JP2008300536A - Glass coated light emitting element, and glass coated light emitting device - Google Patents

Glass coated light emitting element, and glass coated light emitting device Download PDF

Info

Publication number
JP2008300536A
JP2008300536A JP2007143639A JP2007143639A JP2008300536A JP 2008300536 A JP2008300536 A JP 2008300536A JP 2007143639 A JP2007143639 A JP 2007143639A JP 2007143639 A JP2007143639 A JP 2007143639A JP 2008300536 A JP2008300536 A JP 2008300536A
Authority
JP
Japan
Prior art keywords
glass
light emitting
emitting element
light
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007143639A
Other languages
Japanese (ja)
Inventor
Shuji Matsumoto
修治 松本
Yasuko Osaki
康子 大崎
Nobuhiro Nakamura
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007143639A priority Critical patent/JP2008300536A/en
Priority to CN200880018040A priority patent/CN101681965A/en
Priority to EP08776999A priority patent/EP2151872A4/en
Priority to KR1020097017489A priority patent/KR20100014822A/en
Priority to PCT/JP2008/059937 priority patent/WO2008146886A1/en
Priority to TW097120256A priority patent/TW200916429A/en
Publication of JP2008300536A publication Critical patent/JP2008300536A/en
Priority to US12/621,572 priority patent/US8174045B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Device Packages (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass coated light emitting element and a glass coated light emitting device which are coated with glass having a coefficient of thermal expansion little different from that of the light emitting element and also having its glass transition point suppressed to a low value. <P>SOLUTION: The glass coated light emitting element includes a semiconductor light emitting element having a principal surface and P<SB>2</SB>O<SB>5</SB>-ZnO-SnO based glass covering the principal surface of the semiconductor light emitting element, wherein the glass includes essentially, by mole based on oxides, 20 to 45% P<SB>2</SB>O<SB>5</SB>, 20 to 50% ZnO and 20 to 40% SnO, and has a glass transition point of 290 to 450°C and a coefficient of thermal expansion of ≤105×10<SP>-7</SP>/°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は光学素子、特に、低融点ガラスによって被覆されるガラス被覆光学素子(発光ダイオード)及びガラス被覆発光装置に関する。   The present invention relates to an optical element, and more particularly to a glass-coated optical element (light-emitting diode) and a glass-coated light-emitting device that are coated with low-melting glass.

近年、発光素子を被覆する部材として、TeOを主組成物とするTeO系ガラスが提案されている。しかし、被覆部材として用いられるTeO系ガラスは、400nm以下での透過率が悪く、短波長(365〜405nm)用LED(UV−LED)の封止材としては適していなかった。 In recent years, TeO 2 -based glass containing TeO 2 as a main composition has been proposed as a member for covering a light emitting element. However, TeO 2 type glass used as the covering member has poor transmittance at 400nm or less, it was not suitable as a sealing material for LED short wavelength (365~405nm) (UV-LED) .

なお、短波長用LEDの封止材として、P−ZnO系のガラスを用いることを記載している文献がある(特許文献1)。 In addition, there is a document describing the use of P 2 O 5 —ZnO-based glass as a sealing material for LEDs for short wavelengths (Patent Document 1).

国際公開番号 WO2004/082036号International Publication Number WO2004 / 082036

しかしながら、特許文献1は、ガラスの組成物の含有量が記載されておらず、実施できるほどの開示はない。また、特許文献1のガラスは、その熱膨張係数が11.4×10−6/℃であり、発光素子(典型的にはGaN)の積層基板として主に用いられるサファイアの熱膨張係数(約80×10−7/℃)との差が大きく、封止材として実用的ではないという問題点がある。さらに、特許文献1のガラスは、組成物としてSnを本質的に含有していない。そのため、特許文献1のガラスのガラス転移点は、高くなるという問題点がある。 However, Patent Document 1 does not describe the content of the glass composition, and there is no disclosure that can be implemented. Further, the glass of Patent Document 1 has a thermal expansion coefficient of 11.4 × 10 −6 / ° C., and the thermal expansion coefficient of sapphire mainly used as a laminated substrate of a light emitting element (typically GaN) (approximately 80 × 10 −7 / ° C.), which is not practical as a sealing material. Furthermore, the glass of patent document 1 does not contain Sn essentially as a composition. Therefore, there is a problem that the glass transition point of the glass of Patent Document 1 is increased.

本発明の一態様のガラス被覆光学素子は、主表面を有する半導体発光素子と、半導体発光素子の主表面を被覆するP−ZnO−SnO系のガラスとを含むことを特徴とする。 A glass-coated optical element of one embodiment of the present invention includes a semiconductor light-emitting element having a main surface and a P 2 O 5 —ZnO—SnO-based glass that covers the main surface of the semiconductor light-emitting element.

また、本発明の一態様のガラス被覆発光装置は、主表面を有する基板と、主表面と主表面と対向する裏表面とを有し裏表面が基板の主表面と対向するように基板の主表面上に設けられる半導体発光素子と、半導体発光素子の主表面を被覆するP−ZnO−SnO系のガラスとを含むことを特徴とする。 The glass-coated light-emitting device of one embodiment of the present invention includes a substrate having a main surface, a main surface and a back surface opposite to the main surface, and the main surface of the substrate facing the main surface of the substrate. It includes a semiconductor light emitting element provided on the surface and a P 2 O 5 —ZnO—SnO-based glass covering the main surface of the semiconductor light emitting element.

本発明によれば、発光素子との熱膨張率の差が小さく、ガラス転移点が低く抑えられたガラスによって被覆されたガラス被覆発光素子及びガラス被覆発光装置を提供することができる。   According to the present invention, it is possible to provide a glass-coated light-emitting element and a glass-coated light-emitting device that are coated with glass having a small difference in thermal expansion coefficient from that of the light-emitting element and having a low glass transition point.

本発明の実施形態を、添付した図面を参照して以下に詳細に説明する。図では、対応する部分は、対応する参照符号で示している。下記の実施形態は、一例として示されたもので、本発明の精神から逸脱しない範囲で種々の変形をして実施することが可能である。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the figure, corresponding parts are indicated by corresponding reference numerals. The following embodiment is shown as an example, and various modifications can be made without departing from the spirit of the present invention.

初めに、図面を用いて、ガラス被覆発光装置について説明する。   First, a glass-coated light-emitting device will be described with reference to the drawings.

図1は、本発明のガラス被覆発光装置の断面図である。本発明のガラス被覆発光装置は、被接着部材である発光素子(例えば、発光ダイオード)100と、発光素子100を被覆する被覆部材であるガラス110と、発光素子100が搭載される配線130が形成された基板120とを有する。   FIG. 1 is a cross-sectional view of the glass-coated light emitting device of the present invention. In the glass-coated light-emitting device of the present invention, a light-emitting element (for example, a light-emitting diode) 100 that is an adherend member, a glass 110 that is a covering member that covers the light-emitting element 100, and a wiring 130 on which the light-emitting element 100 is mounted are formed. Substrate 120.

発光素子100は、基板101と、LED102と、プラス電極103と、マイナス電極104とを有する。LED102は、波長が360〜480nmの紫外光又は青色光を放出するLEDであり、GaNにInを添加したInGaNを発光層とする量子井戸構造のLED(InGaN系LED)である。基板101の熱膨張係数(α)は、70×10−7〜90×10−7/℃である。通常、基板101として熱膨張係数(α)が約80×10−7/℃であるサファイア基板が使用される。 The light emitting element 100 includes a substrate 101, an LED 102, a plus electrode 103, and a minus electrode 104. The LED 102 is an LED that emits ultraviolet light or blue light having a wavelength of 360 to 480 nm, and is an LED having a quantum well structure (InGaN-based LED) having InGaN in which In is added to GaN as a light emitting layer. The thermal expansion coefficient (α) of the substrate 101 is 70 × 10 −7 to 90 × 10 −7 / ° C. Usually, a sapphire substrate having a thermal expansion coefficient (α) of about 80 × 10 −7 / ° C. is used as the substrate 101.

次に、本発明の光学素子被覆用ガラスについて説明する。   Next, the glass for coating an optical element of the present invention will be described.

本発明の光学素子被覆用ガラスのガラス転移点(Tg)は、好ましくは290℃以上、より好ましくは300℃以上、特に好ましくは320℃以上である。なお、ガラス転移点(Tg)が290℃未満では、ZnOの含有が少なくなり、及び/又はPを多く含有することになり、耐水性が悪くなるおそれがある。好ましくは400℃以下、より好ましくは360℃以下である。Tgが高くなると封止温度も高くなる。 The glass transition point (Tg) of the glass for coating an optical element of the present invention is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably 320 ° C. or higher. In the glass transition point (Tg) of less than 290 ° C., containing the ZnO is reduced, and / or will contain a large amount of P 2 O 5, there is a possibility that water resistance is deteriorated. Preferably it is 400 degrees C or less, More preferably, it is 360 degrees C or less. As Tg increases, the sealing temperature also increases.

本発明の光学素子被覆用ガラスの熱膨張係数(α)は、105×10−7/℃以下、より好ましくは95×10−7/℃以下、特に好ましくは90×10−7/℃以下である。なお、熱膨張係数(α)は、70×10−7/℃未満では、ガラス転移点を上昇させる。好ましくは、75×10−7/℃以上である。また、熱膨張係数(α)は、105×10−7/℃超の場合、ガラスを軟化させて発光素子を封止し、室温まで冷却する過程又はそれ以降に、ガラスの発光素子に接する部分を起点とした割れが発生し、光の取り出し効率を低下させる又は発光素子が大気の湿分に晒されるおそれがある。 The thermal expansion coefficient (α) of the glass for coating an optical element of the present invention is 105 × 10 −7 / ° C. or less, more preferably 95 × 10 −7 / ° C. or less, and particularly preferably 90 × 10 −7 / ° C. or less. is there. If the thermal expansion coefficient (α) is less than 70 × 10 −7 / ° C., the glass transition point is raised. Preferably, it is 75 × 10 −7 / ° C. or higher. In addition, when the thermal expansion coefficient (α) exceeds 105 × 10 −7 / ° C., the portion that is in contact with the light emitting element of glass during or after the process of softening the glass to seal the light emitting element and cooling to room temperature As a starting point, cracks may occur, reducing the light extraction efficiency or exposing the light emitting element to atmospheric moisture.

本発明の光学素子被覆用ガラスの耐水性試験における質量減少率は、好ましくは50%以下、より好ましくは1%以下、特に好ましくは0%である。なお、光学素子被覆用ガラスの耐水性試験における質量減少率が50%超では、化学的安定性が悪くなるおそれがある。   The mass reduction rate in the water resistance test of the glass for covering an optical element of the present invention is preferably 50% or less, more preferably 1% or less, and particularly preferably 0%. In addition, if the mass reduction rate in the water resistance test of the glass for covering optical elements exceeds 50%, chemical stability may be deteriorated.

以下、本発明のガラス被覆光学素子及びガラス被覆発光装置で用いられるガラス組成をモル%を単に%と表記して説明する。   Hereinafter, the glass composition used in the glass-coated optical element and the glass-coated light emitting device of the present invention will be described with mol% simply expressed as%.

は、ガラスを安定化させる成分であり、必須である。20%未満ではガラス化が困難になるおそれがある。好ましくは20%以上、より好ましくは25%以上、特に好ましくは28%以上である。一方、45%超では、装着部の耐水性が低下するおそれがある。好ましくは45%以下、より好ましくは37%以下、特に好ましくは35%以下である。 P 2 O 5 is a component that stabilizes the glass and is essential. If it is less than 20%, vitrification may be difficult. Preferably it is 20% or more, more preferably 25% or more, and particularly preferably 28% or more. On the other hand, if it exceeds 45%, the water resistance of the mounting portion may be lowered. Preferably it is 45% or less, More preferably, it is 37% or less, Most preferably, it is 35% or less.

ZnOは、耐水性を向上させ、熱膨張係数を低下させる等、ガラスを安定化させる成分であり、必須である。20%未満では熱膨張係数が大きなりすぎ、ガラス板の熱膨張係数との整合性が得られなくなり、割れやすくなるおそれがある。好ましくは、20%以上、より好ましくは25%以上、特に好ましくは30%以上である。一方、50%超では失透が析出しやすくなり、さらに軟化点が高くなりすぎる。好ましくは50%以下、より好ましくは45%以下、特に好ましくは42%以下である。   ZnO is a component that stabilizes the glass, such as improving water resistance and reducing the thermal expansion coefficient, and is essential. If it is less than 20%, the thermal expansion coefficient is too large, the consistency with the thermal expansion coefficient of the glass plate cannot be obtained, and there is a possibility that the glass sheet is likely to break. Preferably, it is 20% or more, more preferably 25% or more, and particularly preferably 30% or more. On the other hand, if it exceeds 50%, devitrification tends to precipitate, and the softening point becomes too high. Preferably it is 50% or less, More preferably, it is 45% or less, Most preferably, it is 42% or less.

SnOは、流動性を増す効果があり、20%未満では軟化点が高くなりすぎ、流動性が悪くなるため、装着部の強度と気密性が低下するおそれがある。好ましくは20%以上、より好ましくは22%以上、特に好ましくは25%以上である。一方、50%超ではガラス化が困難になる。好ましくは50%以下、より好ましくは40%以下、特に好ましくは35%以下である。   SnO has the effect of increasing the fluidity, and if it is less than 20%, the softening point becomes too high and the fluidity deteriorates, so that the strength and airtightness of the mounting portion may be lowered. Preferably it is 20% or more, more preferably 22% or more, and particularly preferably 25% or more. On the other hand, if it exceeds 50%, vitrification becomes difficult. Preferably it is 50% or less, more preferably 40% or less, and particularly preferably 35% or less.

本発明のガラス被覆光学素子及びガラス被覆発光装置で用いられるガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分、例えば、MgO、CaO、SrO、BaO、B、Al、Bi、Y、La、Gd、Ce、In,CeO、TiO、TeO、SiO、Ta、WO等を添加しても良い。なお、本発明のガラスは、PbOを実質的に含有しないことが好ましい。 The glass used in the glass-coated optical element and the glass-coated light-emitting device of the present invention consists essentially of the above-mentioned components, but other components such as MgO, CaO, SrO, BaO, B are within the range that does not impair the object of the present invention. 2 O 3 , Al 2 O 3 , Bi 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Ce 2 O 3 , In 2 O 3 , CeO 2 , TiO 2 , TeO 2 , SiO 2 , Ta 2 O 5 , WO 3 or the like may be added. In addition, it is preferable that the glass of this invention does not contain PbO substantially.

基板120は、例えば、純度98.0%〜99.5%、厚さ0.5mm〜1.2mmの矩形のアルミナ基板である。純度99.0%〜99.5%、厚さ0.7mm〜1.0mmの正方形のアルミナ基板が好ましい。なお、基板120の表面に形成される配線130は、金ペーストにより製造された金配線である。   The substrate 120 is, for example, a rectangular alumina substrate having a purity of 98.0% to 99.5% and a thickness of 0.5 mm to 1.2 mm. A square alumina substrate having a purity of 99.0% to 99.5% and a thickness of 0.7 mm to 1.0 mm is preferable. The wiring 130 formed on the surface of the substrate 120 is a gold wiring manufactured by a gold paste.

例1〜例9については、表中のモル%で示される組成となるように、正リン酸水溶液(85% HPO)とZnO及びSnO粉末原料を調合して、脱水後に正リン酸がPになった状態で全成分の合計が100gになる量を用意する。次に、前記の粉末原料と約1gのサッカロースを混合し、テフロン(登録商標)容器で約200mlのイオン交換水と混合し、スラリーを作成する。スラリーをテフロン(登録商標)製スターラーで攪拌しながら、正リン酸水溶液を混入する。その際に反応による発熱があるため、水分の突沸が起きないように、注意深くゆっくりと正リン酸水溶液を注ぐ必要がある。続いて、混合物をテフロン(登録商標)シートを引いたステンレス製バットに流しだした後に、換気しながら200℃で3時間乾燥させ、クッキー状の固形物を得た。 For Examples 1 to 9, a normal phosphoric acid aqueous solution (85% H 3 PO 4 ) and ZnO and SnO powder raw materials were prepared so as to have a composition represented by mol% in the table, and after dehydration, normal phosphoric acid There is prepared an amount that the total is 100g of all components in a condition that the P 2 O 5. Next, the powder raw material and about 1 g of saccharose are mixed and mixed with about 200 ml of ion-exchanged water in a Teflon (registered trademark) container to prepare a slurry. While stirring the slurry with a Teflon (registered trademark) stirrer, a normal phosphoric acid aqueous solution is mixed. At that time, there is an exotherm due to the reaction, so it is necessary to carefully and slowly pour the normal phosphoric acid aqueous solution so that no sudden boiling of water occurs. Subsequently, the mixture was poured into a stainless steel vat with a Teflon (registered trademark) sheet, and then dried at 200 ° C. for 3 hours with ventilation to obtain a cookie-like solid.

前記固形物を石英製るつぼに入れ、石英製ふたを置き、1100℃で40分間溶解した。この際、石英棒で数回攪拌して溶融ガラスを均質化した。均質化した溶融ガラスは、カーボン型に流し出して板状に成形した。この板状のガラスは直ちに380℃の別の電気炉に入れその温度に1時間保持後12時間かけて室温まで冷却した。   The solid matter was put in a quartz crucible, a quartz lid was placed, and the solid matter was melted at 1100 ° C. for 40 minutes. At this time, the molten glass was homogenized by stirring several times with a quartz rod. The homogenized molten glass was poured out into a carbon mold and formed into a plate shape. The plate-like glass was immediately put in another electric furnace at 380 ° C., kept at that temperature for 1 hour, and then cooled to room temperature over 12 hours.

ここで、例1〜例8は実施例であり、例9は比較例である。   Here, Examples 1 to 8 are examples, and Example 9 is a comparative example.

得られたガラスについて、ガラス転移点Tg(単位:℃)、熱膨張係数α(単位:10−7/℃)を以下の測定法によって、測定した。 About the obtained glass, glass transition point Tg (unit: ° C.) and thermal expansion coefficient α (unit: 10 −7 / ° C.) were measured by the following measuring method.

Tg:粉末状に加工したサンプル250mgを白金パンに充填し、リガク社製Thermo Plus TG8110(商品名)により測定した。   Tg: 250 mg of a sample processed into a powder form was filled in a platinum pan, and measured with Thermo Plus TG8110 (trade name) manufactured by Rigaku Corporation.

α:直径5mm、長さ20mmの円柱状に加工したサンプルを、熱膨張計(ブルカーエイエックスエス社製水平示差検出式熱膨張計TD5010)を用いて、10℃/分の昇温速度で測定した。25〜250℃での膨張係数を25℃刻みで求め、その平均値をαとした。   α: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a rate of temperature increase of 10 ° C./min using a thermal dilatometer (Horizontal differential detection type thermal dilatometer TD5010 manufactured by Bruker AXS). did. The expansion coefficient at 25 to 250 ° C. was determined in increments of 25 ° C., and the average value was taken as α.

耐水性試験(%):直径5mm、長さ20mmの円柱状に加工したサンプルを80℃の温水に3時間浸漬し、重量減少を測定した。   Water resistance test (%): A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was immersed in warm water at 80 ° C. for 3 hours, and weight loss was measured.

透過スペクトル:両面が鏡面研磨され、大きさが2cm×2cm、厚みが1mmと5mmの2枚の板状試料について、日立製作所社製分光光度計U−3500(商品名)を用いて波長300nmから800nmの光に対する透過率を1nm刻みで測定する。測定によって得られた厚みが1mm、5mmの板状試料の透過率をそれぞれT、Tとして、次式によりT@1mm及びT@10mm(単位:%)を算出する。
T@1mm=100×exp[(1/4)×ln(T/T)]
T@10mm=100×exp[10×(1/4)×ln(T/T)]。
Transmission spectrum: about two plate-like samples having both sides mirror-polished, size 2 cm × 2 cm, thickness 1 mm and 5 mm, using a spectrophotometer U-3500 (trade name) manufactured by Hitachi, Ltd. from a wavelength of 300 nm The transmittance for light of 800 nm is measured in increments of 1 nm. T @ 1 mm and T @ 10 mm (unit:%) are calculated according to the following equations, where T 1 and T 5 are the transmittances of the plate samples having a thickness of 1 mm and 5 mm obtained by the measurement, respectively.
T @ 1 mm = 100 × exp [(1/4) × ln (T 5 / T 1 )]
T @ 10 mm = 100 × exp [10 × (1/4) × ln (T 5 / T 1 )].

UV透過の判定:365nmでのT@1mmが90%以上を○とした。   Determination of UV transmission: T @ 1 mm at 365 nm of 90% or more was evaluated as ◯.

結果を表1に示す。   The results are shown in Table 1.

Figure 2008300536
Figure 2008300536

例3のガラスを厚みが1.5mm、大きさが3mm×3mmであるガラス板に加工し、その後その両面を鏡面研磨した。   The glass of Example 3 was processed into a glass plate having a thickness of 1.5 mm and a size of 3 mm × 3 mm, and then both surfaces thereof were mirror-polished.

一方、金の配線パターンを形成したアルミナ基板(厚み:1mm、大きさ:14mm×14mm)と豊田合成社製LED(商品名:E1C60−0B011−03)に接続バンプを形成したものとを用意し、アルミナ基板にこのLEDをフリップチップ実装した。そして、ガラスと基板との界面に発生する気泡を抑制するために、LEDを実装したアルミナ基板を
電気炉(IR加熱装置)に入れ、620℃で加熱処理をした。昇温速度は300℃/分、620℃での保持時間は2分、降温速度は300℃/分に設定した。なお、ガラスと基板との界面に発生する気泡は、ガラスを軟化させる場合、ガラスが基板表面に付着している有機汚染物質に反応して発生する。そして、この発生した気泡は、発光素子から発した光を屈折させるので、発光装置の輝度を低下させたり、発光装置の配光分布を変化させるおそれがある。そのため、ガラスでLEDを被覆する前に、LEDを搭載した基板を加熱し、基板表面に付着している有機汚染物質を減少させ、気泡の発生を抑制している。数々の実験によれば、加熱温度は、600℃前後が好ましい。また、加熱時間は、LEDに対する熱の影響を考慮すると、2分間前後が好ましい。
On the other hand, an alumina substrate (thickness: 1 mm, size: 14 mm × 14 mm) on which a gold wiring pattern is formed and a LED made by Toyoda Gosei (product name: E1C60-0B011-03) with connection bumps are prepared. The LED was flip-chip mounted on an alumina substrate. And in order to suppress the bubble which generate | occur | produces in the interface of glass and a board | substrate, the alumina substrate which mounted LED was put into the electric furnace (IR heating apparatus), and it heat-processed at 620 degreeC. The temperature rising rate was set to 300 ° C./min, the holding time at 620 ° C. was set to 2 minutes, and the temperature decreasing rate was set to 300 ° C./min. Note that bubbles generated at the interface between the glass and the substrate are generated when the glass is softened in response to organic contaminants attached to the substrate surface. Since the generated bubbles refract light emitted from the light emitting element, there is a possibility that the luminance of the light emitting device is lowered or the light distribution of the light emitting device is changed. Therefore, before covering the LED with glass, the substrate on which the LED is mounted is heated to reduce organic contaminants adhering to the substrate surface, thereby suppressing the generation of bubbles. According to numerous experiments, the heating temperature is preferably around 600 ° C. The heating time is preferably around 2 minutes considering the influence of heat on the LED.

このフリップチップ実装したLEDの上に蛍光体分散ガラス板を載置したものを電気炉に入れ、毎分100℃の速度で490℃まで昇温しその温度に2分間保持し、ガラス板を軟化流動させてLEDを被覆した。その後、毎分100℃の速度で冷却を行った。   A glass with a phosphor-dispersed glass plate placed on the flip-chip mounted LED is placed in an electric furnace, heated to 490 ° C. at a rate of 100 ° C. per minute, held at that temperature for 2 minutes, and the glass plate is softened. The LED was coated by flowing. Thereafter, cooling was performed at a rate of 100 ° C. per minute.

LEDを被覆しているガラスを目視観察したところその表面付近には泡は認められなかった。   When the glass covering the LED was visually observed, no bubbles were found near the surface.

このようにして得られたガラス被覆LED素子に直流電圧を印加したところ、青色の発光が確認できた。発光開始電圧は2.4〜2.6Vであり、ベアチップに対するものとほぼ同じであった。このことからLED素子発光層に損傷がないことがわかる。   When a DC voltage was applied to the glass-coated LED element thus obtained, blue light emission was confirmed. The light emission starting voltage was 2.4 to 2.6 V, which was almost the same as that for the bare chip. This shows that the LED element light emitting layer is not damaged.

ここで、厚さの異なる2枚のガラスの透過率を測定し、反射補正値を算出して、透過率と厚さの関係を確定することにより、任意の厚さでの内部透過率を見積もった。その結果、波長365nmの光に対する厚さ1mmにおける例3のガラスの内部透過率は、97%である。また、波長365nmの光に対する厚さ10nmにおける例3のガラスの内部透過率は、74%である。一方、波長365nmの光に対する厚さ1mm及び波長365nmの光に対する厚さ10mmにおける従来のTeO系ガラスの内部透過率は77%及び8%である。このように、本発明のP−ZnO−SnO系ガラスを用いたガラス被覆光学素子及びガラス被覆発光装置によれば、従来のTeO系ガラスを用いたガラス被覆光学素子及びガラス被覆発光装置に比べ、短波長(365〜405nm)の光に対する内部透過率が大幅に改善される。よって、本発明のP−ZnO−SnO系ガラスを用いたガラス被覆光学素子及びガラス被覆発光装置は、UV−LEDとして用いることができる。 Here, the internal transmittance at an arbitrary thickness is estimated by measuring the transmittance of two glasses having different thicknesses, calculating the reflection correction value, and determining the relationship between the transmittance and the thickness. It was. As a result, the internal transmittance of the glass of Example 3 at a thickness of 1 mm with respect to light having a wavelength of 365 nm is 97%. Further, the internal transmittance of the glass of Example 3 at a thickness of 10 nm with respect to light having a wavelength of 365 nm is 74%. On the other hand, the internal transmittance of the conventional TeO 2 glass at a thickness of 1 mm for light with a wavelength of 365 nm and a thickness of 10 mm for light with a wavelength of 365 nm is 77% and 8%. As described above, according to the glass-coated optical element and the glass-coated light-emitting device using the P 2 O 5 —ZnO—SnO-based glass of the present invention, the glass-coated optical element and the glass-coated light-emitting device using the conventional TeO 2 -based glass. Compared with the device, the internal transmittance for light of a short wavelength (365 to 405 nm) is greatly improved. Therefore, the glass-coated optical element and the glass-coated light-emitting device using the P 2 O 5 —ZnO—SnO-based glass of the present invention can be used as a UV-LED.

本発明の光学素子被覆用ガラスは、液晶パネル用バックライト光源、一般照明や自動車用ヘッドライドなどに用いられるLED素子の封止に利用できる。   The glass for coating an optical element of the present invention can be used for sealing LED elements used for backlight light sources for liquid crystal panels, general illumination, automobile headlights, and the like.

本発明のガラス被覆発光装置の断面図である。It is sectional drawing of the glass-coated light-emitting device of this invention.

符号の説明Explanation of symbols

100:発光素子
110:ガラス
120:基板
100: Light emitting element 110: Glass 120: Substrate

Claims (6)

主表面を有する半導体発光素子と、
前記半導体発光素子の前記主表面を被覆するP−ZnO−SnO系のガラスとを含むことを特徴とするガラス被覆発光素子。
A semiconductor light emitting device having a main surface;
A glass-covered light-emitting element comprising: a P 2 O 5 —ZnO—SnO-based glass that covers the main surface of the semiconductor light-emitting element.
前記P−ZnO−SnO系のガラスのガラス転移点は、450℃以下であることを特徴とする請求項1記載のガラス被覆発光素子。 The glass-coated light-emitting element according to claim 1, wherein a glass transition point of the P 2 O 5 —ZnO—SnO-based glass is 450 ° C. or less. 前記P−ZnO−SnO系のガラスは、
酸化物基準のモル%表示で、
20〜45%、
ZnO 20〜50%、
SnO 20〜40%、
から本質的になり、ガラス転移点が290℃以上であり、かつ、熱膨張係数が105×10−7/℃以下であることを特徴とする請求項2記載のガラス被覆発光素子。
The P 2 O 5 —ZnO—SnO glass is
In mol% display based on oxide,
P 2 O 5 20~45%,
ZnO 20-50%,
SnO 20-40%,
The glass-coated light-emitting element according to claim 2, wherein the glass-coated light-emitting element has a glass transition point of 290 ° C. or higher and a thermal expansion coefficient of 105 × 10 −7 / ° C. or lower.
前記SnOは、20〜35%であることを特徴とする請求項3記載のガラス被覆発光素子。   The glass-coated light emitting device according to claim 3, wherein the SnO is 20 to 35%. 前記P−ZnO−SnO系のガラスの耐水性試験における重量減少率は、50%以下であることを特徴とする請求項1記載のガラス被覆発光素子。 2. The glass-coated light emitting device according to claim 1, wherein a weight reduction rate of the P 2 O 5 —ZnO—SnO-based glass in a water resistance test is 50% or less. 主表面を有する基板と、
主表面と前記主表面と対向する裏表面とを有し、前記裏表面が前記基板の前記主表面と対向するように前記基板の前記主表面上に設けられる半導体発光素子と、
前記半導体発光素子の前記主表面を被覆するP−ZnO−SnO系のガラスとを含むことを特徴とするガラス被覆発光装置。
A substrate having a main surface;
A semiconductor light emitting device having a main surface and a back surface opposite to the main surface, the semiconductor light emitting element provided on the main surface of the substrate such that the back surface faces the main surface of the substrate;
A glass-coated light-emitting device comprising: a P 2 O 5 —ZnO—SnO-based glass that covers the main surface of the semiconductor light-emitting element.
JP2007143639A 2007-05-30 2007-05-30 Glass coated light emitting element, and glass coated light emitting device Pending JP2008300536A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007143639A JP2008300536A (en) 2007-05-30 2007-05-30 Glass coated light emitting element, and glass coated light emitting device
CN200880018040A CN101681965A (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
EP08776999A EP2151872A4 (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
KR1020097017489A KR20100014822A (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
PCT/JP2008/059937 WO2008146886A1 (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
TW097120256A TW200916429A (en) 2007-05-30 2008-05-30 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
US12/621,572 US8174045B2 (en) 2007-05-30 2009-11-19 Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143639A JP2008300536A (en) 2007-05-30 2007-05-30 Glass coated light emitting element, and glass coated light emitting device

Publications (1)

Publication Number Publication Date
JP2008300536A true JP2008300536A (en) 2008-12-11

Family

ID=40173781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143639A Pending JP2008300536A (en) 2007-05-30 2007-05-30 Glass coated light emitting element, and glass coated light emitting device

Country Status (1)

Country Link
JP (1) JP2008300536A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132399A1 (en) 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
WO2011132402A1 (en) 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
JP2012148942A (en) * 2011-01-20 2012-08-09 Asahi Glass Co Ltd Glass, glass-coating material for light emitting deice, and light emitting device
WO2013001971A1 (en) * 2011-06-29 2013-01-03 株式会社オハラ Glass composition, glass for covering light emitting element, composite material for covering light emitting element, phosphor composite material, light emitting element-covering composite member, and phosphor composite member
WO2015093326A1 (en) * 2013-12-19 2015-06-25 旭硝子株式会社 Glass for metallic coating, and metallic member provided with glass layer
JP2018030742A (en) * 2016-08-23 2018-03-01 日本電気硝子株式会社 Method for manufacturing optical glass

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116642A (en) * 1988-10-17 1990-05-01 Corning Inc Zinc-containing phosphate glass
JPH06183775A (en) * 1992-08-03 1994-07-05 Corning Inc Lead-free glass and sealing material using the same
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JPH11209146A (en) * 1998-01-26 1999-08-03 Asahi Glass Co Ltd Low melting point glass composition and glass ceramic composition for sealing
JP2000072479A (en) * 1998-06-19 2000-03-07 Asahi Glass Co Ltd Low melting point glass and its use
JP2000219536A (en) * 1999-01-27 2000-08-08 Asahi Glass Co Ltd Low moisture absorbing glass frit and glass ceramics composition
JP2001139344A (en) * 1999-11-05 2001-05-22 Asahi Glass Co Ltd Leadless low melting point glass and glass frit
JP2003192378A (en) * 2001-12-25 2003-07-09 Yamato Denshi Kk Lead-free low-melting glass for sealing
JP2003313438A (en) * 2002-04-26 2003-11-06 Kanegafuchi Chem Ind Co Ltd Method for producing cured product for optical material, cured product, and light-emitting diode sealed therewith
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2006077234A (en) * 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Resin composition for sealing led device, and cured product of the composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116642A (en) * 1988-10-17 1990-05-01 Corning Inc Zinc-containing phosphate glass
JPH06183775A (en) * 1992-08-03 1994-07-05 Corning Inc Lead-free glass and sealing material using the same
JPH06263478A (en) * 1993-03-03 1994-09-20 Iwaki Glass Kk Lead-free low melting point glass
JPH11209146A (en) * 1998-01-26 1999-08-03 Asahi Glass Co Ltd Low melting point glass composition and glass ceramic composition for sealing
JP2000072479A (en) * 1998-06-19 2000-03-07 Asahi Glass Co Ltd Low melting point glass and its use
JP2000219536A (en) * 1999-01-27 2000-08-08 Asahi Glass Co Ltd Low moisture absorbing glass frit and glass ceramics composition
JP2001139344A (en) * 1999-11-05 2001-05-22 Asahi Glass Co Ltd Leadless low melting point glass and glass frit
JP2003192378A (en) * 2001-12-25 2003-07-09 Yamato Denshi Kk Lead-free low-melting glass for sealing
JP2003313438A (en) * 2002-04-26 2003-11-06 Kanegafuchi Chem Ind Co Ltd Method for producing cured product for optical material, cured product, and light-emitting diode sealed therewith
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2006077234A (en) * 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Resin composition for sealing led device, and cured product of the composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011132402A1 (en) * 2010-04-19 2013-07-18 パナソニック株式会社 Glass composition, light source device and lighting device
WO2011132402A1 (en) 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
CN102858704A (en) * 2010-04-19 2013-01-02 松下电器产业株式会社 Glass Composition, Light Source Device And Illumination Device
EP2562147A1 (en) * 2010-04-19 2013-02-27 Panasonic Corporation Glass composition, light source device and illumination device
WO2011132399A1 (en) 2010-04-19 2011-10-27 パナソニック株式会社 Glass composition, light source device and illumination device
US8536787B2 (en) 2010-04-19 2013-09-17 Panasonic Corporation Glass composition, light source device and illumination device
EP2562147A4 (en) * 2010-04-19 2013-09-18 Panasonic Corp Glass composition, light source device and illumination device
JP5842178B2 (en) * 2010-04-19 2016-01-13 パナソニックIpマネジメント株式会社 Light source device and lighting device
CN102858704B (en) * 2010-04-19 2016-02-17 松下电器产业株式会社 Glass composition, light supply apparatus and means of illumination
JP2012148942A (en) * 2011-01-20 2012-08-09 Asahi Glass Co Ltd Glass, glass-coating material for light emitting deice, and light emitting device
WO2013001971A1 (en) * 2011-06-29 2013-01-03 株式会社オハラ Glass composition, glass for covering light emitting element, composite material for covering light emitting element, phosphor composite material, light emitting element-covering composite member, and phosphor composite member
WO2015093326A1 (en) * 2013-12-19 2015-06-25 旭硝子株式会社 Glass for metallic coating, and metallic member provided with glass layer
JP2018030742A (en) * 2016-08-23 2018-03-01 日本電気硝子株式会社 Method for manufacturing optical glass

Similar Documents

Publication Publication Date Title
JP5458893B2 (en) Glass, coating material for light emitting device and light emitting device
JP4465989B2 (en) Light emitting diode element
US8174045B2 (en) Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device
US8835335B2 (en) Alkali-free glass
US8461069B2 (en) Light emitting diode element
KR20090110316A (en) Glass for covering optical element and light-emitting device covered with glass
TW201248928A (en) Light-emitting device
JP2008300536A (en) Glass coated light emitting element, and glass coated light emitting device
JP6852962B2 (en) Glass
JP2009067632A (en) Sealing glass for optical component, and method for sealing optical component
WO2012002174A1 (en) Lead-free glass for sealing semiconductor
JP2012116744A (en) Lead-free glass for sealing of semiconductor and overcoat tube for sealing of semiconductor
JPWO2010050591A1 (en) Solar cell
JP5585467B2 (en) Glass, glass coating material for light emitting device and light emitting device
JP5369408B2 (en) Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device
TW201246631A (en) Reflective frame for light-emitting elements, substrate for light-emitting elements, and light-emitting device
JP2007123410A (en) Glass-covered light emitting diode element
TWI603933B (en) High refractive index glass, lighting device, organic electroluminescence lighting and orgainc electroluminescence display
JP2007096257A (en) Glass-covered light emitting diode element and light emitting diode covering glass
JP2006169047A (en) Lead-free low melting point glass
JPWO2009031684A1 (en) Glass-coated light-emitting element and glass-coated light-emitting device
WO2012060337A1 (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP2009224790A (en) Light-emitting diode element
JP2009296001A (en) Light-emitting diode element
JP6331076B2 (en) Glass film and composite substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009