JP2007123410A - Glass-covered light emitting diode element - Google Patents

Glass-covered light emitting diode element Download PDF

Info

Publication number
JP2007123410A
JP2007123410A JP2005311292A JP2005311292A JP2007123410A JP 2007123410 A JP2007123410 A JP 2007123410A JP 2005311292 A JP2005311292 A JP 2005311292A JP 2005311292 A JP2005311292 A JP 2005311292A JP 2007123410 A JP2007123410 A JP 2007123410A
Authority
JP
Japan
Prior art keywords
glass
emitting diode
phosphor
light
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311292A
Other languages
Japanese (ja)
Inventor
Shuji Matsumoto
修治 松本
Nobuhiro Nakamura
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005311292A priority Critical patent/JP2007123410A/en
Publication of JP2007123410A publication Critical patent/JP2007123410A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass-covered white LED element for overcoming a problem that much bubbles are left within the glass material of the glass-covered white LED element, and thereby transmittivity is lowered. <P>SOLUTION: The light emitting diode element 10 is covered with a glass material 1 in which phosphor material is dispersed. This light emitting diode element 10 may be manufactured by putting into a glass fusing vessel a mixed powder of the phosphor material powder and the glass powder to which the phosphor material is diffused, and one or more lumps of glass to which the phosphor material is diffused; and then obtaining the fused glass by heating the glass material together with the vessel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

蛍光体が分散しているガラスによって発光ダイオード(LED)が被覆されている発光ダイオード素子(LED素子)、特に白色LED素子に関する。   The present invention relates to a light emitting diode element (LED element) in which a light emitting diode (LED) is covered with glass in which a phosphor is dispersed, particularly a white LED element.

従来、白色光源としては白熱電球、蛍光灯等が広く使用されているが、近年、新しいタイプの白色光源としていわゆる白色LED素子が開発され、液晶ディスプレイ用バックライト等への応用が急速に進んでいる。
現在市販されている1チップ型白色LED素子においては、GaNにInを添加したInGaNを発光層とする量子井戸構造のLEDが、蛍光体を含有する樹脂によって封止されている。典型的な白色LED素子においては、LEDは発光波長が460〜480nmである青色LEDであり、蛍光体は前記発光波長の光で黄色の蛍光を発するセリウム添加YAG蛍光体である。
Conventionally, incandescent bulbs, fluorescent lamps and the like have been widely used as white light sources, but in recent years, so-called white LED elements have been developed as a new type of white light source, and their application to backlights for liquid crystal displays and the like has rapidly progressed. Yes.
In a one-chip type white LED element currently on the market, an LED having a quantum well structure using InGaN in which GaN is added with In as a light emitting layer is sealed with a resin containing a phosphor. In a typical white LED element, the LED is a blue LED having an emission wavelength of 460 to 480 nm, and the phosphor is a cerium-doped YAG phosphor that emits yellow fluorescence with light having the emission wavelength.

この白色LED素子は次のようにして白色光源として機能する。すなわち、LEDに直流電流を流すとLEDから青色光が放出され、一方、当該青色光の一部によってYAG蛍光体が励起されこの蛍光体から黄色光(蛍光)が放出される。この青色光と黄色光は補色関係にあり、これらが入り混じって人間の目に入り加法混色の原理により白色光として見える。
しかし、このように樹脂によってLEDが封止されている白色LED素子には、長期間使用すると水分が樹脂中に浸入しLEDの動作が阻害される、LEDから放出される紫外線または青色光によって樹脂が変色しその光透過率が低下する、等の問題があった。
The white LED element functions as a white light source as follows. That is, when a direct current is passed through the LED, blue light is emitted from the LED, while the YAG phosphor is excited by a part of the blue light, and yellow light (fluorescence) is emitted from the phosphor. This blue light and yellow light are in a complementary color relationship, and they enter and enter the human eye and appear as white light due to the principle of additive color mixing.
However, in such a white LED element in which the LED is sealed with the resin, when it is used for a long period of time, moisture enters the resin and the operation of the LED is hindered. The resin is irradiated with ultraviolet light or blue light emitted from the LED. Discolored and the light transmittance decreased.

このような問題を解決する白色LED素子として、本発明者らはモル%表示で、TeO 20〜70%、ZnO 5〜30%、B 0〜55%、SiO+GeO 0〜10%、LiO+NaO+KO 0〜30%、MgO+CaO+SrO+BaO 0〜20%、から本質的になり、内部に蛍光体が分散しているTeO−ZnO系ガラスによって封止された白色LED素子などを提案した(特許文献1参照)。 As a white LED element that solves such a problem, the present inventors expressed in mol%, TeO 2 20 to 70%, ZnO 5 to 30%, B 2 O 3 0 to 55%, SiO 2 + GeO 2 0 to 0%. 10%, Li 2 O + Na 2 O + K 2 O 0-30%, MgO + CaO + SrO + BaO 0-20%, and a white LED element sealed with TeO 2 —ZnO-based glass in which a phosphor is dispersed inside Etc. were proposed (see Patent Document 1).

特開2005−11933号公報JP 2005-11933 A

特許文献1において提案されているガラス被覆白色LED素子は、たとえば単にガラス粉末と蛍光体粉末を混合したものを加熱してLEDを被覆して製造されるが、そのようにして得られた白色LED素子の被覆ガラス中に泡が多く残りやすい問題があった。
本発明はこのような問題を解決できるガラス被覆LED素子の提供を目的とする。
The glass-covered white LED element proposed in Patent Document 1 is manufactured by simply heating a mixture of glass powder and phosphor powder to cover the LED, and the white LED thus obtained is used. There was a problem that many bubbles remained in the coated glass of the element.
The object of the present invention is to provide a glass-covered LED element capable of solving such problems.

本発明は、内部に蛍光体が分散しているガラスによって被覆されている発光ダイオード素子であって、前記ガラスが、蛍光体が分散されるべきガラスの粉末および蛍光体粉末の混合粉末と、蛍光体が分散されるべきガラスの1個以上の塊とをガラス溶融容器に入れ、この容器を加熱してこれらガラスを溶融ガラスにすることによって製造されたものであるガラス被覆LED素子を提供する。   The present invention is a light-emitting diode element covered with a glass in which a phosphor is dispersed, the glass comprising a glass powder in which the phosphor is to be dispersed and a mixed powder of the phosphor powder, Provided is a glass-covered LED element produced by placing one or more chunks of glass into which a body is to be dispersed in a glass melting vessel and heating the vessel to make the glass into molten glass.

本発明によれば、内部に蛍光体が分散しており、かつ泡の少ないガラスによって被覆された白色LED素子が得られる。
また、そのようなガラスをリメルトという単純な方法で製造できる。
According to the present invention, it is possible to obtain a white LED element in which phosphors are dispersed and covered with glass with less bubbles.
Further, such glass can be manufactured by a simple method called remelt.

図1は配線基板上に実装された本発明のガラス被覆LED素子の概略断面図であるが、本発明は図1に限定されない。
図1においては、基板30の表面に配線20が形成されている配線基板上にフリップチップ実装されたLED素子10が、内部に蛍光体が分散しているガラス1(蛍光体分散ガラス)によって被覆されている。
LED素子10の図示しない電極には接続バンプ21が形成されており、この接続バンプ21は配線20と電気的に接続されている。
なお、ガラス1によって被覆されているLED素子10が本発明のガラス被覆LED素子である。
FIG. 1 is a schematic sectional view of a glass-covered LED element of the present invention mounted on a wiring board, but the present invention is not limited to FIG.
In FIG. 1, an LED element 10 flip-chip mounted on a wiring board having wiring 20 formed on the surface of a substrate 30 is covered with glass 1 (phosphor dispersion glass) in which phosphors are dispersed. Has been.
A connection bump 21 is formed on an electrode (not shown) of the LED element 10, and the connection bump 21 is electrically connected to the wiring 20.
The LED element 10 covered with the glass 1 is the glass-covered LED element of the present invention.

図1に示すような配線基板上に実装された本発明のガラス被覆LED素子はたとえば次のようにして製造される。
まず、蛍光体分散ガラスからなるガラス板(蛍光体分散ガラス板)を用意する。
典型的にはその厚みは0.2〜2mm、大きさは1〜4mm□である。
また、そのLED素子と接触すべき面は鏡面研磨されたものであることが好ましい。そのようなものでないと加熱してLED素子を蛍光体分散ガラスで被覆するときに前記面とLED素子の間に泡を巻き込むおそれがある。
The glass-covered LED element of the present invention mounted on a wiring board as shown in FIG. 1 is manufactured, for example, as follows.
First, a glass plate (phosphor-dispersed glass plate) made of phosphor-dispersed glass is prepared.
Typically, the thickness is 0.2 to 2 mm, and the size is 1 to 4 mm □.
Moreover, it is preferable that the surface which should contact with the LED element is mirror-polished. Otherwise, when the LED element is heated and coated with the phosphor-dispersed glass, bubbles may be trapped between the surface and the LED element.

一方、LED素子(ベアチップ)の電極に接続バンプが形成されているバンプ付きLED素子を用意し、配線基板の配線上にフリップチップ実装する。なお、LED素子の典型的な大きさは0.2〜1mm□である。
配線基板の基板としてはアルミナ基板、窒化アルミ基板などが例示され、配線としては基板にガラス粉末含有金ペーストを塗布、焼成して得られた金配線が典型的である。
On the other hand, a bumped LED element in which connection bumps are formed on the electrodes of the LED element (bare chip) is prepared and flip-chip mounted on the wiring of the wiring board. The typical size of the LED element is 0.2 to 1 mm □.
Examples of the substrate of the wiring board include an alumina substrate and an aluminum nitride substrate, and the wiring is typically a gold wiring obtained by applying and baking a glass powder-containing gold paste on the substrate.

次に、配線基板上にフリップチップ実装されたLED素子の上に蛍光体分散ガラス板を載置後加熱し、このガラス板を軟化流動させてLED素子の少なくとも上面および側面を被覆する。   Next, the phosphor-dispersed glass plate is placed on the LED element flip-chip mounted on the wiring board and then heated, and this glass plate is softened and flowed to cover at least the upper surface and the side surface of the LED element.

蛍光体分散ガラスは、蛍光体が分散されるべきガラス(以下、被覆用ガラスという。)の粉末および蛍光体粉末の混合粉末(以下、単に混合粉末ということがある。)と、被覆用ガラスの1個以上の塊とをガラス溶融容器に入れ、この容器とともに加熱してこれらガラスを溶融ガラスにすることによって製造される。
被覆用ガラスは、軟化点(Ts)が500℃以下、50〜300℃における平均線膨張係数(α)が65×10−7〜95×10−7/℃、波長405nmの光に対する厚み1mmでの内部透過率(T405)が80%以上かつ同光に対する屈折率(n)が1.7以上であるガラスであることが好ましい。
The phosphor-dispersed glass comprises a powder of a glass in which the phosphor is to be dispersed (hereinafter referred to as coating glass) and a mixed powder of the phosphor powder (hereinafter also referred to simply as mixed powder) and a coating glass. One or more lumps are placed in a glass melting container and heated together with the container to make these glasses into molten glass.
The glass for coating has a softening point (Ts) of 500 ° C. or less, an average linear expansion coefficient (α) at 50 to 300 ° C. of 65 × 10 −7 to 95 × 10 −7 / ° C., and a thickness of 1 mm for light having a wavelength of 405 nm. It is preferable that the glass has an internal transmittance (T 405 ) of 80% or more and a refractive index (n) for the same light of 1.7 or more.

当該好ましいガラスとしては、下記酸化物基準のモル%表示で、TeO 40〜53%、GeO 0〜10%、B 5〜30%、Ga 0〜10%、Bi 0〜10%、ZnO 3〜20%、Y 0〜3%、La 0〜3%、Gd 0〜7%、Ta 0〜5%、から本質的になるものが例示される。この例示ガラスは本発明の目的を損なわない範囲で上記成分以外のもの、たとえばTiO等を含有してもよいが、その場合上記成分の含有量の合計は典型的には95%以上である。なお、たとえば「GeO 0〜10%」とは、GeOは必須ではないが10%まで含有してもよいの意である。 The Preferred glass in mole% based on the following oxides, TeO 2 40~53%, GeO 2 0~10%, B 2 O 3 5~30%, Ga 2 O 3 0~10%, Bi 2 O 3 0~10%, 3~20% ZnO , Y 2 O 3 0~3%, La 2 O 3 0~3%, Gd 2 O 3 0~7%, Ta 2 O 5 0~5%, from What becomes essentially is illustrated. This exemplary glass may contain other components than the above components, for example, TiO 2 and the like within a range not impairing the object of the present invention, in which case the total content of the above components is typically 95% or more. . For example, “GeO 2 0 to 10%” means that GeO 2 is not essential but may be contained up to 10%.

被覆用ガラスに分散される蛍光体としては、LEDが青色発光ダイオード素子である場合にはセリウム添加YAGを含有するものが典型的である。   The phosphor dispersed in the coating glass is typically one containing cerium-doped YAG when the LED is a blue light emitting diode element.

混合粉末に用いられる被覆用ガラスの粉末の最大粒径は典型的には50μm以下である。
前記被覆用ガラスの塊の大きさは5mm以上である好ましい。5mm未満では比表面積が大きくなりリメルト時に泡を巻き込み光透過率が低下するおそれがある。また、その大きさは典型的には30mm以下である。
The maximum particle size of the coating glass powder used for the mixed powder is typically 50 μm or less.
The size of the coating glass lump is preferably 5 mm or more. If it is less than 5 mm, the specific surface area becomes large, and bubbles may be involved at the time of remelting and the light transmittance may be lowered. The size is typically 30 mm or less.

前記塊の数は適切に選択されるべきものであるが、混合粉末の質量と前記ガラスの1個以上の塊の質量合計との比は2:8から5:5までであることが好ましい。2:8未満では蛍光体の分散が不十分になるおそれがある。5:5超では巻き込み泡が多くなり光透過率が低下するおそれがある。   The number of lumps should be appropriately selected, but the ratio of the mass of the mixed powder to the total mass of one or more lumps of the glass is preferably from 2: 8 to 5: 5. If it is less than 2: 8, the phosphor may be insufficiently dispersed. If it exceeds 5: 5, entrained bubbles increase and the light transmittance may be reduced.

前記ガラス溶融容器としては、被覆用ガラスが先に例示したようなTeO系ガラスである場合には金製ルツボ等金または金合金からなる容器であることが好ましい。 The glass melting vessel is preferably a vessel made of gold or a gold alloy such as a gold crucible when the coating glass is TeO 2 glass as exemplified above.

混合粉末と1個以上の被覆用ガラス塊を入れたガラス溶融容器の加熱は900℃で5分間以下の時間行うことが好ましい。900℃超または5分間超にするとセリウム添加YAG含有蛍光体が失活するおそれがある。   It is preferable to heat the glass melting container containing the mixed powder and one or more coating glass ingots at 900 ° C. for 5 minutes or less. If it exceeds 900 ° C. or more than 5 minutes, the cerium-added YAG-containing phosphor may be deactivated.

(例1)
モル%表示で示す組成が、TeO 45%、GeO 5%、B 18%、Ga 6%、Bi 3%、ZnO 15%、Y 0.5%、La 0.5%、Gd 3%、Ta 3%、TiO 1%、となるように原料を調合して450gの調合原料を用意し、これを容量300ccの金製るつぼに入れ、950℃で2.5時間溶解した。この際金製スターラにより1時間撹拌して溶融ガラスを均質化した。均質化された溶融ガラスはカーボン型に流し出して厚みが約20mmの板状に成形した。
(Example 1)
The composition shown in mol% is TeO 2 45%, GeO 2 5%, B 2 O 3 18%, Ga 2 O 3 6%, Bi 2 O 3 3%, ZnO 15%, Y 2 O 3 0.5. %, La 2 O 3 0.5%, Gd 2 O 3 3%, Ta 2 O 5 3%, TiO 2 1%, and 450 g of the prepared raw material is prepared. It was placed in a 300 cc gold crucible and dissolved at 950 ° C. for 2.5 hours. At this time, the molten glass was homogenized by stirring with a gold stirrer for 1 hour. The homogenized molten glass was poured out into a carbon mold and formed into a plate shape having a thickness of about 20 mm.

得られたガラスについて、Ts、Tg、α、n、T405、RW、RA、を以下に述べる方法で測定した結果、それぞれ490℃、445℃、86×10−7/℃、2.011、95.2%、1、1、であった。なお、RW、RAはそれぞれ日本光学硝子工業会制定の評価方法に準じて定められる耐水性、耐酸性の等級である。 About the obtained glass, as a result of measuring Ts, Tg, α, n, T 405 , RW, RA by the method described below, 490 ° C., 445 ° C., 86 × 10 −7 / ° C., 2.011, respectively. 95.2%, 1, 1, and so on. RW and RA are water resistance and acid resistance grades determined according to the evaluation methods established by the Japan Optical Glass Industry Association.

Ts:直径5mm、長さ20mmの円柱状に加工したサンプルを、マックサイエンス社製熱機械分析装置DILATOMETER5000(商品名)を用いて5℃/分の昇温速度で測定した。
Tg:粉末状に加工したサンプル150mgを白金パンに充填し、セイコーインスツルメンツ社製熱分析装置TG/DTA6300(商品名)により測定した。
α:直径5mm、長さ20mmの円柱状に加工したサンプルを、前記熱機械分析装置を用いて5℃/分の昇温速度で測定した。50〜300℃での膨張係数を25℃刻みで求め、その平均値をαとした。
Ts: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a heating rate of 5 ° C./min using a thermomechanical analyzer DILATOMETER 5000 (trade name) manufactured by Mac Science.
Tg: 150 mg of a sample processed into a powder form was filled in a platinum pan and measured with a thermal analyzer TG / DTA6300 (trade name) manufactured by Seiko Instruments Inc.
α: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a heating rate of 5 ° C./min using the thermomechanical analyzer. The expansion coefficient at 50 to 300 ° C. was determined in increments of 25 ° C., and the average value was taken as α.

n:ガラスを一辺が30mm、厚みが10mmの三角形状プリズムに加工し、カルニュー光学社製精密分光計GMR−1(商品名)により測定した。
405:両面が鏡面研磨され、大きさが2cm×2cm、厚みが1mmと5mmの2枚の板状ガラス試料を作製し、日立製作所社製分光光度計U−3500(商品名)を用いて波長405nmの光に対する透過率を測定する。測定によって得られた厚みが1mm、5mmの板状試料の透過率をそれぞれT1、T5として、次式によりT405(単位:%)を算出する。
405=100×exp[(2/3)×log(T5/T1)]。
n: Glass was processed into a triangular prism having a side of 30 mm and a thickness of 10 mm, and measured with a precision spectrometer GMR-1 (trade name) manufactured by Kalnew Optical.
T 405 : Two plate-like glass samples having both sides mirror-polished and having a size of 2 cm × 2 cm and thicknesses of 1 mm and 5 mm were prepared using a spectrophotometer U-3500 (trade name) manufactured by Hitachi, Ltd. The transmittance for light having a wavelength of 405 nm is measured. T 405 (unit:%) is calculated according to the following equation, where T 1 and T 5 are the transmittances of the plate samples having a thickness of 1 mm and 5 mm obtained by the measurement, respectively.
T 405 = 100 × exp [(2/3) × log e (T5 / T1)].

RW:直径が420〜600μmのガラス粒を作製し、100℃の純水80ml中に1時間浸漬した時の質量減少割合を測定した。質量減少割合が0.05未満では等級1、0.05以上0.10未満では等級2、0.10以上0.25未満では等級3、0.25以上0.60未満では等級4、0.60以上1.10未満では等級5、1.10以上では等級6とした。RWは等級1であることが好ましい。
RA:直径が420〜600μmのガラス粒を作製し、100℃の0.01規定の硝酸水溶液80ml中に1時間浸漬した時の質量減少割合を測定した。質量減少割合が0.20未満では等級1、0.20以上0.35未満では等級2、0.35以上0.65未満では等級3、0.65以上1.20未満では等級4、1.20以上2.20未満では等級5、2.20以上では等級6とした。RAは等級1であることが好ましい。
RW: Glass particles having a diameter of 420 to 600 μm were prepared, and the mass reduction ratio when immersed in 80 ml of pure water at 100 ° C. for 1 hour was measured. When the mass reduction ratio is less than 0.05, it is grade 1, when it is 0.05 or more and less than 0.10, grade 2; Grades 60 and below 1.10 were grade 5, and grades 1 and 10 were grade 6. RW is preferably grade 1.
RA: Glass grains having a diameter of 420 to 600 μm were prepared, and the mass reduction ratio when immersed in 80 ml of a 0.01 N nitric acid aqueous solution at 100 ° C. for 1 hour was measured. If the mass reduction ratio is less than 0.20, it is grade 1, it is grade 2 if it is 0.20 or more and less than 0.35, grade 3 if it is 0.35 or more and less than 0.65, grade 4 if it is 0.65 or more and less than 1.20. Grades 20 and below 2.20 were grade 5, and grades 2.20 and above were grade 6. RA is preferably grade 1.

次に、前記板状のガラスを切断し、一片が8〜25mmの塊(ブロック)を作製した。これらブロックのうち数個をアルミナ乳鉢で粉砕しガラス粉末とした。このガラス粉末の最大粒径は測定しなかったが目視観察の結果から50μm以下であると推定される。
このガラス粉末37.5gと化成オプトニクス社製黄色蛍光体P46−Y3(セリウム添加YAG粉末)5gとを混合し混合粉末を作製した。
Next, the plate-like glass was cut to produce a block (block) of 8 to 25 mm in one piece. Several of these blocks were crushed with an alumina mortar to obtain glass powder. Although the maximum particle size of this glass powder was not measured, it is estimated that it is 50 micrometers or less from the result of visual observation.
37.5 g of this glass powder was mixed with 5 g of yellow phosphor P46-Y3 (cerium-added YAG powder) manufactured by Kasei Optonics Co., Ltd. to prepare a mixed powder.

この42.5gの混合粉末と前記ブロック5個(総質量=62.5g)とを容量が100cmである金製ルツボに入れ、これを900℃の電気炉内に5分間保持してガラスをリメルトすると同時に蛍光体を溶融ガラス中に分散させた。 Place 42.5 g of the mixed powder and 5 blocks (total mass = 62.5 g) in a gold crucible with a capacity of 100 cm 3 and hold the glass in an electric furnace at 900 ° C. for 5 minutes. Simultaneously with remelting, the phosphor was dispersed in the molten glass.

5分間が経過したところでルツボを取り出し、蛍光体が分散した溶融ガラスをカーボン型に流し出して厚みが約7mmの板状に成形した。この板状のガラスは直ちに470℃の別の電気炉に入れその温度に1時間保持後12時間かけて室温まで冷却した。   After 5 minutes, the crucible was taken out, and the molten glass in which the phosphor was dispersed was poured out into a carbon mold to form a plate having a thickness of about 7 mm. The plate-like glass was immediately put in another electric furnace at 470 ° C., kept at that temperature for 1 hour, and then cooled to room temperature over 12 hours.

このようにして得られた蛍光体分散ガラスの蛍光スペクトルをHITACHI社製蛍光光度測定装置F−4500を用いて測定した。すなわち、460nmの励起光を入射したところ530nmをピークに460〜650nmの範囲に広帯域の発光が観測され、蛍光体分散ガラス中の蛍光体が失活していないことが確認された。
比較のために、900℃の電気炉内に30分間保持して蛍光体分散ガラスを作製しその蛍光スペクトルを同様にして測定したところ発光は観測されず、蛍光体分散ガラス中の蛍光体の失活が確認された。
The fluorescence spectrum of the phosphor-dispersed glass thus obtained was measured using a fluorescence spectrophotometer F-4500 manufactured by HITACHI. That is, when excitation light of 460 nm was incident, broadband emission was observed in the range of 460 to 650 nm with a peak at 530 nm, and it was confirmed that the phosphor in the phosphor-dispersed glass was not deactivated.
For comparison, a phosphor-dispersed glass was prepared by holding it in an electric furnace at 900 ° C. for 30 minutes, and when the fluorescence spectrum was measured in the same manner, no emission was observed, and the phosphor in the phosphor-dispersed glass was lost. Life was confirmed.

前記板状のガラス(蛍光体分散ガラス)は厚みが1.5mm、大きさが3mm×3mmであるガラス板に加工し、その後その両面を鏡面研磨した。
一方、金の配線パターンを形成したアルミナ基板(厚み:1mm、大きさ:25mm×50mm)と豊田合成社製LED(商品名:E1C60−0B011−03)に接続バンプを形成したものとを用意し、前記アルミナ基板にこのLEDをフリップチップ実装した。
The plate-like glass (phosphor-dispersed glass) was processed into a glass plate having a thickness of 1.5 mm and a size of 3 mm × 3 mm, and then both surfaces thereof were mirror-polished.
On the other hand, an alumina substrate (thickness: 1 mm, size: 25 mm × 50 mm) on which a gold wiring pattern is formed and a LED made by Toyoda Gosei (product name: E1C60-0B011-03) with connection bumps are prepared. The LED was flip-chip mounted on the alumina substrate.

このフリップチップ実装したLEDの上に前記蛍光体分散ガラス板を載置したものを電気炉に入れ、毎分1℃の速度で610℃まで昇温しその温度に15分間保持し、ガラス板を軟化流動させてLEDを被覆した。その後610℃からおよそ400℃までは毎分1℃の速度で冷却し、400℃以下は炉内に放置し自然放冷を行った。
LEDを被覆しているガラスを目視観察したところその表面付近には泡は認められなかった。
A glass substrate having the phosphor-dispersed glass plate placed on the flip-chip mounted LED is placed in an electric furnace, heated to 610 ° C. at a rate of 1 ° C. per minute and held at that temperature for 15 minutes. The LED was coated by softening and flowing. Thereafter, cooling from 610 ° C. to about 400 ° C. was carried out at a rate of 1 ° C. per minute, and the temperature of 400 ° C. or lower was left in the furnace for natural cooling.
When the glass covering the LED was visually observed, no bubbles were found near the surface.

このようにして得られたガラス被覆LED素子に直流電圧を印加したところ、白色の発光が確認できた。
発光開始電圧は2.4Vであり、ベアチップに対するものと同じであった。このことからLED素子発光層に損傷がないことがわかる。
また、電流値が10mAの時の電圧は3.0Vであり、ベアチップにおける2.9Vに比べて少し高かった。これは電極に損傷が生じたためと考えられるが、実用上は問題ないと考えられる。
When a DC voltage was applied to the glass-coated LED element thus obtained, white light emission was confirmed.
The emission start voltage was 2.4 V, which was the same as that for the bare chip. This shows that the LED element light emitting layer is not damaged.
The voltage when the current value was 10 mA was 3.0 V, which was a little higher than 2.9 V in the bare chip. This is considered to be due to damage to the electrode, but it is considered that there is no problem in practical use.

(例2)
比較のために、例1で用いたと同じガラス7.61gを乳鉢と乳棒を用いて粉砕しガラス粉末とし、これを例1で用いたと同じ黄色蛍光体381mgと混合し、蛍光体入りガラスフリットを得た。
一方、6インチシリコンウエハー(大阪チタニウム製)を用意し、その上に離型材として窒化ホウ素パウダー(化研興業社製ボロンスプレー)をスプレーした。
(Example 2)
For comparison, 7.61 g of the same glass used in Example 1 was crushed using a mortar and pestle to form a glass powder, and this was mixed with 381 mg of the same yellow phosphor used in Example 1 to obtain a glass frit containing the phosphor. Obtained.
Meanwhile, a 6-inch silicon wafer (manufactured by Osaka Titanium) was prepared, and boron nitride powder (boron spray manufactured by Kaken Kogyo Co., Ltd.) was sprayed thereon as a release material.

この離型材付き基板の上に蛍光体入りガラスフリット34mgを置き、25℃から5℃/分で昇温し610℃に15分間保持後5℃/分の速度で25℃まで冷却した。
その結果、基板と接していた部分が平坦であるほぼ球状の蛍光体分散ガラスが得られた。そのガラスの最大幅は2.0mm、前記平坦である部分からの高さは1.9mm、その平坦である部分(円形)の直径は0.8mmであった。
34 mg of a glass frit containing a phosphor was placed on this substrate with a release material, heated from 25 ° C. at 5 ° C./min, held at 610 ° C. for 15 minutes, and then cooled to 25 ° C. at a rate of 5 ° C./min.
As a result, a substantially spherical phosphor-dispersed glass having a flat portion in contact with the substrate was obtained. The maximum width of the glass was 2.0 mm, the height from the flat part was 1.9 mm, and the diameter of the flat part (circular) was 0.8 mm.

次に、前記離型材付き基板と同じものの上に昭和電工社製青色発光LEDベアチップGB−3070多数を約3cmの高さから散布した。
このベアチップの大きさは300μm□、その厚みは80μmであり、n電極およびp電極はチップの片面に配置され、その表面は金である。
Next, many blue light emitting LED bare chips GB-3070 manufactured by Showa Denko KK were sprayed from a height of about 3 cm on the same substrate as the release material-attached substrate.
The bare chip has a size of 300 μm □ and a thickness of 80 μm. The n electrode and the p electrode are arranged on one side of the chip, and the surface thereof is gold.

前記散布されたベアチップのうち電極形成面が窒化ホウ素粉末層と接しベアチップ基板(サファイア基板)が上面となっているものを選び、前記ほぼ球状の蛍光体分散ガラスをその平坦部の中心がそのベアチップ基板上にくるように置き、前記ほぼ球状の蛍光体分散ガラスを作製したときと同様の熱処理を行った。その結果、ベアチップ基板がガラスによって被覆され、ベアチップがガラス中にめりこんだ形状のガラス被覆LED素子が得られた。なお、その被覆ガラスの高さ、水平方向の幅最大値等の寸法は前記ほぼ球状の蛍光体分散ガラスとほぼ同じであり、電極形成面にガラスは付着していなかった。   Among the sprayed bare chips, one having an electrode forming surface in contact with the boron nitride powder layer and having a bare chip substrate (sapphire substrate) as an upper surface is selected, and the substantially spherical phosphor-dispersed glass is centered on the flat portion of the bare chip. The substrate was placed on the substrate, and the same heat treatment as that for producing the substantially spherical phosphor-dispersed glass was performed. As a result, the bare chip substrate was covered with glass, and a glass-covered LED element having a shape in which the bare chip was embedded in the glass was obtained. In addition, dimensions, such as the height of the coating glass and the maximum width in the horizontal direction, were almost the same as those of the substantially spherical phosphor-dispersed glass, and no glass adhered to the electrode forming surface.

このようにして得られたガラス被覆LED素子に電圧を印加したところ白色の発光が確認できた。しかしその発光は例1に比べて微弱であった。
LEDを被覆しているガラスを目視観察したところその表面付近には大きさが100μm程度の泡が密集しており内部にも多数の泡の存在が認められた。発光が微弱であったのはこれらの泡によるものと考えられる。
なお、発光開始電圧は2.4Vであり、ベアチップに対するものと同じであった。
When voltage was applied to the glass-coated LED element thus obtained, white light emission was confirmed. However, the luminescence was weak compared to Example 1.
When the glass covering the LED was visually observed, bubbles having a size of about 100 μm were concentrated in the vicinity of the surface, and a large number of bubbles were recognized inside. It is thought that it was due to these bubbles that the luminescence was weak.
The light emission starting voltage was 2.4 V, which was the same as that for the bare chip.

白色LED素子として利用できる。   It can be used as a white LED element.

配線基板上に実装された本発明のガラス被覆LED素子の断面の概念図。The conceptual diagram of the cross section of the glass covering LED element of this invention mounted on the wiring board.

符号の説明Explanation of symbols

1 :内部に蛍光体が分散しているガラス
10 :LED素子
20 :配線
21 :接続バンプ
30 :基板
1: Glass 10 in which phosphor is dispersed inside: LED element 20: Wiring 21: Connection bump 30: Substrate

Claims (7)

内部に蛍光体が分散しているガラスによって被覆されている発光ダイオード素子であって、前記ガラスが、蛍光体が分散されるべきガラスの粉末および蛍光体粉末の混合粉末と、蛍光体が分散されるべきガラスの1個以上の塊とをガラス溶融容器に入れ、この容器とともに加熱してこれらガラスを溶融ガラスにすることによって製造されたものであるガラス被覆発光ダイオード素子。   A light emitting diode element coated with glass in which phosphor is dispersed, wherein the glass is dispersed in a glass powder to which the phosphor is to be dispersed and a mixed powder of the phosphor powder. A glass-coated light-emitting diode device produced by placing one or more lumps of glass to be put into a glass melting vessel and heating together with the vessel to make these glasses into molten glass. 蛍光体粉末がセリウム添加YAG粉末を含有するものであり、発光ダイオード素子が青色発光ダイオード素子である請求項1に記載のガラス被覆発光ダイオード素子。   The glass-coated light-emitting diode device according to claim 1, wherein the phosphor powder contains cerium-added YAG powder, and the light-emitting diode device is a blue light-emitting diode device. 前記容器の加熱を900℃で5分間以下の時間行う請求項1または2に記載のガラス被覆発光ダイオード素子。   The glass-coated light-emitting diode device according to claim 1, wherein the container is heated at 900 ° C. for 5 minutes or less. 前記混合粉末と前記ガラスの1個以上の塊の質量比が2:8から5:5までである請求項1、2または3に記載のガラス被覆発光ダイオード素子。   4. The glass-coated light-emitting diode device according to claim 1, wherein a mass ratio of the mixed powder and the one or more chunks of the glass is from 2: 8 to 5: 5. 前記塊の大きさが5mm以上である請求項1〜4のいずれかに記載のガラス被覆発光ダイオード素子。   The glass-coated light-emitting diode element according to any one of claims 1 to 4, wherein a size of the lump is 5 mm or more. 蛍光体が分散されるべきガラスが、軟化点が500℃以下、50〜300℃における平均線膨張係数が65×10−7〜95×10−7/℃、波長405nmの光に対する厚み1mmでの内部透過率が80%以上かつ同光に対する屈折率が1.7以上であるガラスである請求項1〜5のいずれかに記載のガラス被覆発光ダイオード素子。 The glass in which the phosphor is to be dispersed has a softening point of 500 ° C. or less, an average linear expansion coefficient at 50 to 300 ° C. of 65 × 10 −7 to 95 × 10 −7 / ° C., and a thickness of 1 mm for light with a wavelength of 405 nm. The glass-coated light-emitting diode device according to any one of claims 1 to 5, which is a glass having an internal transmittance of 80% or more and a refractive index with respect to the same light of 1.7 or more. 前記ガラスが下記酸化物基準のモル%表示で、TeO 40〜53%、GeO 0〜10%、B 5〜30%、Ga 0〜10%、Bi 0〜10%、ZnO 3〜20%、Y 0〜3%、La 0〜3%、Gd 0〜7%、Ta 0〜5%、から本質的になる請求項6に記載のガラス被覆発光ダイオード素子。
The glass in mole% based on the following oxides, TeO 2 40~53%, GeO 2 0~10%, B 2 O 3 5~30%, Ga 2 O 3 0~10%, Bi 2 O 3 0 ~10%, 3~20% ZnO, Y 2 O 3 0~3%, La 2 O 3 0~3%, Gd 2 O 3 0~7%, Ta 2 O 5 0~5%, essentially from The glass-coated light-emitting diode device according to claim 6.
JP2005311292A 2005-10-26 2005-10-26 Glass-covered light emitting diode element Pending JP2007123410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311292A JP2007123410A (en) 2005-10-26 2005-10-26 Glass-covered light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311292A JP2007123410A (en) 2005-10-26 2005-10-26 Glass-covered light emitting diode element

Publications (1)

Publication Number Publication Date
JP2007123410A true JP2007123410A (en) 2007-05-17

Family

ID=38146952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311292A Pending JP2007123410A (en) 2005-10-26 2005-10-26 Glass-covered light emitting diode element

Country Status (1)

Country Link
JP (1) JP2007123410A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013186A (en) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
JP2009277997A (en) * 2008-05-16 2009-11-26 Asahi Glass Co Ltd Mixed glass powder for coating light-emitting element, glass-coated light-emitting element, and glass-coated light-emitting device
WO2009132840A3 (en) * 2008-04-29 2009-12-30 Schott Ag Conversion material, especially for a white or colored light source comprising a semiconductor light source, method for producing the same and light source comprising said conversion material
US8101441B2 (en) 2009-02-12 2012-01-24 Sumita Optical Glass, Inc. Method of manufacturing light-emitting device
WO2017142194A3 (en) * 2016-02-15 2018-08-02 부경대학교 산학협력단 Wavelength conversion glass, method for preparing same, and light emitting device comprising same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013186A (en) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
WO2009132840A3 (en) * 2008-04-29 2009-12-30 Schott Ag Conversion material, especially for a white or colored light source comprising a semiconductor light source, method for producing the same and light source comprising said conversion material
DE102008021438A1 (en) 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
US9950949B2 (en) 2008-04-29 2018-04-24 Schott Ag Conversion material, particularly for a white or colored light souce comprising a semiconductor light source, a method for the production thereof, as well as a light source comprising said conversion material
US10988408B2 (en) 2008-04-29 2021-04-27 Schott Ag Conversion material for white or colored light source, method of production, and light source having the conversion material
JP2009277997A (en) * 2008-05-16 2009-11-26 Asahi Glass Co Ltd Mixed glass powder for coating light-emitting element, glass-coated light-emitting element, and glass-coated light-emitting device
US8101441B2 (en) 2009-02-12 2012-01-24 Sumita Optical Glass, Inc. Method of manufacturing light-emitting device
WO2017142194A3 (en) * 2016-02-15 2018-08-02 부경대학교 산학협력단 Wavelength conversion glass, method for preparing same, and light emitting device comprising same
US10399891B2 (en) 2016-02-15 2019-09-03 Pukyong National University Industry-University Cooperation Foundation Wavelength conversion glass, method for preparing same, and light emitting device comprising same

Similar Documents

Publication Publication Date Title
JP4465989B2 (en) Light emitting diode element
US8461069B2 (en) Light emitting diode element
JP4894186B2 (en) Phosphor and light emitting diode
JP2008019109A (en) Method for production of fluorescent substance-dispersed glass and light emitting diode device
KR20090110316A (en) Glass for covering optical element and light-emitting device covered with glass
TW201248928A (en) Light-emitting device
US8174045B2 (en) Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device
CN109301057A (en) Wavelength conversion member and use luminescent device made of the component
KR20100103455A (en) Glass, coating material for light-emitting device,and light-emitting device
JP2009270091A (en) Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device
JP2007161944A (en) Phosphor
CN109417118A (en) Wavelength convert component and the luminescent device for using it
CN109415622A (en) Wavelength convert component and the luminescent device for using it
JP2007123410A (en) Glass-covered light emitting diode element
CN101427388A (en) Light emitting device
JPWO2015008621A1 (en) Phosphor-dispersed glass and method for producing the same
JP2011204718A (en) Semiconductor light emitting element sealing material and method of manufacturing semiconductor light emitting element device using the same
KR101753185B1 (en) Glass with high refractivity and alkali-free and color conversion materials and led package
JP2007096257A (en) Glass-covered light emitting diode element and light emitting diode covering glass
JP2008300536A (en) Glass coated light emitting element, and glass coated light emitting device
JP2012009616A (en) Lens for light emitting device
JP2009018981A (en) Glass for covering optical element, glass-covered light-emitting element, and glass-covered light-emitting device
JP4756349B2 (en) Method for manufacturing light emitting device
TW201914974A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2009224790A (en) Light-emitting diode element