JP2009012159A - Aqueous dispersing element for chemical mechanical polishing used for manufacturing multilayer circuit board, method for polishing substrate and multilayer circuit board - Google Patents

Aqueous dispersing element for chemical mechanical polishing used for manufacturing multilayer circuit board, method for polishing substrate and multilayer circuit board Download PDF

Info

Publication number
JP2009012159A
JP2009012159A JP2007180314A JP2007180314A JP2009012159A JP 2009012159 A JP2009012159 A JP 2009012159A JP 2007180314 A JP2007180314 A JP 2007180314A JP 2007180314 A JP2007180314 A JP 2007180314A JP 2009012159 A JP2009012159 A JP 2009012159A
Authority
JP
Japan
Prior art keywords
polishing
aqueous dispersion
component
chemical mechanical
mechanical polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180314A
Other languages
Japanese (ja)
Other versions
JP5196112B2 (en
Inventor
Tomikazu Ueno
富和 植野
Atsushi Baba
淳 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007180314A priority Critical patent/JP5196112B2/en
Publication of JP2009012159A publication Critical patent/JP2009012159A/en
Application granted granted Critical
Publication of JP5196112B2 publication Critical patent/JP5196112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous dispersing element for chemical mechanical polishing uniformly and stably polishing a metal film by low friction, while making a high polishing speed and a high flattening characteristic compatible without causing defects in metal film and insulation film, and polishing a wiring layer made of copper and copper alloy provided in an organic resin insulating substrate having little Cu remainder after polishing and excellent polishing selectivity of a Cu film. <P>SOLUTION: This aqueous dispersing element for chemical mechanical polishing polishes the wiring layer containing copper or copper alloy provided in the organic resin insulating substrate. The organic resin insulating substrate contains one or more kinds of compounds selected among (A) organic acid, (B) surface-active agent, (C) oxidant, (D) abrasive grains and (E) ammonia and ammonium salt, and has the total concentration of (A) component and (E) component of 1 to 15 wt.% in relation to the total weight of the aqueous dispersing element, and a ratio of concentration of the (C) component and the total concentration of (A) component and (E) component is 1:1 to 1:50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多層回路基板の製造における配線形成用の研磨に有用な化学機械研磨用水系分散体および該水系分散体を用いた多層回路基板の製造方法、ならびに多層回路基板に関する。 The present invention relates to an aqueous dispersion for chemical mechanical polishing useful for polishing for wiring formation in the production of a multilayer circuit board, a method for producing a multilayer circuit board using the aqueous dispersion, and a multilayer circuit board.

近年、半導体の微細化に伴いプリント回路基板の微細化および多層化が要求されている。それに伴い、内層配線パターンの厚みのばらつきによって生じる基板表面の凹凸が大きくなる傾向がある。特に配線パターンを電解銅メッキで形成する場合、配線パターンの線幅が細いほど、メッキ厚が厚くなりやすく、また、メッキ厚は、配線密度の粗密によるメッキ時の電流分布の相違によっても不均一になる。このため、微細化が進行するに伴い電解銅メッキで形成する配線パターンのメッキ厚のばらつきも大きくなるという問題がある。各配線層の凹凸により、層間での接続不良が発生しやすくなるとともに、多層回路基板にICチップを実装する場合にも、基板表面の凹凸によってICチップとの接続不良が発生しやすくなるという問題があり、これを解決するために例えば、特許文献1記載されているようにロールバフ研磨による各配線層の平坦化が行われている。 In recent years, with the miniaturization of semiconductors, miniaturization and multilayering of printed circuit boards have been demanded. Accordingly, the unevenness of the substrate surface caused by the variation in the thickness of the inner layer wiring pattern tends to increase. In particular, when the wiring pattern is formed by electrolytic copper plating, the thinner the wiring pattern, the thicker the plating thickness, and the plating thickness is uneven due to the difference in current distribution during plating due to the density of the wiring density. become. For this reason, there is a problem that the variation in the plating thickness of the wiring pattern formed by electrolytic copper plating increases as the miniaturization progresses. Insufficient connection between the layers due to the unevenness of each wiring layer, and also when mounting an IC chip on a multilayer circuit board, the connection with the IC chip is likely to occur due to the unevenness of the substrate surface. In order to solve this problem, for example, as described in Patent Document 1, each wiring layer is flattened by roll buffing.

しかしながら従来のロールバフ研磨は、硬い研磨砥粒をバインダーで結合して筒状に形成したロールバフを銅層の表面で転がして研磨する方法であり十分な平坦性を得ることが難しく、銅層の表面にスクラッチが生じ電気特性も低下するという問題もあった。また、このようなバフ研磨において、例えば特許文献2に記載されているようにスラリーを用いる検討も行われているが、多層配線基板のような高度な表面の平滑性が求められる技術水準とは言い難い。
特開2002−134920 特開2003−257910
However, conventional roll buff polishing is a method in which a roll buff formed in a cylindrical shape by bonding hard abrasive grains with a binder is rolled on the surface of the copper layer, and it is difficult to obtain sufficient flatness. In addition, there was a problem in that scratches occurred and the electrical characteristics also deteriorated. In addition, in such buffing, for example, as described in Patent Document 2, studies using a slurry have been conducted, but what is a technical level that requires high surface smoothness such as a multilayer wiring board? It's hard to say.
JP 2002-134920 A JP2003-257910A

本発明は、金属膜や絶縁膜に欠陥を引き起こすことなく、高い研磨速度と高平坦化特性を両立させながら、金属膜を低摩擦で均一に安定して研磨することができ、研磨後のCu残りが少なく、かつCu膜の研磨選択性に優れた有機樹脂絶縁基板に設けられた銅または銅合金からなる配線層を研磨するための化学機械研磨用水系分散体を提供する。また、本発明の化学機械研磨用水分散体を用いた多層回路基板の製造方法を提供することを目的とする。   The present invention can uniformly and stably polish a metal film with low friction without causing defects in a metal film or an insulating film, while achieving both a high polishing rate and a high planarization characteristic. Provided is a chemical mechanical polishing aqueous dispersion for polishing a wiring layer made of copper or a copper alloy provided on an organic resin insulating substrate with little remaining and excellent Cu film polishing selectivity. It is another object of the present invention to provide a method for producing a multilayer circuit board using the chemical mechanical polishing aqueous dispersion of the present invention.

本発明者らは(A)有機酸、(B)界面活性剤、(C)酸化剤、(D)砥粒、(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物、を含み、前記(A)成分と(E)成分の合計濃度が、水系分散体の全重量に対して1〜15重量%であり、(C)成分の濃度と、(A)成分と(E)成分の合計濃度との比率が、1:1〜1:50である、有機樹脂絶縁基板に設けられた銅または銅合金を含む配線層を研磨するための化学機械研磨用水系分散体を用いて前記課題を解決できることを見出した。   The present inventors include (A) an organic acid, (B) a surfactant, (C) an oxidizing agent, (D) an abrasive, (E) one or more compounds selected from ammonia and an ammonium salt, The total concentration of the component (A) and the component (E) is 1 to 15% by weight with respect to the total weight of the aqueous dispersion, and the concentration of the component (C) and the sum of the components (A) and (E) Using the chemical mechanical polishing aqueous dispersion for polishing a wiring layer containing copper or a copper alloy provided on an organic resin insulating substrate, the ratio of which is 1: 1 to 1:50. I found that it can be solved.

本発明に係る多層回路基板の製造方法は、上記化学機械研磨用水系分散体を用いた化学機械研磨により行なうことを特徴とする。   The method for producing a multilayer circuit board according to the present invention is characterized by performing chemical mechanical polishing using the chemical mechanical polishing aqueous dispersion.

本発明によれば、金属膜や絶縁膜に欠陥を引き起こすことなく、高い研磨速度と高平坦化特性を両立させながら、金属膜を低摩擦で均一に安定して研磨することができ、研磨後のCu残りが少なく、かつCu膜の研磨選択性に優れた有機樹脂絶縁基板に設けられた銅または銅合金からなる配線層を研磨するための化学機械研磨用水系分散体を提供される。また、本発明の化学機械研磨用水分散体を用いた多層回路基板の製造方法を提供される。   According to the present invention, a metal film can be uniformly and stably polished with low friction while achieving both a high polishing rate and high planarization characteristics without causing defects in the metal film and the insulating film. There is provided an aqueous dispersion for chemical mechanical polishing for polishing a wiring layer made of copper or a copper alloy provided on an organic resin insulating substrate having little Cu residue and excellent Cu film polishing selectivity. Also provided is a method for producing a multilayer circuit board using the chemical mechanical polishing aqueous dispersion of the present invention.

〔化学機械水系分散体〕
本発明に係る化学機械研磨用水系分散体は、(A)有機酸、(B)界面活性剤、(C)酸化剤、(D)砥粒、(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物、を含み、前記(A)成分と(E)成分の合計濃度が、水系分散体の全重量に対して1〜15重量%であり、(C)成分の濃度と、(A)成分と(E)成分の合計濃度との比率が、1:1〜1:50であることを特徴とする。以下、各成分について詳細に説明する。
[Chemical mechanical aqueous dispersion]
The chemical mechanical polishing aqueous dispersion according to the present invention is one type selected from (A) an organic acid, (B) a surfactant, (C) an oxidizing agent, (D) abrasive grains, (E) ammonia and an ammonium salt. The total concentration of the component (A) and the component (E) is 1 to 15% by weight with respect to the total weight of the aqueous dispersion, and the concentration of the component (C) and (A) The ratio of the component and the total concentration of the component (E) is 1: 1 to 1:50. Hereinafter, each component will be described in detail.

<(A)有機酸>
本発明に用いられる(A)有機酸としては、配線材料元素からなるイオンまたは、銅または銅合金を含む配線材料の表面に対し、配位能力を有する有機酸が好ましい。より好ましくは、キレート配位能力のある有機酸が好ましい。このような銅または銅合金を含む配線材料の表面に対し、配位能力を有する有機酸を添加することにより、配線材料の研磨速度を促進させることができる。
<(A) Organic acid>
The organic acid (A) used in the present invention is preferably an organic acid having a coordination ability with respect to the surface of the wiring material containing ions or copper or copper alloy comprising the wiring material element. More preferably, an organic acid having chelate coordination ability is preferred. By adding an organic acid having coordination ability to the surface of the wiring material containing such copper or copper alloy, the polishing rate of the wiring material can be accelerated.

本発明に用いられる(A)有機酸としては、例えば、酒石酸、フマル酸、グリコール酸、フタル酸、マレイン酸、シュウ酸、クエン酸、リンゴ酸、マロン酸、グルタル酸、キノリン酸、キナルジン酸等の有機酸および、グリシン、アラニン、アスパラギン酸、グルタミン酸、リシン、アルギニンや、芳香族アミノ酸、複素環アミノ酸およびトリプトファンなどのアミノ酸を好適に用いることができる。特にグリシンを用いることが好ましい。   Examples of the organic acid (A) used in the present invention include tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, oxalic acid, citric acid, malic acid, malonic acid, glutaric acid, quinolinic acid, quinaldic acid and the like. And organic acids such as glycine, alanine, aspartic acid, glutamic acid, lysine and arginine, and amino acids such as aromatic amino acids, heterocyclic amino acids and tryptophan can be preferably used. It is particularly preferable to use glycine.

本発明に用いられる(A)有機酸の含有量は、水系分散体の総量に対して0.05〜12重量%が好ましく、さらに0.5〜10重量%が好ましく、特に1〜8重量%が好ましい。(A)有機酸の含有量が0.05重量%未満であると所期の研磨速度を達成できず、研磨終了に多大な時間がかかる。また、上記(A)有機酸が12重量%を超えて含有された場合、化学的エッチング効果が大きくなり、平坦性の悪化や配線層の腐食が生じるため好ましくない。   The content of the organic acid (A) used in the present invention is preferably 0.05 to 12% by weight, more preferably 0.5 to 10% by weight, particularly 1 to 8% by weight, based on the total amount of the aqueous dispersion. Is preferred. (A) If the content of the organic acid is less than 0.05% by weight, the desired polishing rate cannot be achieved, and it takes a long time to complete the polishing. Further, when the organic acid (A) exceeds 12% by weight, the chemical etching effect is increased, and the flatness is deteriorated and the wiring layer is corroded.

本発明に用いられる(A)有機酸は水系分散体中で解離していてもよい。その場合、2価以上の酸の場合の解離部は1価であってもそれ以上でもよい。また、解離部の対の陽イオンは、水素イオン、その他任意的に加えられる添加剤由来の陽イオン、例えばアンモニウムイオン、カリウムイオン等、いずれであってもよい。   The organic acid (A) used in the present invention may be dissociated in the aqueous dispersion. In that case, the dissociation part in the case of a divalent or higher acid may be monovalent or higher. Moreover, the cation of the pair of dissociation part may be any of hydrogen ions and other cations derived from additives that are optionally added, such as ammonium ions and potassium ions.

本発明に用いられる上記(A)成分と上記(E)成分の合計濃度が、水系分散体の全重量に対して1〜15重量%であることが好ましく、より好ましくは2〜12重量%、さらに好ましくは3〜10重量%である。上記(A)成分と上記(E)成分の合計濃度が上記範囲より少ないと配線材料へのエッチング性の低下により研磨速度が低下する傾向があり、上記範囲より多いと配線層のディッシングや配線材料の腐食が生じることがあり好ましくない。   The total concentration of the component (A) and the component (E) used in the present invention is preferably 1 to 15% by weight, more preferably 2 to 12% by weight, based on the total weight of the aqueous dispersion. More preferably, it is 3 to 10% by weight. If the total concentration of the component (A) and the component (E) is less than the above range, the polishing rate tends to decrease due to a decrease in the etching property to the wiring material. Corrosion may occur, which is not preferable.

<(B)界面活性剤>
本発明に用いられる(B)界面活性剤としては、非イオン性界面活性剤、アニオン界面活性剤またはカチオン界面活性剤を用いることができる。上記非イオン性界面活性剤としては、例えば、三重結合を有する非イオン性界面活性剤が挙げられる。具体的には、アセチレングリコールおよびそのエチレンオキサイド付加物、アセチレンアルコールなどが挙げられる。また、シリコーン系界面活性剤、ポリビニルアルコール、シクロデキストリン、ポリビニルメチルエーテル、およびヒドロキシエチルセルロースなども挙げられる。上記カチオン界面活性剤としては、例えば、脂肪族アミン塩および脂肪族アンモニウム塩などが挙げられる。上記アニオン界面活性剤としては、例えば、脂肪族せっけん、硫酸エステル塩、およびリン酸エステル塩などが挙げられる。
<(B) Surfactant>
As the surfactant (B) used in the present invention, a nonionic surfactant, an anionic surfactant or a cationic surfactant can be used. As said nonionic surfactant, the nonionic surfactant which has a triple bond is mentioned, for example. Specifically, acetylene glycol and its ethylene oxide adduct, acetylene alcohol, etc. are mentioned. Also included are silicone surfactants, polyvinyl alcohol, cyclodextrin, polyvinyl methyl ether, and hydroxyethyl cellulose. Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts. Examples of the anionic surfactant include aliphatic soap, sulfate ester salt, and phosphate ester salt.

本発明に用いられる(B)界面活性剤としては、アニオン界面活性剤が好ましい。アニオン系界面活性剤としては、例えばアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩を用いることができる。特に、ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸アンモニウム等のスルホン酸塩を用いることが好ましい。これらの界面活性剤は、1種単独でまたは2種以上を組み合わせて使用することができる。   The (B) surfactant used in the present invention is preferably an anionic surfactant. As the anionic surfactant, for example, sulfonates such as alkylbenzene sulfonate, alkylnaphthalene sulfonate, and α-olefin sulfonate can be used. In particular, it is preferable to use sulfonates such as potassium dodecylbenzenesulfonate and ammonium dodecylbenzenesulfonate. These surfactants can be used singly or in combination of two or more.

本発明に用いられる(B)界面活性剤の含有量は、水系分散体の総量に対して0.005〜1.0重量%が好ましく、さらに0.01〜0.5重量%が好ましく、特に0.02〜0.15重量%が好ましい。(B)界面活性剤の含有量が0.005重量%未満であると平坦性が悪化したり基盤面内の研磨性能が安定化しないことがある。また、界面活性剤の含有量が1.0重量%を超えて添加された場合、含有量に対する平坦性改良効果が低下するとともに、該水系分散体が泡立ちやすくなるため取り扱い性が悪化し、好ましくない。   The content of the (B) surfactant used in the present invention is preferably 0.005 to 1.0% by weight, more preferably 0.01 to 0.5% by weight, particularly with respect to the total amount of the aqueous dispersion. 0.02 to 0.15% by weight is preferred. (B) If the content of the surfactant is less than 0.005% by weight, the flatness may deteriorate or the polishing performance in the substrate surface may not be stabilized. In addition, when the surfactant content is added in excess of 1.0% by weight, the flatness improving effect on the content is reduced, and the aqueous dispersion is liable to foam, so that the handleability is deteriorated. Absent.

<(C)酸化剤>
本発明に用いられる(C)酸化剤としては、例えば、過酸化水素、過酢酸、過安息香酸、tert−ブチルハイドロパーオキサイド等の有機過酸化物、過マンガン酸カリウム等の過マンガン酸化合物、重クロム酸カリウム等の重クロム酸化合物、ヨウ素酸カリウム等のハロゲン酸化合物、硝酸および硝酸鉄等の硝酸化合物、過塩素酸等の過ハロゲン酸化合物、過硫酸アンモニウム等の過硫酸塩、ならびにヘテロポリ酸等が挙げられる。
これらの酸化剤のうち、酸化力、有機樹脂基板への腐食性、および取り扱いやすさなどを考慮すると、過酸化水素、有機過酸化物または過硫酸アンモニウム等の過硫酸塩が好ましく、特に過酸化水素が好ましい。これらの酸化剤を含有させることにより、研磨速度をより大きく向上させることができる。
<(C) Oxidizing agent>
Examples of the (C) oxidizing agent used in the present invention include hydrogen peroxide, peracetic acid, perbenzoic acid, organic peroxides such as tert-butyl hydroperoxide, permanganate compounds such as potassium permanganate, Dichromic acid compounds such as potassium dichromate, halogen acid compounds such as potassium iodate, nitric acid compounds such as nitric acid and iron nitrate, perhalogenated compounds such as perchloric acid, persulfates such as ammonium persulfate, and heteropolyacids Etc.
Of these oxidants, hydrogen peroxide, organic peroxides, or persulfates such as ammonium persulfate are preferred in view of oxidizing power, corrosiveness to organic resin substrates, and ease of handling. Is preferred. By containing these oxidizing agents, the polishing rate can be greatly improved.

本発明に用いられる(C)酸化剤の含有量は、該水系分散体の総量に対して0.05〜5重量%が好ましく、さらに0.1〜3重量%が好ましく、特に0.2〜2重量%がより好ましい。(C)酸化剤の含有量が0.05重量%未満である場合には、化学的エッチングの効果が十分得られず、研磨速度に問題を生ずる場合があり、5重量%を越えて多量に含有させた場合、被研磨面が腐食する場合がある。   The content of the oxidizing agent (C) used in the present invention is preferably 0.05 to 5% by weight, more preferably 0.1 to 3% by weight, and particularly preferably 0.2 to 3% by weight with respect to the total amount of the aqueous dispersion. 2% by weight is more preferred. (C) When the content of the oxidizing agent is less than 0.05% by weight, the effect of chemical etching cannot be obtained sufficiently, which may cause a problem in the polishing rate. If contained, the surface to be polished may corrode.

本発明に用いられる(C)成分の濃度と、上記(A)成分と上記(E)成分の合計濃度との比率は、1:1〜1:50であることが好ましく、より好ましくは1:2〜1:30であり、更に好ましくは1:3〜1:15である。本発明に用いられる(C)成分の濃度と、(A)成分と(E)成分の合計濃度との比率が前記範囲を外れると、研磨速度が低下する傾向があり、好ましくない。   The ratio of the concentration of the component (C) used in the present invention to the total concentration of the component (A) and the component (E) is preferably 1: 1 to 1:50, more preferably 1: 2 to 1:30, more preferably 1: 3 to 1:15. If the ratio of the concentration of the component (C) used in the present invention and the total concentration of the components (A) and (E) is out of the above range, the polishing rate tends to decrease, which is not preferable.

<(D)砥粒>
本発明に用いられる(D)砥粒としては、シリカ粒子、有機ポリマー粒子、有機無機複合粒子、炭酸カルシウム粒子、等から選ばれるいずれか1種類以上を用いることができる。
<(D) Abrasive grain>
As the abrasive grains (D) used in the present invention, any one or more selected from silica particles, organic polymer particles, organic-inorganic composite particles, calcium carbonate particles, and the like can be used.

上記シリカ粒子としては、気相中で塩化ケイ素等を、酸素および水素と反応させるヒュームド法により合成されたヒュームド法シリカ、金属アルコキシドから加水分解縮合して合成するゾルゲル法により合成されたシリカ、精製により不純物を除去した無機コロイド法等により合成されたコロイダルシリカ等が挙げられる。特に、精製により不純物を除去した無機コロイド法等により合成されたコロイダルシリカが好ましい。
本発明に用いる(D)砥粒としてのシリカとしては、平均粒子径200nm以下のコロイダルシリカを用いることが平坦性が良好になるため好ましい。
The silica particles include fumed silica synthesized by the fumed method in which silicon chloride and the like are reacted with oxygen and hydrogen in the gas phase, silica synthesized by the sol-gel method synthesized by hydrolytic condensation from metal alkoxide, and purification. And colloidal silica synthesized by an inorganic colloid method or the like from which impurities have been removed. In particular, colloidal silica synthesized by an inorganic colloid method in which impurities are removed by purification is preferred.
As the silica as the abrasive grain (D) used in the present invention, it is preferable to use colloidal silica having an average particle diameter of 200 nm or less because the flatness becomes good.

上記有機ポリマー粒子としては、ポリ塩化ビニル、ポリスチレンおよびスチレン系共重合体、ポリアセタール、飽和ポリエステル、ポリアミド、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン等のポリオレフィンおよびオレフィン系共重合体、フェノキシ樹脂、ポリメチルメタクリレート等の(メタ)アクリル樹脂およびアクリル系共重合体等を用いることができる。   Examples of the organic polymer particles include polyvinyl chloride, polystyrene and styrene copolymers, polyacetal, saturated polyester, polyamide, polycarbonate, polyethylene, polypropylene, poly-1-butene, and poly-4-methyl-1-pentene. In addition, (meth) acrylic resins such as olefin copolymers, phenoxy resins, and polymethyl methacrylate, acrylic copolymers, and the like can be used.

上記有機無機複合粒子としては、有機粒子と無機粒子とが、研磨時に、容易に分離しない程度に一体に形成されていれば、その種類、構成等は特に限定されない。たとえば、ポリスチレン、ポリメチルメタクリレート等の重合体粒子の存在下で、アルコキシシラン、アルミニウムアルコキシド、チタンアルコキシド等を重縮合させ、重合体粒子の少なくとも表面に、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物が形成された複合粒子が挙げられる。形成された重縮合物は、重合体粒子の官能基に直接結合していてもよいし、シランカップリング剤等を介して結合していてもよい。   The organic-inorganic composite particles are not particularly limited in type, configuration, etc. as long as the organic particles and the inorganic particles are integrally formed to such an extent that they are not easily separated during polishing. For example, polycondensation of alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. in the presence of polymer particles such as polystyrene and polymethyl methacrylate, and polycondensation of polysiloxane, polyaluminoxane, polytitanoxane, etc. on at least the surface of the polymer particles The composite particle in which the thing was formed is mentioned. The formed polycondensate may be directly bonded to the functional group of the polymer particles, or may be bonded via a silane coupling agent or the like.

また、有機無機複合粒子は、前記重合体粒子と、シリカ粒子、アルミナ粒子、チタニア粒子等とを用いて形成してもよい。この場合、前記複合粒子は、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物をバインダーとして、重合体粒子の表面にシリカ粒子等が存在するように形成されていてもよいし、シリカ粒子等が有するヒドロキシル基等の官能基と、重合体粒子の官能基とが化学的に結合して形成されていてもよい。   The organic / inorganic composite particles may be formed using the polymer particles and silica particles, alumina particles, titania particles, or the like. In this case, the composite particles may be formed such that silica particles or the like are present on the surface of the polymer particles using a polycondensate such as polysiloxane, polyaluminoxane, or polytitanoxane as a binder. The functional group such as a hydroxyl group may be chemically bonded to the functional group of the polymer particle.

また、アルコキシシラン等に代えてシリカ粒子、アルミナ粒子等を用いることもできる。これらはポリシロキサン等と絡み合って保持されていてもよいし、それらが有するヒドロキシル基等の官能基により重合体粒子に化学的に結合されていてもよい。   Further, silica particles, alumina particles, or the like can be used instead of alkoxysilane or the like. These may be held in entanglement with polysiloxane or the like, or may be chemically bonded to the polymer particles by a functional group such as a hydroxyl group which they have.

さらに、有機無機複合粒子として、ゼータ電位の符号が互いに異なる有機粒子と無機粒子とが、これらの粒子を含む水分散体において、静電力により結合している複合粒子を使用することもできる。   Furthermore, as the organic-inorganic composite particles, composite particles in which organic particles and inorganic particles having different signs of zeta potential are combined by an electrostatic force in an aqueous dispersion containing these particles may be used.

有機粒子のゼータ電位は、全pH域、または低pH域を除く広範なpH域に渡って、負であることが多い。有機粒子は、カルボキシル基、スルホン酸基等を有すると、より確実に負のゼータ電位を有することが多い。有機粒子がアミノ基等を有すると、特定のpH域において正のゼータ電位を有することもある。   The zeta potential of organic particles is often negative over the entire pH range or a wide pH range excluding a low pH range. In many cases, the organic particles have a negative zeta potential more reliably when they have a carboxyl group, a sulfonic acid group, or the like. When the organic particle has an amino group or the like, it may have a positive zeta potential in a specific pH range.

一方、無機粒子のゼータ電位は、pH依存性が高く、ゼータ電位が0となる等電点を有し、pHによってその前後でゼータ電位の符号が逆転する。
したがって、特定の有機粒子と無機粒子とを、これらのゼータ電位が逆符号となるpH域で混合することによって、静電力により有機粒子と無機粒子とが結合し、一体化して複合粒子を形成することができる。また、混合時のpHではゼータ電位が同符号であっても、その後、pHを変化させ、一方の粒子、特に無機粒子のゼータ電位を逆符号にすることによって、有機粒子と無機粒子とを一体化することもできる。
On the other hand, the zeta potential of inorganic particles is highly pH-dependent and has an isoelectric point at which the zeta potential is 0, and the sign of the zeta potential is reversed before and after the pH depending on the pH.
Therefore, by mixing specific organic particles and inorganic particles in a pH range in which the zeta potential has an opposite sign, the organic particles and the inorganic particles are combined by electrostatic force to form a composite particle. be able to. In addition, even if the zeta potential has the same sign at the pH at the time of mixing, the pH is changed thereafter, and the zeta potential of one particle, especially the inorganic particle, is reversed, thereby integrating the organic particles and the inorganic particles. It can also be converted.

このように静電力により一体化された複合粒子は、この複合粒子の存在下で、アルコキシシラン、アルミニウムアルコキシド、チタンアルコキシド等を重縮合させることにより、その少なくとも表面に、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物をさらに形成してもよい。   In this way, the composite particles integrated by electrostatic force are polycondensed with alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. in the presence of the composite particles, so that at least the surface thereof has polysiloxane, polyaluminoxane, polytitanoxane. A polycondensate such as the above may be further formed.

上記炭酸カルシウム粒子としては、水中で水酸化カルシウムを精製後、炭酸ガスを反応させることにより得られる高純度の炭酸カルシウム粒子が好ましい。   The calcium carbonate particles are preferably high-purity calcium carbonate particles obtained by reacting carbon dioxide after purifying calcium hydroxide in water.

本発明に用いられる(D)砥粒の平均粒子径は40〜500nmが好ましい。この平均粒子径は、レーザー散乱回折型測定機により、または透過型電子顕微鏡による観察により、測定することができる。平均粒子径が40nm以下では、十分に研磨速度が大きい化学機械研磨用水系分散体を得ることができないことがある。500nmを超えると、砥粒の沈降・分離により、安定な水系分散体を容易に得ることができないことがある。砥粒の平均粒子径は上記範囲でもよいが、より好ましくは50〜400nm、特に好ましくは60〜300nmである。平均粒子径がこの範囲にあると、研磨速度が大きく、ディッシングおよびディッシングが十分に抑制され、かつ粒子の沈降・分離が発生しにくい、安定な化学機械研磨用水系分散体を得ることができる。   The average particle diameter of the (D) abrasive grains used in the present invention is preferably 40 to 500 nm. This average particle diameter can be measured by a laser scattering diffraction measuring instrument or by observation with a transmission electron microscope. When the average particle size is 40 nm or less, a chemical mechanical polishing aqueous dispersion having a sufficiently high polishing rate may not be obtained. If it exceeds 500 nm, a stable aqueous dispersion may not be easily obtained due to sedimentation and separation of the abrasive grains. The average particle diameter of the abrasive grains may be in the above range, but is more preferably 50 to 400 nm, and particularly preferably 60 to 300 nm. When the average particle diameter is in this range, a stable chemical mechanical polishing aqueous dispersion can be obtained in which the polishing rate is high, dishing and dishing are sufficiently suppressed, and precipitation and separation of particles are unlikely to occur.

本発明に用いられる(D)砥粒の含有量は、該水系分散体の総量に対して、0.1〜15重量%が好ましく、0.2〜5重量%がより好ましい。砥粒量が0.1重量%未満になると十分な研磨速度を得ることができないことがあり、15重量%を超えるとコストが高くなるとともに安定した化学機械研磨用水系分散体を得られないことがある。   The content of the abrasive grain (D) used in the present invention is preferably 0.1 to 15% by weight, more preferably 0.2 to 5% by weight, based on the total amount of the aqueous dispersion. When the amount of abrasive grains is less than 0.1% by weight, a sufficient polishing rate may not be obtained, and when it exceeds 15% by weight, the cost increases and a stable chemical mechanical polishing aqueous dispersion cannot be obtained. There is.

<(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物>
本発明に用いられる(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物としては、例えば、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、リン酸一アンモニウム、リン酸二アンモニウム、及び有機酸アンモニウム、詳細には蟻酸アンモニウム、酢酸アンモニウム、プロピオン酸アンモニウム、酪酸アンモニウム、乳酸アンモニウム、コハク酸アンモニウム、マロン酸アンモニウム、マレイン酸アンモニウム、フマル酸アンモニウム、キナルジン酸アンモニウム、キノリン酸アンモニウムを挙げることができる。特に、硫酸アンモニウムが好ましい。また、アンモニアと硫酸アンモニウムを併用することがさらに好ましい。
<(E) One or more compounds selected from ammonia and ammonium salts>
Examples of one or more compounds selected from (E) ammonia and ammonium salts used in the present invention include, for example, ammonium sulfate, ammonium chloride, ammonium nitrate, monoammonium phosphate, diammonium phosphate, and organic acid ammonium. Mention may be made of ammonium formate, ammonium acetate, ammonium propionate, ammonium butyrate, ammonium lactate, ammonium succinate, ammonium malonate, ammonium maleate, ammonium fumarate, ammonium quinaldate and ammonium quinolinate. In particular, ammonium sulfate is preferable. Further, it is more preferable to use ammonia and ammonium sulfate in combination.

上記(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物の含有量は、化学機械研磨用水系分散体の総量に対して0.05〜10.0重量%であることが好ましく、さらに0.1〜5.0重量%が好ましく、特に0.2〜3.0重量%がより好ましい。(E)アンモニアおよびアンモニア塩の含有量が0.05重量%未満であると十分な研磨速度を達成することは困難である。一方、(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物の含有量が10.0重量%を超えて添加されると、平坦性が悪化する。   The content of one or more compounds selected from (E) ammonia and ammonium salts is preferably 0.05 to 10.0% by weight based on the total amount of the chemical mechanical polishing aqueous dispersion, and is further 0 0.1 to 5.0% by weight is preferable, and 0.2 to 3.0% by weight is more preferable. (E) When the content of ammonia and ammonia salt is less than 0.05% by weight, it is difficult to achieve a sufficient polishing rate. On the other hand, if the content of one or more compounds selected from (E) ammonia and an ammonium salt is added in excess of 10.0% by weight, the flatness deteriorates.

<(F)水溶性高分子化合物>
本発明に用いられる(F)水溶性高分子化合物としては、例えばポリビニルピロリドン(PVP)や、ポリアクリル酸(PAA)、ポリメタクリル酸、アクリル酸とメタクリル酸の共重合体および、ポリマレイン酸等のカルボン酸含有ポリマーおよびその塩、ポリイソプレンスルホン酸等のスルホン酸含有ポリマーおよびその塩、ヒドロキシエチルアクリレート、ポリビニルアルコール等の水酸基含有ポリマー等を好適に用いることができる。
<(F) Water-soluble polymer compound>
Examples of the water-soluble polymer compound (F) used in the present invention include polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), polymethacrylic acid, a copolymer of acrylic acid and methacrylic acid, and polymaleic acid. Carboxylic acid-containing polymers and salts thereof, sulfonic acid-containing polymers such as polyisoprene sulfonic acid and salts thereof, and hydroxyl-containing polymers such as hydroxyethyl acrylate and polyvinyl alcohol can be suitably used.

本発明に用いられる(F)水溶性高分子化合物の含有量は、該水系分散体の総量の0.001〜0.5重量%が好ましく、0.005〜0.3重量%がより好ましく、0.01〜0.2重量%が特に好ましい。(F)水溶性高分子化合物の含有量が0.001重量%未満の場合には、研磨摩擦を低減することができないことがあり、効果が得られにくい。また、研磨速度も低下することがある。一方、(F)水溶性高分子化合物の含有量が0.5重量%を超えると、Cuの研磨速度が低下することがある。また、化学機械研磨用水系分散体の粘度が高くなりすぎて研磨布上に安定してスラリーを供給できないことがある。その結果、研磨布の温度上昇や研磨むら(面内均一性の劣化)などが生じて、Cu研磨速度やCuディッシングにばらつきが発生することがある。   The content of the water-soluble polymer compound (F) used in the present invention is preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.3% by weight, based on the total amount of the aqueous dispersion. 0.01 to 0.2% by weight is particularly preferable. (F) When the content of the water-soluble polymer compound is less than 0.001% by weight, polishing friction may not be reduced, and the effect is difficult to obtain. Also, the polishing rate may decrease. On the other hand, if the content of (F) the water-soluble polymer compound exceeds 0.5% by weight, the polishing rate of Cu may be lowered. In addition, the viscosity of the chemical mechanical polishing aqueous dispersion may be too high to stably supply the slurry onto the polishing cloth. As a result, an increase in the temperature of the polishing cloth, uneven polishing (deterioration of in-plane uniformity), and the like may occur, resulting in variations in Cu polishing rate and Cu dishing.

本発明に用いられる(F)水溶性高分子化合物がPVPである場合、水系GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量(Mw)で測定した値が20万を超えるPVPを用いることが好ましい。好ましくは20万を超えて150万以下、より好ましくは30万〜150万、さらに好ましくは50万〜120万、特に好ましくは65万〜110万のPVPを用いる。PVPの重量平均分子量が上記範囲にあると、研磨中の摩擦を低減することができ、銅および銅を含む配線層を安定して研磨できる。また、銅および銅を含む配線層のディッシングやコロージョンを抑制することができる。重量平均分子量が上記下限より小さいと前記の効果が不十分となりやすく好ましくない。また、重量平均分子量が大きすぎると研磨速度が低下する傾向および、砥粒の凝集を引き起こす傾向があり、凝集した砥粒によってCu上のスクラッチが増加するおそれがあるため好ましくない。   When the water-soluble polymer compound (F) used in the present invention is PVP, the value measured by polyethylene glycol equivalent weight average molecular weight (Mw) measured by aqueous GPC (gel permeation chromatography) is 200,000. It is preferable to use more PVP. Preferably, more than 200,000 and less than 1.5 million, more preferably 300,000 to 1,500,000, still more preferably 500,000 to 1,200,000, particularly preferably 650,000 to 1,100,000 PVP is used. When the weight average molecular weight of PVP is in the above range, friction during polishing can be reduced, and a wiring layer containing copper and copper can be stably polished. Moreover, dishing and corrosion of the wiring layer containing copper and copper can be suppressed. If the weight average molecular weight is smaller than the above lower limit, the above effect tends to be insufficient, which is not preferable. On the other hand, if the weight average molecular weight is too large, the polishing rate tends to decrease and the agglomeration of the abrasive grains tends to occur.

本発明に用いられる(F)水溶性高分子化合物がPVPである場合、PVPは、フィケンチャー(Fikentscher)法により求めたK値が好ましくは57を超え、より好ましくは57を超えて106以下、さらに好ましくは65〜106、特に好ましくは76〜100、最も好ましくは82〜97である。K値が上記範囲を外れると、研磨速度が低下することがあり好ましくない。   When the water-soluble polymer compound (F) used in the present invention is PVP, the P value of PVP is preferably more than 57, more preferably more than 57 and not more than 106, more preferably not more than 106, Preferably it is 65-106, Most preferably, it is 76-100, Most preferably, it is 82-97. If the K value is out of the above range, the polishing rate may decrease, which is not preferable.

<その他の成分>
本発明の化学機械研磨用水系分散体には、上記の各成分の他、必要に応じて酸、アルカリ、配線材料の防食剤、スラリーの泡立ちを低減する抑泡剤や消泡剤等の各種添加剤を配合することができる。それら添加剤によって、研磨速度の調整や、配線表面を保護することにより平坦性の改良および腐食を抑制することができ、水系分散体中の砥粒の分散安定性を改良することができる。
<Other ingredients>
The chemical mechanical polishing aqueous dispersion of the present invention includes various components such as acids, alkalis, anticorrosives for wiring materials, antifoaming agents and antifoaming agents that reduce foaming of the slurry as necessary, in addition to the above components. Additives can be blended. By these additives, the flatness can be improved and corrosion can be suppressed by adjusting the polishing rate and protecting the wiring surface, and the dispersion stability of the abrasive grains in the aqueous dispersion can be improved.

例えば、酸としては、硝酸、硫酸およびリン酸等の無機酸を本発明の化学機械研磨用水分散体に用いることができる。例えば、アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および水酸化セシウム等、アルカリ金属の水酸化物、TMAH,コリン等の有機アルカリ化合物等を使用することが出来る。上記酸とアルカリの配合量を調節することにより水系分散体のpHを調整することができる。pHの調整により研磨速度を高めることもでき、被加工面の電気化学的性質、砥粒の分散性、安定性、ならびに研磨速度を勘案しつつ、砥粒が安定して存在し得る範囲内で適宜pHを設定することが好ましい。   For example, as the acid, inorganic acids such as nitric acid, sulfuric acid and phosphoric acid can be used in the chemical mechanical polishing aqueous dispersion of the present invention. For example, as the alkali, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, organic alkali compounds such as TMAH, choline, and the like can be used. The pH of the aqueous dispersion can be adjusted by adjusting the blending amount of the acid and alkali. The polishing rate can be increased by adjusting the pH, within the range where the abrasive grains can exist stably, taking into consideration the electrochemical properties of the work surface, the dispersibility and stability of the abrasive grains, and the polishing speed. It is preferable to set the pH appropriately.

<化学機械研磨用水系分散体の物性>
本発明の化学機械研磨用水系分散体は、上記成分が水に分散した水系分散体であり、その粘度は2mPa・s未満であることが好ましい。化学機械研磨用水系分散体の粘度が上記範囲を超えると研磨布上に安定してスラリーを供給できないことがある。その結果、研磨布の温度上昇や研磨むら(面内均一性の劣化)などが生じて、Cu研磨速度やCuディッシングにばらつきが発生することがある。
<Physical properties of aqueous dispersion for chemical mechanical polishing>
The chemical mechanical polishing aqueous dispersion of the present invention is an aqueous dispersion in which the above components are dispersed in water, and the viscosity thereof is preferably less than 2 mPa · s. If the viscosity of the chemical mechanical polishing aqueous dispersion exceeds the above range, the slurry may not be stably supplied onto the polishing cloth. As a result, an increase in the temperature of the polishing cloth, uneven polishing (deterioration of in-plane uniformity), and the like may occur, and variations may occur in the Cu polishing rate and Cu dishing.

<化学機械研磨用水系分散体の調整方法>
本発明では、水に、上記(A)有機酸、(B)界面活性剤、(C)酸化剤、(D)砥粒および(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物、さらに必要に応じその他の添加剤を適時添加混合して化学機械研磨用水系分散体を調製し、これをそのまま化学機械研磨に使用してもよいが、各成分を高濃度で含有する化学機械研磨用水系分散体、すなわち濃縮された水系分散体を調製し、使用時にこれを所望の濃度に希釈して化学機械研磨に使用してもよい。
<Method for preparing chemical mechanical polishing aqueous dispersion>
In the present invention, water contains at least one compound selected from (A) an organic acid, (B) a surfactant, (C) an oxidizing agent, (D) abrasive grains, and (E) ammonia and an ammonium salt, If necessary, other additives may be added and mixed as appropriate to prepare an aqueous dispersion for chemical mechanical polishing, which may be used as it is for chemical mechanical polishing, but the chemical mechanical polishing water containing each component in a high concentration. A system dispersion, that is, a concentrated aqueous dispersion, may be prepared and diluted to a desired concentration at the time of use to be used for chemical mechanical polishing.

また、以下のように、上記成分のいずれかを含む複数の液(例えば、2つまたは3つの液)を調製し、これらを使用時に混合して使用することもできる。この場合、複数の液を混合して化学機械研磨用水系分散体を調製した後、これを化学機械研磨装置に供給してもよいし、複数の液を個別に化学機械研磨装置に供給して定盤上で化学機械研磨用水系分散体を形成してもよい。   In addition, as described below, a plurality of liquids (for example, two or three liquids) containing any of the above components can be prepared, and these can be mixed and used at the time of use. In this case, after preparing a chemical mechanical polishing aqueous dispersion by mixing a plurality of liquids, this may be supplied to the chemical mechanical polishing apparatus, or a plurality of liquids may be supplied individually to the chemical mechanical polishing apparatus. A chemical mechanical polishing aqueous dispersion may be formed on a surface plate.

本発明の化学機械研磨用水系分散体は、少なくとも(D)砥粒を含む組成物(a)と、その他成分を含む組成物(b)の2種類の組成物の組み合わせで供給することも出来る。組成物(a)および(b)は、混合することにより本発明の水系分散体となるものであればどのような組み合わせでもよく、組成物(b)をさらに複数の組成物に分割して供給することもできる。   The chemical mechanical polishing aqueous dispersion of the present invention can be supplied as a combination of at least (D) a composition (a) containing abrasive grains and a composition (b) containing other components. . Compositions (a) and (b) may be in any combination as long as they are mixed to form the aqueous dispersion of the present invention. Composition (b) is further divided into a plurality of compositions and supplied. You can also

前記化学機械研磨用水系分散体は、必要に応じろ過により粗大な砥粒を取り除いて化学機械研磨に用いることができる。好ましくは、孔径10um以下のPP(ポリプロピレン)製デプスタイプフィルターを用いてろ過したものが好適に用いられる。好ましくは孔径5um以下のフィルターを用いることができる。   The chemical mechanical polishing aqueous dispersion can be used for chemical mechanical polishing by removing coarse abrasive grains by filtration if necessary. Preferably, those filtered using a PP (polypropylene) depth type filter having a pore diameter of 10 μm or less are suitably used. Preferably, a filter having a pore size of 5 μm or less can be used.

本発明の多層回路基板の製造方法は、本発明の化学機械研磨用水系分散体を用いて、多層回路基板の配線を形成することを特徴とする。 The manufacturing method of the multilayer circuit board of the present invention is characterized in that the wiring of the multilayer circuit board is formed using the chemical mechanical polishing aqueous dispersion of the present invention.

以下、実施例によって本発明を詳しく説明する。
[1]研磨性能評価に用いた基盤の作製
(1)平坦性評価用基板の作製
表面を粗化処理した銅張り積層板(基板厚;0.6mm、サイズ;10cm角)にWPR−1201ワニス(JSR(株)製の感光性絶縁樹脂組成物)をスピンコートし、ホットプレートで110℃、3分間加熱し、10μm厚の均一な塗膜を作製した。その後、アライナー(Karl Suss社製 MA−100)を用い、100umピッチのL/Sパターンを有するパターンマスクを介して高圧水銀灯からの紫外線を波長350nmにおける露光量が3,000〜5,000J/m2となるように露光した。次いで、ホットプレートで110℃、3分間加熱(PEB)し、2.38重量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いて23℃で60秒間、浸漬現像した後、対流式オーブンで120℃×2時間加熱して銅張り積層板上に溝パターンを有する絶縁樹脂硬化膜を形成した。得られた絶縁樹脂硬化膜上に無電解メッキにより銅シード層を形成した後、電解メッキ法により10umの銅メッキ層を形成することにより溝パターン内に銅を埋め込んだ平坦性評価用基板を得た。
Hereinafter, the present invention will be described in detail by way of examples.
[1] Fabrication of substrate used for polishing performance evaluation (1) Fabrication of flatness evaluation substrate WPR-1201 varnish on a copper-clad laminate (substrate thickness: 0.6 mm, size: 10 cm square) whose surface was roughened (Photosensitive insulating resin composition manufactured by JSR Co., Ltd.) was spin-coated and heated on a hot plate at 110 ° C. for 3 minutes to produce a uniform coating film having a thickness of 10 μm. Thereafter, using an aligner (MA-100 manufactured by Karl Suss), UV light from a high-pressure mercury lamp is irradiated at a wavelength of 350 nm through a pattern mask having an L / S pattern with a pitch of 100 μm at a wavelength of 3,000 to 5,000 J / m 2. It exposed so that it might become. Subsequently, it was heated at 110 ° C. for 3 minutes (PEB) on a hot plate, immersed and developed at 23 ° C. for 60 seconds using an aqueous 2.38 wt% tetramethylammonium hydroxide (TMAH) solution, and then 120 ° C. in a convection oven. * 2 hours of heating was performed to form a cured insulating resin film having a groove pattern on the copper-clad laminate. After forming a copper seed layer by electroless plating on the obtained insulating resin cured film, a 10 μm copper plating layer is formed by electrolytic plating to obtain a flatness evaluation substrate in which copper is embedded in the groove pattern. It was.

(2)銅研磨速度評価用基板の作製
絶縁樹脂層の溝パターン形成を行わない以外は(1)平坦性評価用基板と同様にして10umの銅膜付き基板を得た。
(2) Preparation of substrate for copper polishing rate evaluation A substrate with a copper film of 10 um was obtained in the same manner as the substrate for flatness evaluation (1) except that the groove pattern of the insulating resin layer was not formed.

[2]砥粒を含む水分散体の調製
(1)無機砥粒を含む水分散体の調製
(a)ヒュームド法シリカ粒子を含む水分散体の調製
ヒュームド法シリカ粒子(日本アエロジル株式会社製、商品名「アエロジル#90」)2kgを、イオン交換水6.7kgに超音波分散機によって分散させ、孔径5μmのフィルタによって濾過し、ヒュームド法シリカを含有する水分散体を調製した。
[2] Preparation of aqueous dispersion containing abrasive grains (1) Preparation of aqueous dispersion containing inorganic abrasive grains (a) Preparation of aqueous dispersion containing fumed silica particles Fumed silica particles (manufactured by Nippon Aerosil Co., Ltd., 2 kg of trade name “Aerosil # 90”) was dispersed in 6.7 kg of ion-exchanged water using an ultrasonic disperser and filtered through a filter having a pore diameter of 5 μm to prepare an aqueous dispersion containing fumed silica.

(b)コロイダルシリカを含む水分散体の調製
容量2リットルのフラスコに、25重量%濃度のアンモニア水70g、イオン交換水40g、エタノール175gおよびテトラエトキシシラン21gを投入し、180rpmで攪拌しながら60℃に昇温し、この温度のまま2時間攪拌を継続した後、冷却し、平均粒子径が70nmのコロイダルシリカ/アルコール分散体を得た。次いで、エバポレータにより、この分散体に80℃の温度でイオン交換水を添加しながらアルコール分を除去する操作を数回繰り返し、分散体中のアルコール分を除き、固形分濃度が8重量%の水分散体を調製した。
(B) Preparation of aqueous dispersion containing colloidal silica 70 g of 25 wt% ammonia water, 40 g of ion exchange water, 175 g of ethanol and 21 g of tetraethoxysilane were charged into a 2 liter flask and stirred at 180 rpm. The temperature was raised to 0 ° C. and stirring was continued for 2 hours at this temperature, followed by cooling to obtain a colloidal silica / alcohol dispersion having an average particle diameter of 70 nm. Subsequently, the operation of removing the alcohol content by adding an ion-exchanged water to the dispersion at a temperature of 80 ° C. by an evaporator is repeated several times, the alcohol content in the dispersion is removed, and the water having a solid content concentration of 8% by weight is removed. A dispersion was prepared.

(2)複合粒子からなる砥粒を含む水分散体の調製
(c)重合体粒子を含む水分散体の調整
メチルメタクリレ−ト90部、メトキシポリエチレングリコールメタクリレート(新中村化学工業株式会社製、商品名「NKエステルM−90G」、#400)5部、4−ビニルピリジン5部、アゾ系重合開始剤(和光純薬株式会社製、商品名「V50」)2部、およびイオン交換水400部を、容量2リットルのフラスコに投入し、窒素ガス雰囲気下、攪拌しながら70℃に昇温し、6時間重合させた。これによりアミノ基の陽イオンおよびポリエチレングリコール鎖を有する官能基を備え、平均粒子径150nmのポリメチルメタクリレート系粒子を含む水分散体を得た。なお、重合収率は95%であった。
(2) Preparation of aqueous dispersion containing abrasive grains composed of composite particles (c) Preparation of aqueous dispersion containing polymer particles 90 parts of methyl methacrylate, methoxypolyethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., Product name “NK ester M-90G”, # 400) 5 parts, 4-vinylpyridine 5 parts, azo polymerization initiator (trade name “V50” manufactured by Wako Pure Chemical Industries, Ltd.) 2 parts, and ion-exchanged water 400 Was put into a 2 liter flask and heated to 70 ° C. with stirring in a nitrogen gas atmosphere and polymerized for 6 hours. As a result, an aqueous dispersion containing polymethyl methacrylate particles having an amino group cation and a functional group having a polyethylene glycol chain and an average particle diameter of 150 nm was obtained. The polymerization yield was 95%.

(d)複合粒子を含む水分散体
(c)において得られたポリメチルメタクリレート系粒子を10重量%含む水分散体100部を、容量2リットルのフラスコに投入し、メチルトリメトキシシラン1部を添加し、40℃で2時間攪拌した。その後、硝酸によりpHを2に調整して水分散体(e)を得た。また、コロイダルシリカ(日産化学株式会社製、商品名「スノーテックスO」)を10重量%含む水分散体のpHを水酸化カリウムにより8に調整し、水分散体(f)を得た。水分散体(e)に含まれるポリメチルメタクリレート系粒子のゼータ電位は+17mV、水分散体(f)に含まれるシリカ粒子のゼータ電位は−40mVであった。
(D) Aqueous dispersion containing composite particles 100 parts of an aqueous dispersion containing 10% by weight of the polymethyl methacrylate-based particles obtained in (c) was put into a 2 liter flask, and 1 part of methyltrimethoxysilane was added. The mixture was added and stirred at 40 ° C. for 2 hours. Thereafter, the pH was adjusted to 2 with nitric acid to obtain an aqueous dispersion (e). Further, the pH of an aqueous dispersion containing 10% by weight of colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name “Snowtex O”) was adjusted to 8 with potassium hydroxide to obtain an aqueous dispersion (f). The zeta potential of the polymethyl methacrylate particles contained in the aqueous dispersion (e) was +17 mV, and the zeta potential of the silica particles contained in the aqueous dispersion (f) was −40 mV.

その後、水分散体(e)100部に水分散体(f)50部を2時間かけて徐々に添加、混合し、2時間攪拌して、ポリメチルメタクリレート系粒子にシリカ粒子が付着した粒子を含む水分散体を得た。次いで、この水分散体に、ビニルトリエトキシシラン2部を添加し、1時間攪拌した後、テトラエトキシシラン1部を添加し、60℃に昇温し、3時間攪拌を継続した後、冷却することにより、複合粒子を含む水分散体を得た。この複合粒子の平均粒子径は180nmであり、ポリメチルメタクリレート系粒子の表面の80%にシリカ粒子が付着していた。   Thereafter, 50 parts of the aqueous dispersion (f) are gradually added to 100 parts of the aqueous dispersion (e), mixed and stirred for 2 hours to obtain particles having silica particles attached to the polymethyl methacrylate particles. An aqueous dispersion containing was obtained. Next, 2 parts of vinyltriethoxysilane is added to this aqueous dispersion and stirred for 1 hour, then 1 part of tetraethoxysilane is added, the temperature is raised to 60 ° C., and stirring is continued for 3 hours, followed by cooling. As a result, an aqueous dispersion containing composite particles was obtained. The average particle size of the composite particles was 180 nm, and silica particles were attached to 80% of the surface of the polymethyl methacrylate particles.

(e)炭酸カルシウムを含む水分散体
イオン交換水800gに高純度炭酸カルシウムCS−3NA(宇部マテリアルズ株式会社製)を200g添加しホモミキサー(プライミクス株式会社製)を用いて攪拌回転数6000rpmで1時間攪拌し炭酸カルシウムを20重量%含む水分散体を得た。この炭酸カルシウムの平均粒子径は480nmであった。
(E) Aqueous dispersion containing calcium carbonate 200 g of high-purity calcium carbonate CS-3NA (manufactured by Ube Materials Co., Ltd.) is added to 800 g of ion-exchanged water and stirred at a rotation speed of 6000 rpm using a homomixer (manufactured by Primics Co., Ltd.). The mixture was stirred for 1 hour to obtain an aqueous dispersion containing 20% by weight of calcium carbonate. The average particle size of this calcium carbonate was 480 nm.

<ポリビニルピロリドン水溶液の調製>
容量500mLのフラスコに、脱気したN−ビニル−2−ピロリドン60g及び脱気した水240gを仕込んだ。これを窒素気流中、攪拌下60℃に昇温し、10質量%の亜硫酸ナトリウム水溶液0.3g及び10質量%のt−ブチルヒドロパーオキシド水溶液0.3gを添加した。60℃にて3時間攪拌を継続した後、10質量%の亜硫酸ナトリウム水溶液1.8g及び10質量%のt−ブチルヒドロパーオキシド水溶液1.2gを添加し、さらに3時間攪拌を継続した。この反応混合物をイオン交換水で希釈することにより、ポリビニルピロリドンの20質量%水溶液を得た。
なお、ここで調製したポリビニルピロリドンについて、0.1モル/LのNaCl水溶液/アセトニトリル=80/20(vol/vol)を溶離液とした水系ゲルパーミエーションクロマトグラフィーにて測定したポリエチレングリコール換算の重量平均分子量(Mw)は1,000,000であった。また、フィケンチャー(Fikentscher)法により求めたK値は95であった。
<Preparation of aqueous solution of polyvinylpyrrolidone>
A 500 mL flask was charged with 60 g of degassed N-vinyl-2-pyrrolidone and 240 g of degassed water. This was heated to 60 ° C. with stirring in a nitrogen stream, and 0.3 g of a 10% by mass aqueous sodium sulfite solution and 0.3 g of a 10% by mass aqueous t-butyl hydroperoxide solution were added. After stirring at 60 ° C. for 3 hours, 1.8 g of a 10% by mass sodium sulfite aqueous solution and 1.2 g of a 10% by mass t-butyl hydroperoxide aqueous solution were added, and the stirring was further continued for 3 hours. The reaction mixture was diluted with ion-exchanged water to obtain a 20% by mass aqueous polyvinylpyrrolidone solution.
In addition, about the polyvinyl pyrrolidone prepared here, the weight in conversion of polyethylene glycol measured by water-based gel permeation chromatography using 0.1 mol / L NaCl aqueous solution / acetonitrile = 80/20 (vol / vol) as an eluent. The average molecular weight (Mw) was 1,000,000. In addition, the K value obtained by the Fikenscher method was 95.

[3]化学機械研磨用水系分散体の調製
[2]において調製された水分散体の所定量を容量1リットルのポリエチレン製の瓶に投入し、これに、表1、表2および表3に記載の化合物を各々の含有量となるように添加し、十分に攪拌した。その後、孔径5μmのフィルタで濾過し、実施例1〜16および比較例1〜10の化学機械研磨用水系分散体を得た。
[3] Preparation of Chemical Mechanical Polishing Aqueous Dispersion A predetermined amount of the aqueous dispersion prepared in [2] is put into a polyethylene bottle having a capacity of 1 liter, and Table 1, Table 2, and Table 3 show this. The described compounds were added so as to have respective contents, and stirred sufficiently. Then, it filtered with the filter of 5 micrometers of hole diameters, and obtained the aqueous dispersion for chemical mechanical polishing of Examples 1-16 and Comparative Examples 1-10.

[4]基板の研磨
実施例1〜16および比較例1〜10の水系分散体を用いて配線パターンの無い銅膜付き基板および、前述の溝パターン内に銅を埋め込んだ平坦性評価用基板を以下の条件で研磨した。
研磨装置 : Lapmaster LM15
研磨パッド : IC1000(ニッタ・ハース製)
キャリア荷重 : 150hPa
定盤回転数 : 90pm
研磨剤供給量 : 100ミリリットル/分
[4] Polishing of substrate A substrate with a copper film having no wiring pattern using the aqueous dispersions of Examples 1 to 16 and Comparative Examples 1 to 10, and a substrate for evaluating flatness in which copper is embedded in the groove pattern described above Polishing was performed under the following conditions.
Polishing device: Lapmaster LM15
Polishing pad: IC1000 (made by Nitta Haas)
Carrier load: 150 hPa
Surface plate rotation speed: 90pm
Abrasive supply amount: 100 ml / min

銅の研磨速度は配線パターンの無い銅膜付き基板の研磨結果より下記算出式を用いて計算した。
研磨速度(μm/分)=研磨量(μm)/研磨時間(分)
なお、研磨量は、銅の密度:8.9g/cm3として下式を用いて算出した。
研磨量(μm)=(研磨前重量(g)−研磨後重量(g))/基板面積(cm)*銅の密度(g/cm)*10
また、研磨後の表面を光学顕微鏡で観察しスクラッチの有無を確認した。結果を表1、表2および表3に示す。
The copper polishing rate was calculated using the following calculation formula from the polishing result of the substrate with a copper film without a wiring pattern.
Polishing speed (μm / min) = polishing amount (μm) / polishing time (min)
The polishing amount was calculated by using the following formula as copper density: 8.9 g / cm 3.
Polishing amount (μm) = (weight before polishing (g) −weight after polishing (g)) / substrate area (cm 2 ) * copper density (g / cm 3 ) * 10 4
Moreover, the surface after grinding | polishing was observed with the optical microscope, and the presence or absence of the scratch was confirmed. The results are shown in Table 1, Table 2 and Table 3.

[5]ディッシングの評価
溝等に配線材料を埋め込んだときの初期の余剰膜[厚さX(μm)]を研磨速度V(μm/分)で研磨する際、本来X/V(分)の時間だけ研磨すると目的が達成できるはずであるが、実際の製造工程では、溝以外の部分に残る配線材料を除去するため、X/V(分)を越えて過剰研磨(オーバーポリッシュ)を実施している。このとき、配線部分が過剰に研磨されることにより、凹状の形状となる場合がある。このような凹状の配線形状は、「ディッシング」と呼ばれ、製造品の歩留まりを低下させてしまう点から好ましくない。このようなディッシングの評価を、触針式段差計(KLA−Tencor社製、型式「P−10」)を使用し、基板(a)および基板(b)の50μm配線を用いて行った。
また、ディッシングの評価における研磨時間は、初期の余剰銅膜[厚さX(μm)]を[4]で得られた研磨速度V(μm/分)で除した値(X/V)(分)に1.5を乗じた時間(分)とした。ディッシングの評価結果を表1、表2および表3に併記する。
[5] Evaluation of dishing When polishing an initial surplus film [thickness X (μm)] when a wiring material is embedded in a groove or the like at a polishing rate V (μm / min), it is originally X / V (min) The purpose should be achieved by polishing for only time, but in the actual manufacturing process, excessive polishing (over polishing) exceeding X / V (min) is performed to remove the wiring material remaining in the part other than the groove. ing. At this time, the wiring portion may be excessively polished, resulting in a concave shape. Such a concave wiring shape is referred to as “dishing” and is not preferable because it reduces the yield of manufactured products. Evaluation of such dishing was performed using a stylus type step gauge (manufactured by KLA-Tencor, model “P-10”) using 50 μm wiring of the substrate (a) and the substrate (b).
The polishing time in the dishing evaluation is a value (X / V) (minute) obtained by dividing the initial excess copper film [thickness X (μm)] by the polishing rate V (μm / minute) obtained in [4]. ) Times 1.5 (minutes). The dishing evaluation results are shown in Table 1, Table 2, and Table 3.

Figure 2009012159
Figure 2009012159

Figure 2009012159
Figure 2009012159

Figure 2009012159
Figure 2009012159

表1、表2の結果によれば、実施例1〜16の化学機械研磨用水系分散体では、いずれも銅の研磨速度は4μm/分以上と十分に高い。また、50μm配線のディッシングは1.0um以下と小さく、良好なオーバーポリッシュマージンを有していることが分かる。さらに、銅表面のスクラッチも認められず良好な研磨面を有している。一方、表3に示す通り、(A)有機酸を含まない比較例1では、研磨速度が不十分であり、(B)界面活性剤を含まない比較例2では研磨速度は十分であるものの、ディッシングが大きく、(C)酸化剤、(D)砥粒、(E)アンモニアまたはアンモニウム塩を含まないを含まない比較例3、4、5および、(A)成分と(E)成分の合計量が1重量%未満の比較例6では、研磨速度が1μm/分以下と不十分である。また、(A)成分と(E)成分の合計量が15重量%を超える比較例7では、研磨速度は十分だがディッシングが大きいという問題がある。また、(C)成分の濃度と、(A)成分と(E)成分の合計濃度との比率が1:1〜1:50の範囲から外れる比較例8および比較例9はいずれも、研磨速度が低下しディッシングも増加しており研磨性能が劣る。   According to the results of Tables 1 and 2, in the chemical mechanical polishing aqueous dispersions of Examples 1 to 16, the copper polishing rate is sufficiently high at 4 μm / min or more. Further, it can be seen that the dishing of the 50 μm wiring is as small as 1.0 μm or less and has a good overpolish margin. Furthermore, no scratches on the copper surface are observed and the surface has a good polished surface. On the other hand, as shown in Table 3, in (A) Comparative Example 1 containing no organic acid, the polishing rate was insufficient, and (B) in Comparative Example 2 containing no surfactant, the polishing rate was sufficient, Comparative Examples 3, 4 and 5 which do not contain (C) oxidizing agent, (D) abrasive grains, (E) no ammonia or ammonium salt, and the total amount of (A) and (E) components In Comparative Example 6 in which is less than 1% by weight, the polishing rate is 1 μm / min or less, which is insufficient. Further, Comparative Example 7 in which the total amount of the component (A) and the component (E) exceeds 15% by weight has a problem that the polishing rate is sufficient but dishing is large. Further, both Comparative Example 8 and Comparative Example 9 in which the ratio of the concentration of the component (C) and the total concentration of the components (A) and (E) are out of the range of 1: 1 to 1:50 are polishing rates. And the dishing increase, and the polishing performance is inferior.

本発明によれば、表示材料基板上にある余分の配線材料を高い研磨速度での研磨を実現しつつ、かつ、基盤の面内均一性の確保および研磨面内での平坦性のばらつき抑制を実現できる化学機械研磨用水系分散体を得ることができ、表示材料の製造において有用である。   According to the present invention, the excess wiring material on the display material substrate can be polished at a high polishing rate, while ensuring in-plane uniformity of the substrate and suppressing variation in flatness within the polished surface. An achievable chemical mechanical polishing aqueous dispersion can be obtained, which is useful in the production of display materials.

Claims (7)

(A)有機酸、(B)界面活性剤、(C)酸化剤、(D)砥粒、(E)アンモニアおよびアンモニウム塩から選ばれる1種類以上の化合物、を含み、
前記(A)成分と前記(E)成分の合計濃度が、水系分散体の全重量に対して1〜15重量%であり、
前記(C)成分の濃度と、前記(A)成分と前記(E)成分の合計濃度との比率が、1:1〜1:50である
有機樹脂絶縁基板に設けられた銅または銅合金を含む配線層を研磨するための化学機械研磨用水系分散体。
(A) an organic acid, (B) a surfactant, (C) an oxidizing agent, (D) an abrasive, (E) one or more compounds selected from ammonia and an ammonium salt,
The total concentration of the component (A) and the component (E) is 1 to 15% by weight with respect to the total weight of the aqueous dispersion,
A copper or copper alloy provided on an organic resin insulating substrate in which the ratio of the concentration of the component (C) and the total concentration of the component (A) and the component (E) is 1: 1 to 1:50. A chemical mechanical polishing aqueous dispersion for polishing a wiring layer.
前記(D)成分が、シリカ粒子、有機ポリマー粒子、有機無機複合粒子、炭酸カルシウム粒子から選ばれる1種類以上を含む、請求項1に記載の化学機械研磨用水系分散体。 2. The chemical mechanical polishing aqueous dispersion according to claim 1, wherein the component (D) includes one or more selected from silica particles, organic polymer particles, organic-inorganic composite particles, and calcium carbonate particles. 前記(A)成分がアミノ酸である請求項1乃至2に記載の化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion according to claim 1, wherein the component (A) is an amino acid. 前記(B)成分が、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸アンモニウムから選ばれる1種類以上の化合物である、請求項1乃至3に記載の化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion according to claim 1, wherein the component (B) is one or more compounds selected from potassium dodecylbenzenesulfonate and ammonium dodecylbenzenesulfonate. さらに(F)水溶性高分子化合物を含む、請求項1乃至4に記載の化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion according to claim 1, further comprising (F) a water-soluble polymer compound. 請求項1乃至5のうちのいずれか1項に記載の化学機械研磨用水系分散体を用いて、導体配線を形成することを特徴とする多層回路基板の製造方法。 A method for producing a multilayer circuit board, comprising forming a conductor wiring by using the chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 5. 請求項6に記載の製造方法により製造される多層回路基板。 A multilayer circuit board manufactured by the manufacturing method according to claim 6.
JP2007180314A 2007-07-09 2007-07-09 Chemical mechanical polishing aqueous dispersion and method for producing multilayer circuit board Active JP5196112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180314A JP5196112B2 (en) 2007-07-09 2007-07-09 Chemical mechanical polishing aqueous dispersion and method for producing multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180314A JP5196112B2 (en) 2007-07-09 2007-07-09 Chemical mechanical polishing aqueous dispersion and method for producing multilayer circuit board

Publications (2)

Publication Number Publication Date
JP2009012159A true JP2009012159A (en) 2009-01-22
JP5196112B2 JP5196112B2 (en) 2013-05-15

Family

ID=40353690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180314A Active JP5196112B2 (en) 2007-07-09 2007-07-09 Chemical mechanical polishing aqueous dispersion and method for producing multilayer circuit board

Country Status (1)

Country Link
JP (1) JP5196112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028968A (en) * 2013-07-30 2015-02-12 Jsr株式会社 Aqueous dispersoid for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersoid for chemical mechanical polishing
JP2020019863A (en) * 2018-07-31 2020-02-06 ニッタ・ハース株式会社 Slurry for polishing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340755A (en) * 2003-11-14 2005-12-08 Showa Denko Kk Abrasive compound and polishing method
JP2006352096A (en) * 2005-05-17 2006-12-28 Jsr Corp Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
WO2007060869A1 (en) * 2005-11-24 2007-05-31 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2007150264A (en) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd Organic insulating material, polishing material for copper film compound material, and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340755A (en) * 2003-11-14 2005-12-08 Showa Denko Kk Abrasive compound and polishing method
JP2006352096A (en) * 2005-05-17 2006-12-28 Jsr Corp Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP2007150264A (en) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd Organic insulating material, polishing material for copper film compound material, and polishing method
WO2007060869A1 (en) * 2005-11-24 2007-05-31 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028968A (en) * 2013-07-30 2015-02-12 Jsr株式会社 Aqueous dispersoid for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersoid for chemical mechanical polishing
JP2020019863A (en) * 2018-07-31 2020-02-06 ニッタ・ハース株式会社 Slurry for polishing
JP7220532B2 (en) 2018-07-31 2023-02-10 ニッタ・デュポン株式会社 polishing slurry

Also Published As

Publication number Publication date
JP5196112B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5459466B2 (en) Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board
TWI441907B (en) Chemical machinery grinding water dispersions and chemical mechanical grinding methods
KR101469994B1 (en) Chemical mechanical polishing aqueous dispersion preparation set, method of preparing chemical mechanical polishing aqueous dispersion, chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method
KR101330956B1 (en) Polishing solution for cmp and polishing method
JP2007088424A (en) Aqueous dispersing element for chemical mechanical polishing, kit for preparing the same aqueous dispersing element, chemical mechanical polishing method and manufacturing method for semiconductor device
JPWO2007116770A1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP5110244B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2005158867A (en) Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP5196112B2 (en) Chemical mechanical polishing aqueous dispersion and method for producing multilayer circuit board
JPWO2008117573A1 (en) Chemical mechanical polishing aqueous dispersion, kit for preparing the aqueous dispersion, chemical mechanical polishing method, and semiconductor device manufacturing method
JP2009224771A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2009129977A (en) Method of polishing multi-layer circuit board, and multi-layer circuit board
JP2010016344A (en) Aqueous dispersing element for chemical mechanical polishing, manufacturing method thereof, and chemical mechanical polishing method
JP2010016341A (en) Aqueous dispersing element for chemical mechanical polishing, manufacturing method thereof, and chemical mechanical polishing method
KR101564469B1 (en) Chemical mechanical polishing aqueous dispersion for manufacturing circuit board circuit board manufacturing method circuit board and multilayer circuit board
JP2010034497A (en) Aqueous dispersion for chemo-mechanical polishing and manufacturing method thereof, and chemo-mechanical polishing method
JP5333740B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
US20190292408A1 (en) Chemical mechanical polishing composition and method of manufacturing circuit board
JP5333741B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010028079A (en) Aqueous dispersion for chemical mechanical polishing, manufacturing method of the same, and chemical mechanical polishing method
JP5333739B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2009302551A (en) Set for manufacturing water-based dispersing element for chemical-mechanical polishing
JP5321796B2 (en) Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board
JP5413567B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5196112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250