JP2009012450A - Two-step molding method for composite material - Google Patents

Two-step molding method for composite material Download PDF

Info

Publication number
JP2009012450A
JP2009012450A JP2007318485A JP2007318485A JP2009012450A JP 2009012450 A JP2009012450 A JP 2009012450A JP 2007318485 A JP2007318485 A JP 2007318485A JP 2007318485 A JP2007318485 A JP 2007318485A JP 2009012450 A JP2009012450 A JP 2009012450A
Authority
JP
Japan
Prior art keywords
composite
raw
mold
resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007318485A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hasegawa
克之 長谷川
Original Assignee
Almighty:Kk
株式会社オールマイティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007150604 priority Critical
Application filed by Almighty:Kk, 株式会社オールマイティー filed Critical Almighty:Kk
Priority to JP2007318485A priority patent/JP2009012450A/en
Publication of JP2009012450A publication Critical patent/JP2009012450A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/022Agglomerated materials, e.g. artificial aggregates agglomerated by an organic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0259Hardening promoted by a rise in pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3427Feeding the material to the mould or the compression means using carrying means hopper, vessel, chute, tube, conveying screw, for material in discrete form, e.g. particles, powder, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • C04B2111/542Artificial natural stone
    • C04B2111/545Artificial marble

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-step molding method for a composite material where molding can be facilitated, and further, a molded article can be manufactured at high precision. <P>SOLUTION: The molding method comprises: a step where a stock obtained by kneading a thermoplastic resin of 40 to 15 wt.% to a fiber raw material, an inorganic raw material or a metal raw material of 60 to 85 wt.%, and performing solidification is crushed, so as to prepare a composite intermediate raw material; a step where the composite intermediate raw material is pushed in and/or decompression-sucked using an air flow, and is packed into a prescribed molding die; and a step where the composed intermediate raw material made close together into the molding die is heated and pressurized, so as to be compressed and integrated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は混合成形した複合原料を破砕して複合中間材を形成し、これを成形する複合材料の二段成形方法の製造方法に関するものである。   The present invention relates to a method for producing a two-stage molding method of a composite material in which a composite raw material obtained by mixing and molding is crushed to form a composite intermediate material.
複合材料、例えば、繊維強化プラスチックFRPの成型方法としては、型に繊維骨材を敷き、硬化剤を混合した樹脂を脱泡しながら多重積層してゆくハンドレイアップ法やスプレーアップ法のほか、あらかじめ骨材と樹脂を混合したシート状のものを金型で圧縮成型するSMCプレス法、繊維とマトリクス(接着剤)を予め馴染ませてある部材(プリプレグなど)を大型の窯(オートクレーブ)で「焼き固める」方法などがある。しかし、異種材料を混合した状態で成型されること、熱硬化性樹脂をマトリックス樹脂としていることから、リサイクルがほとんど不可能な事が欠点である。   As a molding method of composite materials, for example, fiber reinforced plastic FRP, in addition to the hand lay-up method and spray-up method in which fiber aggregates are laid on the mold and the resin mixed with the curing agent is delaminated and delaminated, SMC press method in which a sheet of aggregate and resin mixed in advance is compression-molded with a mold. Members (prepreg, etc.) that have been pre-mixed with fibers and matrix (adhesive) in a large kiln (autoclave) There is a method to “bake and harden”. However, since it is molded in a state in which different kinds of materials are mixed and the thermosetting resin is used as a matrix resin, it is disadvantageous that recycling is almost impossible.
そこで、近年、ガラス繊維強化樹脂(GFRP)の代替として、リサイクル可能な、メチルメタアクリレートなどの熱可塑性樹脂を用いる発表もあるが、上述したように熱硬化性樹脂をマトリックスとしないと所定の強度が得られにくく、しかも熱可塑性樹脂を使用した場合は特殊な製法となる。例えば、繊維強化熱可塑性樹脂シートを用いたスタンパブルシート成形がある。この方法は「分繊飛動装置」を用いて従来の方法とは異なるシート製造法を開発したもので、連続した強化繊維(ロ−ビング)及び熱可塑性樹脂繊維(スライバー)を同時に供給し,装置内で繊維を切断,分繊,混合させ,両繊維が均一に混合した複合マットを連続に製造する方法である(独立行政法人 産業技術総合研究所)。しかしながら、汎用性に欠けるため、実用性がない。他方、リサイクル法としては、わずかに、FRP製の基体を用いた自動車用内装材を再生原料とし、熱可塑性樹脂の樹脂ペレットをマトリックス原料として、粉砕工程により再生原料及びマトリックス原料を10mm大以下に粉砕し、撹拌混合工程により前記粉砕された再生原料及びマトリックス原料を撹拌し、この撹拌された再生原料及びマトリックス原料を一体に擦り合わせて混合し、混合減容工程により前記撹拌混合された再生原料及びマトリックス原料を一体に擦り合わせて減容した後、前記混合減容された再生原料及びマトリックス原料を一体に押出機2に投入し、この再生原料及びマトリックス原料を溶融一体化したリサイクル製品Rを押出成形する自動車用内装材のリサイクル方法が提案されているに過ぎない(特許文献1)。   Therefore, in recent years, as an alternative to glass fiber reinforced resin (GFRP), there are also announcements using recyclable thermoplastics such as methyl methacrylate. However, as described above, if the thermosetting resin is not used as a matrix, it has a predetermined strength. Is difficult to obtain, and when a thermoplastic resin is used, it is a special production method. For example, there is stampable sheet molding using a fiber reinforced thermoplastic resin sheet. This method is a sheet manufacturing method that is different from the conventional method by using a "split flying device", and supplies continuous reinforcing fibers (robbing) and thermoplastic resin fibers (sliver) simultaneously. This is a method of continuously producing a composite mat in which fibers are cut, split, and mixed in a device and both fibers are uniformly mixed (National Institute of Advanced Industrial Science and Technology). However, since it lacks versatility, it is not practical. On the other hand, as a recycling method, automobile interior materials using FRP substrates are used as recycled materials, thermoplastic resin pellets are used as matrix materials, and recycled materials and matrix materials are reduced to 10 mm or less by the grinding process. The pulverized regenerated raw material and the matrix raw material are agitated by the stirring and mixing step, and the stirred regenerated raw material and the matrix raw material are mixed together by rubbing them together. And the matrix raw material are rubbed together to reduce the volume, and then the recycled raw material and the matrix raw material reduced in volume are put into the extruder 2 together, and the recycled product R obtained by melting and integrating the recycled raw material and the matrix raw material is obtained. Only a method for recycling an automotive interior material to be extruded has been proposed (Patent Document 1).
特開2006−264060号公報JP 2006-264060 A
本発明者は鋭意研究の結果、通常樹脂強化のための繊維充填量は成形技術等からの制限から熱硬化性樹脂に対し高々40重量%程度である。これに対し、熱可塑性樹脂をマトリックスとし、そこへの強化繊維の充填量を60重量%以上という通常考えられない充填量を実現すると、熱硬化性樹脂をマトリックスとするFRPに匹敵する物性が得られることを見出されたものの、マトリックスへの充填量を60重量%以上とすると、通常の押出成形は全く不可能である。また、SMCプレス法 (Sheet Molding Compounds)を使用するにしても. 所定のSMCシート(基材・樹脂・充填材を混練しシート状にしたもの)を用意するのが困難である。
そこで、本発明者は鋭意研究の結果、繊維充填量60重量%以上の成形品を直接成形するのは不可能であっても、熱可塑性樹脂を使用する場合、一旦混練固化させた繊維強化複合材料を、粉砕または破砕し、これを成形中間材料として用い、二段成形すると、60重量%以上、好ましくは70重量%以上85重量%までの繊維分を配合することができ、しかもこれを成形すると、繊維の配向がランダムでしかも上下で重畳し、マトリックス樹脂として熱可塑性樹脂を使用しても極めて理想的な繊維強化樹脂製品が製造できることを見出した。しかしながら、60〜85重量%の不燃性繊維原料に対し40〜15重量%の熱可塑性樹脂を混練して固化して一次成形し、これを粉砕又は破砕して形成した複合中間片を用意する必要があり、しかもこれを所定の成形型中に充填して加熱加圧するにあたっては、成形型内に手作業で充填するしかなく、成形能率に問題がある。
As a result of diligent research, the present inventor usually has a fiber filling amount for resin reinforcement of about 40% by weight at most with respect to the thermosetting resin due to limitations due to molding technology. On the other hand, if a thermoplastic resin is used as a matrix and the filling amount of reinforcing fibers therein is 60% by weight or more, which is not normally considered, a physical property comparable to FRP using a thermosetting resin as a matrix can be obtained. Although it has been found that when the filling amount of the matrix is 60% by weight or more, ordinary extrusion molding is completely impossible. Even if the SMC pressing method (Sheet Molding Compounds) is used, it is difficult to prepare a predetermined SMC sheet (a sheet, which is obtained by kneading a base material, a resin, and a filler).
Therefore, as a result of diligent research, the present inventor has made it possible to directly mold a molded product having a fiber filling amount of 60% by weight or more, but when using a thermoplastic resin, the fiber reinforced composite once kneaded and solidified. When the material is pulverized or crushed and used as a molding intermediate material, and two-stage molding is performed, a fiber content of 60% by weight or more, preferably 70% by weight or more and 85% by weight can be blended, and this is molded. Then, it has been found that the fiber orientation is random and overlaps vertically, and that an extremely ideal fiber reinforced resin product can be produced even when a thermoplastic resin is used as the matrix resin. However, it is necessary to prepare a composite intermediate piece formed by kneading and solidifying primary resin by kneading and solidifying 40 to 15% by weight of a thermoplastic resin to 60 to 85% by weight of incombustible fiber raw material. In addition, when filling a predetermined mold and heating and pressurizing it, there is no choice but to fill the mold manually and there is a problem in molding efficiency.
かかる現状に鑑み、本発明者は破砕して形成した複合中間片に空気に対する透過性を付与すると空気流に乗せて成形型内に順次堆積させ充填することができることに着目してなされたもので、
本発明は、60〜85重量%の繊維原料または無機原料に対し40〜15重量%の熱可塑性樹脂を混練して固化した素材を破砕して空気流に対し透過性を有する複合中間原料を用意する工程と、該複合中間原料を空気流を用いて押し込み及び/又は減圧吸引して所定の成形型中に充填する工程と、成形型内に密集した複合中間原料を加熱加圧して圧縮一体化する工程を備えることを特徴とする複合材料の二段成形方法にある。特に、成形型中に充填する工程では、成形型に空気流とともに複合中間原料を投入する投入口を設ける一方、成形型に空気流の排出口を設け、複合中間原料を空気流とともに成形型に投入する一方排気口から排気し、成形型中で空気流下流から上流に複合中間原料を順次堆積させて充填させるが、これに代えて成形型中に充填する工程では、一対の成形型で形成される型内部を減圧し、材料投入口を開放して複合中間原料を型内部に吸引充填させることも可能である。
In view of the current situation, the present inventor has been made by paying attention to the fact that if the composite intermediate piece formed by crushing is given air permeability, it can be sequentially deposited and filled in a mold by placing it on an air flow. ,
The present invention provides a composite intermediate material that is permeable to air flow by crushing a solidified material obtained by kneading 40 to 15% by weight of a thermoplastic resin with 60 to 85% by weight of a fiber material or inorganic material. A step of pushing the composite intermediate material using an air flow and / or suctioning it under reduced pressure to fill it into a predetermined mold, and compressing and integrating the composite intermediate material densely packed in the mold A two-stage molding method of a composite material, characterized by comprising the step of: In particular, in the process of filling into the mold, the mold is provided with an inlet for introducing the composite intermediate material together with the air flow, while the mold is provided with an air flow outlet, and the composite intermediate material is formed into the mold with the air flow. While discharging, the exhaust is exhausted from the exhaust port, and the composite intermediate material is sequentially deposited and filled from the downstream side to the upstream side in the molding die. Instead of this, in the step of filling into the molding die, a pair of molding dies are formed. It is also possible to decompress the inside of the mold, open the material inlet, and suck and fill the composite intermediate material into the mold.
本発明によれば、繊維または無機材が高充填された一次成形材料を破砕した複合中間材を成形型内にエア充填し、これを加熱加圧して圧縮一体化するようにしたので、繊維または無機材が高充填された複合製品を手作業を用いることなく、自動充填自動成形できるので、作業能率に優れ、生産コストを低減することができる。   According to the present invention, the composite intermediate material obtained by crushing the primary molding material highly filled with fiber or inorganic material is filled with air in the molding die, and this is heated and pressurized to be compressed and integrated. A composite product highly filled with an inorganic material can be automatically filled and automatically formed without using manual work, so that the work efficiency is excellent and the production cost can be reduced.
本発明では、繊維原料として可燃性の繊維だけでなく、ガラス繊維、カーボン繊維および繊維ボロン等の不燃性強化繊維から選ばれる。無機原料としては水酸化アルミニウム、シリカ、タンカル、炭素などの各種原料が選ばれる。上記熱可塑性樹脂は用途に応じて各種熱可塑性樹脂が選択されてよく、強化繊維種類、寸法、充填量などとの関係で調整される。例えば、自動車車体、小型船舶船体材料などの構造材料にはPP(ポリプロピレン),PC(ポリカーボネイト)ポリアミド樹脂などが好ましい。また、強化繊維との混練性を改善する目的で、相溶する二以上の熱可塑性樹脂を配合して調整することができる。したがって、本発明によれば、無機原料として水酸化アルミニウム粉60〜75%と、熱可塑性樹脂としてポリ乳酸40〜25%を配合してなる複合材料を混練し、固化後破砕して請求項1の方法により成形して耐熱性複合製品を製造することができる。
また、本発明によれば、無機原料として希土類磁石粉60〜85%と、熱可塑性樹脂としてポリアミド樹脂40〜15%を配合してなる複合材料を混練し、固化後破砕して請求項1の方法により成形してプラスチック磁石製品を製造することができる。
さらに、本発明によれば、繊維原料としてカーボン繊維60〜85%と、熱可塑性樹脂としてポリカーボネイト樹脂40〜15%を配合してなる複合材料を混練し、固化後請求項1の方法により成形して構造物複合製品を製造することができる。
In the present invention, not only combustible fibers but also non-combustible reinforcing fibers such as glass fibers, carbon fibers, and fiber boron are selected as the fiber raw material. As the inorganic raw material, various raw materials such as aluminum hydroxide, silica, tankal, and carbon are selected. Various thermoplastic resins may be selected as the thermoplastic resin depending on the application, and the thermoplastic resin is adjusted in relation to the type of reinforcing fiber, dimensions, filling amount, and the like. For example, PP (polypropylene), PC (polycarbonate) polyamide resin and the like are preferable for structural materials such as automobile bodies and small ship hull materials. Further, for the purpose of improving the kneadability with the reinforcing fiber, two or more thermoplastic resins that are compatible can be blended and adjusted. Therefore, according to the present invention, a composite material composed of aluminum hydroxide powder 60 to 75% as an inorganic raw material and polylactic acid 40 to 25% as a thermoplastic resin is kneaded and crushed after solidification. The heat resistant composite product can be manufactured by molding by the above method.
According to the present invention, a composite material comprising 60 to 85% rare earth magnet powder as an inorganic raw material and 40 to 15% polyamide resin as a thermoplastic resin is kneaded, crushed after solidification, and It can be molded by the method to produce a plastic magnet product.
Furthermore, according to the present invention, a composite material composed of 60 to 85% carbon fiber as a fiber raw material and 40 to 15% polycarbonate resin as a thermoplastic resin is kneaded and solidified and molded by the method of claim 1. The structure composite product can be manufactured.
本発明に基づいて成形される成形品に着色する場合は、一種又は二種以上の着色した60〜85重量%の繊維原料に対し40〜15重量%の透明又は透光性熱可塑性樹脂を混練して固化した繊維強化素材の破砕片を用意し、繊維原料を着色するのが好ましい。着色した繊維原料に対し同系統に着色した熱可塑性樹脂を混練して固化した繊維強化素材の破砕片を用意することも可能であり、上記破砕片が2種以上の異種の着色材料である場合もある。   When coloring a molded article molded according to the present invention, 40 to 15 wt% of a transparent or translucent thermoplastic resin is kneaded with one or two or more colored 60 to 85 wt% fiber raw materials. It is preferable to prepare a crushed piece of a fiber reinforced material solidified and color the fiber raw material. It is also possible to prepare crushed pieces of a fiber reinforced material obtained by kneading and solidifying a thermoplastic resin colored in the same system with a colored fiber raw material, and the crushed pieces are two or more different colored materials There is also.
本発明の特徴は混練固化した複合素材を粉砕又は破砕し、これを成形型内にエア充填して加熱し加圧して薄いシート、やや厚いプレート状又は立体形状の複合樹脂成形品を製造するようにした点にある。強化繊維が水分を含有する場合は溶融したマトリックス樹脂との混練前に、他の熱源で加熱し含有水分を蒸発させるようにしてもよく、又溶融したマトリックス樹脂と複数の強化繊維とを混練する際に強化繊維をマトリックス樹脂の熱によって加熱して強化繊維の含有水分を蒸発させるようにしてもよい。このようにすると、強化繊維の乾燥工程を別途必要とせず、製造工程を簡素化できる。   A feature of the present invention is that a kneaded and solidified composite material is pulverized or crushed, filled with air in a mold, heated and pressurized to produce a thin sheet, a slightly thick plate-shaped or three-dimensional composite resin molded product. It is in the point made. When the reinforcing fiber contains moisture, it may be heated with another heat source to evaporate the contained moisture before kneading with the molten matrix resin, or the molten matrix resin and a plurality of reinforcing fibers are kneaded. At this time, the reinforcing fibers may be heated by the heat of the matrix resin to evaporate the moisture contained in the reinforcing fibers. If it does in this way, the drying process of a reinforcement fiber is not required separately, but a manufacturing process can be simplified.
使用済みの繊維素材をリサイクルする場合、回収した繊維素材を適当な大きさ、例えば繊維の立体的形状が残存する程度の大きさ、例えば一辺が5mm〜20mmの大きさに破砕し、適当な熱源によって加熱してマトリックス樹脂を軟化又は溶融させ、必要に応じてマトリックス樹脂を添加し、繊維素材の原料の全部又は一部として用いることもできる。   When recycling used fiber material, the recovered fiber material is crushed into an appropriate size, for example, a size that allows the three-dimensional shape of the fiber to remain, for example, 5 mm to 20 mm on a side, and an appropriate heat source. The matrix resin can be softened or melted by heating, and if necessary, the matrix resin can be added and used as all or part of the raw material of the fiber material.
複合樹脂成形品に表面樹脂層を形成する場合、複合樹脂成形品の表面に軟化又は溶融した合成樹脂材料を重ねることにより形成してもよく、合成樹脂製のフィルム、シート又はプレートを積層することにより形成することもできる。複合樹脂成形品の表面樹脂層は複合樹脂成形品の外表面の全部に形成してもよく、外表面の一部、例えばプレート状複合樹脂成形品の上面又は下面だけに形成してもよい。   When a surface resin layer is formed on a composite resin molded product, it may be formed by stacking a softened or melted synthetic resin material on the surface of the composite resin molded product, or a synthetic resin film, sheet or plate is laminated. Can also be formed. The surface resin layer of the composite resin molded product may be formed on the entire outer surface of the composite resin molded product, or may be formed only on a part of the outer surface, for example, the upper surface or the lower surface of the plate-shaped composite resin molded product.
複合樹脂成形品は表面樹脂層を形成して所定の製品形状に加圧成形することができるが、複合樹脂成形品の表面に合成樹脂製のフィルム、シート又はプレートを積層し、あるいは軟化又は溶融した合成樹脂材料を重ねる際に、所定の製品形状に成形することもできる。この複合樹脂成形品の成形には金型やローラなどを用い、絞り成形、曲げ成形、真空成形、圧空成形、マッチモールド成形などを採用することができる。   Composite resin molded products can be molded into a predetermined product shape by forming a surface resin layer, but a synthetic resin film, sheet or plate is laminated on the surface of the composite resin molded product, or softened or melted. When the synthetic resin materials are stacked, they can be molded into a predetermined product shape. For molding this composite resin molded product, a die, a roller, or the like is used, and drawing molding, bending molding, vacuum molding, pressure molding, match molding, or the like can be employed.
合成樹脂製のフィルム、シート又はプレートと複合樹脂成形品とは接着剤によって接着するようにしてもよく、複合樹脂成形品のマトリックス樹脂と表面樹脂層の合成樹脂材料との親和性によって相互に結合するようにしてもよい。   The synthetic resin film, sheet or plate and the composite resin molded product may be bonded to each other by an adhesive, and bonded to each other depending on the affinity between the matrix resin of the composite resin molded product and the synthetic resin material of the surface resin layer. You may make it do.
以下、本発明を図面に示す具体例に基づいて詳細に説明する。図1は本発明に係る再生可能な繊維強化樹脂製品の製造方法の好ましい実施形態を示す。繊維強化樹脂製品を製造する場合、各種強化繊維材料を準備する。この強化繊維は長繊維、短繊維のほかに、平均外径10μm〜35μmの粉状のものを用いることもできる。また、樹脂、例えば適当な大きさのチップ状のポリプロピレンやポリエチレンなどの熱可塑性樹脂を準備する。これらの樹脂は1種でもよく、2種が混ざったものでもよい。   Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. FIG. 1 shows a preferred embodiment of a method for producing a renewable fiber-reinforced resin product according to the present invention. When manufacturing fiber reinforced resin products, various reinforcing fiber materials are prepared. In addition to long fibers and short fibers, the reinforcing fibers may be powdery having an average outer diameter of 10 μm to 35 μm. Also, a resin, for example, a thermoplastic resin such as an appropriately sized chip-shaped polypropylene or polyethylene is prepared. These resins may be one kind or a mixture of two kinds.
他方、混練機10の加熱ヒータを作動させ、混練機10内部を熱可塑性樹脂の溶融温度、例えば100°C〜300°Cの範囲内の温度まで上昇させておき、図1の(a)に示されるように、破砕した熱可塑性樹脂のチップを混練機10内に投入し、攪拌しながら溶融させる。バインダー樹脂のチップの投入は一度に行ってもよく、複数回に分けて行ってもよい。バインダー樹脂の溶融中に攪拌羽根の回転による溶融樹脂の攪拌によって熱が発生する場合には加熱ヒータによる加熱温度はバインダー樹脂の溶融温度よりも多少低温であってもよい。   On the other hand, the heater of the kneading machine 10 is operated, and the inside of the kneading machine 10 is raised to a melting temperature of the thermoplastic resin, for example, a temperature in the range of 100 ° C. to 300 ° C., and FIG. As shown, the crushed thermoplastic resin chips are put into the kneader 10 and melted with stirring. Binder resin chips may be charged at once, or may be divided into a plurality of times. When heat is generated by stirring the molten resin by rotation of the stirring blade during melting of the binder resin, the heating temperature by the heater may be slightly lower than the melting temperature of the binder resin.
熱可塑性樹脂が十分に軟化又は溶融すると、準備した繊維原料、例えばガラス繊維を一度に又は複数回に分けて混練機10内に投入するとともに、着色剤、例えば塗料を一度に又は複数回に分けて混練機10内に投入し、軟化・溶融した熱可塑性樹脂と充填剤及び着色剤を実質的に均一になるように混練する。充填剤は一度に大量に投入すると、軟化・溶融した樹脂の温度が低下してしまうことがあるので、混練機10への投入前に繊維強化素材の原料を予め加熱ヒータ等で適当な温度に加熱してもよい。   When the thermoplastic resin is sufficiently softened or melted, the prepared fiber raw material, for example, glass fiber, is fed into the kneader 10 in one time or a plurality of times, and the colorant, for example, the paint is divided in one time or a plurality of times. Then, the mixture is put into the kneader 10 and the softened and melted thermoplastic resin, the filler and the colorant are kneaded so as to be substantially uniform. If a large amount of filler is added at a time, the temperature of the softened and melted resin may decrease. Therefore, the raw material of the fiber reinforced material is preliminarily set to an appropriate temperature with a heater or the like before being added to the kneader 10. You may heat.
また、熱可塑性樹脂を溶融状態のままで長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。本件発明者の実験によれば、溶融してから混練が完了するまでの時間は5分〜30分程度が好ましいことが判明したが、加熱温度や熱可塑性樹脂の物性によって異なるので、最適な時間は実験などによって求めるのがよい。   Further, if the thermoplastic resin is heated for a long time in a molten state, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting. According to the experiments of the present inventors, it has been found that the time from melting to completion of kneading is preferably about 5 to 30 minutes. However, the optimum time varies depending on the heating temperature and the physical properties of the thermoplastic resin. Should be obtained by experimentation.
十分な混練が済むと、図1の(b)(c)に示されるように、混練物20を取り出し、破砕機11で適切な寸法、例えば一辺が10mm〜40mmの大きさの繊維が突出した鱗片状に破砕する。この破砕片21の寸法は後の工程における加圧によって流動させるので特に限定されないが、空気流に乗せて成形型内に充填するので空気流に浮遊しやすい形状が好ましく、堆積しても堆積物全体を空気が透過するような形態とするのが肝要である。   When sufficient kneading is completed, as shown in FIGS. 1B and 1C, the kneaded product 20 is taken out, and a fiber having an appropriate size, for example, a size of 10 mm to 40 mm on one side, is projected by the crusher 11. Crush into scales. The size of the crushed piece 21 is not particularly limited because it is made to flow by pressurization in a later process, but it is preferable to have a shape that easily floats in the air flow because it is placed in the air flow and filled in the mold. It is important to make the whole air permeable.
同様にして図1の(d)に示されるように、色彩の異なる、例えば白色、黒色、茶色、青色の破砕片21を製造する。   Similarly, as shown in FIG. 1 (d), crushed pieces 21 of different colors, for example, white, black, brown and blue, are manufactured.
こうして複数の色彩の破砕片21が得られると、これらを成形面、例えば図1の(e)に示されるように、加熱した一対の金型30、31内に充填する。ここでは、金型内を排気口32を介して吸引減圧し、次いで排気口32を閉じ、吸引口33から複合中間片21を吸引充填する。その後、振動などを付与し、充填密度を安定させ、その位置で加熱し加圧する。すると、色彩の異なる熱可塑性樹脂が流動しながら1/4〜1/5に圧縮され、相互に一体化するので、温度低下後、取り出し、表面を研磨すると、図1の(f)に示されるように、磨いた表面の模様と思えるような繊維強化樹脂製品が得られ、表面には樹脂層が形成される。   When a plurality of crushed pieces 21 are thus obtained, they are filled into a molding surface, for example, a pair of heated dies 30 and 31 as shown in FIG. Here, the inside of the mold is sucked and depressurized through the exhaust port 32, then the exhaust port 32 is closed, and the composite intermediate piece 21 is sucked and filled from the suction port 33. Thereafter, vibration is applied to stabilize the packing density, and heating and pressurization are performed at that position. Then, the thermoplastic resins having different colors are compressed to ¼ to 5 while flowing, and are integrated with each other. When the temperature is lowered and then taken out and the surface is polished, the result is shown in FIG. Thus, a fiber reinforced resin product that seems to be a polished surface pattern is obtained, and a resin layer is formed on the surface.
本発明では空気流に乗せて破砕片を成形型内に充填することができるように成形型中に充填する工程では、成形型の上方を空気流の投入口とする一方、成形型の下方を空気流の排出口とし、空気流に対し透過性を有する複合中間原料を空気流とともに成形型に投入するとともに下方から排気し、成形型中で下方から上方に中間原料を順次堆積させて充填させる。詳しくは、例えば充填機として回転した空気流に破砕片を浮遊させ、送り出し順次堆積させるサイクロン方式を用いる場合がある。 In the present invention, in the step of filling the molding die so that the crushed pieces can be filled in the molding die by being placed on the air stream, the upper side of the molding die is used as the air flow inlet, while the lower side of the molding die is A composite intermediate material that is permeable to the air flow is introduced into the mold together with the air flow and exhausted from below, and the intermediate material is sequentially deposited from below to above in the mold to be filled. . Specifically, for example, a cyclone method may be used in which crushed pieces are suspended in a rotating air stream as a filling machine, and are sequentially sent out and accumulated.
図2は無機材料を高充填配合した耐熱性樹脂製品の製造方法の好ましい実施形態を示す。ここでは耐熱性付与剤として水酸化アルミニウムを準備する。この無機材料は通常粉末のものを用いる。他方、樹脂、としては適当な大きさのチップ状のポリプロピレンやポリエチレンなどの熱可塑性樹脂を用いることができるが、ここではポリ乳酸を準備する。ポリ乳酸にはその他の樹脂は適宜混合してもよい。 FIG. 2 shows a preferred embodiment of a method for producing a heat-resistant resin product in which an inorganic material is highly filled. Here, aluminum hydroxide is prepared as a heat resistance imparting agent. This inorganic material is usually a powder. On the other hand, as the resin, a thermoplastic resin such as a chip-shaped polypropylene or polyethylene having an appropriate size can be used. Here, polylactic acid is prepared. You may mix suitably other resin with polylactic acid.
他方、混練機10の加熱ヒータを作動させ、混練機110内部を熱可塑性樹脂の溶融温度、例えば100°C〜300°Cの範囲内の温度まで上昇させておき、図2の(a)に示されるように、破砕した熱可塑性樹脂のチップを混練機110内に投入し、攪拌しながら溶融させる。バインダー樹脂のチップの投入は一度に行ってもよく、複数回に分けて行ってもよい。バインダー樹脂の溶融中に攪拌羽根の回転による溶融樹脂の攪拌によって熱が発生する場合には加熱ヒータによる加熱温度はバインダー樹脂の溶融温度よりも多少低温であってもよい。   On the other hand, the heater of the kneading machine 10 is operated, and the inside of the kneading machine 110 is raised to the melting temperature of the thermoplastic resin, for example, a temperature in the range of 100 ° C. to 300 ° C., and FIG. As shown, the crushed thermoplastic resin chips are put into the kneader 110 and melted with stirring. Binder resin chips may be charged at once, or may be divided into a plurality of times. When heat is generated by stirring the molten resin by rotation of the stirring blade during melting of the binder resin, the heating temperature by the heater may be slightly lower than the melting temperature of the binder resin.
熱可塑性樹脂が十分に軟化又は溶融すると、準備した水酸化アルミニウムを一度に又は複数回に分けて混練機110内に投入するとともに、着色剤、例えば塗料を一度に又は複数回に分けて混練機110内に投入し、軟化・溶融した熱可塑性樹脂と充填剤及び着色剤を実質的に均一になるように混練する。充填剤は一度に大量に投入すると、軟化・溶融した樹脂の温度が低下してしまうことがあるので、混練機110への投入前に繊維強化素材の原料を予め加熱ヒータ等で適当な温度に加熱してもよい。   When the thermoplastic resin is sufficiently softened or melted, the prepared aluminum hydroxide is fed into the kneading machine 110 at once or divided into a plurality of times, and the colorant, for example, the paint is divided into a kneading machine at once or a plurality of times. The mixture is poured into 110, and the softened and melted thermoplastic resin, the filler and the colorant are kneaded so as to be substantially uniform. If a large amount of filler is added at once, the temperature of the softened and melted resin may decrease. Therefore, the raw material of the fiber reinforced material is previously set to an appropriate temperature with a heater or the like before being charged into the kneader 110. You may heat.
また、熱可塑性樹脂を溶融状態のままで長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。本件発明者の実験によれば、溶融してから混練が完了するまでの時間は5分〜30分程度が好ましいことが判明したが、加熱温度や熱可塑性樹脂の物性によって異なるので、最適な時間は実験などによって求めるのがよい。   Further, if the thermoplastic resin is heated for a long time in a molten state, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting. According to the experiments of the present inventors, it has been found that the time from melting to completion of kneading is preferably about 5 to 30 minutes. However, the optimum time varies depending on the heating temperature and the physical properties of the thermoplastic resin. Should be obtained by experimentation.
十分な混練が済むと、図2の(b)(c)に示されるように、混練物20を取り出し、破砕機111で適切な寸法、例えば一辺が3mm〜20mmの大きさの鱗片状に破砕する。この破砕片121の寸法は後の工程における加圧によって流動させるので特に限定されないが、空気流に乗せて成形型内に充填するので空気流に浮遊しやすい形状が好ましく、堆積しても堆積物全体を空気が透過するような形態とし、適宜金型内を排気して材料が隅々にまで均一に堆積するように工夫するのが肝要である。   After sufficient kneading, as shown in FIGS. 2 (b) and 2 (c), the kneaded product 20 is taken out and crushed into an appropriate size by a crusher 111, for example, a scale having a side of 3 mm to 20 mm. To do. The size of the crushed piece 121 is not particularly limited because it is made to flow by pressurization in a later process, but it is preferable to have a shape that easily floats in the air flow because it is placed in the air flow and filled in the mold. It is important to devise so that the whole can be permeated with air and the mold is appropriately evacuated so that the material is uniformly deposited every corner.
同様にして図2の(d)に示されるように、色彩の異なる、例えば白色、黒色、茶色、青色の破砕片121を製造する。   Similarly, as shown in FIG. 2D, crushed pieces 121 of different colors, for example, white, black, brown, and blue are manufactured.
こうして複数の色彩の破砕片121が得られると、例えば図2の(e)に示されるように、一対の縦型金型51、52を開放してなる金型50を用意する。ここで、金型50内に充填口53を介して空気流とともに破砕片121を充填する。詳しくは、成形型中に充填する工程では、一対の成形型に空気流とともに複合中間原料を投入する投入口を設ける一方、成形型の他方向に、必要とあれば所定箇所に空気流の排出口を設け、複合中間原料を空気流とともに成形型に投入する一方排気口から排気し、成形型中で空気流下流から上流に複合中間原料を順次堆積させて充填させる。次いで振動などを付与し、充填密度を安定させ、その位置で加熱し加圧する。すると、色彩の異なる熱可塑性樹脂が流動しながらおよそ1/3に圧縮され、相互に一体化するので、温度低下後、取り出し、表面を研磨すると、図2の(f)に示されるように、磨いた表面の模様と思えるような樹脂製品が得られる。なお、本実施態様では縦型金型をそのままにして圧縮成型したが、これを水平に寝かせて圧縮することもできる。   In this way, when the crushed pieces 121 of a plurality of colors are obtained, a mold 50 is prepared by opening a pair of vertical molds 51 and 52, for example, as shown in FIG. Here, the crushed pieces 121 are filled into the mold 50 together with the air flow through the filling port 53. Specifically, in the step of filling the mold, a pair of molds are provided with an inlet for introducing the composite intermediate raw material together with the air flow, while the air flow is discharged to a predetermined place in the other direction of the mold if necessary. An outlet is provided, and the composite intermediate material is introduced into the mold together with the air flow, while being exhausted from the exhaust port, and the composite intermediate material is sequentially deposited and filled from the downstream side to the upstream side of the air flow in the mold. Next, vibration or the like is applied to stabilize the packing density, and heating and pressurization are performed at that position. Then, the thermoplastic resins having different colors are compressed to about 1/3 while flowing and are integrated with each other, and when the temperature is lowered and taken out and the surface is polished, as shown in FIG. Resin products that look like polished surfaces can be obtained. In this embodiment, the vertical mold is left as it is for compression molding, but it can also be laid horizontally and compressed.
以下に他の複合中間材料について詳細に説明する。
繊維強化素材の原料にカーボン繊維を用いる場合、平均長さ5〜15mmのものを用いる。他方、マトリックス樹脂としてポリカーボネイトの適当なサイズものを準備する。これから例えば一辺が3mm〜20mmの大きさの薄片に破砕することにより複合中間片を用意する。かかる複合材料は高充填のカーボン繊維によって十分な構造強度が付与されており、自動車用や船舶用構造材に用いることができる。
Hereinafter, other composite intermediate materials will be described in detail.
When carbon fiber is used as the raw material for the fiber reinforced material, one having an average length of 5 to 15 mm is used. On the other hand, an appropriate size of polycarbonate is prepared as a matrix resin. From this, for example, a composite intermediate piece is prepared by crushing into thin pieces each having a size of 3 mm to 20 mm. Such a composite material is provided with sufficient structural strength by highly filled carbon fiber, and can be used for structural materials for automobiles and ships.
また、ポリカーボネイト(PC)に代え、ポリプロピレン(PP)/エチレン・酢酸ビニル共重合体(EVA)樹脂を用い、強化繊維としてガラス繊維を用い、ガラス繊維80重量%及びPP15重量%、EVA5重量%からなる表面が極めて平滑な複合樹脂プレートが得られる。   Also, instead of polycarbonate (PC), polypropylene (PP) / ethylene / vinyl acetate copolymer (EVA) resin is used, glass fiber is used as the reinforcing fiber, glass fiber 80% by weight, PP 15% by weight, EVA 5% by weight A composite resin plate having an extremely smooth surface can be obtained.
本発明に係る繊維強化樹脂成形品の二段成形方法を示す第1実施形態を模式的に示す図である。It is a figure which shows typically 1st Embodiment which shows the two-stage molding method of the fiber reinforced resin molded product which concerns on this invention. 本発明に係る無機高充填成形品の二段製造方法を示す第2実施形態を模式的に示す図である。It is a figure which shows typically 2nd Embodiment which shows the two-stage manufacturing method of the inorganic highly filled molded article which concerns on this invention.
符号の説明Explanation of symbols
10、110 混練機
11、111 破砕機
30、31、51、52 金型
20、120 複合素材
21、121 破砕片
40、60 複合製品
10, 110 Kneading machine 11, 111 Crusher 30, 31, 51, 52 Mold 20, 120 Composite material 21, 121 Shredded piece 40, 60 Composite product

Claims (7)

  1. 60〜85重量%の繊維原料、無機原料または金属原料に対し40〜15重量%の熱可塑性樹脂を混練して固化した素材を破砕して複合中間原料を用意する工程と、該複合中間原料を空気流を用いて押し込み及び/又は減圧吸引して所定の成形型中に充填する工程と、成形型内に密集した複合中間原料を加熱加圧して圧縮一体化する工程を備えることを特徴とする複合材料の二段成形方法。   A step of preparing a composite intermediate material by crushing a solidified material obtained by kneading 40 to 15% by weight of a thermoplastic resin with 60 to 85% by weight of a fiber raw material, an inorganic raw material or a metal raw material; A step of filling in a predetermined mold by pressing and / or suctioning under reduced pressure using an air stream, and a step of compressing and integrating a composite intermediate material densely packed in the mold by heating and pressing. A two-stage molding method for composite materials.
  2. 成形型中に充填する工程では、一対の成形型に空気流とともに複合中間原料を投入する投入口を設ける一方、成形型に空気流の排出口を設け、複合中間原料を空気流とともに成形型に投入する一方排気口から排気し、成形型中で空気流下流から上流に複合中間原料を順次堆積させて充填させる請求項1記載の複合材料の二段成形方法。   In the step of filling in the mold, a pair of molds are provided with an inlet for introducing the composite intermediate raw material together with the air flow, while an air flow outlet is provided in the mold and the composite intermediate raw material is formed into the mold with the air flow. 2. The two-stage molding method for a composite material according to claim 1, wherein the composite material is exhausted from one exhaust port while being charged, and the composite intermediate raw material is sequentially deposited from the downstream side to the upstream side in the molding die.
  3. 成形型中に充填する工程では、一対の成形型で形成される型内部を減圧し、この状態で材料投入口を開放して複合中間原料を型内部に吸引充填させる請求項1記載の複合材料の二段成形方法。   2. The composite material according to claim 1, wherein in the step of filling in the mold, the inside of the mold formed by the pair of molds is depressurized, and in this state, the material input port is opened to suck and fill the composite intermediate material into the mold. Two-stage molding method.
  4. 成形型内に密集した複合中間原料を加熱加圧して圧縮一体化する工程での圧縮比が1/3以上である請求項1記載の複合材料の二段成形方法。 2. The two-stage molding method of a composite material according to claim 1, wherein the compression ratio in the step of compressing and integrating the composite intermediate raw material densely packed in the mold is 1/3 or more.
  5. 無機原料として水酸化アルミニウム粉60〜75%と、熱可塑性樹脂としてポリ乳酸40〜25%を配合してなる複合材料を混練し、固化後破砕してなる複合中間材料を請求項1の方法により成形してなる耐熱性複合製品。   A composite intermediate material obtained by kneading a composite material comprising 60 to 75% of aluminum hydroxide powder as an inorganic raw material and 40 to 25% of polylactic acid as a thermoplastic resin, and crushing after solidification is obtained by the method of claim 1. Molded heat-resistant composite product.
  6. 無機原料として希土類磁石粉60〜85%と、熱可塑性樹脂としてポリアミド樹脂40〜15%を配合してなる複合材料を混練し、固化後破砕してなる複合中間材料を請求項1の方法により成形してなるプラスチック磁石製品。 A composite intermediate material obtained by kneading a composite material composed of 60 to 85% rare earth magnet powder as an inorganic raw material and 40 to 15% polyamide resin as a thermoplastic resin, and crushing after solidification is formed by the method of claim 1. Plastic magnet products.
  7. 繊維原料としてカーボン繊維60〜85%と、熱可塑性樹脂としてポリカーボネイト樹脂40〜15%を配合してなる複合材料を混練し、固化後破砕してなる複合中間材料を請求項1の方法により成形してなる構造物複合製品。 A composite intermediate material obtained by kneading a composite material composed of 60 to 85% carbon fiber as a fiber raw material and 40 to 15% polycarbonate resin as a thermoplastic resin, and crushing after solidification is formed by the method of claim 1. Structure composite product.
JP2007318485A 2007-06-06 2007-12-10 Two-step molding method for composite material Pending JP2009012450A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007150604 2007-06-06
JP2007318485A JP2009012450A (en) 2007-06-06 2007-12-10 Two-step molding method for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318485A JP2009012450A (en) 2007-06-06 2007-12-10 Two-step molding method for composite material

Publications (1)

Publication Number Publication Date
JP2009012450A true JP2009012450A (en) 2009-01-22

Family

ID=40093668

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007212740A Pending JP2009012441A (en) 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling
JP2007318485A Pending JP2009012450A (en) 2007-06-06 2007-12-10 Two-step molding method for composite material
JP2008000069A Pending JP2009012451A (en) 2007-06-06 2008-01-04 Method for molding hormesis composite material
JP2008064389A Pending JP2009012453A (en) 2007-06-06 2008-03-13 Process for producing artificial marble

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007212740A Pending JP2009012441A (en) 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008000069A Pending JP2009012451A (en) 2007-06-06 2008-01-04 Method for molding hormesis composite material
JP2008064389A Pending JP2009012453A (en) 2007-06-06 2008-03-13 Process for producing artificial marble

Country Status (3)

Country Link
JP (4) JP2009012441A (en)
CN (1) CN101318382B (en)
WO (1) WO2008149852A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189406A (en) * 2012-03-14 2013-09-26 Hot House:Kk Thorium-containing molding having hormesis effect, production method therefor and pellet for attachment
JP6384808B2 (en) * 2014-03-31 2018-09-05 久慈琥珀株式会社 Manufacturing method of reclaimed rice cake
IT201600069601A1 (en) * 2016-07-05 2018-01-05 Tiziano Baldi Polymaterial granulate for thermoplastic productions reproducing natural materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150469A (en) * 1978-05-19 1979-11-26 Mitsubishi Electric Corp Manufacture of mottle patterned plastic plate
JPS6321200A (en) * 1986-07-14 1988-01-28 Tsutsunaka Plastic Kogyo Manufacture of patterned synthetic resin material
JPH01286944A (en) * 1988-05-11 1989-11-17 Tsutsunaka Plast Ind Co Ltd Granite-tone thermoplastic resin molded article
JP2004331475A (en) * 2003-05-12 2004-11-25 Yamaha Livingtec Corp Artificial marble

Also Published As

Publication number Publication date
JP2009012453A (en) 2009-01-22
JP2009012451A (en) 2009-01-22
CN101318382B (en) 2013-01-23
WO2008149852A1 (en) 2008-12-11
JP2009012441A (en) 2009-01-22
CN101318382A (en) 2008-12-10

Similar Documents

Publication Publication Date Title
CN105751409B (en) A kind of manufacturing method of carbon fibre composite component die
US8361358B2 (en) Method of recycling fiberglass reinforced plastics
CN100509363C (en) Recovery and molding process for phenol-formaldehyde resin composite waste
CA3026978C (en) A method of making a composite structure
CN101131032A (en) Moulded glass fibre reinforced plastic grille and manufacturing method thereof
JP2009012450A (en) Two-step molding method for composite material
CN113500799A (en) Preform for composite hub molding and hub molding method
CN103802324A (en) Composite material containing tool and manufacturing process thereof
WO2017007321A1 (en) Method for preparing a fiber-reinforced article having a 3d printed surface layer
CN102114721B (en) Composite material decorative plate and manufacturing process thereof
CN109203594A (en) A kind of top load, can the eco-friendly car spare tire cover plate of recycled in its entirety, preparation process and can recycled in its entirety technique
CN107964228A (en) A kind of preparation process of transparent SMC moulding materials
CN105965907A (en) Method for manufacturing glass fiber net covers
JP2009029066A (en) Manufacturing method of combustible fiber-reinforced resin molded article
KR20010095118A (en) Material for molded resin articles and molded resin article using the same
CN103709697B (en) The production technique of fibre composite tea table table top and desktop
KR20090064864A (en) Method for generating chip used in imitation stone panel using frp waste
CN111234350B (en) Composite board prepared from red mud, waste plastic and rice paper waste residues and preparation method thereof
TWI678275B (en) Bonding material for stereoscopic printing and its manufacturing method
CN208946451U (en) A kind of compound leftover pieces recycling system that part is fusible
CN108407417A (en) A kind of high-strength strong acid-base resistance SMC composite materials and the grid production method using the material
EP1795319A2 (en) Method for manufacturing resin composite formed product
CN104271349A (en) Large format polystyrene panel
CN113459376A (en) Method for manufacturing plastic protection ground mat
JPH10166486A (en) Fiber reinforced resin molded product and its production