JP2009021615A - Plasma cvd system - Google Patents

Plasma cvd system Download PDF

Info

Publication number
JP2009021615A
JP2009021615A JP2008212432A JP2008212432A JP2009021615A JP 2009021615 A JP2009021615 A JP 2009021615A JP 2008212432 A JP2008212432 A JP 2008212432A JP 2008212432 A JP2008212432 A JP 2008212432A JP 2009021615 A JP2009021615 A JP 2009021615A
Authority
JP
Japan
Prior art keywords
gas
metal
plasma
containing gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212432A
Other languages
Japanese (ja)
Other versions
JP4783409B2 (en
Inventor
Setsuo Nakajima
節男 中嶋
Takumi Ito
巧 伊藤
Yuji Eguchi
勇司 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2008212432A priority Critical patent/JP4783409B2/en
Publication of JP2009021615A publication Critical patent/JP2009021615A/en
Application granted granted Critical
Publication of JP4783409B2 publication Critical patent/JP4783409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely prevent an inner electrode from becoming dirty and to enlarge a film forming region. <P>SOLUTION: Plasma spaces P are generated between a pair of electrodes 12 and 13 and a pair of electrodes 23 and 22 under ordinary pressure. Reactant gas is supplied to the respective plasma spaces P from supply sources 71 and 72. Metal-including gas is supplied to a part between two outlets 1b and 1b from which reactant gas passing through the two plasma spaces P and P is blown out from a supply source 80. In a straightening vane 31, a passage of convergence gas of blown-out reactant gas and metal content gas is formed to follow a face to be processed. The gas straightening vane 31 is put on a face facing all faces to be processed of two pairs of electrodes and is made to project outside from the electrodes on both outer sides in two pairs of electrodes. Exhaust mechanisms 91 and 92 are arranged outside. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基材表面に金属含有薄膜を形成するプラズマCVD装置に関する。   The present invention relates to a plasma CVD apparatus for forming a metal-containing thin film on a substrate surface.

プラズマCVD法により基材表面に金属含有薄膜を形成する方法として以下の方法がある。   There are the following methods for forming a metal-containing thin film on the surface of a substrate by plasma CVD.

(1)常圧下において、有機金属化合物と酸素との混合ガスをプラズマ励起させた後、基材に吹き付けて酸化物薄膜を成膜する方法。 (1) A method in which a mixed gas of an organometallic compound and oxygen is plasma-excited under normal pressure and then sprayed onto a substrate to form an oxide thin film.

(2)常圧下においてプラズマ励起された金属含有ガスに酸素ガスを混合し、その混合ガスをさらにプラズマ励起して基材に成膜を行う方法。 (2) A method in which an oxygen gas is mixed with a metal-containing gas that has been plasma-excited under normal pressure, and the mixed gas is further plasma-excited to form a film on a substrate.

(3)減圧下において、複数種のガスを別々にプラズマ励起し基材付近で混合して成膜する方法。 (3) A method in which a plurality of gases are separately plasma-excited under reduced pressure and mixed in the vicinity of the substrate to form a film.

ところで、前記したプラズマCVD法による成膜方法のうち、成膜方法(1)及び(2)によれば、プラズマ空間中で電極(プラズマ発生用)そのものに成膜されるため、ガスが有効利用されず、高い成膜速度が得られない。また、電極付着物が大量に発生するため、メンテナンス間隔が短くなるという欠点がある。   By the way, among the film-forming methods by the plasma CVD method described above, according to the film-forming methods (1) and (2), since the film is formed on the electrode (for plasma generation) itself in the plasma space, the gas is effectively used. Thus, a high film formation rate cannot be obtained. In addition, since a large amount of electrode deposits are generated, there is a drawback that the maintenance interval is shortened.

一方、成膜方法(3)によれば、減圧のプロセスであることから、真空引きに多くの時間を要し、スループットが悪いという問題がある。また、ガス流の影響が強くでる粘性流領域(常圧)においては、複数種のガスを単純に同一個所に集中させて吹き付けても、それぞれが層流として分離して流れてしまうため、この方法をそのまま採用することはできない。   On the other hand, according to the film forming method (3), since it is a decompression process, a lot of time is required for evacuation, and there is a problem that throughput is poor. Also, in the viscous flow region (normal pressure) where the influence of the gas flow is strong, even if multiple types of gas are simply concentrated and sprayed at the same location, each will flow separately as a laminar flow. The method cannot be adopted as it is.

本発明はそのような実情に鑑みてなされたもので、常圧下において金属含有薄膜を、産業上利用可能な成膜速度で形成することができ、しかもメンテナンス間隔を長くすることが可能なプラズマCVD装置の提供を目的とする。   The present invention has been made in view of such circumstances, and can form a metal-containing thin film under normal pressure at a deposition rate that can be used industrially, and can also increase the maintenance interval. The purpose is to provide a device.

本発明は、金属含有ガスとその金属含有ガスと反応する反応ガスを用いるプラズマCVD装置であって、常圧でプラズマ空間を発生させる電極と、そのプラズマ空間に反応ガスを供給する反応ガス供給源と、前記プラズマ空間を通過した反応ガスの吹出口近傍に金属含有ガスを供給する金属含有ガス供給源と、前記プラズマ空間を通過した反応ガスと金属含有ガスの合流ガスが流れる方向を排気制御する排気機構を備え、前記排気機構が前記合流個所の両側に配置されており、その合流個所から排気機構に至る合流ガス流路のうち、プラズマ空間に遠い側の流路のコンダクタンスが小さくなるように構成されていることを第1の特徴とする。   The present invention is a plasma CVD apparatus using a metal-containing gas and a reaction gas that reacts with the metal-containing gas, an electrode that generates a plasma space at normal pressure, and a reaction gas supply source that supplies the reaction gas to the plasma space And a metal-containing gas supply source for supplying a metal-containing gas in the vicinity of a reaction gas outlet that has passed through the plasma space, and a direction in which a combined gas of the reaction gas and the metal-containing gas that has passed through the plasma space flows is controlled. An exhaust mechanism is provided, and the exhaust mechanisms are arranged on both sides of the merge point, so that the conductance of the flow channel far from the plasma space among the merge gas channels from the merge point to the exhaust mechanism is reduced. The first feature is that it is configured.

本発明によれば、以下のような作用効果を達成できる。   According to the present invention, the following operational effects can be achieved.

まず、金属含有ガスは、プラズマ化すると直ちに反応するため、プラズマ空間経過中に電極への付着物や反応物の粒子となって消費されることにより、成膜速度を低下させ、薄膜中に不純物が混入する原因となる。また、頻繁なメンテナンスが必要な原因となる。   First, since the metal-containing gas reacts immediately when it is turned into plasma, it is consumed as deposits and reactant particles on the electrode during the plasma space, thereby reducing the film formation rate and reducing impurities in the thin film. Cause contamination. In addition, frequent maintenance is required.

これに対し本発明では、プラズマ空間を通過することにより活性種となった反応ガスに金属含有ガスを合流させ、この活性種と金属含有ガスが接触することにより反応して成膜が行われるので、金属含有ガスが成膜反応に効率的に使われ、電極付着物や不純物の発生を防ぐことができる。従って、金属含有薄膜を高い成膜速度で得ることができ、しかもメンテナンス間隔を長くすることができる。   In contrast, in the present invention, the metal-containing gas is joined to the reactive gas that has become the active species by passing through the plasma space, and the active species and the metal-containing gas are contacted to react to form a film. In addition, the metal-containing gas can be used efficiently in the film formation reaction, and the generation of electrode deposits and impurities can be prevented. Therefore, the metal-containing thin film can be obtained at a high film formation rate, and the maintenance interval can be lengthened.

プラズマ空間通過後の反応ガスと金属含有ガスとの合流ガスの流れを、被処理面に沿って流れるガス流とすることが好ましい。   The flow of the combined gas of the reaction gas and the metal-containing gas after passing through the plasma space is preferably a gas flow that flows along the surface to be processed.

このようにすれば、合流したガスが混合しながら次々と反応を行い、基材の被処理面に薄膜を形成していく。ここで、上記の流れを作り出すことにより、合流したガスが混合する時間と反応に必要な時間が確保され、その反応は基材のすぐ側で行われるため、優先的に薄膜形成に消費されることになる。従って、金属含有ガスを無駄にせず、成膜速度を向上させることができる。なお、基材の被処理面が平面ならば、その平面に略平行な流れを作ることが好ましい。   If it does in this way, it reacts one after another, mixing the gas which joined, and forms a thin film in the to-be-processed surface of a base material. Here, by creating the above flow, the time required for the mixed gas and the time required for the reaction are secured, and since the reaction is performed immediately on the base, it is preferentially consumed for forming the thin film. It will be. Accordingly, the deposition rate can be improved without wasting the metal-containing gas. In addition, if the to-be-processed surface of a base material is a plane, it is preferable to make the flow substantially parallel to the plane.

以上のような合流ガスのガス流を実現する方法として、排気機構により、前記合流ガスが基材の被処理面に沿って流れるガス流を形成するように排気制御を行うという方法を挙げることができる。   As a method for realizing the gas flow of the combined gas as described above, there is a method in which exhaust control is performed by an exhaust mechanism so that the combined gas forms a gas flow that flows along the surface to be processed of the substrate. it can.

前記金属含有ガスと反応ガスの導入流量の合計流量と、基材の被処理面に沿って流れるガス流の流量を略同量とすることが好ましい。また、反応ガスとして、酸素、窒素または水素のいずれかのガスを用いることが好ましい。   It is preferable that the total flow rate of the introduction flow rates of the metal-containing gas and the reactive gas is substantially the same as the flow rate of the gas flow flowing along the surface to be processed of the substrate. Further, it is preferable to use oxygen, nitrogen, or hydrogen as the reaction gas.

本発明のプラズマCVD装置は、金属含有ガスとその金属含有ガスと反応する反応ガスを用いるプラズマCVD装置であって、常圧でプラズマ空間を発生させる2組の電極と、各々のプラズマ空間に反応ガスを供給する反応ガス供給源と、前記2つのプラズマ空間を通過した反応ガスが吹き出される2つの吹出口の間に金属含有ガスを供給する金属含有ガス供給源と、前記吹き出された後の反応ガスと前記金属含有ガスとの合流ガスの流路を被処理面に沿うよう形成するガス整流板を備え、前記ガス整流板が前記2組の電極すべての前記被処理面を向く面に被さり、かつ前記2組の電極のうち両外側に配置された電極より前記ガス整流板の両端部が外側へ突出し、前記2つの反応ガスの吹出口から前記合流ガスの流路を隔てた両側であって前記ガス整流板の両端部より更に外側に排気機構がそれぞれ配置されていることを第2の特徴とする。   The plasma CVD apparatus of the present invention is a plasma CVD apparatus that uses a metal-containing gas and a reactive gas that reacts with the metal-containing gas, and includes two sets of electrodes that generate a plasma space at normal pressure, and reacts with each plasma space. A reaction gas supply source for supplying a gas; a metal-containing gas supply source for supplying a metal-containing gas between two outlets from which the reaction gas that has passed through the two plasma spaces is blown; and A gas rectifying plate that forms a flow path of a combined gas of the reaction gas and the metal-containing gas along the surface to be processed, and the gas rectifying plate covers all surfaces of the two sets of electrodes facing the surface to be processed. In addition, both ends of the gas rectifying plate protrude outwardly from the electrodes disposed on both outer sides of the two sets of electrodes, and are on both sides of the two reaction gas blowout ports separated from the combined gas flow path. Before Gas rectifying plate further exhaust system outside the opposite ends of the second characterized in that it is arranged.

この発明のプラズマCVD装置によれば、プラズマ空間を通過することにより活性種となった反応ガスに金属含有ガスを合流させ、この活性種と金属含有ガスが接触することにより反応して成膜が行われるので、金属含有ガスが成膜反応に効率的に使われ、電極付着物や不純物の発生を防ぐことができる。従って、金属含有薄膜を高い成膜速度で得ることができ、しかもメンテナンス間隔を長くすることができる。   According to the plasma CVD apparatus of the present invention, the metal-containing gas is merged with the reactive gas that has become the active species by passing through the plasma space, and the active species and the metal-containing gas react to contact each other to form a film. As a result, the metal-containing gas is efficiently used for the film-forming reaction, and electrode deposits and impurities can be prevented from being generated. Therefore, the metal-containing thin film can be obtained at a high film formation rate, and the maintenance interval can be lengthened.

さらに、合流ガスが流れる方向が基材の被処理面に沿う方向となるように排気制御を行うことにより、合流したガスが混合しながら次々と反応を行い、基材の被処理面に薄膜を形成していく。ここで、上記の流れを作り出すことにより、合流したガスが混合する時間と反応に必要な時間が確保され、その反応は基材のすぐ側で行われるため、優先的に薄膜形成に消費されることになる。金属含有ガスを無駄にせず、成膜速度を向上させることができる。被処理面が平面ならば、その平面に略平行な流れを作ることが好ましい。   Furthermore, by performing exhaust control so that the direction in which the combined gas flows is in the direction along the surface to be processed of the base material, the mixed gas reacts one after another while mixing, and a thin film is formed on the surface to be processed of the base material. To form. Here, by creating the above flow, the time required for the mixed gas and the time required for the reaction are secured, and since the reaction is performed immediately on the base, it is preferentially consumed for forming the thin film. It will be. The deposition rate can be improved without wasting metal-containing gas. If the surface to be processed is a plane, it is preferable to create a flow substantially parallel to the plane.

排気機構を片側にだけ配置する場合、前記プラズマ空間を通過した反応ガスと金属含有ガスが合流する個所から、合流ガスの流路(基材の被処理面に沿った流路)を隔てた側方にあって、プラズマ空間に近い側に配置することが好ましい。   When the exhaust mechanism is arranged only on one side, the side separating the flow path of the merged gas (flow path along the surface to be treated of the substrate) from the location where the reaction gas and the metal-containing gas that have passed through the plasma space merge It is preferable to arrange it on the side close to the plasma space.

このように配置することにより、プラズマ空間を経て活性化された反応ガスが作る流れと、活性化されていない金属含有ガスが作る流れとの比較において活性化されたガスの流れが短くなり、活性種は金属含有ガスの流れと接触・混合してから被処理面に到達することになる。この配置は、活性化されたガスを失活させずに、金属含有ガスと接触させつつ基材表面に到達させるために有効である。   This arrangement shortens the flow of the activated gas in comparison with the flow created by the reactive gas activated through the plasma space and the flow created by the non-activated metal-containing gas. The seeds reach the surface to be treated after contacting and mixing with the flow of the metal-containing gas. This arrangement is effective for reaching the substrate surface while contacting the metal-containing gas without deactivating the activated gas.

なお、以上の排気機構の配置においては、排気機構が設けられていない側からの外部空気の巻き込みが問題になる場合も考えられる。これを防止するには、上記第1の特徴のように、排気機構を前記合流個所の両側に配置して、その合流個所から排気機構に至る合流ガス流路のうち、プラズマ空間に遠い側の流路のコンダクタンスが小さくなるという構成を採用すればよい。このように、2つの流路にコンダクタンス差を作り、プラズマ空間に近い側の流路をメインの流れとすることで、活性種は金属含有ガスの流れと接触・混合してから被処理面に到達するようにする。   In the arrangement of the exhaust mechanism described above, there may be a case where entrainment of external air from the side where the exhaust mechanism is not provided becomes a problem. In order to prevent this, as in the first feature described above, exhaust mechanisms are arranged on both sides of the confluence, and the confluence gas flow path from the confluence to the exhaust mechanism is located on the side far from the plasma space. What is necessary is just to employ | adopt the structure that the conductance of a flow path becomes small. Thus, by creating a conductance difference between the two flow paths and using the flow path closer to the plasma space as the main flow, the active species contacts and mixes with the flow of the metal-containing gas and then enters the surface to be processed. To reach.

第2特徴の2つのプラズマ空間は対称にして、反応ガス供給量も等しくすることが好ましい。   It is preferable that the two plasma spaces of the second feature are symmetric and that the reaction gas supply amount is also equal.

第2特徴によれば、金属含有ガスの両端にプラズマ化した反応ガスの吹出口を配置することにより、外部空気の巻き込みを防止することと、活性種が金属含有ガスの流れと接触・混合してから被処理面に到達することを両立している。すなわち、上記配置とすることにより、自然に押し出されるガス流れによって、外部空気の巻き込みが防止され、活性種が金属含有ガスの流れと接触・混合してから被処理面に到達することになる。   According to the second feature, by disposing plasma outlet gas outlets at both ends of the metal-containing gas, it is possible to prevent the entrainment of external air, and the active species are brought into contact with and mixed with the flow of the metal-containing gas. To reach the surface to be processed. That is, with the arrangement described above, the entrainment of external air is prevented by the naturally extruded gas flow, and the active species reaches the surface to be treated after contacting and mixing with the flow of the metal-containing gas.

第2特徴において、2つの反応ガス吹出口から合流ガスの流路を隔てた両側に排気機構が配置しておくことで、積極的に被処理面に沿ったガス流れを制御したり、反応後のガスを回収したりすることもできる。   In the second feature, an exhaust mechanism is disposed on both sides of the combined gas flow path from the two reaction gas outlets, so that the gas flow along the surface to be treated can be positively controlled, or after the reaction. The gas can also be recovered.

第1特徴においても、ガス整流板を設けて基材の被処理面に沿った合流ガス流路を形成するようにしてもよい。   Also in the first feature, a gas rectifying plate may be provided to form a merged gas flow path along the surface to be processed of the substrate.

さらに、セラミック多孔質製のガス整流板を用い、このガス整流板から不活性ガスを吹き出すという構成を採用することもできる。ガス整流板には合流後の混合ガスが接触するため、反応物の付着が起こりやすいが、ガス整流板から不活性ガスを吹き出すことで、そのような付着を防止するために有効である。不活性ガスとしては、窒素、アルゴン、ヘリウム等を挙げることができる。   Furthermore, it is possible to employ a configuration in which a ceramic porous gas rectifying plate is used and an inert gas is blown out from the gas rectifying plate. Since the mixed gas after joining the gas rectifying plate comes into contact with the gas rectifying plate, the reactant is likely to adhere to the gas rectifying plate. However, it is effective to prevent such adhesion by blowing out the inert gas from the gas rectifying plate. Examples of the inert gas include nitrogen, argon, helium and the like.

次に、本発明を更に詳しく説明する。   Next, the present invention will be described in more detail.

まず、本発明で言う大気圧近傍の圧力下とは、1.333×10〜10.664×10Paの圧力下を指す。中でも、圧力調整が容易で、装置構成が簡便になる9.331×10〜10.397×10Paの範囲が好ましい。 First, under the pressure in the vicinity of the atmospheric pressure referred to in the present invention means a pressure under a pressure of 1.333 × 10 4 to 10.664 × 10 4 Pa. Among them, easy pressure adjustment, is preferably in the range of 9.331 × 10 4 ~10.397 × 10 4 Pa for device configuration is simplified.

本発明においてプラズマを発生させる電極の材質としては、例えば、鉄、銅、アルミニウム等の金属単体、ステンレス、真鍮等の合金、金属間化合物等などが挙げられる。電極は、電界集中によるアーク放電の発生を避けるために、プラズマ空間(電極間)の距離が一定となる構造であることが好ましい。より好ましくは平行平板型の対向電極である。   Examples of the material of the electrode for generating plasma in the present invention include simple metals such as iron, copper, and aluminum, alloys such as stainless steel and brass, and intermetallic compounds. The electrodes preferably have a structure in which the distance between the plasma spaces (between the electrodes) is constant in order to avoid occurrence of arc discharge due to electric field concentration. A parallel plate type counter electrode is more preferable.

また、プラズマを発生させる電極(対向電極)は、一対のうち少なくとも一方の対向面に固体誘電体が配置されている必要がある。この際、固体誘電体と設置される側の電極が密着し、かつ、接する電極の対向面を完全に覆うようにすることが好ましい。固体誘電体によって覆われずに電極同士が直接対向する部位があると、そこからアーク放電が生じやすくなる。   In addition, the electrode for generating plasma (counter electrode) needs to have a solid dielectric disposed on at least one of the opposing surfaces of the pair. At this time, it is preferable that the solid dielectric and the electrode on the side to be installed are in close contact with each other and the opposite surface of the electrode in contact is completely covered. If there is a portion where the electrodes directly face each other without being covered by the solid dielectric, arc discharge is likely to occur therefrom.

上記固体誘電体の形状は、シート状もしくはフィルム状のいずれであってもよい。また、固体誘電体は、溶射法等にて電極表面にコーティングされた膜であってもよい。固体誘電体の厚みは、0.01〜4mmであることが好ましい。固体誘電体の厚みが厚すぎると放電プラズマを発生するのに高電圧を要することがあり、薄すぎると電圧印加時に絶縁破壊が起こり、アーク放電が発生することがある。   The solid dielectric may be in the form of a sheet or a film. The solid dielectric may be a film coated on the electrode surface by a thermal spraying method or the like. The thickness of the solid dielectric is preferably 0.01 to 4 mm. If the thickness of the solid dielectric is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur during voltage application and arc discharge may occur.

上記固体誘電体としては、例えば、ポリテトラフルオロエチレン、ポリエチレンテレフタレート等のプラスチック、ガラス、二酸化珪素、酸化アルミニウム、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の複酸化物等が挙げられる。   Examples of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal dioxide such as silicon dioxide, aluminum oxide, zirconium dioxide, and titanium dioxide, and double oxides such as barium titanate. It is done.

また、固体誘電体は、比誘電率が2以上(25℃環境下、以下同じ)であることが好ましい。比誘電率が2以上の固体誘電体の具体例としては、ポリテトラフルオロエチレン、ガラス、金属酸化膜等を挙げることができる。さらに高密度の放電プラズマを安定して発生させるためには、比誘電率が10以上の固体誘電体を用いることが好ましい。比誘電率の上限は特に限定されるものではないが、現実の材料では18,500程度のものが知られている。上記比誘電率が10以上である固体誘電体としては、例えば、酸化チタニウム5〜50重量%、酸化アルミニウム50〜95重量%で混合された金属酸化物被膜、または、酸化ジルコニウムを含有する金属酸化物被膜からなるものを挙げることができる。   The solid dielectric preferably has a relative dielectric constant of 2 or more (25 ° C. environment, the same applies hereinafter). Specific examples of the solid dielectric having a relative dielectric constant of 2 or more include polytetrafluoroethylene, glass, and metal oxide film. Further, in order to stably generate a high density discharge plasma, it is preferable to use a solid dielectric having a relative dielectric constant of 10 or more. The upper limit of the relative dielectric constant is not particularly limited, but about 18,500 is known as an actual material. Examples of the solid dielectric having a relative dielectric constant of 10 or more include a metal oxide film mixed with 5 to 50% by weight of titanium oxide and 50 to 95% by weight of aluminum oxide, or a metal oxide containing zirconium oxide. The thing which consists of a material film can be mentioned.

本発明において電極間の距離は、固体誘電体の厚さ、印加電圧の大きさ、プラズマを利用する目的等を考慮して適宜決定されるが、0.1〜5mmであることが好ましい。電極間の距離が0.1mm未満であると、電極間の間隔を置いて設置するのに充分でないことがあり、一方、5mmを超えると、均一な放電プラズマを発生させにくい。さらに好ましくは、放電が安定しやすい0.5〜3mmの間隔である。   In the present invention, the distance between the electrodes is appropriately determined in consideration of the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using plasma, etc., but is preferably 0.1 to 5 mm. If the distance between the electrodes is less than 0.1 mm, it may not be sufficient to install with a gap between the electrodes, whereas if it exceeds 5 mm, it is difficult to generate a uniform discharge plasma. More preferably, the interval is 0.5 to 3 mm at which discharge is easily stabilized.

上記電極間には、高周波、パルス波、マイクロ波等の電界が印加され、プラズマを発生させるが、パルス電界を印加することが好ましく、特に、電界の立ち上がり及び/または立ち下がり時間が10μs以下であるパルス電界が好ましい。10μsを超えると放電状態がアークに移行しやすく不安定なものとなり、パルス電界による高密度プラズマ状態を保持しにくくなる。また、立ち上がり時間及び立ち下がり時間が短いほどプラズマ発生の際のガスの電離が高率よく行われるが、40ns未満の立ち上がり時間のパルス電界を実現することは、実際には困難である。立ち上がり時間及び立ち下がり時間のより好ましい範囲は50ns〜5μsである。なお、ここでいう立ち上がり時間とは、電圧(絶対値)が連続して増加する時間、立ち下がり時間とは、電圧(絶対値)が連続して減少する時間を指すものとする。   An electric field such as a high frequency, a pulse wave, or a microwave is applied between the electrodes to generate plasma, but it is preferable to apply a pulse electric field, and in particular, the rise and / or fall time of the electric field is 10 μs or less. Certain pulsed electric fields are preferred. If it exceeds 10 μs, the discharge state tends to shift to an arc and becomes unstable, and it becomes difficult to maintain a high-density plasma state by a pulse electric field. Also, the shorter the rise time and fall time, the higher the ionization of the gas during plasma generation, but it is actually difficult to realize a pulsed electric field with a rise time of less than 40 ns. A more preferable range of the rise time and the fall time is 50 ns to 5 μs. The rise time here refers to the time during which the voltage (absolute value) increases continuously, and the fall time refers to the time during which the voltage (absolute value) decreases continuously.

上記パルス電界の電界強度は、10〜1000kV/cmであり、好ましくは20〜300kV/cmである。電界強度が10kV/cm未満であると処理に時間がかかりすぎ、1000kV/cmを超えるとアーク放電が発生しやすくなる。   The electric field strength of the pulse electric field is 10 to 1000 kV / cm, preferably 20 to 300 kV / cm. When the electric field strength is less than 10 kV / cm, it takes too much time for processing, and when it exceeds 1000 kV / cm, arc discharge tends to occur.

上記パルス電界の周波数は、0.5kHz以上であることが好ましい。0.5kHz未満であるとプラズマ密度が低いため処理に時間がかかりすぎる。上限は特に限定されないが、常用されている13.56MHz、試験的に使用されている500MHzといった高周波帯でも構わない。負荷との整合性のとり易さや取扱い性を考慮すると、500kHz以下が好ましい。このようなパルス電界を印加することにより、処理速度を大きく向上させることができる。   The frequency of the pulse electric field is preferably 0.5 kHz or more. If it is less than 0.5 kHz, the plasma density is low, and the process takes too much time. The upper limit is not particularly limited, but it may be a high frequency band such as 13.56 MHz that is commonly used and 500 MHz that is used experimentally. In consideration of ease of matching with the load and handling, 500 kHz or less is preferable. By applying such a pulse electric field, the processing speed can be greatly improved.

また、上記パルス電界における1つのパルス継続時間は、200μs以下であることが好ましく、より好ましくは3〜200μsである。200μsを超えるとアーク放電に移行しやすくなる。ここで、1つのパルス継続時間とは、ON,OFFの繰り返しからなるパルス電界における、1つのパルスの連続するON時間を言う。   Moreover, it is preferable that one pulse duration in the said pulse electric field is 200 microseconds or less, More preferably, it is 3-200 microseconds. If it exceeds 200 μs, it tends to shift to arc discharge. Here, one pulse duration means a continuous ON time of one pulse in a pulse electric field composed of repetition of ON and OFF.

本発明においてプラズマ励起する反応ガスとしては、酸素、窒素または水素のいずれかのガスを用いる。また、プラズマ励起を行わない金属含有ガスとしては、TMOS(テトラメトキシシラン)またはTEOS(テトラエトキシシラン)などのSi系の有機金属ガス、TiCl、Ti(O−i−CなどのTi系のガス、あるいは、Al(CH、Al(O−i−C、Al(O−Sec−CなどのAl系のガスを挙げることができる。さらに、金属含有ガスにはキャリアガスとして、N、Ar等の不活性ガス、酸素、またはHOなどのガスを混合してもよい。 In the present invention, any of oxygen, nitrogen, and hydrogen is used as a reaction gas that is plasma-excited. The metal-containing gas is not performed plasma excitation, TMOS Si-based organometallic gas such as (tetramethoxysilane) or TEOS (tetraethoxysilane), TiCl 2, Ti (O -i-C 3 H 7) 4 Or Ti-based gas such as Al (CH 3 ) 3 , Al (Oi-C 3 H 7 ) 3 , Al (O-Sec-C 4 H 9 ) 3, etc. Can do. Furthermore, an inert gas such as N 2 or Ar, oxygen, or a gas such as H 2 O may be mixed with the metal-containing gas as a carrier gas.

本発明によると、電極間において直接大気圧下で放電を発生させることが可能であり、より単純化された電極構造、放電手順による大気圧プラズマ装置、及び処理手法でかつ高速処理を実現することができる。また、印加電界の周波数、電圧、電極間隔等のパラメータにより各薄膜に関するパラメータも調整できる。
さらに、印加電界の形状及び変調を含む周波数制御により選択励起が可能であり、特定化合物の成膜速度を選択的に向上させたり、不純物等の純度を制御することが可能である。
According to the present invention, it is possible to generate a discharge directly under atmospheric pressure between electrodes, and to realize a high-speed processing with a more simplified electrode structure, an atmospheric pressure plasma apparatus by a discharging procedure, and a processing technique. Can do. In addition, parameters relating to each thin film can be adjusted by parameters such as frequency, voltage, and electrode interval of the applied electric field.
Furthermore, selective excitation is possible by frequency control including the shape and modulation of the applied electric field, and the film formation rate of the specific compound can be selectively improved, and the purity of impurities and the like can be controlled.

本発明によれば、プラズマ空間を通過することにより活性種となった反応ガスに金属含有ガスを合流させ、この活性種と金属含有ガスが接触することにより反応して成膜が行われるので、金属含有ガスが成膜反応に効率的に使われ、電極付着物や不純物の発生を防ぐことができる。従って、金属含有薄膜を高い成膜速度で得ることができ、しかもメンテナンス間隔を長くすることができる。
プラズマ空間通過後の反応ガスと金属含有ガスとの合流ガスが基材の被処理面に沿って流れるガス流とすることで、合流したガスが混合する時間と反応に必要な時間が確保され、その反応は基材のすぐ側で行われるため、優先的に薄膜形成に消費されることになる。従って、金属含有ガスを無駄にせず、成膜速度を更に高めることができる。
According to the present invention, the metal-containing gas is merged with the reactive gas that has become an active species by passing through the plasma space, and the active species and the metal-containing gas are brought into contact with each other to form a film. A metal-containing gas is efficiently used for the film formation reaction, and electrode deposits and impurities can be prevented from being generated. Therefore, the metal-containing thin film can be obtained at a high film formation rate, and the maintenance interval can be lengthened.
By making the combined gas of the reaction gas and the metal-containing gas after passing through the plasma space flow along the to-be-treated surface of the substrate, the time required for mixing and the time required for the reaction is ensured, Since the reaction is performed on the immediate side of the substrate, it is preferentially consumed for forming a thin film. Therefore, the deposition rate can be further increased without wasting the metal-containing gas.

以下、本発明の実施形態及び特許請求しない参考実施形態を図面に基づいて説明する。   Embodiments of the present invention and non-claimed reference embodiments will be described below with reference to the drawings.

<参考実施形態1>
図1は本発明の参考実施形態の構成を模式的に示す図である。
<Reference Embodiment 1>
FIG. 1 is a diagram schematically showing a configuration of a reference embodiment of the present invention.

図1に示すプラズマCVD装置は、電圧印加電極2と接地電極3からなる対向電極1、対向平板4、電源6、反応ガス供給源7、金属含有ガス供給源8及び排気機構9などを備えている。   The plasma CVD apparatus shown in FIG. 1 includes a counter electrode 1 composed of a voltage application electrode 2 and a ground electrode 3, a counter flat plate 4, a power source 6, a reactive gas supply source 7, a metal-containing gas supply source 8, an exhaust mechanism 9, and the like. Yes.

対向電極1の電圧印加電極2と接地電極3とは、所定の間隔をあけて互いに平行となるように対向配置されており、これら一対の電極2,3間にプラズマ空間Pが形成される。電圧印加電極2及び接地電極3の各表面はそれぞれ固体誘電体(図示せず)によって被覆されている。   The voltage application electrode 2 and the ground electrode 3 of the counter electrode 1 are arranged to face each other at a predetermined interval so as to be parallel to each other, and a plasma space P is formed between the pair of electrodes 2 and 3. Each surface of the voltage application electrode 2 and the ground electrode 3 is covered with a solid dielectric (not shown).

対向電極1にはガス導入口1aとガス吹出口1bが設けられている。ガス導入口1aには反応ガス供給源7が接続されており、電圧印加電極2と接地電極3との間に反応ガスを供給することができる。なお、対向電極1を構成する電圧印加電極2及び接地電極3は長方形の平板電極であり、ガス吹出口1bの形状は紙面奥行き方向に細長い長方形となっている。   The counter electrode 1 is provided with a gas inlet 1a and a gas outlet 1b. A reaction gas supply source 7 is connected to the gas introduction port 1 a, and the reaction gas can be supplied between the voltage application electrode 2 and the ground electrode 3. The voltage application electrode 2 and the ground electrode 3 constituting the counter electrode 1 are rectangular plate electrodes, and the shape of the gas outlet 1b is a rectangle elongated in the depth direction of the drawing.

対向平板4は、対向電極1の接地電極3の側方に設けられている。対向平板4は、接地電極3に対して所定の間隔をあけて対向した状態で配置されており、この対向平板4と接地電極3との間にガス導入路5が形成されている。ガス導入路5には金属含有ガス供給源8からの金属含有ガスが供給され、供給された金属含有ガスは、ガス吹出口1bから吹き出されるプラズマ空間P通過後の反応ガスと合流するようになっている。   The counter flat plate 4 is provided on the side of the ground electrode 3 of the counter electrode 1. The counter flat plate 4 is disposed in a state of facing the ground electrode 3 with a predetermined interval, and a gas introduction path 5 is formed between the counter flat plate 4 and the ground electrode 3. The gas introduction path 5 is supplied with a metal-containing gas from a metal-containing gas supply source 8 so that the supplied metal-containing gas merges with the reaction gas after passing through the plasma space P blown from the gas outlet 1b. It has become.

対向平板4は、対向電極1の電圧印加電極2及び接地電極3と同一の形状(長方形)・寸法の平板であり、ガス導入路5の出口形状は対向電極1のガス吹出口1bと同様に紙面奥行き方向に細長い長方形となっている。なお、平行平板4は金属製または絶縁材料製のいずれであってもよい。   The counter flat plate 4 is a flat plate having the same shape (rectangle) and dimensions as the voltage application electrode 2 and the ground electrode 3 of the counter electrode 1, and the outlet shape of the gas introduction path 5 is the same as the gas outlet 1 b of the counter electrode 1. It is a long and narrow rectangle in the depth direction. The parallel plate 4 may be made of metal or insulating material.

排気機構9は、対向電極1の電圧印加電極2の側方に配置されており、対向電極1及び対向平板4と基材Sとの間のガスを同一方向(図1中左方)に強制的に排気する。排気機構9には例えばブロワー等が用いられる。 The exhaust mechanism 9 is disposed on the side of the voltage application electrode 2 of the counter electrode 1 and forces the gas between the counter electrode 1 and the counter flat plate 4 and the substrate S in the same direction (left side in FIG. 1). Exhaust. For example, a blower or the like is used for the exhaust mechanism 9.

そして、以上の構造のプラズマCVD装置において、対向電極1のガス吹出口1b及びガス導入路5の出口と対向する位置に基材Sを置き、次いで排気機構9によって対向電極1及び対向平板4と基材Sとの間を一方向に強制的に排気し、さらにガス導入路5に金属含有ガス供給源8からの金属含有ガス(例えばTMOS、TEOS等)を供給するとともに、電圧印加電極2と接地電極3との間に反応ガス供給源7から反応ガス(例えばO等)を供給する。この状態で、電圧印加電極2と接地電極3との間に電源6からの電界(パルス電界)を印加して電圧印加電極2と接地電極3との間にプラズマ空間Pを発生させ、反応ガスをプラズマ励起する。このプラズマ空間Pを通過した反応ガス(励起状態)及びガス導入路5を通過した金属含有ガスは基材Sに向けて吹き出す。ここで、この実施形態では排気機構9によって一方向に強制排気を行っているので、プラズマ空間Pを通過した反応ガスとガス導入路5から吹き出した金属含有ガスとの合流ガスは、均一に混合された状態で基材Sの被処理面に略平行なガス流となり、排気機構9の配置側(図1中左側)に向けて一方向に流れる。 In the plasma CVD apparatus having the above structure, the substrate S is placed at a position facing the gas outlet 1b of the counter electrode 1 and the outlet of the gas introduction path 5, and then the counter electrode 1 and the counter flat plate 4 are connected by the exhaust mechanism 9. The substrate S is forcibly evacuated in one direction, and further supplied with a metal-containing gas (for example, TMOS, TEOS, etc.) from the metal-containing gas supply source 8 to the gas introduction path 5, A reactive gas (for example, O 2 or the like) is supplied from a reactive gas supply source 7 to the ground electrode 3. In this state, an electric field (pulse electric field) from the power source 6 is applied between the voltage application electrode 2 and the ground electrode 3 to generate a plasma space P between the voltage application electrode 2 and the ground electrode 3, and the reaction gas Is excited by plasma. The reaction gas (excited state) that has passed through the plasma space P and the metal-containing gas that has passed through the gas introduction path 5 are blown out toward the substrate S. Here, in this embodiment, forced exhaust is performed in one direction by the exhaust mechanism 9, so the combined gas of the reaction gas that has passed through the plasma space P and the metal-containing gas blown out from the gas introduction path 5 is mixed uniformly. In this state, the gas flow is substantially parallel to the surface to be processed of the substrate S, and flows in one direction toward the arrangement side of the exhaust mechanism 9 (left side in FIG. 1).

このように、この形態によれば、プラズマ空間Pを通過することにより活性種となった反応ガスに金属含有ガスを合流させ、この活性種と金属含有ガスが接触することにより反応して成膜が行われるので、金属含有ガスが成膜反応に効率的に使われ、電極付着物や不純物の発生を防ぐことができる。従って、金属含有薄膜の成膜速度を産業上利用可能な速度にまで高めることができ、しかもメンテナンス間隔を長くすることできる。   Thus, according to this embodiment, the metal-containing gas is merged with the reactive gas that has become the active species by passing through the plasma space P, and the active species and the metal-containing gas react to contact each other to form a film. Therefore, the metal-containing gas is efficiently used for the film forming reaction, and the generation of electrode deposits and impurities can be prevented. Therefore, the deposition rate of the metal-containing thin film can be increased to an industrially usable rate, and the maintenance interval can be increased.

なお、図1に示すプラズマCVD装置では、放電空間Pと金属含有ガスのガス導入路5を平行にかつ基材Sの被処理面に垂直に配置したが、この構造に限られることなく、例えば、放電空間Pと金属含有ガスのガス導入路5とが角度を持って合流するようになされていたり、合流ガスが基材Sの被処理面に対して斜めに吹き付けられるような構造を採用してもよい。   In the plasma CVD apparatus shown in FIG. 1, the discharge space P and the gas introduction path 5 for the metal-containing gas are arranged in parallel and perpendicular to the surface to be processed of the substrate S. However, the present invention is not limited to this structure. The structure is such that the discharge space P and the gas introduction path 5 of the metal-containing gas are joined at an angle, or the joined gas is blown obliquely against the surface to be treated of the substrate S. May be.

<実施形態1>
図2は本発明の第1特徴に係る実施形態の構成を模式的に示す図である。
<Embodiment 1>
FIG. 2 is a diagram schematically showing the configuration of the embodiment according to the first feature of the present invention.

この実施形態では、図1の構成に加えて、対向平板40の側方にも排気機構10を配置するとともに、対向平板40の下部を基材Sの近傍にまで延出して、対向電極1の電圧印加電極2側の排気機構9による排気コンダクタンスに対して、対向平板40側の排気機構10による排気コンダクタンスを小さく(例えば1/4程度)にしたところに特徴がある。それ以外の構成は図1の形態と同様である。   In this embodiment, in addition to the configuration of FIG. 1, the exhaust mechanism 10 is also arranged on the side of the opposing flat plate 40, and the lower portion of the opposing flat plate 40 extends to the vicinity of the substrate S to It is characterized in that the exhaust conductance by the exhaust mechanism 10 on the opposed flat plate 40 side is made smaller (for example, about 1/4) than the exhaust conductance by the exhaust mechanism 9 on the voltage application electrode 2 side. The other structure is the same as that of the form of FIG.

この図2の実施形態によれば、対向電極1の電圧印加電極2側の排気コンダクタンスと対向平板40側の排気コンダクタンスを制御しているので、ガス導入路5に導入した金属含有ガスのほぼ全量を一方向(図2中左方)に流すことができる。すなわち、金属含有ガスと反応ガスの導入流量の合計流量と、基材Sに略平行に流れるガス流の流量を略同量とすることができる。しかも、外部からのガスの巻き込みがなくなるので、特に、不純物の混入を嫌う場合の成膜処理に適している。   According to the embodiment of FIG. 2, the exhaust conductance of the counter electrode 1 on the voltage application electrode 2 side and the exhaust conductance of the counter plate 40 side are controlled, so that almost the entire amount of the metal-containing gas introduced into the gas introduction path 5. Can flow in one direction (left side in FIG. 2). That is, the total flow rate of the introduction flow rates of the metal-containing gas and the reactive gas and the flow rate of the gas flow flowing substantially parallel to the substrate S can be made substantially the same amount. In addition, since no gas is trapped from the outside, it is particularly suitable for a film forming process in the case where mixing of impurities is disliked.

<参考実施形態2>
図3は本発明の別の参考実施形態の構成を模式的に示す図である。
<Reference Embodiment 2>
FIG. 3 is a diagram schematically showing the configuration of another reference embodiment of the present invention.

図3に示すプラズマCVD装置は、電圧印加電極12,22と接地電極13,23からなる2組の対向電極11,21、電源61,62、反応ガス供給源71,72、金属含有ガス供給源80及び排気機構91,92などを備えている。   The plasma CVD apparatus shown in FIG. 3 includes two sets of counter electrodes 11 and 21 composed of voltage application electrodes 12 and 22 and ground electrodes 13 and 23, power supplies 61 and 62, reaction gas supply sources 71 and 72, and a metal-containing gas supply source. 80, exhaust mechanisms 91 and 92, and the like.

各対向電極11,21の電圧印加電極12,22と接地電極13,23とは、所定の間隔をあけて互いに平行となるように対向配置されている。各電圧印加電極12,22及び各接地電極13,23の各表面はそれぞれ固体誘電体(図示せず)によって被覆されている。   The voltage application electrodes 12 and 22 and the ground electrodes 13 and 23 of each of the counter electrodes 11 and 21 are disposed to face each other with a predetermined distance therebetween. Each surface of each voltage application electrode 12, 22 and each ground electrode 13, 23 is covered with a solid dielectric (not shown).

対向電極11の電圧印加電極12と接地電極13との間(プラズマ空間P1)には反応ガス供給源71からの反応ガスが供給される。また、対向電極21の電圧印加電極22と接地電極23との間(プラズマ空間P2)には反応ガス供給源72からの反応ガスが供給される。   A reactive gas from a reactive gas supply source 71 is supplied between the voltage applying electrode 12 and the ground electrode 13 of the counter electrode 11 (plasma space P1). A reactive gas from a reactive gas supply source 72 is supplied between the voltage applying electrode 22 and the ground electrode 23 of the counter electrode 21 (plasma space P2).

対向電極11と対向電極21とは、電圧印加電極12、22と接地電極13,23との配置が左右対称な構造(接地電極13,23が内側)となっている。また、対向電極11の接地電極13と対向電極21の接地電極23とは、所定の間隔をあけて対向した状態で配置されており、これら2枚の接地電極13,23の間にガス導入路50が形成されている。ガス導入路50には金属含有ガス供給源80からの金属含有ガスが供給される。   The counter electrode 11 and the counter electrode 21 have a structure in which the voltage application electrodes 12 and 22 and the ground electrodes 13 and 23 are symmetrically arranged (the ground electrodes 13 and 23 are inside). In addition, the ground electrode 13 of the counter electrode 11 and the ground electrode 23 of the counter electrode 21 are arranged in a state of facing each other with a predetermined interval, and a gas introduction path is provided between the two ground electrodes 13 and 23. 50 is formed. A metal-containing gas from a metal-containing gas supply source 80 is supplied to the gas introduction path 50.

排気機構91,92は、2組の対向電極11,21を挟んだ両側にそれぞれがガス導入路50の中心軸に関して線対称となる位置に配置されており、対向電極11側(図3中左側)の排気コンダクタンスと、対向電極21側(図3中右側)の排気コンダクタンスとが同じとなるように構成されている。各排気機構91,92には例えばブロワー等が用いられる。   The exhaust mechanisms 91 and 92 are disposed on both sides of the two pairs of counter electrodes 11 and 21 at positions that are line-symmetric with respect to the central axis of the gas introduction path 50, and are on the counter electrode 11 side (left side in FIG. 3). ) And the exhaust conductance on the counter electrode 21 side (right side in FIG. 3) are the same. For each exhaust mechanism 91, 92, for example, a blower or the like is used.

そして、以上の構造のプラズマCVD装置において、2組の対向電極11,21の先端(吹出口)と対向する位置に基材Sを置き、次いで2台の排気機構91,92による強制排気を行い、さらにガス導入路50に金属含有ガス供給源80からの金属含有ガス(例えばTMOS、TEOS等)を供給するとともに、対向電極11の電圧印加電極12と接地電極13との間及び対向電極21の電圧印加電極22と接地電極23との間にそれぞれ反応ガス供給源71,72から反応ガス(例えばO等)を供給する。 In the plasma CVD apparatus having the above-described structure, the base material S is placed at a position facing the tips (blowers) of the two pairs of counter electrodes 11 and 21, and then forced exhaust is performed by the two exhaust mechanisms 91 and 92. Further, a metal-containing gas (for example, TMOS, TEOS, etc.) from the metal-containing gas supply source 80 is supplied to the gas introduction path 50, and between the voltage applying electrode 12 and the ground electrode 13 of the counter electrode 11, and between the counter electrode 21 and A reactive gas (such as O 2 ) is supplied from the reactive gas supply sources 71 and 72 between the voltage application electrode 22 and the ground electrode 23, respectively.

この状態で、各対向電極11,21にそれぞれ電源61,62からの電界(パルス電界)を印加して、電圧印加電極12と接地電極13との間及び電圧印加電極22と接地電極23との間にプラズマ空間P1,P2を発生させて、各反応ガスをプラズマ励起する。その各プラズマ空間P1、P2を通過した反応ガス(励起状態)及びガス導入路50を通過した金属含有ガスは、各吹出口から基材Sに向けて吹き出す。ここで、この実施形態では、装置構成及び排気コンダクタンスを左右対称としているので、プラズマ空間P1及びP2を通過し、ガス吹出口11b,21bから吹き出した各反応ガスのガス流のそれぞれに対し、ガス導入路50から吹き出した分流ガス(金属含有ガスの分流ガス)の流れが混合して、基材Sの被処理面に対して略平行なガス流を形成する。しかも、プラズマ空間P1を通過した反応ガスとガス金属含有ガスの混合流(図3中左方へのガス流)と、プラズマ空間P2を通過した反応ガスとガス金属含有ガスの混合流(図3中右方へのガス流)とは等価の状態となるので、高い成膜速度を安定して得ることができる。   In this state, an electric field (pulse electric field) from the power source 61 or 62 is applied to each of the counter electrodes 11 and 21, respectively, and between the voltage applying electrode 12 and the ground electrode 13 and between the voltage applying electrode 22 and the ground electrode 23. Plasma spaces P1 and P2 are generated therebetween to excite each reactive gas. The reaction gas (excited state) that has passed through each of the plasma spaces P1 and P2 and the metal-containing gas that has passed through the gas introduction path 50 are blown out toward the substrate S from each outlet. Here, in this embodiment, since the apparatus configuration and the exhaust conductance are symmetrical, the gas flows for the respective gas flows of the respective reaction gases that pass through the plasma spaces P1 and P2 and are blown out from the gas outlets 11b and 21b. The flow of the shunt gas (a shunt gas of the metal-containing gas) blown out from the introduction path 50 is mixed to form a gas flow substantially parallel to the surface to be processed of the substrate S. Moreover, the mixed flow of the reaction gas and the gas metal-containing gas that has passed through the plasma space P1 (the gas flow to the left in FIG. 3), and the mixed flow of the reaction gas and the gas metal-containing gas that has passed through the plasma space P2 (see FIG. 3). Therefore, a high film formation rate can be stably obtained.

なお、図3に示す構造では、2台の排気機構91,92によって強制排気を行っているが、各対向電極11,21に導入する反応ガスのガス流量を同一とすれば、強制排気の有無及びガス導入路50に導入する金属含有ガスのガス流量に関係なく、プラズマ空間P1を通過した反応ガスとガス金属含有ガスの混合流(図3中左方へのガス流)と、プラズマ空間P2を通過した反応ガスとガス金属含有ガスの混合流(図3中右方へのガス流)との等価状態を実現することができる。   In the structure shown in FIG. 3, forced exhaust is performed by the two exhaust mechanisms 91 and 92. However, if the gas flow rates of the reaction gases introduced into the counter electrodes 11 and 21 are the same, whether or not forced exhaust is present. Regardless of the gas flow rate of the metal-containing gas introduced into the gas introduction path 50, the mixed flow of the reaction gas and the gas metal-containing gas that has passed through the plasma space P1 (the gas flow to the left in FIG. 3), and the plasma space P2 It is possible to realize an equivalent state of the mixed gas (gas flow to the right in FIG. 3) of the reaction gas and the gas metal-containing gas that has passed through.

<実施形態2>
図4は本発明の第2特徴に係る実施形態の構成を模式的に示す図である。
<Embodiment 2>
FIG. 4 is a diagram schematically showing the configuration of the embodiment according to the second feature of the present invention.

この実施形態では、図3の構成に加えて、対向電極11,21の下端(ガス吹出側)にガス整流板31を設けたところに特徴がある。   This embodiment is characterized in that a gas rectifying plate 31 is provided at the lower end (gas blowing side) of the counter electrodes 11 and 21 in addition to the configuration of FIG.

このようにガス整流板31を設けておけば、反応ガスと金属含有ガスとの合流ガスの混合均一性及び方向性が向上し、さらにガス流の乱れも低減することができるので、金属含有薄膜の膜質及び成膜速度をより一層高めることができる。なお、このようなガス整流板を設ける場合、ガス整流板31としてセラミック多孔板を用い、その多孔板表面からNガスを吹き出すことで、ガス整流板31への膜の付着を防止しておくことが好ましい。 If the gas rectifying plate 31 is provided in this way, the mixing uniformity and directionality of the combined gas of the reaction gas and the metal-containing gas can be improved, and further, the turbulence of the gas flow can be reduced. The film quality and the film formation speed can be further improved. When such a gas rectifying plate is provided, a ceramic porous plate is used as the gas rectifying plate 31, and N 2 gas is blown out from the surface of the porous plate to prevent adhesion of the film to the gas rectifying plate 31. It is preferable.

ここで、以上の各形態においては、基材Sを各図の左右方向(対向電極のプラズマ空間と直交する方向)に搬送しながらプラズマCVD処理を行う。   Here, in each above-mentioned form, plasma CVD processing is performed, conveying base material S in the horizontal direction (direction orthogonal to the plasma space of a counter electrode) of each figure.

以下、本発明の実施例及び特許請求しない参考実施例を比較例とともに説明する。   Examples of the present invention and non-claimed reference examples will be described below together with comparative examples.

<参考実施例1>
図1のプラズマCVD装置において、電圧印加電極2(SUS304製:幅250mm×長さ50mm×厚み20mm、固体誘電体:アルミナ)と接地電極3(SUS304製:幅250mm×長さ50mm×厚み20mm、固体誘電体:アルミナ)とを1mmの間隔(プラズマ空間P)をあけて配置した。また、接地電極3に対して対向平板4(SUS304製:幅250mm×長さ50mm×厚み20mm)を1mmの間隔をあけて配置してガス導入路5を形成した。
・処理条件
反応ガス:O=5SLM
原料ガス:TEOS=0.2g/min、N=10SLM
基材:Siウェーハ(8inch)
基材−電極間距離=4mm
印加電界:5kHz、15kVのパルス電界(パルス幅10μs)
基材の搬送速度:200mm/min
基材温度:350℃
以上の装置構成・条件にて、基材Sの表面に成膜を行ったところ、膜厚1000Å(成膜速度=1000Å/min)のSiO膜を得ることができた。
<Reference Example 1>
In the plasma CVD apparatus of FIG. 1, the voltage application electrode 2 (made of SUS304: width 250 mm × length 50 mm × thickness 20 mm, solid dielectric: alumina) and the ground electrode 3 (made of SUS304: width 250 mm × length 50 mm × thickness 20 mm, A solid dielectric (alumina) was arranged with a 1 mm gap (plasma space P). Further, the gas introduction path 5 was formed by disposing an opposing flat plate 4 (manufactured by SUS304: width 250 mm × length 50 mm × thickness 20 mm) at an interval of 1 mm with respect to the ground electrode 3.
・ Processing conditions Reaction gas: O 2 = 5 SLM
Source gas: TEOS = 0.2 g / min, N 2 = 10 SLM
Base material: Si wafer (8 inch)
Base-electrode distance = 4 mm
Applied electric field: 5 kHz, 15 kV pulse electric field (pulse width 10 μs)
Substrate transport speed: 200 mm / min
Substrate temperature: 350 ° C
When film formation was performed on the surface of the substrate S with the above apparatus configuration and conditions, an SiO 2 film having a film thickness of 1000 mm (film formation rate = 1000 kg / min) could be obtained.

<実施例1>
図2のプラズマCVD装置において、対向平板40の下端面と基材Sとの間の距離を0.5mmとし、電圧印加電極2側の排気機構9による排気コンダクタンスに対して、対向平板40側の排気機構10による排気コンダクタンスを1/4にした。それ以外の構成及び成膜条件は参考実施例1と同じとして、基材Sの表面に成膜を行ったところ、膜厚1000Å(成膜速度=1000Å/min)のSiO膜を得ることができた。
<Example 1>
In the plasma CVD apparatus of FIG. 2, the distance between the lower end surface of the opposing flat plate 40 and the substrate S is 0.5 mm, and the exhaust conductance by the exhaust mechanism 9 on the voltage application electrode 2 side is on the opposing flat plate 40 side. The exhaust conductance by the exhaust mechanism 10 was reduced to ¼. Other configurations and film forming conditions are the same as in Reference Example 1, and when a film is formed on the surface of the substrate S, a SiO 2 film having a film thickness of 1000 mm (film forming speed = 1000 mm / min) can be obtained. did it.

<参考実施例2>
図3のプラズマCVD装置において、各電圧印加電極12,22(SUS304製:幅250mm×長さ50mm×厚み20mm、固体誘電体:アルミナ)と各接地電極13,23(SUS304製:幅250mm×長さ50mm×厚み20mm、固体誘電体:アルミナ)とを1mmの間隔(プラズマ空間P1,P2)をあけて配置した。また、2枚の接地電極13,23を1mmの間隔をあけて配置してガス導入路50を形成した。
・処理条件
反応ガス:O=10SLM(プラズマ空間P1)、O=10SLM(プラズマ空間P2)
原料ガス:TEOS=0.2g/min、N=10SLM
基材:Siウェーハ(8inch)
基材−電極間距離=4mm
印加電界:5kHz、15kVのパルス電界(パルス幅10μs)
基材の搬送速度:200mm/min
基材温度:350℃
以上の装置構成・条件にて、基材Sの表面に成膜を行ったところ、約700Å/minの成膜速度でSiO膜を得ることができた。また、印加電界の放電周波数を変更(0〜6kHz)して成膜を行った。その成膜結果(放電周波数と成膜速度の関係)を図6に示す。
<Reference Example 2>
In the plasma CVD apparatus of FIG. 3, each voltage application electrode 12 and 22 (SUS304: width 250 mm × length 50 mm × thickness 20 mm, solid dielectric: alumina) and each ground electrode 13 and 23 (SUS304: width 250 mm × length) 50 mm × 20 mm in thickness, solid dielectric: alumina) were arranged with an interval of 1 mm (plasma spaces P1, P2). In addition, the gas introduction path 50 was formed by arranging the two ground electrodes 13 and 23 at an interval of 1 mm.
Processing conditions Reaction gas: O 2 = 10 SLM (plasma space P1), O 2 = 10 SLM (plasma space P2)
Source gas: TEOS = 0.2 g / min, N 2 = 10 SLM
Base material: Si wafer (8 inch)
Base-electrode distance = 4 mm
Applied electric field: 5 kHz, 15 kV pulse electric field (pulse width 10 μs)
Substrate transport speed: 200 mm / min
Substrate temperature: 350 ° C
When a film was formed on the surface of the substrate S with the above apparatus configuration and conditions, a SiO 2 film could be obtained at a film formation rate of about 700 Å / min. Further, the film was formed by changing the discharge frequency of the applied electric field (0 to 6 kHz). The film formation results (relationship between discharge frequency and film formation rate) are shown in FIG.

<比較例1>
図5に示すように、排気機構を設けていないプラズマCVD装置を用いた。それ以外の装置構成・成膜条件は実施例1と同じとして、基材Sの表面に成膜を行ったところ、約500Å/minの成膜速度でSiO膜を得ることができた。また、印加電界の放電周波数を変更(0〜5kHz)して成膜を行ったところ、図7に示すような成膜結果(放電周波数と成膜速度の関係)が得られた。
<Comparative Example 1>
As shown in FIG. 5, a plasma CVD apparatus without an exhaust mechanism was used. The other apparatus configuration and film formation conditions were the same as in Example 1, and when a film was formed on the surface of the substrate S, a SiO 2 film could be obtained at a film formation rate of about 500 Å / min. Further, when the film was formed by changing the discharge frequency of the applied electric field (0 to 5 kHz), a film formation result (relationship between the discharge frequency and the film formation rate) as shown in FIG. 7 was obtained.

<参考実施例2と比較例1の比較>
比較例1(従来型のプラズマCVD装置)では、成膜速度が約500Å/minが限界であったのが、参考実施例2(図3のプラズマCVD装置)では、約700Å/minまで成膜速度が増加している。また、比較例1では、放電周波数を上げると、気層反応が進みすぎて成膜速度が低下する現象が見られるが、参考実施例2では、そのような現象は見当たらない。なお、参考実施例2において、原料ガス(金属含有ガス)の濃度を高めるとともに、放電条件を最適化することで、5000〜10000Å/minの高い成膜速度が得られることも判明した。
<Comparison between Reference Example 2 and Comparative Example 1>
In Comparative Example 1 (conventional plasma CVD apparatus), the film forming speed was limited to about 500 Å / min, but in Reference Example 2 (plasma CVD apparatus in FIG. 3), film formation was up to about 700 Å / min. The speed is increasing. Further, in Comparative Example 1, when the discharge frequency is increased, a phenomenon in which the gas-phase reaction proceeds excessively and the film formation rate decreases is observed, but in Reference Example 2, such a phenomenon is not found. In Reference Example 2, it was also found that by increasing the concentration of the source gas (metal-containing gas) and optimizing the discharge conditions, a high film formation rate of 5000 to 10000 Å / min can be obtained.

本発明の参考実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of reference embodiment of this invention. 本発明の第1特徴に係る実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of embodiment which concerns on the 1st characteristic of this invention. 本発明の別の参考実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of another reference embodiment of this invention. 本発明の第2特徴に係る実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of embodiment which concerns on the 2nd characteristic of this invention. 本発明の比較例に用いる装置構成を模式的に示す図である。It is a figure which shows typically the apparatus structure used for the comparative example of this invention. 本発明の参考実施例2の成膜結果を示す図で成膜速度と放電周波数との関係を示すグラフである。It is a figure which shows the film-forming result of the reference example 2 of this invention, and is a graph which shows the relationship between the film-forming speed | rate and discharge frequency. 本発明の比較例の成膜結果を示す図で成膜速度と放電周波数との関係を示すグラフである。It is a figure which shows the film-forming result of the comparative example of this invention, and is a graph which shows the relationship between the film-forming speed | rate and discharge frequency.

符号の説明Explanation of symbols

1 対向電極
1a ガス導入口
1b ガス吹出口
2 電圧印加電極
3 接地電極
P プラズマ空間
4,40 対向平板
5 ガス導入路
6 電源
7 反応ガス供給源
8 金属含有ガス供給源
9,10 排気機構
11,21 対向電極
11b,21b ガス吹出口
12,22 電圧印加電極
13,23 接地電極
P1,P2 プラズマ空間
31 ガス整流板
50 ガス導入路
61,62 電源
71,72 反応ガス供給源
80 金属含有ガス供給源
91,92 排気機構
DESCRIPTION OF SYMBOLS 1 Counter electrode 1a Gas inlet 1b Gas outlet 2 Voltage application electrode 3 Ground electrode P Plasma space 4,40 Opposite flat plate 5 Gas introduction path 6 Power supply 7 Reactive gas supply source 8 Metal-containing gas supply source 9, 10 Exhaust mechanism 11, 21 Counter electrode 11b, 21b Gas outlet 12, 22 Voltage application electrode 13, 23 Ground electrode P1, P2 Plasma space 31 Gas rectifying plate 50 Gas introduction path 61, 62 Power source 71, 72 Reactive gas supply source 80 Metal-containing gas supply source 91, 92 Exhaust mechanism

Claims (2)

金属含有ガスとその金属含有ガスと反応する反応ガスを用いるプラズマCVD装置であって、常圧でプラズマ空間を発生させる電極と、そのプラズマ空間に反応ガスを供給する反応ガス供給源と、前記プラズマ空間を通過した反応ガスの吹出口近傍に金属含有ガスを供給する金属含有ガス供給源と、前記プラズマ空間を通過した反応ガスと金属含有ガスの合流ガスが流れる方向を排気制御する排気機構を備え、前記排気機構が前記合流個所の両側に配置されており、その合流個所から排気機構に至る合流ガス流路のうち、プラズマ空間に遠い側の流路のコンダクタンスが小さくなるように構成されていることを特徴とするプラズマCVD装置。   A plasma CVD apparatus using a metal-containing gas and a reactive gas that reacts with the metal-containing gas, an electrode that generates a plasma space at normal pressure, a reactive gas supply source that supplies the reactive gas to the plasma space, and the plasma A metal-containing gas supply source that supplies a metal-containing gas in the vicinity of a reaction gas outlet that has passed through the space, and an exhaust mechanism that performs exhaust control of the direction in which the combined gas of the reaction gas and the metal-containing gas passes through the plasma space The exhaust mechanism is arranged on both sides of the merge point, and the conductance of the flow channel far from the plasma space among the merge gas channels from the merge point to the exhaust mechanism is configured to be small. A plasma CVD apparatus characterized by that. 金属含有ガスとその金属含有ガスと反応する反応ガスを用いるプラズマCVD装置であって、常圧でプラズマ空間を発生させる2組の電極と、各々のプラズマ空間に反応ガスを供給する反応ガス供給源と、前記2つのプラズマ空間を通過した反応ガスが吹き出される2つの吹出口の間に金属含有ガスを供給する金属含有ガス供給源と、前記吹き出された後の反応ガスと前記金属含有ガスとの合流ガスの流路を被処理面に沿うよう形成するガス整流板を備え、前記ガス整流板が前記2組の電極すべての前記被処理面を向く面に被さり、かつ前記2組の電極のうち両外側に配置された電極より前記ガス整流板の両端部が外側へ突出し、前記2つの反応ガスの吹出口から前記合流ガスの流路を隔てた両側であって前記ガス整流板の両端部より更に外側に排気機構がそれぞれ配置されていることを特徴とするプラズマCVD装置。   A plasma CVD apparatus using a metal-containing gas and a reactive gas that reacts with the metal-containing gas, two sets of electrodes that generate a plasma space at normal pressure, and a reactive gas supply source that supplies the reactive gas to each plasma space A metal-containing gas supply source that supplies a metal-containing gas between two outlets from which the reaction gas that has passed through the two plasma spaces is blown out, and the blown-out reaction gas and the metal-containing gas A gas rectifying plate that forms a flow path of the combined gas along the surface to be processed, the gas rectifying plate covering all surfaces of the two sets of electrodes facing the processing surface, and the two sets of electrodes Both ends of the gas rectifying plate protrude outward from the electrodes disposed on both outer sides, and both ends of the gas flow rectifying plate that are separated from the two reaction gas outlets by the flow path of the combined gas. Even more outside Plasma CVD apparatus characterized by exhaust mechanism is arranged to.
JP2008212432A 2008-08-21 2008-08-21 Plasma CVD equipment Expired - Lifetime JP4783409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212432A JP4783409B2 (en) 2008-08-21 2008-08-21 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212432A JP4783409B2 (en) 2008-08-21 2008-08-21 Plasma CVD equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002197780A Division JP4231250B2 (en) 2002-06-01 2002-07-05 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2009021615A true JP2009021615A (en) 2009-01-29
JP4783409B2 JP4783409B2 (en) 2011-09-28

Family

ID=40360913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212432A Expired - Lifetime JP4783409B2 (en) 2008-08-21 2008-08-21 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP4783409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202232A (en) * 2010-03-25 2011-10-13 Panasonic Electric Works Co Ltd Film deposition apparatus
JP2014002936A (en) * 2012-06-19 2014-01-09 Air Water Inc Device and method for atmospheric pressure plasma treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388224B1 (en) * 2011-12-21 2014-04-23 주식회사 케이씨텍 Deposition apparatus providing direct palsma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202232A (en) * 2010-03-25 2011-10-13 Panasonic Electric Works Co Ltd Film deposition apparatus
JP2014002936A (en) * 2012-06-19 2014-01-09 Air Water Inc Device and method for atmospheric pressure plasma treatment

Also Published As

Publication number Publication date
JP4783409B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5328685B2 (en) Plasma processing apparatus and plasma processing method
US10056233B2 (en) RPS assisted RF plasma source for semiconductor processing
WO2003107409A1 (en) Oxide film forming method and oxide film forming apparatus
TWI660420B (en) Enhanced etching processes using remote plasma sources
JP5025614B2 (en) Atmospheric pressure plasma treatment method
JP2005142448A (en) Surface wave excitation plasma cvd device
KR101913978B1 (en) Radical gas generation system
JP6339218B2 (en) Gas injection device for film forming equipment
JP4231250B2 (en) Plasma CVD equipment
JP4783409B2 (en) Plasma CVD equipment
JPH02281734A (en) Treating method of surface by plasma
JP2008262781A (en) Atmosphere control device
JP2005174879A (en) Plasma processing method and plasma processing apparatus
JP4546675B2 (en) Multistage discharge plasma processing method and apparatus
JP5911507B2 (en) Plasma or ozone generation system and plasma or ozone generation method
JP3846303B2 (en) Surface treatment apparatus and surface treatment method
JP2006318762A (en) Plasma process device
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP4420116B2 (en) Plasma processing apparatus and plasma processing method
JP2012019024A (en) Atmospheric-pressure plasma treatment apparatus
JP4294932B2 (en) Oxide film forming method and oxide film forming apparatus
JP3962305B2 (en) Plasma processing equipment
JP4394939B2 (en) Plasma deposition system
JP2006351367A (en) Atmospheric pressure plasma treatment device
JP2004176119A (en) Thin film deposition method by atmospheric pressure plasma cvd, and atmospheric pressure plasma cvd system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4783409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

EXPY Cancellation because of completion of term