JP2009021581A - Buried copper plating method for manufacturing printed circuit board and printed circuit board obtained employing the buried copper plating method - Google Patents

Buried copper plating method for manufacturing printed circuit board and printed circuit board obtained employing the buried copper plating method Download PDF

Info

Publication number
JP2009021581A
JP2009021581A JP2008157287A JP2008157287A JP2009021581A JP 2009021581 A JP2009021581 A JP 2009021581A JP 2008157287 A JP2008157287 A JP 2008157287A JP 2008157287 A JP2008157287 A JP 2008157287A JP 2009021581 A JP2009021581 A JP 2009021581A
Authority
JP
Japan
Prior art keywords
copper plating
embedded
buried
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008157287A
Other languages
Japanese (ja)
Other versions
JP5247252B2 (en
Inventor
Isao Wada
勲 和田
Takeshi Onishi
健 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2008157287A priority Critical patent/JP5247252B2/en
Publication of JP2009021581A publication Critical patent/JP2009021581A/en
Application granted granted Critical
Publication of JP5247252B2 publication Critical patent/JP5247252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method for burying the inside of a through hole and a via hole employing electrolytic method or buried plating method excellent in production cost and reduced in positional deviation between the surface of the buried metal plating layer and the surface of external layer of the printed circuit. <P>SOLUTION: The buried copper plating method for manufacturing the printed circuit board, which comprises two-stage plating process consisting of a first buried copper plating process and a second buried copper plating process while copper plating solution, having the same composition, is employed in the first buried copper plating process and the second buried copper plating process, in the buried copper plating method wherein the inside of the via hole or the through hole equipped with a conductive film is buried through electric plating method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本件発明は、プリント配線板製造用の埋設銅めっき方法及びその埋設銅めっき方法を用いて得られるプリント配線板に関する。   The present invention relates to a buried copper plating method for producing a printed wiring board and a printed wiring board obtained by using the buried copper plating method.

近年の電子機器、電気製品には、小型化、高性能化、多機能化等が求められる。従って、これらの製品の電気的な信号及び電源の制御に用いられるプリント配線板にも、小型化が求められる。そして、プリント配線板の小型化に際しては、信号伝達速度の高速化の要求を同時に満足させるという観点から、多層プリント配線板の採用が行われてきた。   In recent years, electronic devices and electric products are required to be small in size, high in performance, and multifunctional. Therefore, miniaturization is also required for printed wiring boards used for controlling electrical signals and power of these products. Then, when the printed wiring board is downsized, a multilayer printed wiring board has been adopted from the viewpoint of simultaneously satisfying the demand for higher signal transmission speed.

この多層プリント配線板は、3層以上の回路層が絶縁樹脂層を介して積層された状態のものである。このような積層した状態にある多層プリント配線板の回路層同士の導通を確保するためには、特許文献1に開示されているようなスルーホール、特許文献2に開示されているようなビアホール等を層間導通手段として用いてきた。   This multilayer printed wiring board is in a state where three or more circuit layers are laminated via an insulating resin layer. In order to ensure electrical connection between circuit layers of the multilayer printed wiring board in such a laminated state, a through hole as disclosed in Patent Document 1, a via hole as disclosed in Patent Document 2, and the like Has been used as an interlayer conduction means.

このスルーホール及びビアホールのような層間導通手段は、プリント配線板の絶縁樹脂層を貫通した孔であったり、所謂ブラインドビアホールのような凹部形状の穴であり、少なくとも、その内壁面に層間導通めっき層を形成する。この層間導通めっき層は、めっき前のスルーホール及びビアホールの内壁面が導電性の無い絶縁樹脂層が露出しているため、無電解めっき、電解めっきの順にめっきして形成される。   The interlayer conduction means such as through holes and via holes are holes penetrating through the insulating resin layer of the printed wiring board, or recess-shaped holes such as so-called blind via holes, and at least the inner wall surface of the interlayer conduction plating Form a layer. This interlayer conductive plating layer is formed by plating in the order of electroless plating and electrolytic plating because the insulating resin layer having no conductivity is exposed on the inner wall surfaces of the through holes and via holes before plating.

スルーホール及びビアホールは、重なり合った回路面同士の導通が確保できれば要求機能として足りる。従って、上記層間導通めっきは、一般的に、スルーホール及びビアホールの内壁面に導体層を形成し、そのスルーホール及びビアホールの内部を埋設できる程度には行われない。ところが、層間導通めっき後にスルーホール及びビアホールの内部が空洞であると、層間導通めっき後に行う外層導電層のエッチング加工を行う際のエッチングレジストの張り合わせがスルーホール及びビアホールのホール周囲で不均一になったり、スルーホール及びビアホールの部位に部品実装することができずプリント配線板の小型化にも限界が生じてくる。   The through hole and the via hole are sufficient as required functions as long as conduction between the overlapping circuit surfaces can be secured. Therefore, the interlayer conductive plating is generally not performed to such an extent that a conductor layer is formed on the inner wall surfaces of the through holes and via holes, and the insides of the through holes and via holes can be embedded. However, if the insides of the through holes and via holes are hollow after the interlayer conductive plating, the bonding of the etching resist when performing the etching process of the outer conductive layer after the interlayer conductive plating becomes uneven around the through holes and via holes. In addition, it is impossible to mount components on the through holes and via holes, and there is a limit to downsizing of the printed wiring board.

そこで、スルーホール及びビアホールの内部空隙を埋設する方法が採用されてきた。例えば、特許文献3には、平坦化された多層配線層を形成する方法として、スルーホール底部の第1配線層及びレジストマスク上に触媒を蒸着して、レジストマスクをレジストマスク上の触媒とともに除去したため、スルーホール底部の材質に関わらずスルーホール底部の表面を活性化することができるため、スルーホール内に無電解メッキ法によってメッキを埋め込み、メッキ層を形成することが開示されている。この結果、段差のない平坦な多層配線層を形成することができ、各層の段差における段切れを防いで、良好な層間接続を得ることをできるとしている。   Therefore, a method of burying internal voids of through holes and via holes has been adopted. For example, in Patent Document 3, as a method of forming a flattened multilayer wiring layer, a catalyst is deposited on the first wiring layer and the resist mask at the bottom of the through hole, and the resist mask is removed together with the catalyst on the resist mask. For this reason, since the surface of the bottom of the through hole can be activated regardless of the material of the bottom of the through hole, it is disclosed that plating is embedded in the through hole by an electroless plating method to form a plating layer. As a result, it is possible to form a flat multilayer wiring layer having no step, prevent disconnection at the step of each layer, and obtain a good interlayer connection.

また、特許文献4には、配線板両面を導通させるスルーホールと実装用ランドが同じ個所にあり、実装面積の大きい割安なプリント配線板を提供することを目的に、両面銅張積層板に設けたスルーホール孔に導電性インクを埋設してこれを所定の条件により硬化させた後、前記両面銅張積層板の両面に電解銅メッキを施して銅メッキ層を形成し、しかる後硬化した前記導電インクの直上に部品装着用ランドが設置される回路を、ドライフィルム又はその他の回路形成用インクを用いて前記銅メッキ層上に描き、エッチング等により回路を形成する方法を採用している。   Further, in Patent Document 4, a through-hole that conducts both sides of a wiring board and a mounting land are provided at the same location, and is provided on a double-sided copper-clad laminate for the purpose of providing a cheap printed wiring board having a large mounting area. After the conductive ink was embedded in the through-hole holes and cured under predetermined conditions, electrolytic copper plating was performed on both sides of the double-sided copper-clad laminate to form a copper plating layer, and then the cured A method is employed in which a circuit in which a component mounting land is installed immediately above the conductive ink is drawn on the copper plating layer using a dry film or other circuit forming ink, and the circuit is formed by etching or the like.

更に、特許文献5には、アスペクト比の大きな小径のビアホール内も良好に銅めっきで埋めることができるビアフィリングめっき方法を提供することを目的として、基板の絶縁層表面およびビアホールの底面を含む壁面に銅皮膜を形成する銅皮膜形成工程と、めっき促進剤が添加された水溶液中に、銅皮膜が形成された基板を浸漬して、銅皮膜表面にめっき促進剤を付着させる浸漬工程と、ビアホールの底面を含む内壁面を除く銅皮膜表面に付着しためっき促進剤を除去する剥離工程と、剥離工程の後、絶縁層表面に形成された銅皮膜およびビアホールの底面を含む壁面に形成された銅皮膜上に電解銅めっきを施してビアホール内にめっき金属を充填する電解銅めっき工程とを含むことを特徴とする方法を採用している。   Further, in Patent Document 5, a wall surface including an insulating layer surface of a substrate and a bottom surface of the via hole is provided for the purpose of providing a via filling plating method capable of satisfactorily filling a small-diameter via hole having a large aspect ratio with copper plating. A copper film forming step for forming a copper film on the substrate, a dipping process for immersing the substrate on which the copper film is formed in an aqueous solution to which a plating accelerator is added, and attaching the plating accelerator to the surface of the copper film; A peeling process to remove the plating accelerator adhering to the surface of the copper film excluding the inner wall surface including the bottom surface of the copper, and a copper film formed on the insulating film surface and the wall surface including the bottom surface of the via hole after the peeling process A method characterized by including an electrolytic copper plating step of applying electrolytic copper plating on the film and filling the via hole with a plating metal.

特開平5−166939号公報JP-A-5-166939 特開平5−218618号公報JP-A-5-218618 特開2001−291954号公報Japanese Patent Laid-Open No. 2001-291554

しかしながら、上記特許文献3〜特許文献5に開示の発明には、以下に述べるような問題点がある。   However, the inventions disclosed in Patent Documents 3 to 5 have the following problems.

特許文献3に開示の発明では、スルーホール内の埋め込まれた状態のメッキ層の形成に無電解メッキ法を採用している。この無電解メッキ法は、通電を行わないためコスト的に優れているが、スルーホール内への埋め込みメッキを行うには、電解法に比べて時間を要するため、生産性に優れた方法ではない。また、無電解めっき法で形成された埋め込みめっき層の表面を、プリント配線の外層表面の位置から5μm以内の深さ方向のズレとして制御した埋め込みめっき層を形成することが困難である。従って、この埋め込みめっき後に外層にエッチングレジスト層を設けると、窪んだ場合の埋め込みめっき層部でエッチングレジスト層が浮いた状態になり、エッチングレジストパターンを形成するための露光時に露光ボケが生じやすくなるため、ファインピッチ回路の形成が困難となる。しかも、スルーホール部の深さ方向のズレが5μmを超えると、スルーホールの埋め込みめっき表面を部品実装ランドとして使用することも不可能になる。   In the invention disclosed in Patent Document 3, an electroless plating method is used to form a plating layer embedded in a through hole. This electroless plating method is superior in cost because it does not energize, but is not a method with excellent productivity because it requires more time to embed plating in a through hole than in the electrolysis method. . In addition, it is difficult to form an embedded plating layer in which the surface of the embedded plating layer formed by the electroless plating method is controlled as a deviation in the depth direction within 5 μm from the position of the outer surface of the printed wiring. Therefore, if an etching resist layer is provided on the outer layer after this embedded plating, the etched resist layer floats in the embedded plating layer portion when it is depressed, and exposure blurring is likely to occur during exposure to form an etching resist pattern. For this reason, it becomes difficult to form a fine pitch circuit. Moreover, if the deviation in the depth direction of the through hole portion exceeds 5 μm, it becomes impossible to use the embedded plating surface of the through hole as a component mounting land.

そして、特許文献4に開示の発明の場合には、両面銅張積層板に設けたスルーホール孔に導電性インクを充填して硬化させることで、スルーホール孔を埋設している。ところが、導電性インクは樹脂成分と金属粒子成分とからなるものであり、当該導電性インクを硬化させる際に、顕著な収縮現象が起きるため、埋め込んで硬化させた導電性インクの表面を、プリント配線の外層表面の位置と一致させることが困難で、当該スルーホール部では深さ方向で5μmを超えるズレが発生しやすくなる。従って、特許文献3と同様の問題が生じる。   In the case of the invention disclosed in Patent Document 4, the through-hole hole is embedded by filling the through-hole hole provided in the double-sided copper-clad laminate with conductive ink and curing it. However, since the conductive ink is composed of a resin component and a metal particle component, and a remarkable shrinkage phenomenon occurs when the conductive ink is cured, the surface of the conductive ink embedded and cured is printed. It is difficult to match the position of the surface of the outer layer of the wiring, and a displacement exceeding 5 μm tends to occur in the depth direction in the through-hole portion. Therefore, the same problem as in Patent Document 3 occurs.

これに対して、特許文献5は、ビアホール内を銅成分で充填する方法を採用し、最終的なビアホールを銅で充填するに際して、電気銅めっきを使用している。即ち、特許文献5に開示の内容によれば、「基板の絶縁層表面およびビアホールの底面を含む壁面に銅皮膜を形成する銅皮膜形成工程」、「めっき促進剤が添加された水溶液中に、銅皮膜が形成された基板を浸漬して、銅皮膜表面にめっき促進剤を付着させる浸漬工程」、「ビアホールの底面を含む内壁面を除く銅皮膜表面に付着しためっき促進剤を除去する剥離工程」、「剥離工程の後、絶縁層表面に形成された銅皮膜およびビアホールの底面を含む壁面に形成された銅皮膜上に電解銅めっきを施してビアホール内にめっき金属を充填する電解銅めっき工程」、以上の各工程が必要になる。ここで「めっき促進剤が添加された水溶液中に、銅皮膜が形成された基板を浸漬して、銅皮膜表面にめっき促進剤を付着させる浸漬工程」及び「ビアホールの底面を含む内壁面を除く銅皮膜表面に付着しためっき促進剤を除去する剥離工程」が必要になるということは、それだけ工程数が増加するのであり、生産コストが上昇することを意味する。   On the other hand, Patent Document 5 adopts a method of filling the via hole with a copper component, and uses electrolytic copper plating when filling the final via hole with copper. That is, according to the content disclosed in Patent Document 5, "a copper film forming step of forming a copper film on the wall surface including the insulating layer surface of the substrate and the bottom surface of the via hole", "in the aqueous solution to which the plating accelerator is added, "Immersion process to immerse the substrate on which the copper film is formed and attach the plating accelerator to the copper film surface", "Peeling process to remove the plating accelerator adhering to the copper film surface excluding the inner wall surface including the bottom surface of the via hole" "After the stripping process, electrolytic copper plating process to fill the via hole with electrolytic copper plating on the copper film formed on the insulating layer surface and the copper film formed on the wall surface including the bottom of the via hole “The above steps are necessary. Here, “a dipping process in which a substrate on which a copper film is formed is immersed in an aqueous solution to which a plating accelerator is added and the plating accelerator is attached to the surface of the copper film” and “the inner wall surface including the bottom surface of the via hole are excluded. The fact that the “peeling step for removing the plating accelerator adhering to the surface of the copper film” is required means that the number of steps is increased accordingly and the production cost is increased.

以上のことから理解できるように、最終的に電解法を用いてスルーホール及びビアホールの内部を埋設できるめっき方法であって、生産コストに優れ、スルーホール及びビアホールを埋設した金属めっき層の表面が、プリント配線の外層表面の位置と一致させやすく、窪みのより少ない埋め込み状態を形成することが可能な、スルーホール及びビアホールの埋設めっき方法が望まれてきた。   As can be understood from the above, it is a plating method that can finally embed the inside of the through hole and the via hole by using an electrolytic method, which is excellent in production cost, and the surface of the metal plating layer in which the through hole and the via hole are buried is Therefore, there has been a demand for a buried plating method for through holes and via holes, which can easily match the position of the surface of the outer layer of the printed wiring and can form a buried state with fewer depressions.

そこで、本件発明者等は、鋭意研究の結果、以下の述べるビアホール又はスルーホールの埋設銅めっき方法に想到したのである。   Thus, as a result of diligent research, the present inventors have come up with a via hole or through hole buried copper plating method described below.

本件発明に係る埋設銅めっき方法: 本件発明に係る埋設銅めっき方法は、導電性皮膜を備えるビアホール又はスルーホールの内部を電気めっき法で埋設する埋設銅めっき方法において、第1埋設銅めっき工程と第2埋設銅めっき工程とからなる2段階のめっき工程を備え、当該第1埋設銅めっき工程と第2埋設銅めっき工程とで同一組成の銅めっき液を用いることを特徴とするプリント配線板製造用の埋設銅めっき方法を採用する。 Embedded copper plating method according to the present invention: The embedded copper plating method according to the present invention includes a first embedded copper plating step in an embedded copper plating method in which an inside of a via hole or a through hole provided with a conductive film is embedded by electroplating. A printed wiring board manufacture comprising a two-stage plating process comprising a second embedded copper plating process, and using a copper plating solution having the same composition in the first embedded copper plating process and the second embedded copper plating process Adopt buried copper plating method.

本件発明に係る埋設銅めっき方法において、前記銅めっき液は、液温が20℃〜30℃、銅濃度が30g/L以上の銅めっき液を用いることが好ましい。   In the embedded copper plating method according to the present invention, the copper plating solution is preferably a copper plating solution having a solution temperature of 20 ° C. to 30 ° C. and a copper concentration of 30 g / L or more.

本件発明に係る埋設銅めっき方法において、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程との間に1秒間〜600秒間の無通電時間を設けることが好ましい。   In the embedded copper plating method according to the present invention, it is preferable to provide a non-energization time of 1 second to 600 seconds between the first embedded copper plating step and the second embedded copper plating step.

本件発明に係る埋設銅めっき方法において、前記第1埋設銅めっき工程は、前記第2埋設銅めっき工程で用いる電流密度より大きな電流密度を用いて埋設銅めっきを行なうことが好ましい。   In the embedded copper plating method according to the present invention, it is preferable that the first embedded copper plating step performs embedded copper plating using a current density larger than a current density used in the second embedded copper plating step.

本件発明に係る埋設銅めっき方法において、前記第1埋設銅めっき工程は、1A/dm〜5A/dmの範囲の電流密度を用いて銅めっきすることが好ましい。 In the buried copper plating method according to the present invention, it is preferable that the first buried copper plating step is copper plated using a current density in a range of 1 A / dm 2 to 5 A / dm 2 .

本件発明に係る埋設銅めっき方法において、前記第1埋設銅めっき工程は、1A/dm〜5A/dmの範囲の電流密度を用いた複数のサブめっき工程からなることが好ましい。 In the embedded copper plating method according to the present invention, the first embedded copper plating step preferably includes a plurality of sub-plating steps using a current density in a range of 1 A / dm 2 to 5 A / dm 2 .

そして、前記複数回のサブめっき工程の工程間で、少なくとも1回の1秒間〜600秒間の無通電時間を設けることも好ましい。   It is also preferable to provide at least one no-energization time of 1 second to 600 seconds between the plurality of sub-plating steps.

また、前記第1埋設銅めっき工程は、0.3μm〜5μmの厚さ分の埋設銅めっきを行うことが好ましい。   Moreover, it is preferable that the said 1st embedded copper plating process performs the embedded copper plating for the thickness of 0.3 micrometer-5 micrometers.

本件発明に係る埋設銅めっき方法において、前記第2埋設銅めっき工程は、0.5A/dm〜4A/dmの範囲の電流密度を用いて銅めっきすることが好ましい。 In the embedded copper plating method according to the present invention, it is preferable that the second embedded copper plating step performs copper plating using a current density in a range of 0.5 A / dm 2 to 4 A / dm 2 .

本件発明に係るプリント配線板: 本件発明に係るプリント配線板は、上述のプリント配線板製造用の埋設銅めっき方法を用いて埋設銅めっきを施したことを特徴とするものである。 Printed wiring board according to the present invention: The printed wiring board according to the present invention is characterized in that embedded copper plating is performed using the embedded copper plating method for manufacturing the printed wiring board described above.

本件発明に係るプリント配線板製造用の埋設銅めっき方法は、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程とを備えるが、この各工程の電解時の電流密度に差異はあっても、同一の銅メッキ液の使用が可能であり、工程の短縮化が可能である。しかも、同一の銅メッキ液を用いることを可能にすることで、埋設銅めっき製造ラインを1ラインとして設計することも可能になり、製造設備コスト及び管理コストの削減が図れ、結果としてプリント配線板製品の製造コストの削減にも繋がる。   The embedded copper plating method for producing a printed wiring board according to the present invention includes the first embedded copper plating step and the second embedded copper plating step, and there is a difference in current density during electrolysis in each step. However, the same copper plating solution can be used, and the process can be shortened. Moreover, by making it possible to use the same copper plating solution, it is also possible to design the embedded copper plating production line as one line, thereby reducing the manufacturing equipment cost and the management cost, and as a result, the printed wiring board. It also leads to reduction of product manufacturing costs.

しかも、このプリント配線板製造用の埋設銅めっき方法では、埋設めっきプロセスの全てにおいて同一の銅メッキ液を使用し、最終的に電解めっき法を採用することで、スルーホール及びビアホールを埋設した銅めっきの表面状態の制御が容易である。この結果、この埋設銅めっき方法を使用して製造したプリント配線板は、そのスルーホール及びビアホールの埋設銅めっき面とプリント配線の外層表面の位置とを一致させやすく、5μm以内の深さ方向のズレの少ない埋め込み状態を形成できるため、事後的に形成するエッチングレジストとスルーホール及びビアホールの埋設銅めっき表面との密着性も良好でエッチングレジストの露光ボケも生じないため、ファインピッチ回路の形成能に優れている。更に、スルーホール及びビアホールの窪みが少ないため、スルーホール及びビアホールの埋設銅めっき表面を部品実装ランドとして使用することも容易になる。   In addition, in this buried copper plating method for manufacturing printed wiring boards, the same copper plating solution is used in all of the buried plating processes, and finally the electrolytic plating method is adopted, so that the copper having buried through holes and via holes is obtained. Control of the surface state of plating is easy. As a result, the printed wiring board manufactured using this buried copper plating method is easy to match the position of the buried copper plating surface of the through hole and via hole and the outer layer surface of the printed wiring in the depth direction within 5 μm. Since it is possible to form a buried state with little misalignment, the adhesion between the etching resist to be formed later and the copper plating surface of the through hole and via hole is good, and the exposure blur of the etching resist does not occur. Is excellent. Furthermore, since there are few depressions in the through holes and via holes, it becomes easy to use the buried copper plating surfaces of the through holes and via holes as component mounting lands.

以下、本件発明に係る埋設銅めっき方法及び本件発明に係るプリント配線板の各形態に関して説明する。   Hereinafter, each embodiment of the embedded copper plating method according to the present invention and the printed wiring board according to the present invention will be described.

本件発明に係る埋設銅めっき方法の形態: 本件発明に係る埋設銅めっき方法は、導電性皮膜を備えるビアホール又はスルーホールの内部を電気めっき法で埋設する埋設銅めっき方法である。本件発明に係る埋設銅めっき方法においては、「ビアホール又はスルーホール」の内部を電気めっき法で埋設することを目的としているため、プリント配線板でも2層の回路層を備える両面プリント配線板以上の多層プリント配線板を対象としていることが明らかである。片面プリント配線板の場合、ビアホール又はスルーホールを設ける必要がないからである。 Form of buried copper plating method according to the present invention: The buried copper plating method according to the present invention is a buried copper plating method in which a via hole or a through hole having a conductive film is buried by an electroplating method. In the buried copper plating method according to the present invention, since the purpose is to bury the inside of the “via hole or through hole” by electroplating, the printed wiring board is more than a double-sided printed wiring board having two circuit layers. It is clear that the target is a multilayer printed wiring board. This is because it is not necessary to provide via holes or through holes in the case of a single-sided printed wiring board.

次に、ここで言う「導電性被膜」に関して説明しておく。この導電性被膜は、一般的に無電解めっきにより形成された銅被膜、ニッケル被膜、金被膜等である。即ち、プリント配線板のビアホール又はスルーホールは、プリント配線板にメカニカルドリル、レーザー加工等を用いて穴あけ加工して形成される。この穴あけ加工後のビアホール又はスルーホールの内壁面には、絶縁樹脂基板の樹脂層が露出しており、通電不可能であるため無電解めっき法で、その内壁面に金属層を導電性皮膜として形成するのである。従って、この導電性皮膜の材質は、通電可能で絶縁樹脂基板との密着性に優れていれば、いかなる材質を使用しても構わない。   Next, the “conductive film” referred to here will be described. The conductive coating is generally a copper coating, a nickel coating, a gold coating or the like formed by electroless plating. That is, the via hole or the through hole of the printed wiring board is formed by drilling the printed wiring board using a mechanical drill, laser processing, or the like. Since the resin layer of the insulating resin substrate is exposed on the inner wall surface of the via hole or through hole after this drilling process, it cannot be energized, so the metal layer is formed as a conductive film on the inner wall surface by electroless plating. It forms. Therefore, any material may be used for the conductive film as long as it can be energized and has excellent adhesion to the insulating resin substrate.

そして、本件発明に係る埋設銅めっき方法は、第1埋設銅めっき工程と第2埋設銅めっき工程とからなる2段階のめっき工程を備える。そして、この第1埋設銅めっき工程と第2埋設銅めっき工程とで同一組成の銅めっき液を用いることが大きな特徴である。   The buried copper plating method according to the present invention includes a two-step plating process including a first buried copper plating process and a second buried copper plating process. And it is a big feature that the copper plating solution of the same composition is used in the first embedded copper plating step and the second embedded copper plating step.

ここで、第1埋設銅めっき工程と第2埋設銅めっき工程とで用いる共通して用いることの銅めっき液に関して述べておく。ここで用いる銅めっき液は、銅濃度が30g/L以上の銅めっき液を用いることが好ましい。この条件を満たす限り、硫酸酸性系銅めっき液、ピロリン酸系銅めっき液等のめっき液系の限定はない。ここで銅濃度が30g/L未満の場合には、銅の析出速度が遅くなると共に、銅濃度が低下するほど、均一な埋設銅めっきが不可能になってくる。また、銅濃度が50g/L以上の銅めっき液として用いることが、より好ましい。析出銅の埋設性能が安定化し、析出表面の平滑化も向上するからである。そして、ここでは特段に上限の銅濃度を規定していない。この理由は、次に述べる液温が存在するからであり、以下の液温の範囲での飽和濃度まで、濃度を高めることが可能である。   Here, the copper plating solution used in common in the first embedded copper plating step and the second embedded copper plating step will be described. The copper plating solution used here is preferably a copper plating solution having a copper concentration of 30 g / L or more. As long as this condition is satisfied, there is no limitation on plating solution systems such as a sulfuric acid-based copper plating solution and a pyrophosphate-based copper plating solution. Here, when the copper concentration is less than 30 g / L, the copper deposition rate becomes slow, and as the copper concentration decreases, uniform embedded copper plating becomes impossible. Moreover, it is more preferable to use it as a copper plating solution having a copper concentration of 50 g / L or more. This is because the burying performance of the deposited copper is stabilized and the smoothness of the deposited surface is improved. Here, the upper limit copper concentration is not particularly specified. The reason for this is that the following liquid temperature exists, and it is possible to increase the concentration to the saturation concentration within the following liquid temperature range.

次に、前記銅めっき液は、液温を20℃〜30℃の範囲として使用することが好ましい。電気銅メッキにおいて液温は、析出した銅めっき層の性状を左右する重要な要素となる。例えば、析出銅の硬度、結晶構造、密度等に影響を与える。これらのことを埋設銅めっきを行うと言うことを前提として鋭意研究した結果、上記範囲が最も適切であった。ここで液温が20℃未満の場合には、密度の高い析出銅が得られるが、析出速度が遅くなる。同時に工業的観点から見れば、20℃未満の液温とするためには、当該銅めっき液を冷却する必要が生じ設備コストにも影響する。一方、液温が30℃を超えると、銅の析出速度は早くなるが、埋設銅めっきを行っている途中のめっき表面の平坦さが無くなり、スルーホール及びビアホールの埋設銅めっき面とプリント配線の外層表面の位置とを一致させようとして、深さ方向のズレを5μm以内に制御することが困難となる。以上に述べてきた液温制御の意義を、より確実にするためには22℃〜28℃、更に好ましくは23℃〜26℃の範囲とすることが好ましい。   Next, it is preferable to use the copper plating solution in a temperature range of 20 ° C to 30 ° C. In electrolytic copper plating, the liquid temperature is an important factor that affects the properties of the deposited copper plating layer. For example, it affects the hardness, crystal structure, density, etc. of the deposited copper. As a result of earnest research on the premise that buried copper plating is performed, the above range was most appropriate. Here, when the liquid temperature is less than 20 ° C., precipitated copper having a high density is obtained, but the deposition rate becomes slow. At the same time, from an industrial point of view, in order to obtain a liquid temperature of less than 20 ° C., it is necessary to cool the copper plating solution, which affects the equipment cost. On the other hand, when the liquid temperature exceeds 30 ° C., the copper deposition rate increases, but the flatness of the plating surface during the buried copper plating is lost, and the buried copper plating surface of the through hole and via hole and the printed wiring It is difficult to control the deviation in the depth direction within 5 μm so as to match the position of the outer layer surface. In order to ensure the significance of the liquid temperature control described above, it is preferable to set the temperature within the range of 22 ° C to 28 ° C, more preferably 23 ° C to 26 ° C.

そして、本件発明に係る埋設銅めっき方法において、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程との間に、一定の無通電時間を設けることが好ましい。即ち、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程とは、1ラインの埋設銅めっき製造ラインとして設計することができ、本件発明に係る埋設銅めっき方法を採用する大きな利点である。   In the buried copper plating method according to the present invention, it is preferable that a certain non-energization time is provided between the first buried copper plating step and the second buried copper plating step. That is, the first embedded copper plating step and the second embedded copper plating step can be designed as a single embedded copper plating production line, which is a great advantage of adopting the embedded copper plating method according to the present invention. .

このとき、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程とを連続的に配置して、前記第1埋設銅めっき工程で使用する電流密度から、前記第2埋設銅めっき工程で使用する電流密度への変更を連続的に変化させることも可能である。しかし、本件発明に係る埋設銅めっき方法の場合、前記第1埋設銅めっき工程で使用する電流密度から、前記第2埋設銅めっき工程で使用する電流密度への変更を行うにあたり、一旦電流の流れない無通電の状態を一定時間設け、前記第1埋設銅めっき工程のめっき操業の影響を前記第2埋設銅めっき工程に与えないようにして、それぞれの工程のめっき条件を明確に分離しなければ、スルーホール及びビアホールの埋設銅めっき面とプリント配線の外層表面の位置とを深さ方向で5μm以内の精度で一致させる制御が困難となる。   At this time, the first embedded copper plating step and the second embedded copper plating step are continuously arranged, and the current density used in the first embedded copper plating step is used in the second embedded copper plating step. It is also possible to continuously change the current density to be changed. However, in the case of the buried copper plating method according to the present invention, when changing from the current density used in the first buried copper plating step to the current density used in the second buried copper plating step, the current flow once. There must be no un-energized state for a certain period of time, so that the influence of the plating operation of the first embedded copper plating process is not given to the second embedded copper plating process, and the plating conditions of each process must be clearly separated In addition, it becomes difficult to control the buried copper plating surface of the through hole and via hole and the position of the outer layer surface of the printed wiring with accuracy within 5 μm in the depth direction.

ここで、この無通電時間が1秒間未満の場合には、前記第1埋設銅めっき工程のめっき操業の影響を前記第2埋設銅めっき工程が受けることになり、各々の工程の明確な分離化が出来ず、埋設銅めっき面の平坦化が図れない。一方、この無通電時間が600秒間を超えると、第1埋設銅めっき工程で形成された活性化状態にある銅めっき層が、無通電の状態で大気雰囲気又は溶液に晒された状態であるため、酸化が進行して、無用酸化銅形成が起こり、第1埋設銅めっき工程で形成された銅めっき層と第2埋設銅めっき工程で形成される銅めっき層との密着性が悪くなると共に、均一な埋設銅めっきが出来ず、埋設銅めっき面の平坦化が図れなくなる。そして、上記無通電時間を設ける意義をより確実に達成するためには、無通電時間は5秒〜500秒、更に好ましくは10秒〜350秒である。   Here, when the non-energization time is less than 1 second, the second embedded copper plating process is affected by the plating operation of the first embedded copper plating process, and each process is clearly separated. It is not possible to flatten the buried copper plating surface. On the other hand, if this non-energization time exceeds 600 seconds, the copper plating layer in the activated state formed in the first embedded copper plating step is in a state where it is exposed to the atmosphere or solution without being energized. As the oxidation progresses, useless copper oxide formation occurs, and the adhesion between the copper plating layer formed in the first embedded copper plating step and the copper plating layer formed in the second embedded copper plating step deteriorates, Uniform buried copper plating cannot be performed, and the buried copper plating surface cannot be flattened. And in order to achieve more reliably the meaning which provides the said non-energization time, the non-energization time is 5 second-500 second, More preferably, it is 10 second-350 second.

続いて、本件発明に係る埋設銅めっき方法の前記第1埋設銅めっき工程と前記第2埋設銅めっき工程で用いる電流密度に関して述べる。まず、「前記第1埋設銅めっき工程で使用する電流密度(以下、「第1電流密度」と称する。)」と「前記第2埋設銅めっき工程で使用する電流密度(以下、「第2電流密度」と称する。)」との関係は、[第1電流密度]=[第2電流密度]の関係であっても構わない。前記第1埋設銅めっき工程と前記第2埋設銅めっき工程との間に、上記無通電時間を設けることで、良好な埋設銅めっきが可能になるからである。   Subsequently, the current density used in the first embedded copper plating step and the second embedded copper plating step of the embedded copper plating method according to the present invention will be described. First, “current density used in the first embedded copper plating step (hereinafter referred to as“ first current density ”)” and “current density used in the second embedded copper plating step (hereinafter referred to as“ second current density ”). The relationship with “density” may be [first current density] = [second current density]. This is because by providing the non-energization time between the first embedded copper plating step and the second embedded copper plating step, good embedded copper plating becomes possible.

そして、電流密度に関しては、[第1電流密度]>[第2電流密度]の関係を満たすことがより好ましい。即ち、前記第1埋設銅めっき工程では、高めの電流密度を使用して、その上に事後的に形成するめっき銅の付着性に優れた表面を形成する。そして、前記第1埋設銅めっき工程で形成した銅めっき層の上には、均一めっき条件に近づけるため、低めの電流密度を使用した第2埋設銅めっき工程で、均一に成長する銅めっき層を形成する。   As for the current density, it is more preferable to satisfy the relationship of [first current density]> [second current density]. That is, in the first buried copper plating step, a high current density is used to form a surface having excellent adhesion of plated copper to be subsequently formed thereon. Then, on the copper plating layer formed in the first embedded copper plating step, a copper plating layer that grows uniformly in the second embedded copper plating step using a lower current density is used in order to approach the uniform plating conditions. Form.

このとき、前記第1埋設銅めっき工程は、1A/dm〜5A/dmの範囲の電流密度を用いて銅めっきすることが好ましい。ここで、第1埋設銅めっき工程の電流密度が1A/dm未満の場合には、その上に事後的に形成するめっき銅の付着性に優れた表面ではなくなり、第1埋設銅めっき工程を設ける意義が無くなる。一方、第1埋設銅めっき工程の電流密度が5A/dmを超える場合には、銅めっき層の表面が粗らくなり過ぎて、第2埋設銅めっき工程で形成する銅めっき層の表面状態が粗くなるため好ましくない。 At this time, it is preferable that the first buried copper plating step is copper plating using a current density in a range of 1 A / dm 2 to 5 A / dm 2 . Here, when the current density of the first buried copper plating step is less than 1 A / dm 2 , the surface is not a surface with excellent adhesion of the plated copper to be subsequently formed thereon, and the first buried copper plating step is performed. The significance of setting disappears. On the other hand, when the current density of the first embedded copper plating step exceeds 5 A / dm 2 , the surface of the copper plating layer becomes too rough, and the surface state of the copper plating layer formed in the second embedded copper plating step is Since it becomes coarse, it is not preferable.

更に、この第1埋設銅めっき工程は、複数のサブめっき工程からなる多段階めっき工程としてもよい。即ち、第1埋設銅めっき工程は、電流を高めに設定する工程と考えると、高めの電流での通電を複数回に分けて行うのである。例えば、高めの電流での10秒間の通電を連続して行うと、形成しためっき層の凹凸部に電流集中を起こして、異常析出部を形成しやすくなる。ところが、同じ10秒間の高めの電流での通電を、2秒間毎に5回繰り返すと、形成しためっき層の表面が異常析出部の無い均一で微細な凹凸を備える表面として得られる。従って、第1埋設銅めっき工程は、複数のサブめっき工程からなる多段階めっき工程とすることが好ましい。   Further, the first buried copper plating process may be a multi-stage plating process including a plurality of sub plating processes. That is, when the first buried copper plating step is considered to be a step of setting a high current, energization with a high current is performed in a plurality of times. For example, when energization for 10 seconds at a high current is continuously performed, current concentration occurs in the uneven portions of the formed plating layer, and abnormal precipitation portions are easily formed. However, when energization with the same high current for 10 seconds is repeated 5 times every 2 seconds, the surface of the formed plating layer is obtained as a surface having uniform and fine irregularities without an abnormal precipitation portion. Therefore, the first embedded copper plating process is preferably a multi-stage plating process including a plurality of sub plating processes.

ここで、サブめっき工程では、前記第1埋設銅めっき工程で用いる1A/dm〜5A/dmの範囲の電流密度を用いる。上述したと同様の理由からである。そして、前記複数回のサブめっき工程の工程間でも、少なくとも1回の1秒間〜600秒間の無通電時間を設けることが好ましい。この無通電時間を設ける意味合いも上述したと同様である。 Here, in the sub-plating step, a current density in the range of 1 A / dm 2 to 5 A / dm 2 used in the first buried copper plating step is used. This is because of the same reason as described above. And it is preferable to provide at least one no-energization time of 1 second to 600 seconds even between the plurality of sub-plating steps. The meaning of providing this non-energization time is the same as described above.

以上に述べてきた前記第1埋設銅めっき工程では、0.3μm〜5μmの厚さ分の埋設銅めっきを行うことが好ましい。この第1埋設銅めっき工程で0.3μm未満の厚さの銅めっきを行っても、その上に事後的に第2埋設銅めっき工程で形成するめっき銅の付着性に優れた銅めっき表面を形成することができない。一方、この第1埋設銅めっき工程で5μmを超える厚さの銅めっきを行うと、当該銅めっき層の表面が粗くなり、その上に事後的に第2埋設銅めっき工程で形成するめっき銅の埋設銅めっき表面が粗くなり好ましくない。   In the first embedded copper plating step described above, it is preferable to perform embedded copper plating for a thickness of 0.3 μm to 5 μm. Even if copper plating with a thickness of less than 0.3 μm is performed in the first embedded copper plating step, a copper plating surface having excellent adhesion of the plated copper formed later in the second embedded copper plating step is formed on the copper plating surface. Cannot be formed. On the other hand, if copper plating with a thickness exceeding 5 μm is performed in the first embedded copper plating step, the surface of the copper plating layer becomes rough, and the plated copper formed later in the second embedded copper plating step The buried copper plating surface becomes rough, which is not preferable.

以上に述べてきた前記第1埋設銅めっき工程の後に行う第2埋設銅めっき工程は、0.5A/dm〜4A/dmの範囲の電流密度を用いて埋設銅めっきすることが好ましい。ここで、第2埋設銅めっき工程の電流密度が0.5A/dm未満となると、銅の析出速度が遅くなり、電解銅めっき法を使用する意義が没却すると共に、工業的に求められる生産性を満足しない。一方、第2埋設銅めっき工程の電流密度が4A/dmを超えると、銅の析出速度が速過ぎて、埋設銅めっき表面が粗くなり好ましくない。 In the second embedded copper plating step performed after the first embedded copper plating step described above, the embedded copper plating is preferably performed using a current density in the range of 0.5 A / dm 2 to 4 A / dm 2 . Here, when the current density of the second embedded copper plating step is less than 0.5 A / dm 2 , the deposition rate of copper becomes slow, and the significance of using the electrolytic copper plating method is lost and industrially required. Not satisfied with productivity. On the other hand, if the current density in the second embedded copper plating step exceeds 4 A / dm 2 , the deposition rate of copper is too high, and the embedded copper plating surface becomes rough, which is not preferable.

本件発明に係るプリント配線板: 本件発明に係るプリント配線板は、以上に述べてきたプリント配線板製造用の埋設銅めっき方法を用いてスルーホール及び/又はビアホールに埋設銅めっきを施したことを特徴とするものである。従って、プリント配線板の構成層数、材質、サイズ、使用する銅箔の種類、銅箔の厚さ等に関しての特段の限定はない。但し、上述したように3層以上の回路層を備えるプリント配線板が対象となる。 Printed wiring board according to the present invention: The printed wiring board according to the present invention is obtained by performing embedded copper plating on through holes and / or via holes using the embedded copper plating method for manufacturing printed wiring boards described above. It is a feature. Therefore, there is no special limitation regarding the number of constituent layers of the printed wiring board, the material, the size, the type of copper foil used, the thickness of the copper foil, and the like. However, as described above, a printed wiring board including three or more circuit layers is a target.

この実施例では、以下の表1に示したフローにより、両面プリント配線板にレーザー穴あけ法で設けた100μm径のブラインドビアホール内に、8種類の埋設銅めっきを行った結果を示す。ここでは、両面プリント配線板の片面側から、炭酸ガスレーザーにて100μm径のブラインドビアホール形状を形成した。そして、そのブラインドビアホール穴の内周壁に導電性を付与するため、アルカリ脱脂、コンディショニング、キャタライズ(Sn−Pdコロイド)、アクセレレータの各前処理を行って無電解銅めっきを行い、0.3μm厚さの無電解銅めっき層を導電性皮膜として形成した。   In this example, the results shown in Table 1 below show the results of eight types of buried copper plating in a 100 μm diameter blind via hole provided by laser drilling on a double-sided printed wiring board. Here, a blind via hole shape having a diameter of 100 μm was formed by a carbon dioxide laser from one side of the double-sided printed wiring board. Then, in order to impart conductivity to the inner peripheral wall of the blind via hole, electroless copper plating is performed by performing alkali degreasing, conditioning, catalyzing (Sn—Pd colloid), and accelerator pretreatment, and a thickness of 0.3 μm. The electroless copper plating layer was formed as a conductive film.

そして、以下の表1に示すプロセスにより、当該ブラインドビアホール内に埋設銅めっきを行った。表1の酸性脱脂には、メルテックス株式会社製のメルプレート PC-316を用いた。活性化処理には、硫酸濃度が10wt%の希硫酸溶液(室温)を用いた。防錆には、10wt%濃度のベンゾトリアゾール溶液を用いた。そして、第1埋設銅めっき工程及び第2埋設銅めっき工程では、硫酸銅を用いて銅濃度50g/l、フリー硫酸 70g/l、塩素イオン 50ppm、含有した硫酸酸性銅めっき液を用いた。   Then, buried copper plating was performed in the blind via hole by the process shown in Table 1 below. For acid degreasing in Table 1, Melplate PC-316 manufactured by Meltex Co., Ltd. was used. For the activation treatment, a diluted sulfuric acid solution (room temperature) having a sulfuric acid concentration of 10 wt% was used. A benzotriazole solution having a concentration of 10 wt% was used for rust prevention. And in the 1st embedding copper plating process and the 2nd embedding copper plating process, copper sulfate 50g / l, free sulfuric acid 70g / l, chloride ion 50ppm, and containing sulfuric acid copper plating solution were used.

そして、第1埋設銅めっき工程の電流密度として2.0A/dm、第2埋設銅めっき工程の電流密度として1.5A/dmを用いて、トータルで25μm厚さ分の銅層となるようにブラインドビアホール内に析出させた。また、第1埋設銅めっき工程と第2埋設銅めっき工程との無通電時間は10秒とした。更に、第1埋設銅めっき工程を、複数回のサブめっき工程で構成する場合には、サブめっき工程間でも、5秒間の無通電時間を設けた。 Then, using a current density of 2.0 A / dm 2 as the current density of the first embedded copper plating process and 1.5 A / dm 2 as the current density of the second embedded copper plating process, a total copper layer of 25 μm thickness is obtained. It was deposited in the blind via hole. The non-energization time between the first embedded copper plating step and the second embedded copper plating step was 10 seconds. Furthermore, when the first embedded copper plating process is constituted by a plurality of sub-plating processes, a non-energization time of 5 seconds is provided even between the sub-plating processes.

以下の表2に、8種類の埋設銅めっき条件に対応させて、当該ブラインドビアホールの埋設銅めっき面とプリント配線の外層表面の位置とを深さ方向でのズレ(表2では、単に「ギャップ」と称する。)を同時に掲載する。なお、ここで得られた8種類の試料を試料A〜試料Hとして示す。そして、図1〜図8に、この実施例で得られたブラインドビアホールの断面を金属顕微鏡で観察した写真を示す。図面中に矢印で示したのがギャップであるが、この矢印の幅が正確なギャップ長さを示しているのでないことを明示しておく。   In Table 2 below, in correspondence with eight types of buried copper plating conditions, the buried copper plating surface of the blind via hole and the position of the outer layer surface of the printed wiring are shifted in the depth direction (in Table 2, simply “gap” At the same time. In addition, eight types of samples obtained here are shown as Sample A to Sample H. And the photograph which observed the cross section of the blind via hole obtained in this Example with the metallographic microscope in FIGS. 1-8 is shown. It is clearly shown that the gap is indicated by an arrow in the drawing, but the width of the arrow does not indicate the exact gap length.

比較例Comparative example

この比較例では、実施例の第1銅めっき工程を省略して、第2埋設銅めっき工程のみで当該ブラインドビアホールの埋設銅めっきを行った。その結果に関しては、実施例と対比可能なように表2に纏めて示す。そして、図9に、この比較例で得られたブラインドビアホールの断面を金属顕微鏡で観察した写真を示す。なお、この図9と実施例の図1〜図8との倍率が若干異なることを明記しておく。   In this comparative example, the first copper plating step of the example was omitted, and the blind via hole was embedded in the copper plating only in the second embedded copper plating step. The results are summarized in Table 2 so that they can be compared with the examples. FIG. 9 shows a photograph of the cross section of the blind via hole obtained in this comparative example observed with a metal microscope. It should be noted that the magnification of FIG. 9 is slightly different from that of FIGS.

実施例と比較例との対比:以上の表2から分かるように、実施例の試料A〜試料Hのギャップは、全て5μm以下である。これに対して、比較試料の方は、5μmを超える値となっている。即ち、ブラインドビアホールの電解埋設銅めっきを、第1銅めっき工程と第2埋設銅めっき工程とに分離して実施する方が、1回の電解埋設銅めっきとして行うよりも、良好な埋設性能及び埋設状態を得ることができと言える。 Comparison between Examples and Comparative Examples: As can be seen from Table 2 above, the gaps of Sample A to Sample H in the Examples are all 5 μm or less. On the other hand, the comparative sample has a value exceeding 5 μm. That is, it is better to perform electrolytic buried copper plating of the blind via hole separately in the first copper plating step and the second buried copper plating step than to perform as one electrolytic buried copper plating, It can be said that the buried state can be obtained.

本件発明に係るプリント配線板製造用の埋設銅めっき方法は、前記第1埋設銅めっき工程と前記第2埋設銅めっき工程とを備えるが、同一の銅メッキ液の使用が可能であり、工程が短縮できる。従って、埋設銅めっき製造ラインを1ラインとして設計することも可能で、製造設備コスト及び管理コストの削減が図れる。しかも、このプリント配線板製造用の埋設銅めっき方法で得られるプリント配線板は、そのスルーホール及びビアホールの埋設銅めっき面とプリント配線の外層表面の位置とを一致させやすく、深さ方向のズレが5μm以内の埋め込み状態を形成できるため、事後的に形成するエッチングレジストの密着性が良好でファインピッチ回路の形成に好適である。更に、スルーホール及びビアホールの窪みが少ないため、スルーホール及びビアホールの埋設銅めっき表面を部品実装ランドとして使用することも容易になる。   The embedded copper plating method for manufacturing a printed wiring board according to the present invention includes the first embedded copper plating process and the second embedded copper plating process, but the same copper plating solution can be used, and the process is as follows. Can be shortened. Therefore, it is possible to design the buried copper plating production line as one line, and the production equipment cost and the management cost can be reduced. In addition, the printed wiring board obtained by the buried copper plating method for manufacturing the printed wiring board can easily align the buried copper plating surface of the through hole and via hole with the position of the outer layer surface of the printed wiring. Can form a buried state of 5 μm or less, so that the adhesion of an etching resist to be formed later is good and suitable for forming a fine pitch circuit. Furthermore, since there are few depressions in the through holes and via holes, it becomes easy to use the buried copper plating surfaces of the through holes and via holes as component mounting lands.

本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料A)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the buried copper plating method for manufacturing a printed wiring board according to the present invention (Sample A). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料B)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the embedded copper plating method for printed wiring board manufacture concerning this invention (sample B). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料C)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the embedded copper plating method for manufacturing a printed wiring board according to the present invention (Sample C). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料D)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the burying copper plating method for printed wiring board manufacture concerning this invention (sample D). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料E)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the burying copper plating method for printed wiring board manufacture concerning this invention (sample E). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料F)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the burying copper plating method for printed wiring board manufacture concerning this invention (sample F). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料G)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the burying copper plating method for printed wiring board manufacture concerning this invention (sample G). 本件発明に係るプリント配線板製造用の埋設銅めっき方法を適用して得られたブラインドビアホールの断面の金属顕微鏡観察写真である(試料H)。It is a metal-microscope observation photograph of the cross section of the blind via hole obtained by applying the embedded copper plating method for printed wiring board manufacture concerning this invention (sample H). 比較例で得られた比較試料のブラインドビアホールの断面の金属顕微鏡観察写真である。It is a metal-microscope observation photograph of the cross section of the blind via hole of the comparative sample obtained in the comparative example.

Claims (10)

導電性皮膜を備えるビアホール又はスルーホールの内部を電気めっき法で埋設する埋設銅めっき方法において、
第1埋設銅めっき工程と第2埋設銅めっき工程とからなる2段階のめっき工程を備え、当該第1埋設銅めっき工程と第2埋設銅めっき工程とで同一組成の銅めっき液を用いることを特徴とするプリント配線板製造用の埋設銅めっき方法。
In the buried copper plating method of burying the inside of a via hole or a through hole provided with a conductive film by an electroplating method,
A two-stage plating process comprising a first embedded copper plating process and a second embedded copper plating process is provided, and a copper plating solution having the same composition is used in the first embedded copper plating process and the second embedded copper plating process. A buried copper plating method for producing a printed wiring board.
前記銅めっき液は、液温が20℃〜30℃、銅濃度が30g/L以上の銅めっき液を用いるものである請求項1に記載のプリント配線板製造用の埋設銅めっき方法。 2. The embedded copper plating method for producing a printed wiring board according to claim 1, wherein the copper plating solution uses a copper plating solution having a liquid temperature of 20 ° C. to 30 ° C. and a copper concentration of 30 g / L or more. 前記第1埋設銅めっき工程と前記第2埋設銅めっき工程との間に1秒間〜600秒間の無通電時間を設けるものである請求項1又は請求項2に記載のプリント配線板製造用の埋設銅めっき方法。 3. The embedded wiring for manufacturing a printed wiring board according to claim 1, wherein a non-energization time of 1 second to 600 seconds is provided between the first embedded copper plating step and the second embedded copper plating step. 4. Copper plating method. 前記第1埋設銅めっき工程は、前記第2埋設銅めっき工程で用いる電流密度より大きな電流密度を用いて埋設銅めっきを行なうものである請求項1〜請求項3のいずれかに記載のプリント配線板製造用の埋設銅めっき方法。 The printed wiring according to any one of claims 1 to 3, wherein the first embedded copper plating step performs embedded copper plating using a current density larger than a current density used in the second embedded copper plating step. Embedded copper plating method for plate manufacturing. 前記第1埋設銅めっき工程は、1A/dm〜5A/dmの範囲の電流密度を用いて銅めっきするものである請求項1〜請求項4のいずれかに記載のプリント配線板製造用の埋設銅めっき方法。 5. The printed wiring board manufacturing method according to claim 1, wherein the first embedded copper plating step is copper plating using a current density in a range of 1 A / dm 2 to 5 A / dm 2 . Embedded copper plating method. 前記第1埋設銅めっき工程は、1A/dm〜5A/dmの範囲の電流密度を用いた複数のサブめっき工程からなるものである請求項1〜請求項5のいずれかに記載のプリント配線板製造用の埋設銅めっき方法。 6. The print according to claim 1, wherein the first embedded copper plating step includes a plurality of sub-plating steps using a current density in a range of 1 A / dm 2 to 5 A / dm 2. Embedded copper plating method for wiring board manufacture. 前記複数回のサブめっき工程の工程間で、少なくとも1回の1秒間〜600秒間の無通電時間を設けたものである請求項6に記載のプリント配線板製造用の埋設銅めっき方法。 The embedded copper plating method for manufacturing a printed wiring board according to claim 6, wherein at least one non-energization time of 1 second to 600 seconds is provided between the plurality of sub-plating steps. 前記第1埋設銅めっき工程は、0.3μm〜5μmの厚さ分の銅めっきを行うものである請求項1〜請求項7のいずれかに記載のプリント配線板製造用の埋設銅めっき方法。 The embedded copper plating method for producing a printed wiring board according to any one of claims 1 to 7, wherein the first embedded copper plating step performs copper plating for a thickness of 0.3 to 5 µm. 前記第2埋設銅めっき工程は、0.5A/dm〜4A/dmの範囲の電流密度を用いるものである請求項1〜請求項7のいずれかに記載のプリント配線板製造用の埋設銅めっき方法。 The embedded wiring for printed wiring board production according to any one of claims 1 to 7, wherein the second embedded copper plating step uses a current density in a range of 0.5 A / dm 2 to 4 A / dm 2. Copper plating method. 前記請求項1〜請求項9のいずれかに記載のプリント配線板製造用の埋設銅めっき方法を用いてスルーホール及び/又はビアホールに埋設銅めっきを施したことを特徴とするプリント配線板。 A printed wiring board, wherein embedded copper plating is applied to a through hole and / or a via hole using the embedded copper plating method for producing a printed wiring board according to any one of claims 1 to 9.
JP2008157287A 2007-06-15 2008-06-16 Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method Active JP5247252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157287A JP5247252B2 (en) 2007-06-15 2008-06-16 Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007159577 2007-06-15
JP2007159577 2007-06-15
JP2008157287A JP5247252B2 (en) 2007-06-15 2008-06-16 Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method

Publications (2)

Publication Number Publication Date
JP2009021581A true JP2009021581A (en) 2009-01-29
JP5247252B2 JP5247252B2 (en) 2013-07-24

Family

ID=40129785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157287A Active JP5247252B2 (en) 2007-06-15 2008-06-16 Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method

Country Status (3)

Country Link
JP (1) JP5247252B2 (en)
CN (1) CN103444275A (en)
WO (1) WO2008153185A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103533776A (en) * 2013-09-18 2014-01-22 金悦通电子(翁源)有限公司 Method for manufacturing embedded PCB (printed circuit board)
JP2014192483A (en) * 2013-03-28 2014-10-06 Hitachi Chemical Co Ltd Method of manufacturing multilayer wiring board
CN104661446A (en) * 2015-02-10 2015-05-27 深圳市五株科技股份有限公司 Circuit board processing method
CN105612820A (en) * 2013-10-09 2016-05-25 日立化成株式会社 Multilayer wiring board and method for manufacturing same
US20160242299A1 (en) * 2013-10-09 2016-08-18 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
JP2016201416A (en) * 2015-04-08 2016-12-01 日立化成株式会社 Multilayer wiring board manufacturing method
KR20170095730A (en) * 2016-02-15 2017-08-23 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of filling through-holes to reduce voids and other defects
JP2017147441A (en) * 2016-02-15 2017-08-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method of filling through-holes to reduce voids and other defects
US10165691B2 (en) 2013-10-09 2018-12-25 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247252B2 (en) * 2007-06-15 2013-07-24 メルテックス株式会社 Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method
CN109327975A (en) 2017-07-31 2019-02-12 奥特斯奥地利科技与系统技术有限公司 The method and plater that zero defect copper for the hole in component load-bearing part is filled
EP4063533A1 (en) * 2021-03-25 2022-09-28 Atotech Deutschland GmbH & Co. KG A process for electrochemical deposition of copper with different current densities

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303289A (en) * 2000-03-08 2001-10-31 Applied Materials Inc Method for electrochemically depositing metal using modulated waveform
JP2003060349A (en) * 2001-08-08 2003-02-28 Toyota Industries Corp Copper plating method of via hole
JP2003253490A (en) * 2002-02-27 2003-09-10 Hideo Honma Method of plating substrate having via hole and through hole
JP2003318544A (en) * 2002-04-22 2003-11-07 Toppan Printing Co Ltd Multilayer wiring board and its manufacturing method
JP2004128177A (en) * 2002-10-02 2004-04-22 Hitachi Cable Ltd Wiring board and its manufacturing method, and semiconductor device
JP2004128053A (en) * 2002-09-30 2004-04-22 Sumitomo Bakelite Co Ltd Manufacturing method of multilayer printed wiring board
JP2006114787A (en) * 2004-10-15 2006-04-27 Sumitomo Bakelite Co Ltd Manufacturing method of circuit board
WO2008153185A1 (en) * 2007-06-15 2008-12-18 Meltex Inc. Embedding copper plating method for manufacture of printed wiring board, and printed wiring board obtained by using the embedding copper plating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941433B2 (en) * 2001-08-08 2007-07-04 株式会社豊田自動織機 How to remove smear in via holes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303289A (en) * 2000-03-08 2001-10-31 Applied Materials Inc Method for electrochemically depositing metal using modulated waveform
JP2003060349A (en) * 2001-08-08 2003-02-28 Toyota Industries Corp Copper plating method of via hole
JP2003253490A (en) * 2002-02-27 2003-09-10 Hideo Honma Method of plating substrate having via hole and through hole
JP2003318544A (en) * 2002-04-22 2003-11-07 Toppan Printing Co Ltd Multilayer wiring board and its manufacturing method
JP2004128053A (en) * 2002-09-30 2004-04-22 Sumitomo Bakelite Co Ltd Manufacturing method of multilayer printed wiring board
JP2004128177A (en) * 2002-10-02 2004-04-22 Hitachi Cable Ltd Wiring board and its manufacturing method, and semiconductor device
JP2006114787A (en) * 2004-10-15 2006-04-27 Sumitomo Bakelite Co Ltd Manufacturing method of circuit board
WO2008153185A1 (en) * 2007-06-15 2008-12-18 Meltex Inc. Embedding copper plating method for manufacture of printed wiring board, and printed wiring board obtained by using the embedding copper plating method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516764B2 (en) 2013-03-28 2016-12-06 Hitachi Chemical Company, Ltd Method for manufacturing multilayer wiring substrate
JP2014192483A (en) * 2013-03-28 2014-10-06 Hitachi Chemical Co Ltd Method of manufacturing multilayer wiring board
CN103533776A (en) * 2013-09-18 2014-01-22 金悦通电子(翁源)有限公司 Method for manufacturing embedded PCB (printed circuit board)
US10165691B2 (en) 2013-10-09 2018-12-25 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
US10076044B2 (en) * 2013-10-09 2018-09-11 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
CN105612820A (en) * 2013-10-09 2016-05-25 日立化成株式会社 Multilayer wiring board and method for manufacturing same
US9648759B2 (en) 2013-10-09 2017-05-09 Hitachi Chemical Company, Ltd. Multilayer wiring board and method for manufacturing same
US20160242299A1 (en) * 2013-10-09 2016-08-18 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
CN104661446A (en) * 2015-02-10 2015-05-27 深圳市五株科技股份有限公司 Circuit board processing method
JP2016201416A (en) * 2015-04-08 2016-12-01 日立化成株式会社 Multilayer wiring board manufacturing method
US10609823B2 (en) 2015-04-08 2020-03-31 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring board
JP2017145502A (en) * 2016-02-15 2017-08-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method of filling through-holes to reduce voids and other defects
JP2017147441A (en) * 2016-02-15 2017-08-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method of filling through-holes to reduce voids and other defects
JP2019023352A (en) * 2016-02-15 2019-02-14 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method of reducing voids and other defects by filling through-hole
KR101959750B1 (en) * 2016-02-15 2019-03-19 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of filling through-holes to reduce voids and other defects
US10512174B2 (en) 2016-02-15 2019-12-17 Rohm And Haas Electronic Materials Llc Method of filling through-holes to reduce voids and other defects
US10508357B2 (en) 2016-02-15 2019-12-17 Rohm And Haas Electronic Materials Llc Method of filling through-holes to reduce voids and other defects
KR20170095730A (en) * 2016-02-15 2017-08-23 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Method of filling through-holes to reduce voids and other defects

Also Published As

Publication number Publication date
JP5247252B2 (en) 2013-07-24
WO2008153185A1 (en) 2008-12-18
CN103444275A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5247252B2 (en) Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method
US7681310B2 (en) Method for fabricating double-sided wiring board
US10455704B2 (en) Method for copper filling of a hole in a component carrier
KR101705403B1 (en) Adhesiveless copper clad laminates and printed wiring assembly having adhesiveless copper clad laminates as substrate
JP6111017B2 (en) Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
CN103039131B (en) The manufacture method of printed wiring board and printed wiring board
JP5248684B2 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2009252952A (en) Copper charge plating method and printed circuit board manufactured by the method
JP2008109111A (en) To-resin adhesive layer and manufacturing method of laminate using it
JP2005039233A (en) Substrate having via hole and its producing process
JP2010205801A (en) Method of manufacturing wiring board
KR101555014B1 (en) Printed circuit board for forming fine wiring and method for manufacturing the same
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR101055559B1 (en) Printed circuit board with film and manufacturing method
JP2006339483A (en) Wiring board and manufacturing method thereof
KR20150051440A (en) Composite metal film and method for forming circuit pattern of printed circuit board using the same
JP2007095910A (en) Manufacturing method of wiring board
US20200006135A1 (en) Method and Plater Arrangement for Failure-Free Copper Filling of a Hole in a Component Carrier
KR20150018022A (en) Laminate for Printed Circuit Board and Printed Circuit Board Using the Same and Method of Manufacturing for the same
JP2009182310A (en) Multilayer printed wiring board, and manufacturing method thereof
JP2007115993A (en) Printed wiring board, its production method and multilayered printed wiring board
JP4302045B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
JP2006093231A (en) Printed wiring board and its manufacturing method
JP2007235015A5 (en)
US20120090172A1 (en) Method of manufacturing printed circuit boad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250