JP2009010206A - Glass for coating light-emitting element, and glass-coated light emitting device - Google Patents

Glass for coating light-emitting element, and glass-coated light emitting device Download PDF

Info

Publication number
JP2009010206A
JP2009010206A JP2007170788A JP2007170788A JP2009010206A JP 2009010206 A JP2009010206 A JP 2009010206A JP 2007170788 A JP2007170788 A JP 2007170788A JP 2007170788 A JP2007170788 A JP 2007170788A JP 2009010206 A JP2009010206 A JP 2009010206A
Authority
JP
Japan
Prior art keywords
glass
light
zno
teo
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007170788A
Other languages
Japanese (ja)
Inventor
Shuji Matsumoto
修治 松本
Nobuhiro Nakamura
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007170788A priority Critical patent/JP2009010206A/en
Publication of JP2009010206A publication Critical patent/JP2009010206A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass for coating light emitting elements capable of sealing optical elements at a temperature about 500°C, and to provide a glass-coated light-emitting device which is coated with the glass. <P>SOLUTION: The glass for coating light-emitting elements is essentially constituted of, in terms of oxide-based mol% denotation, 41-55% TeO<SB>2</SB>, 16-33% B<SB>2</SB>O<SB>3</SB>, and 22-50% ZnO, having an average linear expansion coefficient at a temperature of 50-300°C of 120×10<SP>-7</SP>/°C or lower, having a glass transition temperature of 420°C or lower, and practically does not contain fluorine. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はガラス、特に、発光素子(例えば、発光ダイオード)の被覆に用いられるガラス及びそのガラスを用いて被覆されたガラス被覆発光装置に関する。   The present invention relates to glass, in particular, glass used for coating a light emitting element (for example, a light emitting diode) and a glass-coated light emitting device coated with the glass.

従来、発光素子を被覆する部材としてはエポキシ樹脂、シリコーン若しくはフッ素樹脂などの樹脂が主とされていた。しかし、上記部材では発光効率が足りず、従来の発光装置は一般照明や自動車用ヘッドライトとしての採用が難しかった。そこで、被覆する部材としてガラスが注目されてきている(特許文献1、特許文献2)。   Conventionally, a resin such as an epoxy resin, silicone, or fluororesin has been mainly used as a member for covering the light emitting element. However, the above-described members have insufficient luminous efficiency, and it has been difficult to employ conventional light emitting devices as general lighting or automobile headlights. Therefore, glass has been attracting attention as a member to be coated (Patent Document 1, Patent Document 2).

特開平7−330372号公報Japanese Patent Laid-Open No. 7-330372 米国特許公開番号:2006/0231737A1US Patent Publication Number: 2006 / 0231737A1

しかしながら、少ない組成物により構成されるガラス特許文献1及び特許文献2はいずれも、TeOとBとZnOの3つの組成物以外の組成物を実質的に含むガラスを開示している。ガラスを構成する組成物の数は少なければ少ないほど安価に製造できるのであるが、50〜300℃における所望の平均線熱膨張係数(120×10−7/℃以下)及びガラス転移点(420℃以下)及び失透抑制を克服するための各組成物の配分量の見極めが難しく、どうしても上記3つの組成物以外の組成物を実質的に含有したガラスによって、発光素子を封止していた。具体的に説明すると、TeOは、その含有量が少なければ屈折率を小さくまたはガラス転移点を上昇させ、一方多ければ平均線膨張係数を大きくさせるという課題がある。また、Bは、その含有量が少なければガラスを不安定にさせ、一方多ければ屈折率を小さくまたは耐水性等の化学的耐久性を低下させるという課題がある。また、ZnOは、その含有量が少なければガラスを不安定にさせ及び失透し易くさせ、一方多ければ980℃超の温度で溶解しなければならなくなる恐れがあるという課題がある。そのため、実質的に3つの組成物のみで構成されるガラスの各含有量を決めることはとても容易なことではなかった。そのため、特許文献1は、微妙な含有量を見極める代わりに、フッ素(元素記号:F)を含有している。しかし、フッ素は高額な素材であり、完成品であるガラス被覆発光装置の価格を上昇させてしまうという問題点がある。また、特許文献2に記載されたガラスは、ガラス転移点(Tg)が420℃以上あり、500℃以下で発光素子を封止することができないという問題点がある。 However, both glass patents 1 and 2 composed of a small number of compositions disclose glasses that substantially contain a composition other than the three compositions of TeO 2 , B 2 O 3 and ZnO. . The smaller the number of compositions constituting the glass, the cheaper it can be produced, the desired average linear thermal expansion coefficient (120 × 10 −7 / ° C. or less) at 50 to 300 ° C. and the glass transition point (420 ° C. or less). In addition, it is difficult to determine the distribution amount of each composition for overcoming devitrification suppression, and the light-emitting element was encapsulated with glass substantially containing a composition other than the above three compositions. Specifically, TeO 2 has a problem that if the content is small, the refractive index is decreased or the glass transition point is increased, and if it is larger, the average linear expansion coefficient is increased. Further, B 2 O 3 has a problem that if the content is small, the glass becomes unstable, while if it is large, the refractive index is decreased or the chemical durability such as water resistance is lowered. In addition, ZnO has a problem that if its content is low, it makes the glass unstable and easily devitrified, while if it is high, ZnO may have to be melted at a temperature above 980 ° C. For this reason, it has not been very easy to determine the contents of the glass composed substantially of only three compositions. Therefore, Patent Document 1 contains fluorine (element symbol: F) instead of determining the subtle content. However, fluorine is an expensive material, and there is a problem that the price of the finished glass-covered light-emitting device increases. Further, the glass described in Patent Document 2 has a glass transition point (Tg) of 420 ° C. or higher, and there is a problem that the light emitting element cannot be sealed at 500 ° C. or lower.

本発明の一態様の発光素子被覆用ガラスは、各組成物に含有される不純物を除きTeOとBとZnOの3つの組成物のみから構成され、50〜300℃における平均線熱膨張係数が120×10−7/℃以下、ガラス転移点が420℃以下であることを特徴とする。 One mode of a light-emitting element for covering glass of the present invention is composed of only three compositions of ZnO and TeO 2 and B 2 O 3 to remove impurities contained in each composition, the average linear thermal at 50 to 300 ° C. The expansion coefficient is 120 × 10 −7 / ° C. or less, and the glass transition point is 420 ° C. or less.

また、本発明の一態様のガラス被覆発光装置は、基板と、基板上に搭載される被接着部材と、被接着部材を封止するTeOとBとZnOの3元系ガラスとを有することを特徴とする。 In addition, a glass-coated light-emitting device of one embodiment of the present invention includes a substrate, a bonded member mounted on the substrate, TeO 2 , B 2 O 3, and ZnO ternary glass that seals the bonded member. It is characterized by having.

本発明によれば、平均線膨張係数をさほど大きくすることなく、ガラス転移点を下げることができ、500℃付近で発光素子を封止することができるTeOとBとZnOの実質的3つの組成物により構成される発光素子被覆用ガラス及びそのガラスで被覆されたガラス被覆発光装置を提供することができる。 According to the present invention, without much increasing the average linear expansion coefficient, it is possible to lower the glass transition point, TeO 2 and B 2 O 3 and real ZnO capable of sealing the light-emitting element at around 500 ° C. It is possible to provide a glass for light-emitting element coating composed of three target compositions and a glass-coated light-emitting device coated with the glass.

本発明の実施形態を、添付した図面を参照して以下に詳細に説明する。図では、対応する部分は、対応する参照符号で示している。下記の実施形態は、一例として示されたもので、本発明の精神から逸脱しない範囲で種々の変形をして実施することが可能である。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the figure, corresponding parts are indicated by corresponding reference numerals. The following embodiment is shown as an example, and various modifications can be made without departing from the spirit of the present invention.

初めに、図面を用いて、ガラス被覆発光装置について説明する。   First, a glass-coated light-emitting device will be described with reference to the drawings.

図1は、本発明のガラス被覆発光装置の断面図である。本発明のガラス被覆発光装置は、被接着部材である発光素子(例えば、発光ダイオード)100と、発光素子100を被覆する被覆部材であるガラス110と、発光素子100が搭載される配線130が形成された基板120とを有する。   FIG. 1 is a cross-sectional view of the glass-coated light-emitting device of the present invention. In the glass-coated light-emitting device of the present invention, a light-emitting element (for example, a light-emitting diode) 100 that is a bonded member, a glass 110 that is a coating member that covers the light-emitting element 100, and a wiring 130 on which the light-emitting element 100 is mounted are formed. Substrate 120.

発光素子100は、基板101と、LED102と、プラス電極103と、マイナス電極104とを有する。LED102は、波長が360〜480nmの紫外光または青色光を放出するLEDであり、GaNにInを添加したInGaNを発光層とする量子井戸構造のLED(InGaN系LED)である。基板101の平均線膨張係数(α)は、70×10−7〜90×10−7/℃である。通常、基板101として平均線膨張係数(α)が約80×10−7/℃であるサファイア基板が使用される。 The light emitting element 100 includes a substrate 101, an LED 102, a plus electrode 103, and a minus electrode 104. The LED 102 is an LED that emits ultraviolet light or blue light having a wavelength of 360 to 480 nm, and is an LED having a quantum well structure (InGaN-based LED) using InGaN in which In is added to GaN as a light emitting layer. The average linear expansion coefficient (α) of the substrate 101 is 70 × 10 −7 to 90 × 10 −7 / ° C. Usually, a sapphire substrate having an average linear expansion coefficient (α) of about 80 × 10 −7 / ° C. is used as the substrate 101.

次に、本発明の発光素子被覆用ガラスについて説明する。   Next, the light emitting element coating glass of the present invention will be described.

本発明の発光素子被覆用ガラスのガラス転移点(Tg)は、好ましくは420℃以下、より好ましくは410℃以下である。   The glass transition point (Tg) of the glass for covering a light emitting device of the present invention is preferably 420 ° C. or lower, more preferably 410 ° C. or lower.

本発明の発光素子被覆用ガラスの50〜300℃における平均線膨張係数(α)は、120×10−7/℃以下、より好ましくは116×10−7/℃以下、特に好ましくは115×10−7/℃以下である。なお、50〜300℃における平均線膨張係数(α)は、70×10−7/℃未満では、ガラス転移点を上昇させる。好ましくは、75×10−7/℃以上である。 The average linear expansion coefficient (α) at 50 to 300 ° C. of the light emitting device coating glass of the present invention is 120 × 10 −7 / ° C. or less, more preferably 116 × 10 −7 / ° C. or less, particularly preferably 115 × 10. It is −7 / ° C. or lower. In addition, the average linear expansion coefficient ((alpha)) in 50-300 degreeC raises a glass transition point, if it is less than 70x10 < -7 > / degreeC. Preferably, it is 75 × 10 −7 / ° C. or higher.

以下、本発明の発光素子被覆用ガラスの組成をモル%を単に%と表記して説明する。   Hereinafter, the composition of the glass for covering a light-emitting element of the present invention will be described with mol% simply expressed as%.

TeOは、ガラスのネットワークフォーマであり、必須である。40%以下では屈折率が小さくなる、またはガラス転移点を上昇させる。好ましくは40%超、特に好ましくは43%以上である。55%超では平均線膨張係数が大きくなる。好ましくは50%以下、特に好ましくは48%以下である。 TeO 2 is a glass network former and is essential. If it is 40% or less, the refractive index becomes small, or the glass transition point is raised. Preferably it is more than 40%, particularly preferably 43% or more. If it exceeds 55%, the average linear expansion coefficient becomes large. Preferably it is 50% or less, Most preferably, it is 48% or less.

は、ガラス骨格を形成する成分であり、必須である。10%未満ではガラスが不安定になる。好ましくは15%以上、特に好ましくは17%以上である。33%以上では屈折率が小さくなる、または耐水性等の化学的耐久性が低下する。好ましくは33%未満、特に好ましくは30%以下である。 B 2 O 3 is a component that forms a glass skeleton and is essential. If it is less than 10%, the glass becomes unstable. Preferably it is 15% or more, particularly preferably 17% or more. If it is 33% or more, the refractive index becomes small, or the chemical durability such as water resistance decreases. Preferably it is less than 33%, particularly preferably 30% or less.

ZnOは、ガラスを安定化させる成分であり、必須である。22%以下ではガラスが不安定になり、失透し易くなる。好ましくは22%超、特に好ましくは25%以上である。50%超では980℃超の温度で溶解しなければならなくなる恐れがある。好ましくは40%以下、特に好ましくは36%以下である。   ZnO is a component that stabilizes the glass and is essential. If it is 22% or less, the glass becomes unstable and tends to devitrify. Preferably it is more than 22%, particularly preferably 25% or more. If it exceeds 50%, it may be necessary to dissolve at a temperature exceeding 980 ° C. Preferably it is 40% or less, Most preferably, it is 36% or less.

本発明では、(B+ZnO)/TeOが1.0以上であることが好ましい。1.0未満では平均線熱膨張係数が120×10−7/℃より大きくなり、LEDを封止した後に素子に接する部分でガラスが割れるおそれがある。1.5超ではガラス転移点を上昇させるまたは耐水性等の化学的耐久性が低下する。好ましくは1.4以下である。 In the present invention, (B 2 O 3 + ZnO) / TeO 2 is preferably 1.0 or more. If it is less than 1.0, the average linear thermal expansion coefficient is larger than 120 × 10 −7 / ° C., and there is a possibility that the glass breaks at the portion in contact with the element after sealing the LED. If it exceeds 1.5, the glass transition point is raised or the chemical durability such as water resistance is lowered. Preferably it is 1.4 or less.

本発明では、TeO+B+ZnOが実質的に100%であることが好ましい。つまり、本発明の発光素子被覆用ガラスは、TeO、B及びZnOの3つの成分により構成される。よって、本発明の発光素子被覆用ガラスは、3つの成分により構成されるので、量産時にガラスの組成変動を管理しやすく、諸物性値のばらつきを小さくすることができるなどの効果を奏する。ここで、実質的に100%であることは、TeOとBとZnOの3つの成分に含まれる不純物を除き、他の成分が全含有量の1.0%以下であることを意味する。 In the present invention, it is preferable that TeO 2 + B 2 O 3 + ZnO is substantially 100%. That is, the light emitting element coating glass of the present invention is composed of three components of TeO 2 , B 2 O 3 and ZnO. Therefore, since the glass for covering a light emitting device of the present invention is composed of three components, it is easy to manage the composition variation of the glass at the time of mass production, and it is possible to reduce the variation of various physical property values. Here, that it is substantially 100%, to remove impurities contained in the three components of ZnO and TeO 2 and B 2 O 3, other component is not more than 1.0% of the total content of means.

本発明の光学素子被覆用ガラスは本質的に上記3つの成分からなるが、本発明の目的を損なわない範囲でその他の成分、例えば、Y、La、Gd、Bi、BaO、WO、GeO、TiO、Ga、Ta等を上限を10%として添加しても良い。なお、本発明のガラスは、PbOを実質的に含有しないことが好ましい。なお、本発明のガラスは980℃以下の温度で溶解して製造できるものであることが好ましい。そのようなものでないと金製るつぼ(融点:1063℃)を用いてのガラス溶解が困難になり、白金製または白金合金製るつぼを用いて溶解しなければならなくなり、その結果ガラス中に白金が溶解して透過率が低下するおそれがある。 The glass for coating an optical element of the present invention consists essentially of the above-mentioned three components, but other components such as Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , and the like as long as the object of the present invention is not impaired. Bi 2 O 3 , BaO, WO 3 , GeO 2 , TiO 2 , Ga 2 O 3 , Ta 2 O 5, etc. may be added at an upper limit of 10%. In addition, it is preferable that the glass of this invention does not contain PbO substantially. In addition, it is preferable that the glass of this invention can melt | dissolve and manufacture at the temperature of 980 degrees C or less. Otherwise, it would be difficult to melt the glass using a gold crucible (melting point: 1063 ° C.), and it would have to be melted using a platinum or platinum alloy crucible. There exists a possibility that the transmittance | permeability may fall by melt | dissolving.

基板120は、例えば、純度98.0%〜99.5%、厚さ0.5mm〜1.2mmの矩形のアルミナ基板である。できれば、純度99.0%〜99.5%、厚さ0.7mm〜1.0mmの正方形のアルミナ基板が好ましい。なお、基板120の表面に形成される配線130は、金ペーストにより製造された金配線である。   The substrate 120 is, for example, a rectangular alumina substrate having a purity of 98.0% to 99.5% and a thickness of 0.5 mm to 1.2 mm. If possible, a square alumina substrate having a purity of 99.0% to 99.5% and a thickness of 0.7 mm to 1.0 mm is preferable. The wiring 130 formed on the surface of the substrate 120 is a gold wiring manufactured by a gold paste.

例1〜例16については、表中のモル%で示される組成となるように原料を調合して、100gの調合原料を用意する。次に、この調合原料を容量100ccの金製るつぼに入れ、920℃で1時間溶解した。この際、この際、数回坩堝ごと揺らして撹拌して溶融ガラスを均質化した。均質化した溶融ガラスは、カーボン型に流し出して板状に成形した。この板状のガラスは直ちに410℃の別の電気炉に入れその温度に1時間保持後12時間かけて室温まで冷却した。   About Examples 1-16, a raw material is prepared so that it may become a composition shown by mol% in a table | surface, and a 100-g preparation raw material is prepared. Next, this blended raw material was put into a gold crucible having a capacity of 100 cc and dissolved at 920 ° C. for 1 hour. At this time, the molten glass was homogenized by shaking and stirring the crucible several times. The homogenized molten glass was poured out into a carbon mold and formed into a plate shape. The plate-like glass was immediately put in another electric furnace at 410 ° C., kept at that temperature for 1 hour, and then cooled to room temperature over 12 hours.

ここで、例1〜例14は実施例であり、例15〜例17は比較例である。   Here, Examples 1 to 14 are Examples, and Examples 15 to 17 are Comparative Examples.

得られたガラスについて、ガラス転移点Tg(単位:℃)、屈伏点At(単位:℃)、平均線膨張係数α(単位:10−7/℃)を以下の測定法によって、測定した。
Tg:粉末状に加工したサンプル150mgを白金パンに充填し、セイコーインスツルメンツ社製熱分析装置TG/DTA6300(商品名)により測定した。
At:直径5mm、長さ20mmの円柱状に加工したサンプルを、マックサイエンス社製熱機械分析装置DILATOMETER5000(商品名)を用いて5℃/分の昇温速度で測定した。
α:直径5mm、長さ20mmの円柱状に加工したサンプルを、前記熱機械分析装置を用いて5℃/分の昇温速度で測定した。50〜300℃での膨張係数を25℃刻みで求め、その平均値をαとした。
失透の有無:ガラス融液をカーボン型に流しだした時に、ガラスが固化するまでの数分間で失透が起こる場合がある。表面が部分的に白濁したものを△と示した。
About the obtained glass, glass transition point Tg (unit: ° C), yield point At (unit: ° C), and average linear expansion coefficient α (unit: 10-7 / ° C) were measured by the following measuring method.
Tg: 150 mg of a sample processed into a powder form was filled in a platinum pan and measured with a thermal analyzer TG / DTA6300 (trade name) manufactured by Seiko Instruments Inc.
At: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a rate of temperature increase of 5 ° C./min using a thermomechanical analyzer DILATOMETER 5000 (trade name) manufactured by Mac Science.
α: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a heating rate of 5 ° C./min using the thermomechanical analyzer. The expansion coefficient at 50 to 300 ° C. was determined in increments of 25 ° C., and the average value was taken as α.
Presence or absence of devitrification: When the glass melt is poured into a carbon mold, devitrification may occur in several minutes until the glass is solidified. A surface that was partially clouded was indicated by Δ.

結果を表1及び表2に示す。   The results are shown in Tables 1 and 2.

Figure 2009010206
Figure 2009010206

Figure 2009010206
Figure 2009010206

(実施例1)
例1のガラスは厚みが1.5mm、大きさが3mm×3mmであるガラス板に加工し、その後その両面を鏡面研磨した。
Example 1
The glass of Example 1 was processed into a glass plate having a thickness of 1.5 mm and a size of 3 mm × 3 mm, and then both surfaces thereof were mirror-polished.

一方、金の配線パターンを形成したアルミナ基板(厚み:1mm、大きさ:14mm×14mm)と豊田合成社製LED(商品名:E1C60−0B011−03)に接続バンプを形成したものとを用意し、アルミナ基板にこのLEDをフリップチップ実装した。そして、ガラスと基板との界面に発生する気泡を抑制するために、LEDを実装したアルミナ基板を
電気炉(IR加熱装置)に入れ、620℃で加熱処理をした。昇温速度は300℃/分、620℃での保持時間は2分、降温速度は300℃/分に設定した。なお、ガラスと基板との界面に発生する気泡は、ガラスを軟化させる場合、ガラスが基板表面に付着している有機汚染物質に反応して発生する。そして、この発生した気泡は、発光素子から発した光を屈折させるので、発光装置の輝度を低下させたり、発光装置の配光分布を変化させるおそれがある。そのため、ガラスでLEDを被覆する前に、LEDを搭載した基板を加熱し、基板表面に付着している有機汚染物質を減少させ、気泡の発生を抑制している。数々の実験によれば、加熱温度は、600℃前後が好ましい。また、加熱時間は、LEDに対する熱の影響を考慮すると、2分間前後が好ましい。
On the other hand, an alumina substrate (thickness: 1 mm, size: 14 mm × 14 mm) on which a gold wiring pattern is formed and a LED made by Toyoda Gosei (product name: E1C60-0B011-03) with connection bumps are prepared. The LED was flip-chip mounted on an alumina substrate. And in order to suppress the bubble which generate | occur | produces in the interface of glass and a board | substrate, the alumina board | substrate which mounted LED was put into the electric furnace (IR heating apparatus), and it heat-processed at 620 degreeC. The temperature rising rate was set to 300 ° C./min, the holding time at 620 ° C. was set to 2 minutes, and the temperature decreasing rate was set to 300 ° C./min. Note that bubbles generated at the interface between the glass and the substrate are generated when the glass is softened in response to organic contaminants attached to the substrate surface. Since the generated bubbles refract light emitted from the light emitting element, there is a possibility that the luminance of the light emitting device is lowered or the light distribution of the light emitting device is changed. Therefore, before covering the LED with glass, the substrate on which the LED is mounted is heated to reduce organic contaminants adhering to the substrate surface, thereby suppressing the generation of bubbles. According to numerous experiments, the heating temperature is preferably around 600 ° C. The heating time is preferably around 2 minutes considering the influence of heat on the LED.

このフリップチップ実装したLEDの上に蛍光体分散ガラス板を載置したものを電気炉に入れ、毎分25℃の速度で500℃まで昇温しその温度に5分間保持し、ガラス板を軟化流動させてLEDを被覆した。その後、毎分25℃の速度で冷却を行った。   A glass with a phosphor-dispersed glass plate placed on this flip-chip mounted LED is placed in an electric furnace, heated to 500 ° C. at a rate of 25 ° C. per minute and held at that temperature for 5 minutes to soften the glass plate. The LED was coated by flowing. Thereafter, cooling was performed at a rate of 25 ° C. per minute.

LEDを被覆しているガラスを目視観察したところその表面付近には泡は認められなかった。   When the glass covering the LED was visually observed, no bubbles were found near the surface.

このようにして得られたガラス被覆LED素子に直流電圧を印加したところ、青色の発光が確認できた。   When a DC voltage was applied to the glass-coated LED element thus obtained, blue light emission was confirmed.

発光開始電圧は2.4Vであり、ベアチップに対するものと同じであった。このことからLED素子発光層に損傷がないことがわかる。   The emission start voltage was 2.4 V, which was the same as that for the bare chip. This shows that the LED element light emitting layer is not damaged.

(実施例2)
前記例1の板状のガラスを切断し、一片が8〜25mmの塊(ブロック)を作製した。これらブロックのうち数個をアルミナ乳鉢で粉砕しガラス粉末とした。このガラス粉末の最大粒径は測定しなかったが目視観察の結果から50μm以下であると推定される。
(Example 2)
The plate-shaped glass of Example 1 was cut to produce a block (block) of 8 to 25 mm in one piece. Several of these blocks were crushed with an alumina mortar to obtain glass powder. Although the maximum particle size of this glass powder was not measured, it is estimated that it is 50 micrometers or less from the result of visual observation.

このガラス粉末37.5gと化成オプトニクス社製黄色蛍光体P46−Y3(セリウム添加YAG粉末)5gとを混合し混合粉末を作製した。   37.5 g of this glass powder was mixed with 5 g of a yellow phosphor P46-Y3 (cerium-added YAG powder) manufactured by Kasei Optonics Co., to prepare a mixed powder.

この42.5gの混合粉末と前記ブロック5個(総質量=62.5g)とを容量100ccの金製るつぼに入れ、これを650℃の電気炉内に5分間保持してガラスをリメルトすると同時に蛍光体を溶融ガラス中に分散させた。   42.5 g of the mixed powder and 5 blocks (total mass = 62.5 g) were placed in a gold crucible with a capacity of 100 cc and held in an electric furnace at 650 ° C. for 5 minutes to simultaneously remelt the glass. The phosphor was dispersed in the molten glass.

5分間が経過したところでルツボを取り出し、蛍光体が分散した溶融ガラスをカーボン型に流し出して厚みが約7mmの板状に成形した。この板状のガラスは直ちに410℃の別の電気炉に入れその温度に1時間保持後12時間かけて室温まで冷却した。   After 5 minutes, the crucible was taken out, and the molten glass in which the phosphor was dispersed was poured out into a carbon mold to form a plate having a thickness of about 7 mm. The plate-like glass was immediately put in another electric furnace at 410 ° C., kept at that temperature for 1 hour, and then cooled to room temperature over 12 hours.

実施例1と同じようにLED素子を被覆し、直流電圧を印加したところ、白色の発光が確認できた。   As in Example 1, when the LED element was covered and a DC voltage was applied, white light emission was confirmed.

なお、図1において、ガラス110は、半球の形状であり、基板101上に形成された配線130と接するように形成されている。しかし、図2に示すように、ガラス110の形状を球欠形状として、発光素子100の側面を封止し、配線130と接しない構造としても良いことは言うまでもない。ここで、球欠形状とは、球の一部が欠けた形状をいい、表面積が同じ直径の半球の表面積よりも大きく、かつ同じ直径の球の表面積よりも小さいものをいう。   In FIG. 1, the glass 110 has a hemispherical shape and is formed so as to be in contact with the wiring 130 formed on the substrate 101. However, as shown in FIG. 2, it is needless to say that the glass 110 may have a spherical shape so that the side surface of the light emitting element 100 is sealed and does not contact the wiring 130. Here, the spherical shape means a shape in which a part of the sphere is missing, and means a surface area that is larger than the surface area of the hemisphere having the same diameter and smaller than the surface area of the sphere having the same diameter.

本発明の発光素子被覆用ガラスは、一般照明や自動車用ヘッドライドに用いられるLED素子の封止に利用できる。   The glass for light emitting element coating of this invention can be utilized for sealing of the LED element used for a general lighting or a headlight for motor vehicles.

本発明のガラス被覆発光装置の断面図である。It is sectional drawing of the glass-coated light-emitting device of this invention. 本発明の他のガラス被覆発光装置の断面図である。It is sectional drawing of the other glass-coated light-emitting device of this invention.

符号の説明Explanation of symbols

100:発光素子
110:ガラス
120:基板
100: Light emitting element 110: Glass 120: Substrate

Claims (8)

各組成物に含有される不純物を除きTeOとBとZnOの3つの組成物のみから構成され、50〜300℃における平均線熱膨張係数が120×10−7/℃以下、ガラス転移点が420℃以下である発光素子被覆用ガラス。 Consists only three compositions of ZnO and TeO 2 and B 2 O 3 to remove impurities contained in each composition, the average linear thermal expansion coefficient at 50 to 300 ° C. is 120 × 10 -7 / ℃ less, glasses A glass for covering a light-emitting element having a transition point of 420 ° C. or lower. 酸化物基準のモル%表示で、
TeO 41〜55%、
16〜33%、
ZnO 22〜50%
から本質的になり、50〜300℃における平均線熱膨張係数が120×10−7/℃以下、ガラス転移点が420℃以下であり、かつフッ素を実質的に含まないことを特徴とする発光素子被覆用ガラス。
In mol% display based on oxide,
TeO 2 41-55%,
B 2 O 3 16~33%,
ZnO 22-50%
Characterized in that the average linear thermal expansion coefficient at 50 to 300 ° C. is 120 × 10 −7 / ° C. or lower, the glass transition point is 420 ° C. or lower, and substantially does not contain fluorine. Element coating glass.
前記発光素子被覆用ガラスが、下記の酸化物基準のモル%表示で、
TeO 41〜50%
16〜32%
ZnO 22〜44%であることを特徴とする請求項1または2に記載の発光素子被覆用ガラス。
The light-emitting element coating glass is expressed in mol% based on the following oxides:
TeO 2 41-50%
B 2 O 3 16-32%
The glass for covering a light-emitting element according to claim 1 or 2, wherein ZnO is 22 to 44%.
TeO+B+ZnOが実質的に100%であることを特徴とする請求項2または3に記載の発光素子被覆用ガラス。 TeO 2 + B 2 O 3 + ZnO is emitting element coated glass according to claim 2 or 3, characterized in that substantially 100%. 基板と、
前記基板上に搭載される被接着部材と、
前記被接着部材を封止するTeOとBとZnOの3元系ガラスとを有することを特徴とするガラス被覆発光装置。
A substrate,
A bonded member mounted on the substrate;
A glass-covered light-emitting device comprising ternary glass of TeO 2 , B 2 O 3, and ZnO that seals the member to be bonded.
前記3元系ガラスは、酸化物基準のモル%表示で、TeO 41〜55%、B 16〜33%、ZnO 22〜50%からなることを特徴とする請求項5記載のガラス被覆発光装置。 The glass according to claim 5, wherein the ternary glass is composed of TeO 2 41 to 55%, B 2 O 3 16 to 33%, and ZnO 22 to 50% in terms of mol% based on oxide. Coated light emitting device. 前記3元系ガラスは、下記の酸化物基準のモル%表示で、
TeO 41〜50%
16〜32%
ZnO 22〜44%であることを特徴とする請求項6記載のガラス被覆発光装置。
The ternary glass is expressed in terms of mol% based on the following oxides:
TeO 2 41-50%
B 2 O 3 16-32%
The glass-coated light-emitting device according to claim 6, wherein ZnO is 22 to 44%.
前記3元系ガラスは、平均線熱膨張係数が120×10−7/℃以下であり、ガラス転移点が420℃以下であることを特徴とする請求項7記載のガラス被覆発光装置。 The glass-coated light-emitting device according to claim 7, wherein the ternary glass has an average linear thermal expansion coefficient of 120 × 10 −7 / ° C. or less and a glass transition point of 420 ° C. or less.
JP2007170788A 2007-06-28 2007-06-28 Glass for coating light-emitting element, and glass-coated light emitting device Withdrawn JP2009010206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170788A JP2009010206A (en) 2007-06-28 2007-06-28 Glass for coating light-emitting element, and glass-coated light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170788A JP2009010206A (en) 2007-06-28 2007-06-28 Glass for coating light-emitting element, and glass-coated light emitting device

Publications (1)

Publication Number Publication Date
JP2009010206A true JP2009010206A (en) 2009-01-15

Family

ID=40324993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170788A Withdrawn JP2009010206A (en) 2007-06-28 2007-06-28 Glass for coating light-emitting element, and glass-coated light emitting device

Country Status (1)

Country Link
JP (1) JP2009010206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236734A (en) * 2011-05-11 2012-12-06 Nippon Electric Glass Co Ltd Optical glass
JP2013010661A (en) * 2011-06-29 2013-01-17 Ohara Inc Glass composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121933A (en) * 1983-09-19 1986-01-30 イゾヴエ−ル・サン・ゴ−バン Glass fiber
JP2004043294A (en) * 2002-05-22 2004-02-12 Asahi Glass Co Ltd Optical glass and lens
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2006182577A (en) * 2004-12-27 2006-07-13 Nippon Electric Glass Co Ltd Optical glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121933A (en) * 1983-09-19 1986-01-30 イゾヴエ−ル・サン・ゴ−バン Glass fiber
JP2004043294A (en) * 2002-05-22 2004-02-12 Asahi Glass Co Ltd Optical glass and lens
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2006182577A (en) * 2004-12-27 2006-07-13 Nippon Electric Glass Co Ltd Optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236734A (en) * 2011-05-11 2012-12-06 Nippon Electric Glass Co Ltd Optical glass
JP2013010661A (en) * 2011-06-29 2013-01-17 Ohara Inc Glass composition

Similar Documents

Publication Publication Date Title
JPWO2008096796A1 (en) Glass for optical element coating and light emitting device with glass
JP4465989B2 (en) Light emitting diode element
JP4894186B2 (en) Phosphor and light emitting diode
US8461069B2 (en) Light emitting diode element
JP5458893B2 (en) Glass, coating material for light emitting device and light emitting device
TW201017933A (en) Light-emitting device
JP2008288543A (en) Solid-state element device
JP2012116744A (en) Lead-free glass for sealing of semiconductor and overcoat tube for sealing of semiconductor
JP2008019109A (en) Method for production of fluorescent substance-dispersed glass and light emitting diode device
JPWO2007135754A1 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
WO2012002174A1 (en) Lead-free glass for sealing semiconductor
JP2007123410A (en) Glass-covered light emitting diode element
JP2008300536A (en) Glass coated light emitting element, and glass coated light emitting device
JP2011204718A (en) Semiconductor light emitting element sealing material and method of manufacturing semiconductor light emitting element device using the same
JP2007096257A (en) Glass-covered light emitting diode element and light emitting diode covering glass
JP2009010206A (en) Glass for coating light-emitting element, and glass-coated light emitting device
JP5585467B2 (en) Glass, glass coating material for light emitting device and light emitting device
JP5369408B2 (en) Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device
US8727585B2 (en) Support for mounting light-emitting element, and light-emitting device
JP2009224790A (en) Light-emitting diode element
JP2009296001A (en) Light-emitting diode element
JPWO2009031684A1 (en) Glass-coated light-emitting element and glass-coated light-emitting device
JP2012111681A (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP5713273B2 (en) Joining material and member joining method using the same
JP2006310375A (en) Glass for covering light emitting diode element and light emitting diode element covered with glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120130