についても、汚泥濃度計を沈殿槽内で機械的に昇降させて、位置と濃度のデータから汚泥界面を検出するなど、すでに実用化された装置がある。これらの計器を使えば、沈殿槽の操業が適切におこなわれているか否かを、ある程度管理把握可能である。   As automatic instruments for measuring the concentration of sludge in a mixed liquid, instruments utilizing light transmittance and reflectance, instruments utilizing ultrasonic waves, and the like have already been widely put into practical use. For instruments that automatically detect and measure the sludge interface in the sedimentation tank, devices that have already been put to practical use, such as moving the sludge concentration meter up and down mechanically in the sedimentation tank and detecting the sludge interface from the position and concentration data, etc. There is. If these instruments are used, it is possible to manage and grasp to a certain extent whether or not the operation of the settling tank is being performed appropriately.

しかしながら、もし汚泥界面が上昇した場合、その原因の究明は、汚泥界面の検出や沈殿槽に流入する混合液の汚泥濃度や沈殿汚泥濃度だけでは十分ではない。
たとえば、活性汚泥処理において、汚泥界面を決定する因子としては、流入量や流入汚泥量と排出汚泥量のバランスなど運転要因もあるが、汚泥そのものの沈降性の要因も大きく影響される。汚泥の沈降性を決定する因子としては、(a)混合液の浮遊固形物粒子の帯電状態などの電気化学的要因、(b)汚泥のフロックの形成状態、(c)汚泥の糸状菌などの発生による生物相の要因、(d)沈殿槽での腐敗による気泡の発生による浮力作用、(e)沈殿槽での脱窒反応による気泡の発生による浮力作用、など様々ある。
However, if the sludge interface rises, it is not sufficient to investigate the cause by detecting the sludge interface or the sludge concentration or the precipitated sludge concentration of the mixed liquid flowing into the settling tank.
For example, in activated sludge treatment, factors that determine the sludge interface include operating factors such as the inflow amount and the balance between the inflow sludge amount and the discharged sludge amount, but the sedimentation factor of the sludge itself is also greatly affected. Factors that determine the sedimentation property of sludge include (a) electrochemical factors such as the charged state of suspended solid particles in the mixed solution, (b) sludge floc formation state, (c) sludge filamentous fungi, etc. There are various factors, such as the factors of biota due to generation, (d) buoyancy effect due to generation of bubbles due to decay in the sedimentation tank, and (e) buoyancy effect due to generation of bubbles due to denitrification reaction in the precipitation tank.

特に(e)の沈殿槽での脱窒反応による気泡の発生による浮力作用は、この現象が発生すると汚泥界面が上昇し、ひどい場合には沈殿槽で汚泥が浮上し、活性汚泥処理そのものの操業が不可能になることもある。活性汚泥処理では常に潜在的にこのトラブルの危険性があり、数時間から1日程度の短時間で沈殿槽の状況が激変する可能性がある。しかも、対応遅れにより汚泥浮上現象が一旦発生すると、凝集剤を添加する程度の処置では正常に復帰させることは困難であり、浮上汚泥の除去をしながら処理量を大幅低下させることなどが必要となる。また、汚泥が流出してしまうことにより処理能力の復帰には相当な日数が必要となるなど、活性汚泥の運転上、非常に注意すべき現象である。   In particular, the buoyancy effect due to the generation of air bubbles in the denitrification reaction in (e) causes the sludge interface to rise when this phenomenon occurs. May become impossible. In activated sludge treatment, there is always a potential danger of this trouble, and the situation of the sedimentation tank may change drastically in a short time of several hours to one day. Moreover, once the sludge levitation phenomenon occurs due to a delay in response, it is difficult to restore normal operation with a measure of adding a flocculant, and it is necessary to significantly reduce the throughput while removing the levitation sludge. Become. In addition, this is a phenomenon that requires great attention in the operation of activated sludge. For example, it takes a considerable number of days to restore the treatment capacity due to the sludge flowing out.

この現象のメカニズムは、沈殿槽に流入する活性汚泥混合液中に原水中や曝気槽内で硝化菌により生成した硝酸イオンが多量に含まれている条件下で、曝気槽での処理が不良となってBOD物質が沈殿槽に流入すると、沈殿槽内で脱窒菌の作用で硝酸イオンが窒素ガスとなって汚泥に付着し、浮力となって沈降性を低下させたり、浮上させたりすることによるものである。しかしながら、実機においては、原水の変動や運転条件の変化に対し、沈殿槽での現象の時間遅れがあり、しかも沈殿槽での沈降性に影響ある因子がいろいろあるため、原因を特定するには相当な技術と熟練を要する。   The mechanism of this phenomenon is that the activated sludge mixed solution flowing into the sedimentation tank contains a large amount of nitrate ions produced by nitrifying bacteria in the raw water or in the aeration tank. When the BOD material flows into the sedimentation tank, nitrate ions become nitrogen gas and adhere to the sludge by the action of denitrifying bacteria in the sedimentation tank, resulting in buoyancy that lowers sedimentation or floats. Is. However, in the actual machine, there is a time delay of the phenomenon in the settling tank with respect to fluctuations in raw water and changes in operating conditions, and there are various factors that affect the settling in the settling tank. Requires considerable skill and skill.

沈殿槽での沈殿分離不良の原因が、沈殿槽の汚泥相内での脱窒反応の進行によるものであると特定するためには、従来おこなわれている汚泥界面の位置の変化測定管理だけでは不十分であり、別の測定解析方法が必要である。
従来技術として、活性汚泥曝気槽出口または凝集沈殿反応槽出口においてサンプリングした混合液を計測器内のシリンダーに移し、シリンダー内で静置し沈殿分離した汚泥を、シリンダー底部から抜き出しながら濁度を測定し、シリンダー内の汚泥の沈殿状態を測定する技術が開示されている(例えば特許文献1)。この技術は、汚泥相内部の汚泥濃度を測定し、その結果から汚泥の沈降状態を解析する点で有意義なものではあるが、実際の沈殿槽とは別の装置内の完全に静置したシリンダーを用いて圧密性を解析するものであり、実際の沈殿槽の沈殿状況とは必ずしも一致しない場合もありうる。
In order to specify that the cause of poor precipitation separation in the settling tank is due to the progress of the denitrification reaction in the sludge phase of the settling tank, the conventional change measurement control of the position of the sludge interface has been used. Inadequate and another measurement analysis method is required.
As a conventional technology, the mixed liquid sampled at the outlet of the activated sludge aeration tank or the coagulation sedimentation reaction tank is transferred to the cylinder in the measuring instrument, and the turbidity is measured while extracting the sludge that has settled and settled in the cylinder from the bottom of the cylinder. And the technique of measuring the sedimentation state of the sludge in a cylinder is disclosed (for example, patent document 1). Although this technology is significant in that it measures the sludge concentration inside the sludge phase and analyzes the sludge settling state from the results, it is a completely stationary cylinder in a separate device from the actual settling tank. Is used to analyze the compactness, and may not always match the actual sedimentation state of the sedimentation tank.

他の技術として、沈殿槽内の汚泥界面に設けたpH計を使う方法が開示されている(例えば特許文献2)。この技術は、汚泥界面でpH値が変化することを利用するものではあるが、あくまで汚泥界面を検出するだけのものである。また、回分式の沈殿槽でpH値として0.08程度の変化を検出するものであり、標準活性汚泥の沈殿槽のように流動をともなう沈殿槽では、その程度の差を検出するのは変動を考慮すると困難である。
特開2006−175357号公報 特開平07−294310号公報
As another technique, a method using a pH meter provided at a sludge interface in a sedimentation tank is disclosed (for example, Patent Document 2). This technique utilizes the fact that the pH value changes at the sludge interface, but only detects the sludge interface. Moreover, a change of about 0.08 is detected as a pH value in a batch type sedimentation tank, and in a sedimentation tank with flow like a standard activated sludge sedimentation tank, it is a fluctuation to detect the difference in the degree. Is difficult.
JP 2006-175357 A JP 07-294310 A

本発明は、沈殿槽内の垂直方向の浮遊固形物濃度やpH値または硝酸イオン濃度を測定することにより、汚泥の沈降状態を解析して、活性汚泥処理や凝集沈殿処理における重力沈殿固液分離操作における運転状況を管理したり、沈降性不良を早期に検知することにより、安定した廃水処理を可能にする測定方法を提供することにある。   The present invention analyzes the sedimentation state of sludge by measuring the concentration of suspended solids in the vertical direction, pH value or nitrate ion concentration in the sedimentation tank, and gravity precipitation solid-liquid separation in activated sludge treatment and coagulation sedimentation treatment An object of the present invention is to provide a measurement method that enables stable wastewater treatment by managing the operation status in operation and detecting early sedimentation defects.

本発明は以下の内容を要旨とする。すなわち、
(1)廃水中の濁質または浮遊固形物を重力沈殿分離する水処理システムにおいて、汚泥かき寄せ機の動きと連動したタイミングで、沈殿槽内の垂直方向の複数の位置における汚泥濃度を測定し、汚泥界面より下方の汚泥濃度分布の偏差値、又は該偏差値の時間変化率が、それぞれについて予め定めた閾値(Z1又はZ2)を超えるときは沈降性異常と判定する、ことを特徴とする沈殿状態測定方法。
本発明において、「汚泥界面」とは、上澄液相と汚泥相の境界であって、沈殿槽の汚泥濃度が著しく変化する位置をいう。
また、本発明において「偏差値」とは、汚泥界面より下方の汚泥濃度のランダムな増減変化の大きさを評価するための指標であり、平均値からの偏差、汚泥相内濃度の最小値と最大値の幅の大きさ等が例示される。また、後述するように、汚泥界面からの底部へ向かっての距離を説明変数xとし、汚泥濃度を目的変数yとして単回帰分析を行い、単回帰式からの残差の平方和を計算し、その大きさで評価する方法を用いることもできる。
The gist of the present invention is as follows. That is,
(1) In a water treatment system that separates turbidity or suspended solids in wastewater by gravity sedimentation, the sludge concentration at a plurality of vertical positions in the settling tank is measured at the timing linked with the movement of the sludge squeezer. Precipitation characterized by determining that the deviation value of the sludge concentration distribution below the sludge interface, or the time change rate of the deviation value exceeds a predetermined threshold value (Z1 or Z2) for each, is a sedimentation abnormality. State measurement method.
In the present invention, the “sludge interface” refers to a boundary between the supernatant liquid phase and the sludge phase and a position where the sludge concentration in the sedimentation tank changes remarkably.
In the present invention, the “deviation value” is an index for evaluating the magnitude of a random increase / decrease change in the sludge concentration below the sludge interface, and the deviation from the average value, the minimum value of the sludge phase concentration, Examples include the width of the maximum value. Also, as will be described later, the distance from the sludge interface toward the bottom is set as the explanatory variable x, the sludge concentration is set as the objective variable y, a single regression analysis is performed, and the sum of squares of the residuals from the single regression equation is calculated. It is also possible to use a method for evaluating the size.

(2)上記(1)の条件に加え、さらに、汚泥濃度の測定に合わせて、上澄液相及び汚泥におけるpH値(pH1、pH2)を測定し、両者のpH値又はpH値の時間的変化率の相対比較値が、それぞれについて予め定めた閾値(Z3又はZ4)を超えるときに沈降性異常と判定する、ことを特徴とする沈殿状態測定方法。
本発明において、「相対比較値」とは、pH1とpH2とを相対化して比較するための指標であり、例えば、それぞれのpH値の差(pH1−pH2)、若しくは比(pH1/pH2)、又はこれらの値の時間変化率を含む概念である。
(2) In addition to the above condition (1), the pH value (pH1, pH2) in the supernatant liquid phase and sludge is measured in accordance with the measurement of the sludge concentration, and the pH value or pH value of both is measured over time. A sedimentation state measuring method, characterized in that a sedimentation abnormality is determined when a relative comparison value of change rates exceeds a predetermined threshold value (Z3 or Z4).
In the present invention, the “relative comparison value” is an index for relativizing and comparing pH1 and pH2, for example, the difference between the pH values (pH1-pH2) or the ratio (pH1 / pH2), Or it is the concept including the time change rate of these values.

沈殿槽の汚泥相内での脱窒菌による作用は、メタノールを水素供与体とした場合、脱窒反応は(1)式に示すように進行し、水酸イオンを発生し、液のpH値をアルカリサイドに変化させる。

Figure 2009022865
通常、活性汚泥における沈殿槽での汚泥相内では嫌気状態となり、好気状態にある曝気槽内の混合液の状態とは異なる状態となるため、沈殿槽内の上澄液相と汚泥相のpH値は若干異なることが多い。しかしながら両者のpH値の変化は、曝気槽内での廃水の処理状況などにより変化する。たとえば曝気槽で処理未了のBOD成分が多い場合には、沈殿槽内でも処理が進行し、有機酸が多い場合にはpH値がアルカリサイドに変化し、アミン成分が多い場合にはpH値は酸性サイドに変化する。また生物活動で発生する炭酸ガスはアルカリを中和する方向に働き、沈殿槽内で嫌気性菌が活動すると有機酸が発生し、pH値が酸性サイドに変化する。このように変化は一律ではないが、脱窒反応が起きれば汚泥相のpH値は上澄液相のpH値より、通常時の変化より確実にアルカリサイドにふれ、脱窒反応が活発におきれば明確な差となる。但し振れ幅の大きさは、上記理由により一律ではなく、pH値変化のみで脱窒反応の有無を判定するには、通常の変動なのか、脱窒反応によるものか判定には決定力不足である。 The action of denitrifying bacteria in the sludge phase of the sedimentation tank is as follows. When methanol is used as a hydrogen donor, the denitrification reaction proceeds as shown in equation (1), generating hydroxide ions, and adjusting the pH value of the liquid. Change to alkali side.
Figure 2009022865
Normally, activated sludge is anaerobic in the sludge phase in the settling tank, and is in a different state from the mixed liquid in the aerobic aeration tank. The pH value is often slightly different. However, the change in pH value of the two changes depending on the treatment status of wastewater in the aeration tank. For example, if there are many unprocessed BOD components in the aeration tank, the processing will proceed in the precipitation tank. If there are many organic acids, the pH value will change to the alkali side, and if there are many amine components, the pH value will change. Changes to the acidic side. Carbon dioxide generated by biological activity acts to neutralize the alkali. When anaerobic bacteria are activated in the sedimentation tank, an organic acid is generated, and the pH value changes to the acidic side. In this way, the change is not uniform, but if a denitrification reaction occurs, the pH value of the sludge phase touches the alkali side more reliably than the normal phase, and the denitrification reaction is more active. If it comes, there will be a clear difference. However, the magnitude of the swing width is not uniform for the above reasons, and it is not decisive to judge whether the denitrification reaction is due to the normal fluctuation or the denitrification reaction to determine the presence or absence of the denitrification reaction only by the pH value change. is there.

しかしながら、汚泥相の汚泥濃度にばらつきが生じている状態でpH値が通常時のpH値の振れ幅以上にアルカリサイドに振れているなら、脱窒反応がおきている確率が非常に高くなる。また、通常時のpH値の振れ幅は、ある程度予測できるものであるから、あらかじめ振れ幅を設定値Aとして記憶しておき、測定時の上澄液相のpH1と汚泥界面内部のpH2とすれば、(pH2−pH1)>Aのとき、沈降性に影響のある脱窒反応がおきていると認識できる。また、設定値Aを使わなくとも、(pH2−pH1)あるいはpH2/pH1などの値が経過時間とともに拡大するのであれば、脱窒反応が拡大している確率が高いと判断できる。
拡大しているかどうかは、数点の測定時刻と(pH2−pH1)あるいはpH2/pH1などの値から単回帰式を求め、その回帰係数の符号から、拡大傾向か否かを判定できる
However, if the pH value fluctuates to the alkali side more than the fluctuation range of the normal pH value in a state where the sludge concentration in the sludge phase varies, the probability that the denitrification reaction occurs is very high. In addition, since the amplitude of the normal pH value can be predicted to some extent, the amplitude is stored in advance as the set value A, and the pH 1 of the supernatant liquid phase at the time of measurement and the pH 2 inside the sludge interface are measured. For example, when (pH2−pH1)> A, it can be recognized that a denitrification reaction that affects sedimentation occurs. Even if the set value A is not used, if a value such as (pH2-pH1) or pH2 / pH1 increases with the elapsed time, it can be determined that there is a high probability that the denitrification reaction is expanding.
Whether it is expanding or not can be determined from the measurement time of several points and a value such as (pH2-pH1) or pH2 / pH1, and a simple regression equation can be obtained, and it can be determined from the sign of the regression coefficient whether it is expanding or not.

(3)上記(1)の条件に加え、さらに、汚泥濃度の測定に合わせて、上澄液相及び汚泥における硝酸イオン濃度を測定し、両者の硝酸イオン濃度又は硝酸イオン濃度の時間的変化率の相対比較値が、それぞれについて予め定めた閾値(Z5又はZ6)を超えるときに沈降性異常と判定する、ことを特徴とする沈殿状態測定方法。
「相対比較値」の概念については、上記(2)と同様である。
(3) In addition to the conditions of (1) above, in addition to the measurement of sludge concentration, the nitrate ion concentration in the supernatant liquid phase and sludge is measured, and the nitrate ion concentration or the temporal change rate of the nitrate ion concentration of both is measured. A sedimentation state measuring method, wherein when the relative comparison value of each exceeds a predetermined threshold value (Z5 or Z6) for each, it is determined that there is a sedimentation abnormality.
The concept of “relative comparison value” is the same as (2) above.

上述の(1)式に示すように、汚泥相内で脱窒反応が起きれば、硝酸イオン濃度は減少する。従って、上澄液相と汚泥相における硝酸イオン濃度を測定し、上澄み液相の硝酸イオン濃度より汚泥相の硝酸イオン濃度が減少していれば、汚泥相内で脱窒反応が起きている証拠となり、減少幅で脱窒反応の大きさも推定できる。
理屈としては、正確且つ迅速に上澄液および汚泥中の硝酸イオン濃度を測定できれば、それだけで脱窒反応の程度を計測できることになる。現在実用化されている硝酸イオンを簡便に連続的に測定できる計器は硝酸イオン電極であるが、その性能は、塩化物イオンや少量の陰イオン界面活性剤の共存で妨害を受けるなどの問題がある。特に、廃水処理のような種々の妨害物質が不特定に変動する活性汚泥混合液では、いつも信頼できる数値が得られるとは限らず、硝酸イオン濃度の値だけで脱窒反応を判定するには信頼性に乏しい。
As shown in the above equation (1), if a denitrification reaction occurs in the sludge phase, the nitrate ion concentration decreases. Therefore, if the nitrate ion concentration in the supernatant liquid phase and the sludge phase is measured, and the nitrate ion concentration in the sludge phase is lower than the nitrate ion concentration in the supernatant liquid phase, evidence that a denitrification reaction has occurred in the sludge phase. Thus, the magnitude of the denitrification reaction can be estimated from the decrease.
Theoretically, if the nitrate ion concentration in the supernatant and sludge can be measured accurately and quickly, the degree of denitrification reaction can be measured by itself. The nitrate ion electrode is the instrument that can easily and continuously measure nitrate ion, which is currently in practical use, but its performance is affected by the coexistence of chloride ions and a small amount of anionic surfactant. is there. In particular, in activated sludge mixed liquids in which various interfering substances such as wastewater treatment change indefinitely, reliable values are not always obtained, and in order to determine the denitrification reaction based only on the nitrate ion concentration value It is not reliable.

しかしながら、妨害程度が小さく、実用上、変化幅を同定可能な廃水の場合には、汚泥濃度のばらつきが生じている状態で、上澄液相の硝酸イオン濃度より汚泥相の硝酸イオン濃度が小さい場合には、脱窒反応がおきている確率が非常に高い。このような場合、硝酸イオン濃度による現象をプラスすることにより、汚泥濃度のばらつきのみで脱窒反応を判定する場合より感度が向上し、より早期に確実に減少を検知できる。このような場合には、脱窒反応による沈降性異常と断定しても実用上支障なく、的確な対策を講じられる。具体的な判定は上記pH値による方法と同様である。   However, in the case of wastewater that has a small degree of interference and that can be identified in practice, the nitrate concentration in the sludge phase is lower than the nitrate concentration in the supernatant liquid phase in a state where the sludge concentration varies. In some cases, the probability that a denitrification reaction has occurred is very high. In such a case, by adding a phenomenon due to the nitrate ion concentration, the sensitivity is improved as compared with the case where the denitrification reaction is determined only by the variation in the sludge concentration, and the decrease can be reliably detected earlier. In such a case, even if it is determined that the sedimentation abnormality is caused by the denitrification reaction, an appropriate measure can be taken without any practical problem. The specific determination is the same as the method based on the pH value.

本発明により、沈殿分離操作を適切に管理でき、沈降性不良によるトラブルを回避できるようになる。
本発明によれば、汚泥界面の検出ともに、レーキのうごきと連動したタイミングで測定することにより、汚泥かき寄せによる汚泥相のかく乱の影響を排除した状態で浮遊固形物濃度の変化を測定することができる。これにより、沈殿槽での重力沈殿操作に対する異常を早期に認識し、沈殿槽の運転状態を安定化させ、良好な処理水を得る。
According to the present invention, the precipitation separation operation can be appropriately managed, and troubles due to poor sedimentation can be avoided.
According to the present invention, both the detection of the sludge interface and the change in suspended solids concentration can be measured in a state in which the influence of the sludge phase disturbance due to the sludge squeezing is excluded by measuring at the timing linked with the rake movement. it can. Thereby, the abnormality with respect to gravity precipitation operation in a sedimentation tank is recognized at an early stage, the operation state of a sedimentation tank is stabilized, and favorable treated water is obtained.

以下、本発明の一実施形態について、活性汚泥における沈殿処理を例に説明する。
本実施形態に係る活性汚泥処理システム1は、図1に示すような装置構成となっている。原水ポンプ6aから供給された廃液は、曝気槽7に入り、ブロアー3からの空気を散気管4により活性汚泥混合液を曝気し、廃水中の汚濁物を分解除去し、沈殿槽5に入り、混合液を汚泥と上澄み水に分離し、上澄液を処理水として排出し、汚泥は返送汚泥ポンプ6bにより、曝気槽に戻す。廃水中の汚濁物を除去することで増殖した汚泥は余剰汚泥引抜ポンプ6cにより系外に排出される。沈殿槽5の側面側には沈殿分離状態測定装置が取り付けられている。
Hereinafter, an embodiment of the present invention will be described with an example of precipitation treatment in activated sludge.
The activated sludge treatment system 1 according to the present embodiment has a device configuration as shown in FIG. The waste liquid supplied from the raw water pump 6a enters the aeration tank 7, the air from the blower 3 is aerated with the activated sludge mixed liquid by the diffuser pipe 4, the pollutants in the waste water are decomposed and removed, and enters the precipitation tank 5. The mixed liquid is separated into sludge and supernatant water, the supernatant liquid is discharged as treated water, and the sludge is returned to the aeration tank by the return sludge pump 6b. Sludge proliferated by removing the contaminants in the wastewater is discharged out of the system by the excess sludge extraction pump 6c. A precipitation separation state measuring device is attached to the side surface of the precipitation tank 5.

図2に、沈殿分離状態測定装置2の構成を示す。
沈殿分離状態測定装置2は、サンプリング装置部2aと、測定部2bとデータ処理部2cから構成される。データ処理部2cは、コンピュータ8と端子盤9から構成され、測定部2bからの測定データを解析したり、サンプリング装置部2aや測定部2bの昇降装置やポンプなどを操作する。サンプリング装置部2aは、沈殿槽内に挿入するフレキシブルなサンプリングチューブ10と、先端に錘11をつけた昇降用ロープ12と昇降用ロープを駆動する巻き取り装置13から構成される。サンプリングチューブ10の先端は、錘11に固定されている。巻き取り装置13をコンピュータ8からの指令で駆動させ、昇降用ロープ12を沈殿槽内を垂直方向に上下させることにより、サンプリングチューブの先端を沈殿槽内を垂直方向の任意の位置に上下させる。測定部2bには吸引ポンプ14が装備され、沈殿槽内のサンプリングチューブ10から、測定部2bにサンプル液を取り込む。測定流路15には測定計器として、pH計16と汚泥濃度計17が設置してある。コンピュータ8は端子盤9経由で、pH計や汚泥濃度計から測定データを取り込み、巻き取り装置13の駆動状況に基づいてサンプリングチューブ10の沈殿槽の垂直方向の位置情報を取り込む。
In FIG. 2, the structure of the precipitation separation state measuring apparatus 2 is shown.
The precipitate separation state measuring device 2 includes a sampling device unit 2a, a measuring unit 2b, and a data processing unit 2c. The data processing unit 2c includes a computer 8 and a terminal board 9. The data processing unit 2c analyzes measurement data from the measurement unit 2b, and operates a sampling device unit 2a, a lifting device of the measurement unit 2b, a pump, and the like. The sampling device section 2a is composed of a flexible sampling tube 10 to be inserted into the settling tank, an elevating rope 12 with a weight 11 at the tip, and a winding device 13 for driving the elevating rope. The tip of the sampling tube 10 is fixed to the weight 11. The winding device 13 is driven by a command from the computer 8, and the lifting rope 12 is moved up and down in the vertical direction in the settling tank, thereby moving the tip of the sampling tube up and down in the vertical position in the settling tank. The measuring unit 2b is equipped with a suction pump 14, and takes the sample solution from the sampling tube 10 in the sedimentation tank into the measuring unit 2b. A pH meter 16 and a sludge concentration meter 17 are installed in the measurement channel 15 as measuring instruments. The computer 8 takes in the measurement data from the pH meter or the sludge concentration meter via the terminal board 9 and takes in the vertical position information of the sedimentation tank of the sampling tube 10 based on the driving state of the winding device 13.

汚泥濃度計17は光の透過や反射による光式汚泥濃度計や超音波式濃度計やマイクロ波濃度計などが使用できる。また沈殿槽内の垂直方向の汚泥濃度測定するための方法は、上記実施例のようにサンプリングチューブの先端を沈殿槽内で上下しても、汚泥濃度計のセンサーを沈殿槽内で上下してもよい。図示していないが、pH計16を硝酸イオン電極にかえれば、請求項3に対応する硝酸イオン濃度が測定できる。 As the sludge densitometer 17, an optical sludge densitometer based on light transmission or reflection, an ultrasonic densitometer, a microwave densitometer, or the like can be used. In addition, the method for measuring the sludge concentration in the vertical direction in the sedimentation tank is as follows: even if the tip of the sampling tube is moved up and down in the sedimentation tank as in the above example, the sludge concentration sensor is moved up and down in the sedimentation tank. Also good. Although not shown, if the pH meter 16 is replaced with a nitrate ion electrode, the nitrate ion concentration corresponding to claim 3 can be measured.

次に、測定装置2の操作について説明する。
測定にあたっては、はじめにサンプリング測定のタイミングを調節する。汚泥相の乱れの原因にはいくつかの要因があるが、汚泥かき寄せ機の影響が非常に大きい。汚泥相の乱れは、汚泥かき寄せ機のかき寄せ部材が通過したときに最大となり、次の通過前に最小となる。汚泥かき寄せ機は周期的に回転するため、汚泥相の乱れは周期的な変化となる。汚泥かき寄せ機のかき寄せ部材の通過周期にあわせて、汚泥かき寄せ部材が通過してから次の汚泥かき寄せ部材が通過するまでの間で、汚泥相の乱れの小さくなった時に、沈殿槽内の垂直位置の汚泥濃度をたとえば沈殿槽水位表面から底部に向かってサンプリングし、pH計と汚泥濃度計で測定し、沈殿槽内の位置情報とともに測定データをコンピュータに取り込む。
Next, the operation of the measuring device 2 will be described.
In the measurement, the sampling measurement timing is first adjusted. There are several causes of the sludge phase disturbance, but the influence of the sludge scraper is very large. The turbulence of the sludge phase becomes maximum when the scouring member of the sludge squeezer passes and becomes minimum before the next passage. Since the sludge scraper rotates periodically, the disturbance of the sludge phase is a periodic change. The vertical position in the settling tank when the sludge phase becomes less disturbed between the passage of the sludge scraping member and the passage of the next sludge scraping member in accordance with the passage cycle of the sludge scraping device. For example, the sludge concentration is sampled from the surface of the sedimentation tank water level toward the bottom, measured with a pH meter and a sludge concentration meter, and the measurement data is taken into the computer together with the positional information in the sedimentation tank.

汚泥濃度データの変化は、汚泥界面を通過する際には、汚泥濃度が図3の曲線aのように急激な濃度変化となることで容易に位置を特定できる。コンピュータで解析計算する場合は、汚泥濃度の変化速度を計算すると、図4のように大きなピークとなるので、容易に汚泥界面の特定ができる。 The change in the sludge concentration data can be easily specified by passing the sludge interface so that the sludge concentration changes rapidly as shown by the curve a in FIG. When analyzing and calculating with a computer, if the rate of change in the sludge concentration is calculated, a large peak is obtained as shown in FIG. 4, so that the sludge interface can be easily identified.

沈殿槽での流動やその他の変動がない理想的な状況において、沈殿槽内で脱窒反応などで気泡が発生していない場合は、汚泥相内の濃度変化は汚泥界面から沈殿槽底部に向かって汚泥濃度がスムーズに漸増する、図3の曲線aや図4の曲線aのような変化となる。たとえば、沈殿槽への流入水量が増加して汚泥界面が上昇する場合でも、図3の曲線bのように汚泥濃度の絶対値は低下するものの、汚泥界面から沈殿槽底部に向かって汚泥濃度がスムーズに漸増する変化は保たれる。また、汚泥のフロック形成状態の変化や浮遊固形物の荷電状態の変化や、糸状菌の増加などで沈降性が悪化した場合でも、図3の曲線cのように汚泥濃度の絶対値は低下するものの、汚泥界面から沈殿槽底部に向かって汚泥濃度がスムーズに漸増する変化は保たれる。これに対し、汚泥相内で脱窒反応などがおきると、間欠的な気泡の上昇による流動の乱れや気泡が付着した汚泥や付着していない汚泥などが偏在することにより、汚泥界面から沈殿槽底部に向かって汚泥濃度が図4の曲線dのようにランダムな増減変化となる。脱窒現象が大きくなればなるほど、ランダムな増減変化は図4の曲線eのように大きくなり、部分的な汚泥浮上が発生すると曲線fのように、部分的に上澄液相並みの汚泥濃度が現出する。ついには汚泥界面が破壊され、曲線gのように汚泥浮上を示す変化となる。図5乃至図8は、このような汚泥相の状態を模式的に示したものであり、図5は図4の曲線aに、図6は曲線dやeに、図7は曲線fに、図8は曲線gに、それぞれ対応している。 In an ideal situation where there is no flow or other fluctuations in the settling tank, if no bubbles are generated due to denitrification in the settling tank, the concentration change in the sludge phase is directed from the sludge interface to the bottom of the settling tank. As a result, the sludge concentration gradually increases smoothly as shown by curve a in FIG. 3 and curve a in FIG. For example, even when the amount of water flowing into the settling tank increases and the sludge interface rises, the sludge concentration decreases from the sludge interface toward the bottom of the settling tank, although the absolute value of the sludge concentration decreases as shown by the curve b in FIG. The smoothly increasing change is maintained. Further, even when sedimentation deteriorates due to changes in the floc formation state of sludge, changes in the charge state of suspended solids, increases in filamentous fungi, etc., the absolute value of the sludge concentration decreases as shown by curve c in FIG. However, the change in which the sludge concentration gradually increases smoothly from the sludge interface toward the sedimentation tank bottom is maintained. On the other hand, when a denitrification reaction occurs in the sludge phase, turbulence due to intermittent bubble rise, sludge with attached or unattached bubbles are unevenly distributed from the sludge interface to the sedimentation tank. The sludge concentration becomes a random increase / decrease change as shown by a curve d in FIG. 4 toward the bottom. As the denitrification phenomenon becomes larger, the random increase / decrease change becomes larger as shown by the curve e in FIG. 4, and when partial sludge floating occurs, the sludge concentration partially equal to the supernatant liquid phase as shown by the curve f. Appears. Eventually, the sludge interface is destroyed, and the sludge rises as shown by curve g. 5 to 8 schematically show the state of such a sludge phase. FIG. 5 shows a curve a in FIG. 4, FIG. 6 shows a curve d and e, and FIG. 7 shows a curve f. FIG. 8 corresponds to the curve g.

ランダムな増減変化の大きさを表す指標としては、平均値からの偏差、又は汚泥相内濃度の最小値と最大値の幅の大きさを用いて評価可能であるが、単回帰分析で汚泥界面からの底部へ向かっての距離を説明変数xとし、汚泥濃度を目的変数yとして、単回帰分析を行い、単回帰式からの偏差を計算し、その大きさで評価する方法が誤差が小さく好ましい。 As an index indicating the magnitude of the random increase / decrease change, evaluation can be made using the deviation from the average value, or the width of the minimum and maximum values of the concentration in the sludge phase. The distance from the bottom to the bottom is the explanatory variable x, the sludge concentration is the objective variable y, simple regression analysis is performed, the deviation from the single regression equation is calculated, and the evaluation method based on the magnitude is preferable because the error is small. .

以下、実際の沈殿槽における測定方法について、円型沈殿槽のいつ流トラフの縁にサンプリングチューブを取り付け、沈殿槽内の垂直方向をサンプリングする例により説明する。沈殿槽は標準活性汚泥用の沈殿槽(直径12m、容積300m3)を用いるとする。図9に、サンプリング位置Pにおける沈殿槽内垂直方向の汚泥濃度の時間的(t=t1〜t4)変化を示す。なお、レーキアームとサンプリング位置との相対位置関係は、図10のP(t1)乃至P(t4)のように示される。
沈殿槽の垂直方向の濃度変化は、レーキアームの汚泥かき寄せ部材の通過によって汚泥相下部が乱されることにより生じる。汚泥かき寄せ部材の通過直前には、濃厚な沈殿汚泥が圧されて図9(a)に示す曲線のようになり、通過直後は、底部が掻き取られて希薄になり、汚泥かき寄せ部材上部からの濃厚な沈殿汚泥がまわり込むため、同図(b)のようになる。通過後、流動が治まるにつれ底部に汚泥が沈降し、同図(c)のようになり、さらに時間が経過すると同図(d)のような理想状態の濃度分布に近づいてゆく。さらに、次の汚泥かき寄せ部材の接近により、上記変化を繰り返す。
Hereinafter, a measurement method in an actual sedimentation tank will be described by an example in which a sampling tube is attached to the edge of the trough of the circular sedimentation tank and the vertical direction in the sedimentation tank is sampled. The settling tank is a settling tank for standard activated sludge (diameter 12 m, volume 300 m3). In FIG. 9, the time-dependent (t = t1-t4) change of the sludge density | concentration in the sedimentation tank vertical direction in the sampling position P is shown. The relative positional relationship between the rake arm and the sampling position is shown as P (t1) to P (t4) in FIG.
The concentration change in the vertical direction of the settling tank is caused by the sludge phase lower part being disturbed by the passage of the sludge scraping member of the rake arm. Immediately before passing through the sludge scraping member, the concentrated sedimentary sludge is pressed to become a curve shown in FIG. Since thick sediment sludge wraps around, it becomes as shown in the figure (b). As the flow stops after the passage, sludge settles at the bottom, as shown in FIG. 6C, and approaches the ideal concentration distribution as shown in FIG. Further, the above change is repeated by the approach of the next sludge scraping member.

今、汚泥界面から底部方向への距離を説明変数xとし、汚泥濃度を目的変数yとして単回帰分析を行い、単回帰式Y=bx+aからの残差の平方和Σ(y−bx−a)2を計算すると、残差の平方和は、かき寄せ部材通過直後で最大となり、次のかき寄せ部材通過前で最小となる周期的変化となる。活性汚泥の円型沈殿槽の場合、汚泥かき寄せ機は30分から1時間程度で1回転し、かき寄せ部材はレーキアームに装着されているので、この周期は15分から30分程度になる。
図11に示すように、かき寄せ部材の通過直後の偏差(残差の平方和に該当)は非常に大きく、気泡発生による沈降性に阻害が発生する程度の汚泥相の乱れの偏差よりずっと大きいので、偏差から原因を同定できない。しかし、通過後流動が治まれば偏差は小さくなるので、判別可能になる。したがって、かき寄せ部材が通過したのち、設定時間(以下、測定開始設定時間)後に沈殿槽の垂直方向の汚泥濃度測定を行うことにより、目的を達成できる。
Now, the single regression analysis is performed with the distance from the sludge interface to the bottom direction as the explanatory variable x and the sludge concentration as the objective variable y, and the sum of squares Σ (y i −bx i − of the single regression equation Y = bx + a a) When 2 is calculated, the sum of squares of the residual becomes a periodic change that becomes maximum immediately after passing the scraping member and becomes minimum before passing the next scraping member. In the case of a circular sedimentation tank for activated sludge, the sludge scraper rotates once in 30 minutes to 1 hour, and the scraper member is attached to the rake arm, so this period is about 15 to 30 minutes.
As shown in FIG. 11, the deviation immediately after passing the scraping member (corresponding to the sum of squares of the residual) is very large, and is much larger than the deviation of the sludge phase turbulence to the extent that the sedimentation due to bubble generation is inhibited. The cause cannot be identified from the deviation. However, if the flow after the passage is cured, the deviation becomes small, so that it can be discriminated. Therefore, the object can be achieved by measuring the sludge concentration in the vertical direction of the settling tank after a set time (hereinafter, measurement start set time) after the scraping member passes.

かき寄せ部材が通過する時刻は、たとえば以下の操作により容易に特定できる。すなわち、沈殿槽の垂直方向の汚泥濃度測定が終了したのち、サンプリングチューブの先端を固定位置に戻して、濃度変化を継続的に測定する。濃度変化は図9の1点鎖線の位置の汚泥濃度であるから、時間経過を横軸にとって濃度を縦軸にプロットすれば、図12に示すように、かき寄せ部材が通過直後に最大となる周期的な変化となる。特定した時刻を基準にして、測定開始設定時間後にサンプリングチューブの先端を沈殿槽水位表面に移動し、沈殿槽底部に向かってサンプリングチューブを移動させながら測定をおこなう。 The time at which the scraping member passes can be easily specified by the following operation, for example. That is, after measuring the sludge concentration in the vertical direction of the sedimentation tank, the tip of the sampling tube is returned to the fixed position, and the concentration change is continuously measured. Since the concentration change is the sludge concentration at the position of the one-dot chain line in FIG. 9, if the concentration is plotted on the vertical axis with the passage of time as the horizontal axis, as shown in FIG. Change. Using the specified time as a reference, after the measurement start set time, the tip of the sampling tube is moved to the surface of the precipitation tank water level, and measurement is performed while moving the sampling tube toward the bottom of the precipitation tank.

沈殿槽の表面水位から沈殿槽底部に向かって、およそ1分間あたり0.5mの速度で下降させると、通常活性汚泥の沈殿槽の深さは約3mから4m程度であるから、6分から8分程度で沈殿槽の表面から底部までサンプリングできる。サンプリング位置が沈殿槽底部まで到達したのちは、昇降ロープを引き上げ方向に巻き上げて、サンプリング位置を固定位置に戻し、サンプリングを継続する。測定開始設定時間は、次のかき寄せ部材で汚泥相が乱れる前に、サンプリングの先端位置が沈殿槽底部まで届くように、設定する。
図13にサンプリングチューブの先端位置の動きを示す。
When descending from the surface water level of the settling tank to the bottom of the settling tank at a rate of about 0.5 m per minute, the depth of the activated sludge settling tank is usually about 3 to 4 m, so about 6 to 8 minutes. Can sample from the surface to the bottom of the settling tank. After the sampling position reaches the bottom of the sedimentation tank, the lifting rope is wound up in the pulling direction, the sampling position is returned to the fixed position, and sampling is continued. The measurement start setting time is set so that the sampling tip position reaches the bottom of the sedimentation tank before the sludge phase is disturbed by the next scraping member.
FIG. 13 shows the movement of the tip position of the sampling tube.

沈殿操作が正常な状態でおこなわれている場合であっても、沈殿槽全体の流動や汚泥かき寄せ機のかく乱の残影響や、汚泥のフロック状態のローカリティなどにより、若干の汚泥濃度変化の偏差が生じるので、正常操作範囲と判断される偏差の値をあらかじめコンピュータに設定値(閾値)として記憶させておき、その設定値と比較することが実際的である。 Even when the sedimentation operation is performed in a normal state, there is a slight deviation in sludge concentration change due to the flow of the entire sedimentation tank, the residual effects of the sludge scraper disturbance, the locality of the sludge floc state, etc. Therefore, it is practical to store the deviation value determined as the normal operation range in advance as a set value (threshold value) and compare it with the set value.

また、設定値を使用しなくとも、偏差の値が経過時間とともに拡大するのであれば、汚泥かき寄せ機の影響ではなく、気泡による影響の確率が高い。
測定の頻度は、実施例では20分程度なので、経過時間で偏差の値をプロットすれば、各点は多少のばらつきがあっても、数点のデータがあれば、全体の方向は計算できる。コンピュータでデータ処理する場合は、数点の測定時刻と偏差値から単回帰式を求め、その式の回帰係数の符号から偏差の値が拡大傾向か否かを判定できる。
Further, even if the set value is not used, if the deviation value increases with the elapsed time, the probability of the influence of air bubbles is high rather than the influence of the sludge scraper.
Since the frequency of measurement is about 20 minutes in the embodiment, if the deviation value is plotted with respect to the elapsed time, even if there is some variation in each point, the whole direction can be calculated if there are several points of data. When data processing is performed by a computer, a single regression equation can be obtained from several measurement times and deviation values, and it can be determined from the sign of the regression coefficient of the equation whether or not the deviation value tends to expand.

沈殿槽で気泡が発生する原因は、脱窒反応の他、汚泥の堆積などで部分的な腐敗によるメタンガスの発生や、曝気槽からの細かい気泡の持込などがある。上記の汚泥濃度のばらつきの値からの判定では、気泡の原因までは特定できないが、沈降性を阻害する要因であることは間違いない。本発明の測定法によれば、汚泥界面の動向のみを管理する従来技術よりも、早い段階で、異常を検知可能である。 The causes of bubbles in the sedimentation tank include denitrification, generation of methane gas due to partial decay due to sludge accumulation, and the introduction of fine bubbles from the aeration tank. Judgment from the value of the variation in the sludge concentration described above cannot identify the cause of bubbles, but there is no doubt that it is a factor that inhibits sedimentation. According to the measurement method of the present invention, it is possible to detect an abnormality at an earlier stage than in the prior art that manages only the trend of the sludge interface.

本発明は、活性汚泥の沈殿槽での測定沈殿での固液分離などの重力による沈殿分離に限らず、微生物反応による気泡の発生の危険性が常に存在する有機性の汚濁物を重力沈殿させる装置(例えば、活性汚泥処理水の凝集沈殿装置)等の状態管理にも利用可能である。   The present invention is not limited to gravity separation such as solid-liquid separation in measurement sedimentation in a sedimentation tank of activated sludge, but also gravity-precipitates organic pollutants in which there is always a risk of bubble formation due to microbial reactions. It can also be used for state management of an apparatus (for example, an activated sludge treated water coagulating sedimentation apparatus).

符号の説明Explanation of symbols

1・・・・活性汚泥処理システム
2・・・・沈殿分離状態測定装置
2a・・・サンプリング装置部
2b・・・測定部
2c・・・データ処理部
3・・・・ブロアー
4・・・・散気管
5・・・・沈殿槽
6a・・・原水ポンプ
6b・・・返送汚泥ポンプ
6c・・・余剰汚泥引抜ポンプ
7・・・・曝気槽
8・・・・コンピュータ
10・・・サンプリングチューブ
11・・・錘
12・・・昇降用ロープ
13・・・巻き取り装置
14・・・吸引ポンプ
15・・・測定流路
17・・・汚泥濃度計
DESCRIPTION OF SYMBOLS 1 ... Activated sludge processing system 2 ... Precipitation separation state measuring device 2a ... Sampling device unit 2b ... Measuring unit 2c ... Data processing unit 3 ... Blower 4 ... Air diffuser pipe 5 ... Precipitation tank 6a ... Raw water pump 6b ... Return sludge pump 6c ... Excess sludge extraction pump 7 ... Aeration tank 8 ... Computer 10 ... Sampling tube 11・ ・ ・ Weight 12 ・ ・ ・ Lifting rope 13 ・ ・ ・ Winding device 14 ・ ・ ・ Suction pump 15 ・ ・ ・ Measurement channel 17 ・ ・ ・ Sludge densitometer

標準活性汚泥処理装置のフローを示す図である。It is a figure which shows the flow of a standard activated sludge processing apparatus. 本発明の測定装置例のフローを示す図である。It is a figure which shows the flow of the example of a measuring device of this invention. 沈殿槽内垂直方向の気泡発生のないときの汚泥濃度の状態を表す図である。It is a figure showing the state of the sludge density | concentration when there is no bubble generation | occurrence | production in the vertical direction in a sedimentation tank. 沈殿槽内垂直方向の気泡発生があるときの汚泥濃度の状態を表す図である。It is a figure showing the state of the sludge density | concentration when there exists bubble generation | occurrence | production in the vertical direction in a sedimentation tank. 沈殿槽内垂直方向の気泡発生が少しあるときの汚泥の沈降状態を表す摸式図である。It is a model showing the sedimentation state of sludge when there is a little bubble generation in the vertical direction in the sedimentation tank. 沈殿槽内垂直方向の気泡発生がかなりあるときの汚泥の沈降状態を表す摸式図である。It is a model diagram showing the sedimentation state of sludge when there is considerable bubble generation in the vertical direction in the sedimentation tank. 沈殿槽内垂直方向の気泡発生が大きいときの汚泥の沈降状態を表す摸式図である。It is a model drawing showing the sedimentation state of sludge when the bubble generation of the vertical direction in a sedimentation tank is large. 沈殿槽内垂直方向の気泡により汚泥が浮上したときの汚泥の沈降状態を表す摸式図である。It is a model drawing showing the sedimentation state of sludge when sludge floats up by the bubble of the vertical direction in a sedimentation tank. 汚泥かき寄せ部材の通過による汚泥相のかく乱状態の変化を表す図である。It is a figure showing the change of the disturbance state of the sludge phase by passage of a sludge scraping member. 沈殿槽の内部の平面図を表す図である。It is a figure showing the top view inside a sedimentation tank. 汚泥かき寄せ部材の通過による沈殿槽内垂直方向の汚泥相の汚泥濃度のばらつきの変化を表す図である。It is a figure showing the variation of the dispersion | variation in the sludge density | concentration of the sludge phase of the vertical direction in a sedimentation tank by passage of a sludge scraping member. 固定位置における、汚泥かき寄せ部材の通過による汚泥濃度変化を表す図である。It is a figure showing the sludge density | concentration change by passage of the sludge scraping member in a fixed position. サンプリングチューブの先端位置のうごきを示す図である。It is a figure which shows the movement of the front-end | tip position of a sampling tube.

Claims (3)

廃水中の濁質または浮遊固形物を重力沈殿分離する水処理システムにおいて、
汚泥かき寄せ機の動きと連動したタイミングで、沈殿槽内の垂直方向の複数の位置における汚泥濃度を測定し、
汚泥界面より下方の汚泥濃度分布の偏差値又は該偏差値の時間変化率が、それぞれについて予め定めた閾値を超えるときは沈降性異常と判定する、
ことを特徴とする沈殿状態測定方法。
In a water treatment system that separates turbidity or suspended solids in wastewater by gravity precipitation,
Measure the sludge concentration at multiple vertical positions in the settling tank at the timing linked to the movement of the sludge collector.
When the deviation value of the sludge concentration distribution below the sludge interface or the time change rate of the deviation value exceeds a predetermined threshold value for each, it is determined that the sedimentation is abnormal.
A method for measuring the precipitation state.
請求項1の条件に加え、さらに、
汚泥濃度の測定に合わせて、上澄液相及び汚泥相におけるpH値を測定し、
両者のpH値又はpH値の時間的変化率の相対比較値が、それぞれについて予め定めた閾値を超えるときに沈降性異常と判定する、
ことを特徴とする沈殿状態測定方法。
In addition to the conditions of claim 1,
In accordance with the measurement of the sludge concentration, measure the pH value in the supernatant liquid phase and the sludge phase,
When the relative comparison value of the pH value of both or the temporal change rate of the pH value exceeds a predetermined threshold value for each, it is determined that there is a sedimentation abnormality.
A method for measuring the precipitation state.
請求項1の条件に加え、さらに、
汚泥濃度の測定に合わせて、上澄液相及び汚泥相における硝酸イオン濃度を測定し、
両者の硝酸イオン濃度又は硝酸イオン濃度の時間的変化率の相対比較値が、それぞれについて予め定めた閾値を超えるときに沈降性異常と判定する、
ことを特徴とする沈殿状態測定方法。
In addition to the conditions of claim 1,
In accordance with the measurement of the sludge concentration, the nitrate ion concentration in the supernatant liquid phase and the sludge phase is measured,
When the relative comparison value of the nitrate ion concentration or the temporal change rate of the nitrate ion concentration of both exceeds a predetermined threshold value for each, it is determined as sedimentation abnormality.
A method for measuring the precipitation state.
JP2007187813A 2007-07-19 2007-07-19 Precipitation status measuring method in water treatment system Pending JP2009022865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187813A JP2009022865A (en) 2007-07-19 2007-07-19 Precipitation status measuring method in water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187813A JP2009022865A (en) 2007-07-19 2007-07-19 Precipitation status measuring method in water treatment system

Publications (1)

Publication Number Publication Date
JP2009022865A true JP2009022865A (en) 2009-02-05

Family

ID=40395204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187813A Pending JP2009022865A (en) 2007-07-19 2007-07-19 Precipitation status measuring method in water treatment system

Country Status (1)

Country Link
JP (1) JP2009022865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024363B1 (en) * 2010-05-18 2011-03-23 박병선 Apparatus and method for measuring depth of sludge
JP2012035221A (en) * 2010-08-10 2012-02-23 Sumitomo Heavy Industries Environment Co Ltd Apparatus for flocculation and precipitation treatment and method for flocculation precipitation treatment
JP2018015728A (en) * 2016-07-28 2018-02-01 高砂熱学工業株式会社 Organic wastewater treatment method and organic wastewater treatment system
US10343132B2 (en) 2014-05-30 2019-07-09 Fuji Corporation Plasma emitting method and plasma emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024363B1 (en) * 2010-05-18 2011-03-23 박병선 Apparatus and method for measuring depth of sludge
JP2012035221A (en) * 2010-08-10 2012-02-23 Sumitomo Heavy Industries Environment Co Ltd Apparatus for flocculation and precipitation treatment and method for flocculation precipitation treatment
US10343132B2 (en) 2014-05-30 2019-07-09 Fuji Corporation Plasma emitting method and plasma emitting device
JP2018015728A (en) * 2016-07-28 2018-02-01 高砂熱学工業株式会社 Organic wastewater treatment method and organic wastewater treatment system

Similar Documents

Publication Publication Date Title
US8092688B2 (en) Method of treating water by ballasted flocculation/settling, which includes a continuous measurement of the ballast, and corresponding installation
RU2660367C2 (en) Determining liquid phase turbidity of multiphase wastewater
US20210309548A1 (en) Varying Water Level Solids and Tracking Control
WO2006067873A1 (en) Method of measuring and managing sedimentation separation operation and apparatus therefor
KR20100057262A (en) Membrane fouling pollution index measurement apparatus
JP2009022865A (en) Precipitation status measuring method in water treatment system
CN110487750B (en) River water pollution detection method and system
JP2006317163A (en) Water quality measuring method and apparatus thereof
KR102359468B1 (en) Improve Total Organic Carbon Analysis Method with pretreatment and homogeneity evaluation of Sample
CN111410314B (en) Pre-control method and device for denitrification and dephosphorization by improved oxidation ditch process
JP2001137835A (en) Facility control system
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
JP2009226234A (en) Sludge volume calculation method, and monitoring method and control method for aeration tank using the same
JP2909723B2 (en) Wastewater treatment control method and apparatus
JPH08257310A (en) Sedimentation apparatus
CN117735707A (en) Method for automatically controlling sewage treatment system through illumination intensity
JP6028532B2 (en) Wastewater treatment equipment
JP2003010893A (en) Control method for methane fermentation tank and control unit therefor
CN220671322U (en) Immersion type liquid PH on-line detection device
JP2005265687A (en) State monitor device
JP3277628B2 (en) Biological abnormality detection method for aeration tank
Walton RO pre-treatment-injecting a little chemical control and management
Lund et al. Corrected Proof
KR20230092606A (en) Multi-parameter water quality measuring instrument with the function of removing foreign substances and air bubbles
JPS6154445B2 (en)