JP2009022211A - Aquatic life cultivating device and hydroponic apparatus - Google Patents

Aquatic life cultivating device and hydroponic apparatus Download PDF

Info

Publication number
JP2009022211A
JP2009022211A JP2007188667A JP2007188667A JP2009022211A JP 2009022211 A JP2009022211 A JP 2009022211A JP 2007188667 A JP2007188667 A JP 2007188667A JP 2007188667 A JP2007188667 A JP 2007188667A JP 2009022211 A JP2009022211 A JP 2009022211A
Authority
JP
Japan
Prior art keywords
water
hydrogen
oxygen
gas
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188667A
Other languages
Japanese (ja)
Inventor
Yuzo Miwa
祐三 三輪
Haruhiko Nomura
晴彦 野村
Nobutaka Matsuo
信孝 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007188667A priority Critical patent/JP2009022211A/en
Publication of JP2009022211A publication Critical patent/JP2009022211A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aquatic life cultivating device by which physiological activation functions of the aquatic life are enhanced, reproductive power is bolstered, and aquatic life can be raised at high density, to provide a method for cultivating the aquatic life, and water for cultivating the aquatic life, and to provide a hydroponic apparatus, hydroponic method and culture liquid for the hydroponics, preventing rotting of roots, or the like, and providing superior growth of flowers, fruits, and the like. <P>SOLUTION: The aquatic lives, such as, saltwater fish, freshwater fish, shellfish and crustacean are cultivated, by using the fish and shellfish-culturing device equipped with a means for storing water for cultivation; a means for producing a mixed gas of hydrogen and oxygen; and a means for distributing the gas in the water for cultivation, while distributing the mixed gas of the hydrogen and the oxygen in the water for the cultivation. A plant body is cultured by the hydroponics, by using the hydroponic apparatus equipped with the means for storing the water for the cultivation, the means for producing the mixed gas of the hydrogen and the oxygen, and a means for dissolving the gas in the water for the cultivation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水棲生物養殖装置、水棲生物養殖方法および水棲生物養殖用水、並びに水耕栽培装置、水耕栽培方法および水耕栽培用培養液に関する。さらに詳しくは、本発明は、水棲生物の生理活性機能を高め、成長力および繁殖力を旺盛にし、また高密度で飼育することができる、水棲生物養殖装置、水棲生物養殖方法および水棲生物養殖用水、並びに、根腐れなどを防止し、花や実などの生育に優れる水耕栽培装置、水耕栽培方法および水耕栽培用培養液に関する。   The present invention relates to aquatic aquaculture apparatus, aquatic aquaculture method, water for aquatic aquaculture, a hydroponic cultivation apparatus, a hydroponic cultivation method, and a hydroponic cultivation medium. More specifically, the present invention relates to an aquatic organism aquaculture device, an aquatic organism aquaculture method, and aquatic organism aquaculture water that can enhance the physiological activity function of aquatic organisms, vigorously grow and reproduce, and can be bred at high density. In addition, the present invention relates to a hydroponic cultivation apparatus, a hydroponic cultivation method, and a culture solution for hydroponic cultivation that prevent root rot and the like and are excellent in the growth of flowers and fruits.

魚介類、甲殻類、海草、海藻、水草、水棲哺乳類などの水棲生物を水槽内で飼育繁殖させるためには水質管理が必要である。特に高価な魚介類、甲殻類は水質環境の変化に敏感である。
従来、水質管理の手段として、水槽内の水をろ過によって浄化する方法が知られている。このろ過手段に活性炭を用いることも行われている。しかし、ろ過による水浄化だけでは満足する効果は得られていない。
Water quality management is necessary to breed and breed aquatic organisms such as seafood, shellfish, seaweed, seaweed, aquatic plants, and aquatic mammals in an aquarium. In particular, expensive seafood and crustaceans are sensitive to changes in the water quality environment.
Conventionally, a method for purifying water in a water tank by filtration is known as means for water quality management. An active carbon is also used for this filtering means. However, satisfactory effects are not obtained only by water purification by filtration.

ろ過以外の水浄化方法として、例えば、特許文献1には、水中に電流を流して魚貝類や甲殻類が排泄するアンモニアを分解する方法が開示されている。
特許文献2には、水槽内の水を汲み上げ、電解室に導き、該電解室で電気分解を行って酸素と水素に分け、分離された酸素を水槽に戻すことによって、生物が排出する糞や尿に含まれるアンモニアを酸化し硝酸や亜硝酸に変化させ、また、酸素の滅菌作用によって、微生物を減少させ、ひいては脱臭作用をなすことが開示されている。
特許文献3には、活性炭が分散する高圧水中で酸素と水素を燃焼させ、該燃焼により活性炭を燃焼させて活性炭超微粒子が分散した水を得、該活性炭超微粒子の分散液を観賞魚又は魚介類の飼育用の水の浄化補助水として活用することが記載されている。しかしながら、この燃焼反応では一酸化炭素が生成するおそれがあり、浄化補助水に一酸化炭素が含まれて生物に悪影響を及ぼす可能性がある。
As a water purification method other than filtration, for example, Patent Document 1 discloses a method of degrading ammonia excreted by fish and shellfish by passing an electric current through water.
In Patent Document 2, the water in the aquarium is pumped up, guided to the electrolysis chamber, electrolyzed in the electrolysis chamber, divided into oxygen and hydrogen, and the separated oxygen is returned to the aquarium to return the feces discharged by the organism. It is disclosed that ammonia contained in urine is oxidized to be converted into nitric acid or nitrous acid, and microorganisms are reduced by the sterilization action of oxygen, thereby deodorizing.
In Patent Document 3, oxygen and hydrogen are burned in high-pressure water in which activated carbon is dispersed, and activated carbon is burned by the combustion to obtain water in which activated carbon ultrafine particles are dispersed. It is described that it is used as an auxiliary water for purifying water for breeding. However, carbon monoxide may be generated in this combustion reaction, and carbon monoxide may be included in the purification auxiliary water, which may adversely affect living organisms.

その他に、オゾンを水槽内に導入して滅菌および脱臭する方法、酸素富化装置から生成される酸素富化空気を水槽中の水に曝気する装置(特許文献4)、一重項酸素(活性酸素)を水に接触させて水を活性化する方法(特許文献5)などが提案されている。
しかしながら、これら酸素またはオゾンによる水浄化方法でも、高密度飼育を行うと、水棲生物の排泄物から生じるアンモニア、亜硝酸、硝酸塩などを分解浄化しきれないので、それらが水槽内に残留して生物に悪影響を及ぼすので水替えを頻繁に(例えば、日に一回の頻度で)行わなければならない。また高密度飼育は水棲生物にストレスを与えるので、喧嘩や虐めが起き、水棲生物が死んでしまうことがある。このように、従来の方法では、水棲生物を健康体に維持し、高密度で飼育し、繁殖させることは手間がかかり容易でなかった。
In addition, a method for sterilization and deodorization by introducing ozone into a water tank, a device for aspirating oxygen-enriched air generated from an oxygen enricher to water in the water tank (Patent Document 4), singlet oxygen (active oxygen) ) Is brought into contact with water to activate the water (Patent Document 5).
However, even with these water purification methods using oxygen or ozone, ammonia, nitrous acid, nitrates, etc. generated from excreta of aquatic organisms cannot be decomposed and purified when they are raised at high density, so they remain in the aquarium and are The water must be changed frequently (for example, once a day). Also, high-density breeding places stress on aquatic organisms, so fighting and bullying can occur and aquatic organisms can die. As described above, in the conventional method, it is not easy and easy to maintain aquatic organisms in a healthy body, raise them at high density, and reproduce them.

特開平4−150995号公報Japanese Patent Laid-Open No. 4-150995 特開平10−165955号公報Japanese Patent Laid-Open No. 10-165955 特開2002−66541号公報JP 2002-66541 A 特開2004−305035号公報JP 2004-305035 A 特表2002−531249号公報JP-T-2002-531249

一方、園芸農作物などの栽培において、植物体を健康に育て、収穫量を多くするためには、土質の管理が必要である。しかしながら、土質管理は、手間や時間が掛かる。近年、土を用いずに、植物体の成長に必要な養分やミネラルを含んだ培養液で、植物体を栽培する方法(一般に、水耕栽培、養液栽培と呼ばれる。以下、本明細書では水耕栽培と記載する。)が注目を集めている。
ところで、養液(肥料)の入った水中に根を生長させる水耕栽培方式では、植物の根が水中に伸びていくことで、根が酸欠を起こして植物体を弱らせることがある。また、水そのものが不衛生になり、腐敗することがある。そこで、水中に酸素(空気)をエアポンプ等で散気して、水に動きを与える方法(特許文献6);培養液を根に噴霧する方法;培養液を緩やかな傾斜を持つ平面上に薄く(少量ずつ)流下させる方法(特許文献7);ロックウール(岩綿)などの土以外の固形培地を用いる方法などが行われている。しかしながら、これら従来の方法でも、温度上昇とともに水生菌の繁殖が旺盛となり、植物体を弱らせることがあった。
On the other hand, in the cultivation of horticultural crops and the like, it is necessary to manage the soil quality in order to grow the plant body healthily and increase the yield. However, soil management takes time and effort. In recent years, a method of cultivating a plant body using a culture solution containing nutrients and minerals necessary for the growth of the plant body without using soil (generally referred to as hydroponics and hydroponics. Hereinafter, in this specification, It is described as hydroponics).
By the way, in the hydroponics method that grows the roots in water containing nutrient solution (fertilizer), the roots of the plants may grow in the water, causing the roots to lack oxygen and weakening the plants. . Also, the water itself becomes unsanitary and may rot. Thus, oxygen (air) is diffused in water with an air pump or the like to impart movement to the water (Patent Document 6); a method of spraying the culture solution on the roots; A method of flowing down (a small amount) (Patent Document 7); a method of using a solid medium other than soil such as rock wool (rock wool), and the like are performed. However, even with these conventional methods, the propagation of aquatic fungi has become vigorous as the temperature rises, which can weaken the plant body.

特開2007−75054号公報JP 2007-75054 A 特開2007−89489号公報JP 2007-89489 A

本発明の目的は、水棲生物の生理活性機能を高め、成長力および繁殖力を旺盛にし、また高密度で飼育することができる、水棲生物養殖装置、水棲生物養殖方法および水棲生物養殖用水、並びに、根腐れなどを防止し、花や実などの生育に優れる水耕栽培装置、水耕栽培方法および水耕栽培用培養液を提供することにある。   An object of the present invention is to improve the physiological activity function of aquatic organisms, to increase the growth and reproduction ability, and to be bred at high density, and to aquatic organism aquaculture apparatus, aquatic organism cultivation method and aquatic organism cultivation water, and An object of the present invention is to provide a hydroponic cultivation apparatus, a hydroponic cultivation method, and a hydroponic cultivation culture solution that prevent root rot and the like and are excellent in the growth of flowers and fruits.

本発明者らは、前記課題を解決すべく鋭意検討した結果、水棲生物の養殖や陸生植物の水耕栽培において酸素だけを供給した場合に、ラジカル化した酸素(いわゆる活性酸素)が、水棲生物や植物体に悪影響を及ぼし、機能障害や細胞死を引き起こし、加齢を早めるということに気づいた。
そこで、本発明者らは、さらに検討した結果、水素酸素混成ガスを養殖用水に散気し、その水中で水棲生物を養殖することによって、水棲生物の生理活性機能が高まり、繁殖力が旺盛になり、また高密度で飼育しても健康体を維持できることを見出した。
また、本発明者らは、水素酸素混成ガスを培養液に散気し、該培養液に、植物体の根を接触させて、植物体を水耕栽培することによって、植物体の花色が鮮やかになり、また、実の生育に優れていることを見出した。
本発明は、これらの知見に基づいてさらに検討し完成したものである。
As a result of intensive studies to solve the above-described problems, the present inventors have found that radical oxygen (so-called active oxygen) is converted into aquatic organisms when only oxygen is supplied in aquatic organism cultivation or terrestrial plant hydroponics. I noticed that it adversely affects plants and plants, causes dysfunction and cell death, and accelerates aging.
Therefore, as a result of further investigation, the present inventors have diffused hydrogen-oxygen mixed gas into the aquaculture water, and cultivated aquatic organisms in the water, thereby increasing the physiological activity function of the aquatic organisms, and vigorous reproduction ability. It was also found that a healthy body can be maintained even if reared at high density.
Further, the present inventors diffused hydrogen-oxygen mixed gas into a culture solution, brought the plant root into contact with the culture solution, and hydroponically cultivated the plant body, whereby the flower color of the plant body was vivid. It was also found that it is excellent in fruit growth.
The present invention has been further studied and completed based on these findings.

すなわち、本発明によって、養殖用水を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを養殖用水に溶解させる手段とを備える、水棲生物用養殖装置、
散気手段を養殖水域に配置し、該散気手段に水素酸素混成ガスを供給して前記養殖水域に前記ガスを散気し、前記養殖水域に生息する水棲生物を養殖する方法、および 水素酸素混成ガスを養殖用水に溶解させてなる水棲生物養殖用水が提供される。
また、本発明によって、培養液を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを培養液に溶解させる手段とを備える水耕栽培装置、
水素酸素混成ガスを培養液に溶解させてなる液に、植物体の根を接触させて、植物体を育成する水耕栽培方法、および 水素酸素混成ガスを培養液に溶解させてなる水耕栽培用培養液が提供される。
That is, according to the present invention, an aquatic aquaculture apparatus comprising means for storing aquaculture water, means for producing a hydrogen-oxygen mixed gas, and means for dissolving the gas in the aquaculture water,
A method of cultivating aquatic organisms inhabiting in the aquaculture water area by disposing an aeration means in the aquaculture water area, supplying a hydrogen-oxygen mixed gas to the aeration means, diffusing the gas into the aquaculture water area, and hydrogen oxygen Aquatic aquaculture water obtained by dissolving mixed gas in aquaculture water is provided.
Further, according to the present invention, a hydroponic cultivation apparatus comprising means for storing a culture solution, means for producing a hydrogen-oxygen hybrid gas, and means for dissolving the gas in the culture solution,
Hydroponic cultivation method for growing a plant body by bringing the root of the plant body into contact with a solution obtained by dissolving a hydrogen-oxygen mixed gas in a culture solution, and hydroponic cultivation in which a hydrogen-oxygen mixed gas is dissolved in a culture solution A culture broth is provided.

(水棲生物養殖装置)
本発明の水棲生物養殖装置は、養殖用水を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを養殖用水に溶解させる手段とを備えるものである。なお、本明細書において養殖とは、水棲生物を人工的に育てることをいう。本発明の装置に用いられる養殖用水を貯える手段は、特に制限されず、例えば、水槽、生簀、配管、浄化槽などが挙げられる。
(Aquatic aquaculture equipment)
The aquatic aquaculture apparatus of the present invention comprises means for storing aquaculture water, means for producing a hydrogen-oxygen mixed gas, and means for dissolving the gas in the aquaculture water. In this specification, aquaculture means artificially raising aquatic organisms. The means for storing the aquaculture water used in the apparatus of the present invention is not particularly limited, and examples thereof include a water tank, a ginger, a pipe, and a septic tank.

本発明に用いられる水素酸素混成ガスとしては、水素と酸素とが混合されたガスと;特開2004−204347号公報、特許第3130014号公報、特開平10−266900号公報などに記載される水の電気分解によって得られる混成ガスと;が挙げられる。   Examples of the hydrogen-oxygen mixed gas used in the present invention include a gas in which hydrogen and oxygen are mixed; water described in JP 2004-204347 A, JP 3130014 A, JP 10-266900 A, and the like. And mixed gas obtained by electrolysis of.

水素酸素混成ガスの一態様である、水素と酸素とが混合されたガスは、例えば、水素ガスボンベおよび酸素(または空気)ガスボンベからそれぞれ供給して混合したものであってもよい。水素と酸素とが混合されたガス中の、水素と酸素との割合は、水棲生物の種類、水棲生物を生息させるための手段の形状等によって適宜選択でき、特に制限されないが、通常1モル:99モル〜99モル:1モルが好ましく、5モル:95モル〜95モル:5モルがより好ましく、1.5モル:1モル〜3モル:1モルが特に好ましい。なお、水素酸素混成ガスとして水素と酸素とが混合されたガスを用いる場合には、水素と酸素との混合を、養殖用水に溶解させる前に行ってもよいし、養殖用水に水素ガスと酸素ガスとを別々に供給し養殖用水中で行ってもよい。   The gas in which hydrogen and oxygen are mixed, which is one embodiment of the hydrogen-oxygen mixed gas, may be a gas supplied and mixed from, for example, a hydrogen gas cylinder and an oxygen (or air) gas cylinder. The ratio of hydrogen and oxygen in the gas in which hydrogen and oxygen are mixed can be appropriately selected depending on the type of aquatic organisms, the shape of means for inhabiting aquatic organisms, etc., and is not particularly limited, but usually 1 mol: 99 mol-99 mol: 1 mol is preferable, 5 mol: 95 mol-95 mol: 5 mol is more preferable, 1.5 mol: 1 mol-3 mol: 1 mol is especially preferable. When a gas in which hydrogen and oxygen are mixed is used as the hydrogen-oxygen mixed gas, the hydrogen and oxygen may be mixed before being dissolved in the aquaculture water, or the hydrogen gas and oxygen may be added to the aquaculture water. Gas may be supplied separately and performed in aquaculture water.

一方、水素酸素混成ガスの別態様である、水の電気分解によって得られる混成ガス(以下、簡単のために、SHG(スーパーハイブリッドガス)と呼ぶことがある。)は、通常、水素および酸素を2モル:1モルの割合で含むが、養殖用水にSHGを溶解させるときに、水素側または酸素側の供給量を調整して水素と酸素との割合を任意に変えることができる。例えば、SHG中の水素と酸素との割合を1モル:99モル〜99モル:1モルにすることができる。   On the other hand, a mixed gas obtained by electrolysis of water, which is another aspect of the hydrogen-oxygen mixed gas (hereinafter, sometimes referred to as SHG (super hybrid gas) for the sake of simplicity) usually contains hydrogen and oxygen. Although it is contained in a ratio of 2 mol: 1 mol, when SHG is dissolved in the aquaculture water, the ratio of hydrogen and oxygen can be arbitrarily changed by adjusting the supply amount on the hydrogen side or oxygen side. For example, the ratio of hydrogen and oxygen in SHG can be 1 mol: 99 mol to 99 mol: 1 mol.

詳細は不明だが、SHGには活性酸素(または発生期の酸素)および活性水素(または発生期の水素)が含まれていると考えられている。また、SHGはそれぞれ電荷を担持した水素と酸素が水分子と直接結合しているとも考えられている。活性酸素(または発生期の酸素)および活性水素(または発生期の水素)は、それぞれ、マイナス(負)電荷およびプラス(正)電荷を有している。この活性酸素が養殖用水中の成分の酸化に、活性水素が養殖用水中の成分の還元に寄与し、この酸化と還元のバランスによって、養殖用水を浄化、滅菌、活性化させているものと推測される。したがって、本発明においては、水素酸素混成ガスのうちSHGを用いる方が好ましい。   Although details are unknown, it is thought that SHG contains active oxygen (or nascent oxygen) and active hydrogen (or nascent hydrogen). SHG is also considered that hydrogen and oxygen each carrying a charge are directly bonded to water molecules. Active oxygen (or nascent oxygen) and active hydrogen (or nascent hydrogen) have a negative (negative) charge and a positive (positive) charge, respectively. It is assumed that this active oxygen contributes to the oxidation of the components in the aquaculture water, and active hydrogen contributes to the reduction of the components in the aquaculture water, and the aquaculture water is purified, sterilized and activated by the balance between this oxidation and reduction. Is done. Therefore, in the present invention, it is preferable to use SHG among the hydrogen-oxygen hybrid gas.

SHGは、特開2004−204347号公報、特許第3130014号公報、特開平10−266900号公報などに記載の方法または装置によって得ることができる。例えば、上下が密閉されたほぼ円筒状の電気分解槽に、水酸化カリウムなどの導電性物質を溶解した水を入れ、該槽内に一定間隔で交互に配置された円筒状を成す複数枚の陽極および陰極に電気を流し、水を電気分解する。酸素発生側の陽極と水素発生側の陰極との間には仕切りがなく、電気分解で発生した直後の酸素及び水素がすぐに混合するようにして、SHGを得ることができる。またSHG発生装置は市販されており、例えば、ブラウンガス発生機(B.E.S.T. KOREA社製)、E&Eガス発生装置(ベストワールド社製)などがある。   SHG can be obtained by the method or apparatus described in JP-A-2004-204347, JP-A-3130014, JP-A-10-266900, and the like. For example, in a substantially cylindrical electrolysis tank whose top and bottom are sealed, water in which a conductive substance such as potassium hydroxide is dissolved is placed, and a plurality of cylindrical sheets alternately arranged at regular intervals in the tank are formed. Electricity is passed through the anode and cathode to electrolyze water. There is no partition between the anode on the oxygen generation side and the cathode on the hydrogen generation side, and SHG can be obtained by immediately mixing oxygen and hydrogen generated immediately after electrolysis. In addition, SHG generators are commercially available, and examples thereof include a brown gas generator (BEST KOREA) and an E & E gas generator (Best World).

次に、上記方法によって得られた水素酸素混成ガスを養殖用水に溶解させる。養殖用水は、水棲生物の種類に応じて適宜選択することができ、海水、汽水、淡水などが挙げられる。なお、養殖用水にはミネラル分などが含まれていてもよいし、含まれていなくてもよい。   Next, the hydrogen-oxygen mixed gas obtained by the above method is dissolved in the aquaculture water. Aquaculture water can be appropriately selected according to the type of aquatic organisms, and examples include seawater, brackish water, and fresh water. The aquaculture water may or may not contain a mineral content.

水素酸素混成ガスの溶解方法は特に限定されない。例えば、多数個の微細な通気孔が穿孔された散気管(ディフューザー)を、水槽の中や生簀の中などの養殖水域または取替用養殖用水のストックタンク中に配置し、該管を通して水素酸素混成ガスを供給し、通気孔から微細な気泡として養殖用水に散気する方法;養殖用水を循環させるポンプ等を利用して水素酸素混成ガスを巻き込む方法が挙げられる。
なお、散気管は通気孔が穿孔されたものであれば特に制限されないが、微細な気泡を散気できるという観点から、通気孔の形成された円筒状の通気管と、この通気管の外周面に沿ってセラミックなどの粒子を集積形成させた多孔体とから構成されるものが好ましい。
The method for dissolving the hydrogen-oxygen mixed gas is not particularly limited. For example, an air diffuser (diffuser) with a large number of fine ventilation holes is placed in an aquaculture area such as an aquarium or ginger, or in a stock tank for replacement aquaculture water. Examples include a method of supplying a hybrid gas and diffusing the culture water as fine bubbles from a vent hole; and a method of entraining the hydrogen-oxygen hybrid gas using a pump for circulating the culture water.
The air diffuser tube is not particularly limited as long as the air hole is perforated, but from the viewpoint that fine bubbles can be diffused, the cylindrical air tube formed with the air hole and the outer peripheral surface of the air vent tube And a porous body in which particles such as ceramics are integrated and formed along the surface.

水素酸素混成ガスの供給量は、水棲生物の種類、水棲生物を生息させるための手段の形状等によって適宜選択でき、特に制限されないが、養殖用水1m3あたり、1時間に、好ましくは平均0.1〜1000リットル、より好ましくは10〜500リットル、特に好ましくは平均50〜500リットルである。供給は連続的に行ってもよいし、間欠的に行ってもよい。例えば、1m3の養殖用水に、1時間掛けて300リットル供給し、次いで1時間ガスの供給を止め、再び1時間掛けて300リットル供給するという繰り返しで間欠的に供給してもよい。 The supply amount of the hydrogen-oxygen mixed gas can be appropriately selected depending on the kind of aquatic organisms, the shape of means for inhabiting aquatic organisms, and the like, and is not particularly limited, but is preferably about 0.1 per hour per 1 m 3 of aquaculture water. It is 1-1000 liters, More preferably, it is 10-500 liters, Most preferably, it is 50-500 liters on average. Supply may be performed continuously or intermittently. For example, 300 liters may be supplied to 1 m 3 aquaculture water over 1 hour, then the supply of gas may be stopped for 1 hour, and 300 liters may be supplied again over 1 hour.

水素酸素混成ガスを輸送する手段は、特に限定されない。水素ガス単独で輸送する場合、水素脆性が発生して配管や接続部などの金属部分が脆くなる。酸素ガス単独で輸送する場合は、配管や接続部を酸化し、強度低下若しくは脆さを生じさせる。また水素と酸素の混合ガスを輸送する場合には、それぞれのガスによる上記のような作用が配管や接続部に及び、通常のガス管では長時間の使用に耐えられないことがある。また、水素と酸素の混合ガスは、その混合条件によって、外部からの電磁誘導や静電誘導を引き金とした爆発的な反応を起こすことがあった。   The means for transporting the hydrogen-oxygen mixed gas is not particularly limited. When transported with hydrogen gas alone, hydrogen embrittlement occurs and metal parts such as pipes and connections become brittle. When transporting oxygen gas alone, the pipes and connecting parts are oxidized, resulting in reduced strength or brittleness. Further, when transporting a mixed gas of hydrogen and oxygen, the above-described action of each gas extends to the pipes and connecting parts, and normal gas pipes may not be able to withstand long-term use. In addition, a mixed gas of hydrogen and oxygen may cause an explosive reaction triggered by external electromagnetic induction or electrostatic induction depending on the mixing conditions.

一方、水の電気分解によって得られる混成ガス(SHG)は非常に安定性が高く、通常のガス管を用いて輸送しても、水素ガス単独、酸素ガス単独、若しくは水素と酸素の混合ガスを輸送する場合に生じるような、配管や接続部への作用が起きないので、通常のガス管の使用で良い。また、SHGは外部からの電磁誘導や静電誘導を引き金とした爆発的な反応が起きにくい。その理由は、SHGが水素分子または酸素分子が水分子に直接結合した構造をしたガスであるからである。混成ガス(SHG)中の水分子は、その水素結合の大なる為に、気化潜熱が大きく、自ずから爆発的反応を抑制していると考えられる。この様に水素酸素混成ガス(SHG)を通常の金属、可塑性材料のパイプ等で当該装置に輸送できることも、本発明の特長である。   On the other hand, mixed gas (SHG) obtained by electrolysis of water is very stable, and even when transported using a normal gas pipe, hydrogen gas alone, oxygen gas alone, or a mixed gas of hydrogen and oxygen is used. Since there is no effect on the pipes and connections as occurs when transporting, normal gas pipes can be used. Also, SHG is unlikely to cause an explosive reaction triggered by external electromagnetic induction or electrostatic induction. This is because SHG is a gas having a structure in which hydrogen molecules or oxygen molecules are directly bonded to water molecules. It is considered that the water molecules in the hybrid gas (SHG) have a large latent heat of vaporization due to their large hydrogen bonds, and thus naturally suppress explosive reactions. It is also a feature of the present invention that the hydrogen-oxygen mixed gas (SHG) can be transported to the apparatus by a normal metal, plastic material pipe or the like.

本発明の水棲生物養殖装置には、ろ過装置、水温計および水温調節器、pH測定器、照明装置、ポンプ、配管などの水棲生物を飼育するために従来から使われている器具および装置がさらに含まれていてもよい。   The aquatic aquaculture device of the present invention further includes instruments and devices conventionally used for breeding aquatic organisms such as filtration devices, water thermometers and water temperature controllers, pH measuring devices, lighting devices, pumps, and piping. It may be included.

本発明の水棲生物養殖装置および養殖方法並びに水棲生物養殖用水を適用可能な水棲生物は特に制限されない。例えば、マグロ、サケ、タラ、ヒラメ、カレイ、タイ、カツオ、ウナギ、フグ、マスなどの食用魚類;イセエビ、クルマエビ、タラバガニ、タカアシガニ、ズワイガニなどの甲殻類;イカ、タコ;アワビ、サザエ、シジミ、ハマグリ、アサリなどの貝類;エンゼルフィッシュ、ネオンテトラ、鯉、金魚などの観賞用魚類;ディスカス、アロワナ、コリドラスなどの熱帯魚;イルカ、オルカ、トド、アシカ、ラッコなどの水棲哺乳類;マツモ、パールグラス、キクモ、セリ、クロモ、スターレンジなどの水草;ワカメ、コンブ、アサオ、ヒジキ、スギノリ、モズクなどの海藻;アマモ、スガモなどの海草などが挙げられる。   The aquatic organisms to which the aquatic organism aquaculture apparatus and culture method and aquatic aquaculture water of the present invention can be applied are not particularly limited. For example, edible fish such as tuna, salmon, cod, flounder, flounder, Thailand, skipjack, eel, puffer, trout; shellfish such as lobster, tiger prawn, king crab, king crab, snow crab; Shellfish such as clams and clams; ornamental fish such as angelfish, neon tetra, coral and goldfish; tropical fish such as discus, arowana and corydoras; aquatic mammals such as dolphins, orca, sea lions, sea lions and sea otters; And seaweeds such as seaweed, kombu, asao, hijiki, sugi nori, mozuku; seaweeds such as sea bream and sea bream.

(水耕栽培装置)
本発明の水耕栽培装置は、培養液を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを培養液に溶解させる手段とを備えるものである。
本発明に用いられる培養液は、従来の水耕栽培に用いられる培養液の中から、栽培される植物体に応じて適宜選択すればよい。培養液には、原料水と、必要に応じて植物体の栄養素になる有機肥料や無機肥料などが含まれている。さらに、培養液には、殺菌剤、殺虫剤、発根剤などが必要に応じて含まれていてもよい。培養液に用いる原料水は、植物体の生育を害しないものであれば、特に制限されない。なお、本発明においては、培養液中の原料水以外の成分は、水素酸素混成ガスを溶解させた後に、添加してもよい。
(Hydroculture device)
The hydroponic cultivation apparatus of the present invention comprises means for storing a culture solution, means for producing a hydrogen-oxygen mixed gas, and means for dissolving the gas in the culture solution.
What is necessary is just to select the culture solution used for this invention suitably from the culture solutions used for the conventional hydroponics according to the plant to be cultivated. The culture solution contains raw water and, if necessary, organic fertilizers and inorganic fertilizers that become plant nutrients. Furthermore, a bactericide, an insecticide, a rooting agent, etc. may be contained in the culture solution as needed. The raw material water used for the culture solution is not particularly limited as long as it does not impair the growth of the plant body. In the present invention, components other than the raw material water in the culture solution may be added after dissolving the hydrogen-oxygen mixed gas.

本発明に用いられる培養液を貯える手段は、水耕栽培の形態に応じて適宜選択できる。例えば、湛液型水耕では、栽培ベッド自身が培養液を貯える手段として用いられる。薄膜水耕では、傾斜面に供給するための培養液を貯留しているタンク等を用いることができる。   The means for storing the culture solution used in the present invention can be appropriately selected according to the form of hydroponics. For example, in submerged hydroponics, the cultivation bed itself is used as a means for storing the culture solution. In thin film hydroponics, a tank or the like storing a culture solution to be supplied to the inclined surface can be used.

水素酸素混成ガスを製造する手段、および水素酸素混成ガスを培養液に溶解させる手段は、養殖用水が培養液に換わった以外は前記水棲生物養殖装置において説明したものと同様のものである。水素酸素混成ガスの供給量は、植物体の種類、培養液を貯える手段の形状等によって適宜選択でき、特に制限されないが、培養液1m3あたり、1時間に、好ましくは平均0.1〜1000リットル、より好ましくは平均10〜500リットル、特に好ましくは平均50〜500リットルである。供給は連続的に行ってもよいし、間欠的に行ってもよい。例えば、15分間供給して45分間供給を停止するという繰り替えしで間欠的に供給してもよいし、昼間の時間だけ供給し夜間は供給を停止するという供給方法でもよい。なお、水素酸素混成ガスとして水素と酸素とが混合されたガスを用いる場合には、水素と酸素との混合を、培養液に溶解させる前に行ってもよいし、培養液に水素ガスと酸素ガスとを別々に供給し培養液中で行ってもよい。 The means for producing the hydrogen-oxygen mixed gas and the means for dissolving the hydrogen-oxygen mixed gas in the culture solution are the same as those described in the aquatic aquaculture apparatus except that the culture water is replaced with the culture solution. The supply amount of the hydrogen-oxygen mixed gas, the kind of the plant, can be appropriately selected depending on the shape or the like means to store the culture solution is not particularly limited, per culture 1 m 3, per hour, preferably having an average 0.1 to 1000 Liters, more preferably an average of 10 to 500 liters, particularly preferably an average of 50 to 500 liters. Supply may be performed continuously or intermittently. For example, it may be supplied intermittently by repeating the supply of 15 minutes and stopping the supply for 45 minutes, or the supply method of supplying only during the daytime and stopping the supply at night. When a gas in which hydrogen and oxygen are mixed is used as the hydrogen-oxygen mixed gas, the hydrogen and oxygen may be mixed before being dissolved in the culture solution, or the hydrogen gas and oxygen may be added to the culture solution. Gas may be supplied separately and performed in a culture solution.

本発明の水耕栽培装置では、植物体の種類に応じて、土以外の固形培地を備えていてもよい。固形培地としては、ロックウール;バーミキュライトなどの礫、砂などが挙げられる。さらに、本発明の水耕栽培装置には、照明装置、水温計および水温調節器、pH測定器、寒暖計、湿度計、ポンプ、配管、防霜ファン、温室、ろ過装置などの水耕栽培に従来から用いられている器具または装置を設けることができる。   In the hydroponic cultivation apparatus of the present invention, a solid medium other than soil may be provided according to the type of plant body. Examples of the solid medium include rock wool; gravel such as vermiculite, sand, and the like. Furthermore, the hydroponic cultivation apparatus of the present invention is conventionally used for hydroponic cultivation such as lighting devices, water thermometers and water temperature controllers, pH measuring devices, thermometers, hygrometers, pumps, piping, anti-frost fans, greenhouses, and filtration devices. An instrument or device used from

本発明の水耕栽培装置および方法並びに水耕栽培用培養液を適用可能な植物体は、特に限定されない。例えば、唐辛子、パプリカ、メロン、ゴーヤー、スイカ、カボチャ、ブルーベリー、イチゴ、ナス、トマト、ブドウなどの果菜類;レタス、ルバーブ、水菜、ハーブ、大根菜、わさび菜、べんり菜、青梗菜、パクチョイ、キャベツ、アブラナ、春菊、空芯菜、小松菜、白菜、セルタス、ターサイ、ミツバ、野沢菜、ほうれん草、ネギなどの葉菜類;ブロッコリー、カリフラワー、フキノトウなどの花菜類;モヤシ、豆類;バラなどの花卉類;稲、麦などの穀類;レンコンなどの根菜類;ヒヤシンス、クロカッス、チューリップなどの球根類が挙げられる。   The plant body to which the hydroponics apparatus and method of the present invention and the culture medium for hydroponics can be applied is not particularly limited. For example, peppers, paprika, melon, bitter gourd, watermelon, pumpkin, blueberries, strawberries, eggplant, tomatoes, grapes and other fruit vegetables; lettuce, rhubarb, mizuna, herbs, radish vegetables, wasabi vegetables, green vegetables, green pepper, Leafy vegetables such as Pakchoi, cabbage, rape, spring chrysanthemum, empty core vegetables, komatsuna, Chinese cabbage, Celtas, tarsai, honey bee, Nozawana, spinach, leek; flower vegetables such as broccoli, cauliflower, cypress; flower coconuts, beans; Cereals such as rice and wheat; root vegetables such as lotus root; bulbs such as hyacinth, crocus and tulip.

本発明の水耕栽培方法では、前記植物体の根を、水素酸素混成ガスを培養液に溶解してなる液に接触させて、植物体を育成する。液を根に接触させる方法としては、例えば、根を液に浸漬する方法;根に液を噴霧する方法;固体培地表面や傾斜面に根を張らせ、そこに液を流す方法;ロックウール(岩綿)などの固形培地の毛細管現象を利用して液を根回りに供給する方法などがある。   In the hydroponic cultivation method of the present invention, the plant body is grown by bringing the root of the plant body into contact with a solution obtained by dissolving a hydrogen-oxygen hybrid gas in a culture solution. Examples of the method of bringing the liquid into contact with the root include, for example, a method in which the root is immersed in the liquid; a method in which the liquid is sprayed on the root; a method in which the root is stretched on a solid medium surface or an inclined surface; There is a method of supplying the liquid around the root using the capillary action of a solid medium such as Iwako).

以下に実施例を挙げて、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

実施例1
ろ過装置付き水槽(1200mm×600mm×600mm)の底に散気管を配置し、散気管の一方の端を通気管でSHG発生装置に繋いだ。水槽に約0.4m3の水を入れ、水温を26〜30℃の範囲に制御した。水の電気分解槽からなるSHG発生装置で水素酸素混成ガスを製造し、そのガスを1時間掛けて120リットル供給と1時間供給停止とを繰り替えして間欠的に供給し、水中に散気させた。そして、この水槽に生後10ヶ月のエンゼルフィッシュ2尾(オス1尾、メス1尾)を入れ飼育を開始した。えさとして冷凍赤虫を与えた。
Example 1
A diffuser tube was placed at the bottom of a water tank with a filter (1200 mm × 600 mm × 600 mm), and one end of the diffuser tube was connected to the SHG generator with a vent tube. About 0.4 m 3 of water was placed in the water tank, and the water temperature was controlled in the range of 26-30 ° C. A hydrogen-oxygen mixed gas is produced by an SHG generator comprising an electrolysis tank of water, and the gas is intermittently supplied by repeating the supply of 120 liters over 1 hour and the supply stop for 1 hour, and diffused into water. It was. Then, two 10-month-old angelfish (one male and one female) were placed in this tank and breeding was started. Frozen red caterpillar was given as food.

約3年間の飼育の結果、約2週間に1回の頻度で産卵し、産卵したうちの約5割が孵化した。エンジェルフィッシュは成魚になるのに一般に生後10〜12ヶ月要すると言われているが、本実施例では第一世代(初代)の親魚からはじまって第7世代までの繁殖ができた。すなわち、飼育期間と世代数に基づく単純計算で、孵化から成魚になるまでの期間が平均6ヶ月であったことになる。
本実施例で用いた生後約4年になる初代親魚は未だに繁殖力が衰えず、未だに産卵を続けている。
As a result of breeding for about 3 years, eggs were laid at a frequency of about once every two weeks, and about 50% of the eggs were hatched. Angelfish is said to generally take 10 to 12 months after birth to become an adult fish, but in this example, it was possible to breed from the first generation (first generation) parent fish to the seventh generation. That is, the average period from hatching to adult fish was 6 months on average, based on simple calculations based on the breeding period and the number of generations.
The first parent fish used in this example, which is about 4 years old, has not yet lost its fertility, and is still laying eggs.

一般的に、エンゼルフィッシュを高密度で飼育すると、ストレスによる喧嘩や虐めが起きて、ほとんどが死んでしまう。しかし、本実施例では、旺盛な繁殖力によって水槽内がエンジェルフィッシュで過密状態になったが、ほとんどのエンジェルフィッシュが健康体を維持できた。   In general, when angelfish are raised at high density, fighting and bullying due to stress occur and most of them die. However, in this example, the aquarium became overcrowded with angel fish due to its vigorous reproductive power, but most angel fish were able to maintain a healthy body.

本発明によれば、卵に与えるストレスが大幅に減り、孵化率が従来法に比べ、大幅に高くなった。さらに、本発明によれば、卵を容易に孵化でき、稚魚の育成が誰でも容易にできるようになる。   According to the present invention, the stress applied to the eggs is greatly reduced, and the hatching rate is significantly higher than that of the conventional method. Furthermore, according to the present invention, eggs can be easily hatched, and anyone can easily grow fry.

実施例2
海洋生物の海老および烏賊のそれぞれを、海水で実施例1と同様に水素酸素混成ガスを散気して養殖を行った。空気を散気しただけの方法で養殖したものにくらべ、本発明の方法で養殖したものは、生育が良く、活きがよく、身が引き締まっていた。
Example 2
Each of the marine life shrimp and the bandits were cultured by aeration of hydrogen-oxygen mixed gas in seawater in the same manner as in Example 1. Compared to those cultivated by a method in which air was diffused, those cultivated by the method of the present invention grew well, lived well and were tight.

水棲生物の排泄物等による水質の劣化は水棲生物の種に関わらず同じように起きる。水質劣化は、水棲生物に程度の差はあるとしても同じような悪影響をもたらすので、実施例1および2で行った水棲生物以外の水棲生物に本発明を適用した場合でも、本実施例のように養殖用水の水質が改善され、同様の効果がもたらされると考えられる。   The deterioration of water quality due to excrement of aquatic organisms occurs in the same way regardless of the species of aquatic organisms. The deterioration of water quality has the same adverse effect even if there is a difference in aquatic organisms. Therefore, even when the present invention is applied to aquatic organisms other than the aquatic organisms performed in Examples 1 and 2, Therefore, the quality of the aquaculture water will be improved and the same effect will be brought about.

実施例3
プラスチック製の本体容器とカゴ鉢を設置するための穴が3つあいた蓋(植付台)とからなる栽培タンクに、カゴ鉢を3個設置し、該カゴ鉢にヒヤシンスの球根各1球ずつを置いた。
球根の底部すれすれに接するくらいに培養液(原料水と肥料)を栽培タンクに入れた。発根するまでは暗所に置いた。根が伸びてきたら、根の半分が浸る程度の水位に培養液の量を調節し、蛍光灯の明かりだけで栽培した。培養液に用いた原料水は、SHG発生装置で製造した水素酸素混成ガスを散気管を通して水道水に散気させて得たものである。
比較のために、培養液用の原料水として水道水をそのまま用いたもの、および井戸水をそのまま用いたもので、水耕栽培を、同時に同じ気候環境下で行った。なお、培養液は、それぞれ同時に、定期的に交換した。
Example 3
Three baskets are placed in a cultivation tank consisting of a plastic body container and a lid (planting stand) with three holes for placing baskets, and each hyacinth bulb is placed in the basket. Placed.
The culture solution (raw water and fertilizer) was put in the cultivation tank so that it touched the bottom of the bulb. It was left in the dark until rooting. When the roots grew, the amount of the culture solution was adjusted so that half of the roots were immersed, and the plants were cultivated using only fluorescent lights. The raw material water used for the culture solution was obtained by diffusing a hydrogen-oxygen mixed gas produced by an SHG generator into tap water through an aeration tube.
For comparison, hydroponic cultivation was performed under the same climatic environment at the same time using tap water as it was as raw material water for the culture solution and using well water as it was. In addition, the culture solution was periodically replaced at the same time.

約3ヶ月経過後、3つの栽培方法によってヒヤシンスはほぼ同時期に開花した。水道水と井戸水で栽培したヒヤシンスの花は薄紫色(藤色)をしていた。一方、本発明の方法で栽培したヒヤシンスは、花が濃い紫色をしていた。本発明の方法によってヒヤシンスの生理機能が活性化され、花色が濃く鮮やかになることがわかった。また、本発明の方法によって栽培されたヒヤシンスは、水道水や井戸水で栽培したヒヤシンスに比べ、開花から花が萎れるまでの期間が、2倍程度、長かった。   After about 3 months, hyacinths flowered at almost the same time by three cultivation methods. Hyacinth flowers cultivated with tap water and well water were light purple (mauve). On the other hand, the hyacinth cultivated by the method of the present invention had a deep purple flower. It has been found that the physiological function of hyacinth is activated by the method of the present invention, and the flower color becomes dark and vivid. In addition, the hyacinth cultivated by the method of the present invention has a period of time from flowering to flower wilt about twice as long as that of hyacinth cultivated with tap water or well water.

実施例4
実施例3と同様に、プラスチック製の本体容器とカゴ鉢を設置するための穴が3つあいた蓋(植付台)とからなる栽培タンクに、カゴ鉢を3個設置し、該カゴ鉢にヒヤシンスの球根各1球を置いた。
球根の底部すれすれに接するくらいに培養液(水道水と肥料)を栽培タンクに入れた。発根するまでは暗所に置いた。根が伸びてきたら、根の半分が浸る程度の水位に培養液の量を調節し、蛍光灯の明かりだけで栽培した。この間、培養液に、SHG発生装置で製造した水素酸素混成ガスを散気管を通して間欠的に散気させ続けた。培養液の腐敗、根腐れは生じなかった。実施例3と同様に、鮮やかな濃い紫色の花が咲いた。
Example 4
In the same manner as in Example 3, three baskets were placed in a cultivation tank consisting of a plastic main body container and a lid (planting stand) with three holes for placing the baskets. One hyacinth bulb was placed.
The culture solution (tap water and fertilizer) was placed in the cultivation tank so that it touched the bottom of the bulb. It was left in the dark until rooting. When the roots grew, the amount of the culture solution was adjusted so that half of the roots were immersed, and the plants were cultivated using only fluorescent lights. During this time, the hydrogen-oxygen hybrid gas produced by the SHG generator was intermittently diffused through the aeration tube into the culture solution. The culture broth and root rot did not occur. Similar to Example 3, bright dark purple flowers bloomed.

培養液の腐敗による植物体の酸欠や根腐れは、程度の差はあるが植物体の種に関わらず同じように起き、同様の悪影響を植物体に及ぼす。したがって、実施例3および4で行った植物体以外の植物体に本発明を適用した場合でも、本実施例のように培養液の水質が改善され、同様の効果がもたらされると考えられる。   Oxygen depletion and root rot of plant bodies due to the decay of the culture solution occur in the same manner regardless of the species of the plant, but have similar adverse effects on the plant body. Therefore, even when the present invention is applied to plants other than the plants performed in Examples 3 and 4, it is considered that the water quality of the culture solution is improved as in this Example, and the same effect is brought about.

本発明の水棲生物養殖装置を用いて育てた水棲生物は、病気に罹りにくく、繁殖力が旺盛である。本発明の水棲生物養殖方法によれば、高密度で水棲生物を飼育しても、健康体を維持できる。本発明の水棲生物養殖用水を用いると、水替えの頻度を少なくできるので、水棲生物に与えるストレスが減り、孵化率などを高くすることができる。
本発明の水耕栽培装置若しくは水耕栽培用培養液を用いて栽培した植物は、根腐れなどを起こさず、花や実などの生育に優れている。また、花の寿命を長くできる。
Aquatic organisms grown using the aquatic organism culture device of the present invention are less susceptible to diseases and have a strong breeding ability. According to the aquatic organism culture method of the present invention, a healthy body can be maintained even if aquatic organisms are bred at high density. When the water for aquatic organism culture of the present invention is used, the frequency of water change can be reduced, so that the stress applied to the aquatic organisms can be reduced and the hatching rate can be increased.
Plants cultivated using the hydroponics apparatus or hydroponics culture solution of the present invention do not cause root rot and the like, and are excellent in the growth of flowers and fruits. Moreover, the lifetime of a flower can be lengthened.

本発明の水棲生物養殖方法および水耕栽培方法によって、このような優れた効果を奏する理由は定かではないが、次のような作用機序が推定される。酸素呼吸をする生物にはミトコンドリアが存在する。このミトコンドリアは、呼吸によって取り入れた酸素をエネルギーに変換する細胞内小器官である。酸素をエネルギーに変換する際には水素が必要で、酸素と水素との反応にはATP合成酵素による電子伝達が関与しているといわれている。従来のように酸素(空気)だけを供給した場合には酸素に直接電子が伝達され、その結果活性酸素が発生してしまう。この活性酸素は細胞やDNAを破壊してしまうといわれている。本発明のように酸素と水素とを供給すると、酸素への電子伝達が水素を介することになるので、反応が穏和となる。また、最近の研究(Ohta etal. "Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals" Nature medicine 2007.5.7発行、URL:http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm1577.html)によれば、水素はラット中の酸素ラジカルを減らし、治療的抗酸化作用を示すことが判ってきている。このような作用機序によって水棲生物や陸生植物の老化(活力低下)が防止され、本発明の効果が発現するものと推定される。   The reason why such an excellent effect is exhibited by the aquatic organism cultivation method and hydroponics method of the present invention is not clear, but the following mechanism of action is presumed. Mitochondria exist in organisms that breathe oxygen. The mitochondria are intracellular organelles that convert oxygen taken by respiration into energy. Hydrogen is required to convert oxygen into energy, and it is said that electron transfer by ATP synthase is involved in the reaction between oxygen and hydrogen. When only oxygen (air) is supplied as in the prior art, electrons are directly transmitted to oxygen, and as a result, active oxygen is generated. This active oxygen is said to destroy cells and DNA. When oxygen and hydrogen are supplied as in the present invention, electron transfer to oxygen is via hydrogen, so that the reaction becomes mild. In addition, a recent study (Ohta etal. "Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals" Nature medicine 2007.5.7 published, URL: http://www.nature.com/nm/journal/vaop/ncurrent/ abs / nm1577.html) has shown that hydrogen reduces oxygen radicals in rats and exhibits therapeutic antioxidant activity. It is presumed that such an action mechanism prevents aging (reduced vitality) of aquatic organisms and terrestrial plants, and the effects of the present invention are exhibited.

Claims (6)

養殖用水を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを養殖用水に溶解させる手段とを備える、水棲生物用養殖装置。   An aquatic aquaculture apparatus comprising means for storing aquaculture water, means for producing a hydrogen-oxygen mixed gas, and means for dissolving the gas in the aquaculture water. 散気手段を養殖水域に配置し、該散気手段に水素酸素混成ガスを供給して前記養殖水域に前記ガスを散気し、前記養殖水域に生息する水棲生物を養殖する方法。   A method of cultivating aquatic organisms inhabiting the aquaculture water area by disposing an aeration means in the aquaculture water area, supplying a hydrogen-oxygen mixed gas to the aeration means to diffuse the gas into the aquaculture water area. 水素酸素混成ガスを養殖用水に溶解させてなる水棲生物養殖用水。   Aquatic aquaculture water obtained by dissolving hydrogen-oxygen hybrid gas in aquaculture water. 培養液を貯える手段と、水素酸素混成ガスを製造する手段と、該ガスを培養液に溶解させる手段とを備える、水耕栽培装置。   A hydroponic cultivation apparatus comprising means for storing a culture solution, means for producing a hydrogen-oxygen mixed gas, and means for dissolving the gas in the culture solution. 水素酸素混成ガスを培養液に溶解させてなる液に、植物体の根を接触させて、植物体を育成する水耕栽培方法。   A hydroponics method for growing a plant body by bringing the root of the plant body into contact with a solution obtained by dissolving a hydrogen-oxygen mixed gas in a culture solution. 水素酸素混成ガスを培養液に溶解させてなる水耕栽培用培養液。   A culture solution for hydroponic cultivation in which a hydrogen-oxygen mixed gas is dissolved in a culture solution.
JP2007188667A 2007-07-19 2007-07-19 Aquatic life cultivating device and hydroponic apparatus Pending JP2009022211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188667A JP2009022211A (en) 2007-07-19 2007-07-19 Aquatic life cultivating device and hydroponic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188667A JP2009022211A (en) 2007-07-19 2007-07-19 Aquatic life cultivating device and hydroponic apparatus

Publications (1)

Publication Number Publication Date
JP2009022211A true JP2009022211A (en) 2009-02-05

Family

ID=40394666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188667A Pending JP2009022211A (en) 2007-07-19 2007-07-19 Aquatic life cultivating device and hydroponic apparatus

Country Status (1)

Country Link
JP (1) JP2009022211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212723A (en) * 2013-04-25 2014-11-17 三菱化工機株式会社 Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
JP2022530849A (en) * 2019-04-20 2022-07-04 サン リ、イン Method for producing dissolved hydronium ion water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212723A (en) * 2013-04-25 2014-11-17 三菱化工機株式会社 Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
JP2022530849A (en) * 2019-04-20 2022-07-04 サン リ、イン Method for producing dissolved hydronium ion water

Similar Documents

Publication Publication Date Title
KR101333902B1 (en) Converged device for an agriculture and aquaculture
JP6946421B2 (en) Aquaponic unit
KR101270631B1 (en) Multi complex tank for an aquaculture using the bio-flac
CN101185426B (en) Specific pathogen free Chinese shrimp zero water-changing seedling production process
CN107404862B (en) Method for cultivating oysters on land
JP7169502B2 (en) aquaculture method of aquatic animals
CN100372510C (en) Artificial culture of shrimp parents
JP2000245297A (en) Device for culturing fish or shellfish
CN102696516B (en) Low-salinity pomfret aquiculture method
JP2017148007A (en) Cultivation system of fish seedling
CN103918615B (en) A kind of method of the red clam worm of indoor circulating water three-dimensional culture
CN105638525B (en) A kind of closed circulation water cultural method of greenling
MXPA06015103A (en) Managed co-cultures of organisms having prophylactic and health-promoting effects.
CN111248128B (en) External circulation freshwater shrimp breeding method
Sella et al. Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): Towards mass production in a closed seawater system
CN111771772B (en) Grouper fry breeding method
JPH0331404B2 (en)
CN104743672A (en) Water body eutrophication treatment technology based on daphnia magna domestication method
KR101727485B1 (en) Plant cultivation water purification fish farming equipment of natural ecology environment
KR20170058652A (en) A aquatic culture tank for fishes to eliminating parasite and bacteria
JP2009022211A (en) Aquatic life cultivating device and hydroponic apparatus
CN1432538A (en) Method of cultivating algivorous insects to tackle blue-green alga pollution in water
CN110250047A (en) A kind of method of industrial aquaculture threadfin
JP2014212723A (en) Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
CN110292016A (en) A kind of farmland aquatic ecosystem recirculation system