JP2009010131A - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2009010131A
JP2009010131A JP2007169487A JP2007169487A JP2009010131A JP 2009010131 A JP2009010131 A JP 2009010131A JP 2007169487 A JP2007169487 A JP 2007169487A JP 2007169487 A JP2007169487 A JP 2007169487A JP 2009010131 A JP2009010131 A JP 2009010131A
Authority
JP
Japan
Prior art keywords
illumination
exposure
light
optical system
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007169487A
Other languages
English (en)
Inventor
Yoshiyuki Sekine
義之 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007169487A priority Critical patent/JP2009010131A/ja
Priority to US12/145,639 priority patent/US8027025B2/en
Publication of JP2009010131A publication Critical patent/JP2009010131A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • G03B27/54Lamp housings; Illuminating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】複雑な変形照明により発生する高次の熱収差とスリット状物体により発生する非対称な熱収差を同時に補正する簡易な露光技術の実現。
【解決手段】露光装置は、露光光で基板を露光する露光装置であって、原版のパターン像を前記基板に投影する投影光学系と、前記露光光で前記原版を照明する第1の照明手段と、前記基板の露光には寄与しない光を前記投影光学系に導入する第2の照明手段と、を有し、前記第2の照明手段は、前記第1の照明手段が形成する照明分布と合わせて、前記投影光学系の瞳近傍の光学素子および前記投影光学系の前記原版近傍の光学素子において、回転対称な照明分布を形成する。
【選択図】図1

Description

本発明は、露光装置やデバイス製造方法に関する。
露光装置は、半導体デバイスや液晶デバイスといった各種デバイス、マイクロメカニクスで用いる微細パターンの製造に用いられる。この露光装置により製造されるデバイス等の微細化に伴い、露光波長はKrF(248nm)からArF(193nm)へとより一層短波長化されている。更には、ArF波長に液浸露光技術を投入することで等価波長134nmを達成し、光リソグラフィの限界を延ばそうとする試みが続いている。
パターンの微細化は半導体産業のダイナミックスを支えるもっとも大きなファクタで、256M DRAMで0.25μm解像を要求した時代から、更に180nm、130nm、100nmへと世代が急速に変わりつつある。
i線(365nm)までのリソグラフィでは波長以下の解像は使われてこなかったが、KrFは248nmの波長でありながら180nm更には130nmの線幅に適用されることになった。
レジストの進歩、超解像技術等の成果を駆使して、波長以下の解像を実用化する時代が本格化してきたと言えよう。種々の超解像技術を駆使すれば、ラインアンドスペースパターンで波長の1/3の線幅が実用の視野に入ってきている。
この中で、現在最も大きな問題となっているのは線幅制御の問題である。半導体の技術ロードマップを作成しているITRS(International Technology Roadmap for Semiconductors)と言う委員会では継続的に来るべき半導体素子に要求される仕様を提示し続けている。
リソグラフィの諸項目の中で最も早く限界に遭遇するのは線幅制御(CDコントロール)であるとしている。線幅制御に寄与する項目は露光装置、レチクル、プロセスと多岐にわたるが、各項目を極限まで小さくして制御性を上げることが大きな課題となっている。
線幅制御性を向上させる中で大きな要因は露光装置の投影光学系であり、その中でも収差が大きな項目の一つとして挙げられている。このため、収差を如何に低減していくかについては常に大きな課題となっており、また注力されている。この10年くらいの間を考えると、収差低減は大幅な進歩が達成されている。例えば、Zernike級数で展開した時にメインとなる36項まで用いた値で言うと10mλをはるかに下回る値のものも実現されるようになってきている。
但し、前述の収差は、設計値、組み立て・調整の誤差、硝材の不均一性等に起因して投影光学系が固有に有する収差のことである。一方、半導体製造では、レチクルパターンを照明し、このレチクルパターンを透過した光を投影光学系を介してウエハ面上に転写投影する露光方式が用いられることは周知の通りである。ここで、投影光学系に用いられる硝材は露光に使用される光の波長に対して極めて高い透過率を有するが、僅かに露光光を吸収して温度が上昇する。この温度上昇は硝材の屈折率変化及び面形状の変形を生じさせ、収差が発生する。この収差は、露光収差と呼ばれている。
露光収差も線幅制御性を始めとする種々の光学特性を悪化させるため、低減していく必要がある。これらの内、最も基本的な低減方法としては、露光収差によって発生する焦点位置ずれをウエハステージを移動させて補正するものや結像倍率の変動をレンズの一部を移動させて補正するものがある。
しかし、露光収差は露光方法や露光時の条件により発生量や特性が異なるため、それぞれの特性に合わせて補正しなければならないという課題がある。例えば、ステップアンドリピート方式、所謂ステッパと呼ばれる露光装置の場合、レチクルで光が透過する部分は略正方形であり、パターン配置の密度に大きな差が無ければ回転対称に近い。このため、焦点位置ずれ補正や結像倍率補正に加えて、特許文献1に記載されているように、レンズ全周を加熱するといった対称性の高い補正方法を用いることができる。
一方、ステップアンドスキャン方式を採用した、所謂スキャナと呼ばれる露光装置の場合、レチクル側の透光領域は長方形(典型的には、長辺と短辺の比が3より大きい)である。従って、少なくともレチクル近傍及びウエハ近傍のレンズでは光が照射される部分が略長方形となる。この領域で光の吸収と発熱が起こることを考えると、屈折率や面形状の変化も照射領域近傍で起こることになる。このため、ステッパにおいては大きくなかった非回転対称な成分、主には非点収差がスキャナの場合には発生する。この対応としては、例えば特許文献2のようにレンズ加熱を部分的に行えるようにする方法や特許文献3のように露光に用いる波長とは異なる波長の光によりレチクル側の画面を略回転対称になるようにする方法が考えられている。
露光収差を変化させる露光条件の内、特に重要なものは照明条件である。レチクル上にパターンが配置されておらず、光が完全に透過する場合を考えた場合、照明条件として与える有効光源は、投影光学系の瞳近傍で結像する。レチクル上にパターンが配置されている場合でもレチクルによって回折される光の内、通常最も寄与が大きい0次回折光のみを考えれば同様である。
一方、解像力向上に有効な手段として、斜入射照明法(変形照明とも呼ばれる)が知られている。これは投影光学系の回転対称な軸である光軸から外れた位置に光源を配置するものであり、その形状としては輪帯、四重極、二重極等が挙げられる。投影光学系の瞳付近のレンズでは有効光源が結像し、光を吸収・発熱するので、特に二重極等の場合は光がレンズに照射される領域が限定されることで、非点収差発生の原因となる。この課題に対しても、必要なレンズを部分的に加熱して温度分布を略回転対称にした上で、残存の収差を補正するという方法が特許文献2、特許文献5に開示されている。また、斜入射照明時に使用されない位置に露光波長とは異なる波長を持つ光源を配置する方法が特許文献4に記載示されている。
特開平5−347239号公報 特開平8−8178号公報 特開平10−50585号公報 特開平10−64790号公報 特開2005−311020号公報
現在、最先端の半導体素子製造にはスキャナが用いられており、解像度向上のため、四重極照明や二重極照明が標準的に使用されるようになっている。このため、レチクル及びウエハ近傍のレンズ、投影光学系の瞳近傍のレンズの双方の影響により、非回転対称な露光収差が現れるようになってきており、両者を同時に補正する必要が生じている。加えて、線幅制御はより高い精度で求められるようになっており、従来よりも高次の収差成分(例えばZernike級数で言うと、17項以上)も補正・低減することが求められている。この要求に対して、レチクル及びウエハ近傍のレンズ、投影光学系瞳近傍のレンズの双方を同時に補正するには、個々のレンズに対して補正機構を搭載し、独立に制御するという方法が考えられる。
前述した特許文献3や特許文献5はこの考え方に基づいていると言える。しかし、複数のレンズに補正機構を搭載する必要があること、半導体露光装置の投影光学系のようにレンズが近接して配置されている状態ではレンズの周辺部のみに補正のための温度上昇を付加することができること、等の制約がある。また、後者のように斜入射で導光する必要があると、反射光や透過光が補正したいレンズ以外のレンズあるいはレンズ保持部、鏡筒に照射されることで、露光収差の別の要因になる可能性もある。これらを踏まえ、簡易な構成を用いて投影光学系全体で露光収差補正を行う必要がある。
本発明は、上記課題に鑑みてなされ、その目的は、複雑な変形照明により発生する高次の熱収差とスリット状物体により発生する非対称な熱収差を同時に補正する簡易な露光技術を実現することである。
上記課題を解決するため、本発明の露光装置は、露光光で基板を露光する露光装置であって、原版のパターン像を前記基板に投影する投影光学系と、前記露光光で前記原版を照明する第1の照明手段と、前記基板の露光には寄与しない光を前記投影光学系に導入する第2の照明手段と、を有し、前記第2の照明手段は、前記第1の照明手段が形成する照明分布と合わせて、前記投影光学系の瞳近傍の光学素子および前記投影光学系の前記原版近傍の光学素子において、回転対称な照明分布を形成する。
また、本発明の露光装置は、露光光で基板を露光する露光装置であって、原版のパターンを前記基板に投影する投影光学系と、前記露光光で前記原版を照明する第1の照明手段と、前記基板の露光には寄与しない光を前記投影光学系に導入する第2の照明手段と、前記第2の照明手段の光を前記基板に到達する前に逆行させる光路変更手段と、を備える。
また、本発明のデバイス製造方法は、上記露光装置を用いて基板を露光するステップと、露光された前記基板を現像するステップと、を有する。
本発明によれば、変形照明を用いた場合の露光時の熱の吸収による非対称な収差の発生を簡易な構成で低減することができる。これにより、高精度な線幅制御性を有する投影光学系を実現可能となる。
以下に、添付図面を参照して本発明を実施するための最良の形態について詳細に説明する。
尚、以下に説明する実施の形態は、本発明を実現するための一例であり、本発明が適用される装置の構成や各種条件によって適宜修正又は変更されるべきものであり、本発明は以下の実施の形態に限定されるものではない。
また、本発明は、後述する実施形態の機能を実現するソフトウェアのプログラムコードを記憶した記憶媒体を露光装置に供給し、そのコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても達成される。
[第1の実施形態]
図1は、本発明に係る第1の実施形態の投影露光装置を示す図である。
図1において、1はレチクルを照明するための露光光2を供給する露光光源である。露光光2は不図示の照明光学系による所望の照明特性でレチクル3を照明する。この照明光学系は公知のいかなる技術を用いても良く、例えば計算機ホログラム(CGH:Computer Generated Hologram)等により、複雑な変形照明が用いられていても良い。レチクル3を照明した光は回折して投影光学系4に入射し、最終的にはウエハ(基板)6上に結像することになる。
本実施形態では、第1の照明手段としての露光光源1に加えて、第2の照明手段としての非露光光源7と空間変調器8を備えているのが特徴である。非露光光源7から射出した露光には寄与しない非露光光5は空間変調器8を経て、露光光2とは異なった光路で投影光学系4に入射するように設定されている。図1では露光光2の光路を遮らないように折り曲げミラー9を介して投影光学系4に導入されている。
非露光光5は投影光学系4を経てウエハ6に到達しうる。ウエハ6上には不図示の露光光2の波長に感光するレジストが塗布されており、非露光光5の波長が露光光2の近傍であると非露光光5によっても感光して、所望のパターン像が得られないことが起こりうる。これを回避するためには、非露光光5の波長をレジストが感光しない波長に設定する方法がある。また、後述するように、非露光光5が露光光2と異なる光路で投影光学系4内を通過することを利用して、非露光光5をウエハ6に到達する前に遮光する方法等もある。
図2は空間変調器8の主たる機能を説明する図である。
図2において、10は、図1の投影光学系4の瞳近傍に配置された光学素子10を抜き出して、上方又は下方から見たものである。露光光源1(第1の照明手段)は不図示の照明光学系によって露光に必要な所望の照明特性を露光光2に与えてレチクル(原版)3を照明する。露光光2はレチクル3で回折した後、投影光学系4に入射し、投影光学系4を構成する光学素子の1つである瞳近傍光学素子10に達する。このときの瞳近傍光学素子10上の露光光2の照明分布12を図2(a)に例示している。この照明分布12は、照明光学系によって形成されるレチクル3への入射特性とレチクル3上に描画されたパターンの回折特性によって決まる。照明分布12は計算によっても得ることができるが、ここでは照明光学系によって形成される有効光源分布と略一致すると考えて良い。
図2(a)のような照明分布12が瞳近傍光学素子10上に形成されたとき、瞳近傍光学素子10に使われている硝材は極めて高い透過率を露光光2の波長に対して持っているものの、僅かながら吸収はするため発熱する。また、光学素子10に塗布されている反射防止膜(不図示)による吸収とそれによる発熱も無視できない。光学素子が発熱すると、膨張による面形状の変形や屈折率の温度依存性による屈折率変化が生じるため、収差となって投影光学系4の結像性能を劣化させる。
照明分布12の光を吸収して発熱し、どのような面変形や温度上昇を瞳近傍光学素子10内に引き起こすかは構造解析や熱解析のシミュレーションによって精度良く検出できる。但し、熱収差に影響の大きい温度上昇について、熱の拡散によって若干の分布の変化はあるものの、図3(a)中に温度上昇部30として示したように元の照明分布12に概略一致していると考えて良い。従って、照明分布12は瞳近傍光学素子10上に略同等の屈折率分布を引き起こすため、発生する熱収差も4回の回転対称性を持った収差となる。このような依存性を持った収差を通常の方法で補正することは困難である。
図2(b)は瞳近傍光学素子10の照明分布12に非露光光照明分布15を重畳させた状態を示している。例えば非露光光の波長を露光光と同一とした場合、非露光光照明分布15と照明分布12を合わせて略輪帯形状になるように構成することにより、照明光の吸収による発熱とそれに伴う温度分布は図3(b)に示すように略回転対称となる。従って、熱収差も略回転対称な収差となるため、通常の球面収差補正手段によって多くは補正することができる。非露光光の波長が露光光と異なる場合、膜及び硝材による吸収が異なるが、波長が決まればこれらの量は高精度に決定することができるので、非露光光照明分布15の照度やエネルギーを注意深く制御することで発熱や温度分布を略回転対称にできる。
図2(c)では、図2(b)に比べて、非露光光照明分布15を瞳近傍光学素子10の中心付近にも与えることで輪帯形状ではなく、素子全体を略一様に照明している状態となっている。図2(b)の輪帯形状の場合、高次の球面収差が発生し、通常の球面収差補正手段では補正が難しいこともあり得るが、素子全体を一様にして、図3(c)のように温度上昇部32を略素子全体で一様に分布するようにすれば補正を容易にすることができる。
非露光光照明分布15は、空間変調器8を制御することで任意に形成することができる。例えば非露光光の波長を露光光と同一とした場合、空間変調器8を投影光学系4の瞳近傍に所望の照明分布15を形成する計算機ホログラムとし、レチクル3と等価な位置に配置すればよい。この計算機ホログラムは、露光光を制御する照明光学系に用いられるものと同様の設計方法、製法、硝材を利用できる。
図2(b)と図2(c)等、予め複数の非露光光照明分布15に対応できるように複数の計算機ホログラムを設けたターレットを用意してもよい。また、非露光光源7は通常の光源のように、強度を連続的及び複数レベルに可変であることが望ましい。これは露光開始から定常状態に達するまでの温度分布の時間的変化、所謂非定常収差を補正することが、多品種少量生産という現状の投影露光装置の使用方法において非常に重要な事項であるためである。
現在主流であるArF光(波長193nm)では実用的な空間変調器は限られるが、非露光光の波長が露光光と異なる場合、様々な手段が空間変調器8の代わりに利用できる。その例として、計算機ホログラムに加えて、液晶パネル、デジタルマイクロミラーデバイス(DMD)等、非露光光照明分布15を可変とする手段を用いることができる。非露光光照明分布15を可変にできることは、露光光の照明特性の変更、レチクル3の変更、露光開始から定常状態に達する間の温度分布の時間的変化、等に追従するための手段として重要である。
また、空間変調器8の役割は、角度方向にスキャンする手段で代替することもできる。図4は空間変調器8をスキャンミラー49で置き換えた変形例を示している。
図4において、非露光光源7からの非露光光5が略平行光であるとして、スキャンミラー49をある角度に固定したとすると、非露光光5は瞳近傍光学素子10上で略一点に達する。スキャンミラー49の角度を変えると、瞳近傍光学素子10上での非露光光5の到達点は変化するので、ミラーをスキャンすることで瞳近傍光学素子10上を走査することができる。従って、スキャン速度を十分に高速にし、非露光光源7をスイッチングすることで、実質的に瞳近傍光学素子10上に照度分布を与えることができる。この方式は、非露光光源の波長に関わらず利用できることも特徴に挙げられる。
本実施形態では、第2の照明手段による非露光光の導入はレチクル3の直下からなされるため、瞳近傍光学素子10を照明するには投影光学系4の略全体を非露光光が通過することになる。この対策としては、投影光学系4の瞳近傍に第2の照明手段を配置するか、特に照明分布を制御したい光学素子に対して非露光光を効率的に吸収する膜又は硝材を適用する等の方法がある。現状の投影光学系では硝材の制約は大きいこと等を考えると、膜による対応が好ましい。
[第2の実施形態]
図5は、本発明に係る第2の実施形態の投影露光装置を示す図である。
第2の実施形態は、第1の実施形態と異なり、第2の照明手段として、非露光光源57a、空間変調器58a、折り曲げミラー59aからなる照明手段Aと非露光光源57b、空間変調器58b、折り曲げミラー59bからなる照明手段Bが設けられている。
照明手段A、照明手段Bは第1の実施形態で説明した全ての特徴を1つ乃至複数備えても良く、瞳近傍光学素子60に対する機能は等価である。但し、照明手段Aと照明手段Bで瞳近傍光学素子60上に同じ照明分布を形成する必要はなく、それぞれが形成する照明分布と露光光62による照明分布の重ね合わせが回転対称になるように形成されれば十分である。
本実施形態によれば、瞳近傍光学素子60に加えてレチクル近傍(原版近傍)光学素子61に対しても同時に非対称な照明分布による熱収差を抑えることができる。照明手段Aと照明手段Bを使用しないとき、投影露光装置は所謂スキャナであると想定しているので、レチクル近傍光学素子61上の露光光52による照明分布は図6(a)に示すように、円形のレンズに長方形になると考えておく。
照明領域62は照明の際の角度広がりのため実際には明瞭な長方形ではないが、レチクル53における露光光52における照明分布と略同じ形状となる。レチクル近傍光学素子61上に回転対称に近い照明分布を形成するには、図6(b)のように非露光光に照明分布65a,65bを与えればよい。ここでは模式的に矩形で書いたが、この形状は矩形に限るものではなく、レンズ形状に沿った形にすることもできる。空間変調器58a,58bはそれぞれ折り曲げミラー59a,59bを介しているが、実質的にはレチクル53と等価な位置に配置されている。従って、非露光光源57aと不図示の照明光学系を使って空間変調器58aを照明分布65aと略同じ形状で照明すればよい。空間変調器58bと照明分布65bも同じ関係である。
ここまでは、照明手段A,Bの2つで説明してきたが、非露光光の照明手段は2つに限る必要はなく、多数の手段で照明分布を形成してもよい。更に、非露光光の波長は、該レンズ硝材と膜による吸収が同等であれば、露光光の波長と同一であっても異なっていても良く、また複数の手段で混在させてもよい。特に、反射屈折型投影光学系の場合に見られるようなレンズ中心を外した長方形の照明領域(図6(c))やEUV投影露光装置に代表される円弧の照明領域(図6(d))の場合、複数の照明手段を用いると有効である(図6(e))。
本実施形態は、レチクル近傍の光学素子のみではなく、それと略共役な位置になるウエハ近傍の光学素子に関しても照明分布を回転対称に近づけるのに有効である。しかし、反射屈折系や反射系の投影光学系の場合、設計時に考慮されたレチクル上照明範囲以外の部分は、けられによってウエハ近傍の光学素子まで到達しないこともありうる。この場合、照明手段をレチクルの直下ではなく、別の位置に配置して対応してもよい。ウエハ側から光を入射させることができればよいが、一般的には投影露光装置の場合ウエハと最終のレンズの距離は極めて短く、照明手段を配置するのは困難である。従って、光路の途中に露光光の光路を遮らないように照明手段を配置するのが望ましい。例えば、投影光学系が複数のミラーを有する反射屈折系である場合には、複数のミラーのうちレチクルからの光を最後に反射するミラーの後の光路中に照明手段を配置するのが望ましい。
本実施形態と同等の機能を実現する別の例として、図7に示したように非露光光源77は単独で配置し、光路分離光学系78で光路を2つ以上に分割して投影光学系74に導入する方法がある。79aと79bは折り曲げミラーと空間変調器を兼ねたものであり、反射型空間変調器又は通常の空間変調器に折り曲げミラーを組み合わせたものでもよい。
[第3の実施形態]
第2の実施形態では、複数の照明手段により照明することでレチクル近傍及びウエハ近傍の光学素子上の照明分布を回転対称に近づけた。これに対して、第3の実施形態では、1つの照明手段でも投影光学系中で光を逆行させることで同等の効果が得られるようにしたものである。また、本実施形態は非露光光として露光光と同じ波長を用いた場合でもウエハ上のレジスト感光させない役割も果たしている。
図8は、第3の実施形態の投影露光装置及び投影光学系の模式図である。
図8において、非露光光源87から射出され空間変調器88を経た非露光光85aは折り曲げミラー89aを介して投影光学系84に入射する。このとき、図10(a)に示すレチクル近傍光学素子101では、非露光光85aは照明分布105aを形成する。非露光光85aは投影光学系84中を更に進み、ウエハ近傍光学素子90に達するが、レチクル近傍光学素子101とウエハ近傍光学素子90は略共役の関係にあるので、照明分布は図10(b)となる。
ウエハ近傍光学素子90は光路変更手段を備えており、素子90に入射(順行)した非露光光85aを85bとして投影光学系84中を逆行させる。このとき、逆行する非露光光85bは露光光による照明分布92に対して95aの反対側の照明分布95bを形成するようになっている。これにより、ウエハ近傍光学素子90において全体としては略回転対称な照明分布を得ることができる。非露光光85bは投影光学系84を逆行し、レチクル近傍光学素子101上では照明分布105bを形成するので、101上も略回転対称な照明分布とできる。投影光学系84を抜けた光は迷光とならないよう処理する必要があるが、例えば折り曲げミラー89bで鏡筒から外し、吸収装置ABSで吸収させればよい。
図9は、本実施形態の非露光光を逆行させる光路変更手段の拡大図である。
図9において、光路変更手段91aは非露光光85aを反射させ、更に91bでも反射して逆行する非露光光85bを形成する。91a,91bの反射面は45°の平面となるのが最も容易であるが、曲面としてパワーを与えることで光路が正しく逆行するようにすることもできる。また、光路変更手段91a,91bはウエハ86に非露光光が達しないようにするための遮光手段を兼ねている。これは非露光光の波長が露光光の波長と同程度の場合、または非露光光の波長がレジストに対して感度を持つ場合に特に必要なものである。
光学素子90では非露光光を逆行させるため、非露光光の光路85cが内部に存在している。硝材の吸収が大きいと85cでの光の吸収による発熱が起こるが、これは90の内部略全体に亘っているので、温度分布を回転対称にするという目的には反していない。また前述の通り、硝材の吸収は小さくなる波長を用いた上で反射防止膜での吸収を効率的に起こすようにする手段や光路変更手段91a,91b上での反射時に吸収を起こすようにしても同様の効果が得られる。
レチクル近傍とウエハ近傍は共役であるが、反射屈折型投影光学系や反射型投影光学系の場合、85a又は85bにけられが生じることがある。このような場合、通常は光学系の途中で結像する中間結像位置がある場合が多いので、その近傍に光路変更手段を設ければよい。この場合、中間結像以後の光学素子への対応のため、1つ以上の照明手段と逆行光の吸収装置を設けるとよい。
なお、以上の実施形態において、投影光学系の光学素子がレンズの場合について説明したが、投影光学系のミラーに対して以上の実施形態の構成を適用してもよい。
[デバイス製造方法]
次に、本実施形態の露光装置を利用した半導体デバイスの製造プロセスについて説明する。
図11は半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップS1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(レチクル作製)では設計した回路パターンに基づいてレチクルを作製する。一方、ステップS3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップS4(ウエハプロセス)は前工程と呼ばれ、上記のレチクルとウエハを用いて、上述の露光装置によりリソグラフィ技術を利用してウエハ上に実際の回路を形成する。次のステップS5(組み立て)は後工程と呼ばれ、ステップS4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップS6(検査)ではステップS5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップS7でこれを出荷する。
上記ステップS4のウエハプロセスは以下のステップを有する。すなわち、ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップ、ウエハにイオンを打ち込むイオン打ち込みステップを有する。また、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によってレジスト処理ステップ後のウエハに潜像パターンを形成する露光ステップ、露光ステップで露光したウエハを現像する現像ステップを有する。更に、現像ステップで現像した潜像パターン以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを有する。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
第1の実施形態の投影露光装置を示す図である。 第1の実施形態による投影光学系の瞳近傍光学素子上の照明分布を示す図である。 第1の実施形態による投影光学系の瞳近傍光学素子上の温度分布を示す図である。 第1の実施形態の変形例を示す図である。 第2の実施形態の投影露光装置を示す図である。 第2の実施形態によるレチクル近傍光学素子上の照明分布を示す図である。 第2の実施形態の変形例を示す図である。 第3の実施形態の投影露光装置を示す図である。 第3の実施形態の非露光光を逆行させる光路変更手段の拡大図である。 光路変更手段によるレチクル近傍光学素子上(a)とウエハ近傍光学素子上(b)の照明分布を示す図である。 半導体デバイスの全体的な製造プロセスのフローを示す図である。
符号の説明
1,51,71,81 露光光源
2,52,72,82 露光光
3,53,73,83 レチクル
4,54,74,84 投影光学系
5,55a,55b,75a,75b,85a,85b,85c 非露光光
6,56,76,86 ウエハ
7,57a,57b,77,87 非露光光源
8,58a,58b,88 空間変調器
9,59a,59b,89a,89b 折り曲げミラー
10,60 瞳近傍光学素子
12,62,92,102 露光光照明分布
15,65a,65b,95a,95b,105a,105b 非露光光照明分布
30、31、32 温度上昇部
49 スキャンミラー
78 光路分離光学系
79a,79b 反射型空間変調器
91a,91b 光路変更手段(遮光手段)
A,B 第2の照明手段
ABS 吸収装置

Claims (8)

  1. 露光光で基板を露光する露光装置であって、
    原版のパターン像を前記基板に投影する投影光学系と、
    前記露光光で前記原版を照明する第1の照明手段と、
    前記基板の露光には寄与しない光を前記投影光学系に導入する第2の照明手段と、を有し、
    前記第2の照明手段は、前記第1の照明手段が形成する照明分布と合わせて、前記投影光学系の瞳近傍の光学素子および前記投影光学系の前記原版近傍の光学素子において、回転対称な照明分布を形成することを特徴とする露光装置。
  2. 前記第2の照明手段は、前記投影光学系の瞳近傍の光学素子における照明分布を可変とするように構成されていることを特徴とする請求項1に記載の露光装置。
  3. 前記第2の照明手段は、前記露光光と波長が異なる光を用いることを特徴とする請求項1又は2に記載の露光装置。
  4. 前記第2の照明手段は、前記投影光学系の前記原版近傍の光学素子における照明分布を可変とするように構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の露光装置。
  5. 複数の前記第2の照明手段を設け、
    前記第2の照明手段のそれぞれが形成する照明分布と、前記第1の照明手段が形成する照明分布とを合わせて回転対称な照明分布を形成することを特徴とする請求項1乃至4のいずれか1項に記載の露光装置。
  6. 露光光で基板を露光する露光装置であって、
    原版のパターンを前記基板に投影する投影光学系と、
    前記露光光で前記原版を照明する第1の照明手段と、
    前記基板の露光には寄与しない光を前記投影光学系に導入する第2の照明手段と、
    前記第2の照明手段の光を前記基板に到達する前に逆行させる光路変更手段と、を備えることを特徴とする露光装置。
  7. 前記第2の照明手段の光において前記基板に向けて順行する光による照明分布と前記光路変更手段により逆行せしめられた光による照明分布とを合わせた照明分布が、前記第1の照明手段の光の照明分布と合わせて回転対称な照明分布を形成することを特徴とする請求項6に記載の露光装置。
  8. 請求項1乃至7のいずれか1項に記載の露光装置を用いて基板を露光するステップと、
    露光された前記基板を現像するステップと、を有することを特徴とするデバイス製造方法。
JP2007169487A 2007-06-27 2007-06-27 露光装置及びデバイス製造方法 Withdrawn JP2009010131A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007169487A JP2009010131A (ja) 2007-06-27 2007-06-27 露光装置及びデバイス製造方法
US12/145,639 US8027025B2 (en) 2007-06-27 2008-06-25 Exposure apparatus and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169487A JP2009010131A (ja) 2007-06-27 2007-06-27 露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2009010131A true JP2009010131A (ja) 2009-01-15

Family

ID=40159990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169487A Withdrawn JP2009010131A (ja) 2007-06-27 2007-06-27 露光装置及びデバイス製造方法

Country Status (2)

Country Link
US (1) US8027025B2 (ja)
JP (1) JP2009010131A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074299A (ja) * 2011-09-27 2013-04-22 Carl Zeiss Smt Gmbh マイクロリソグラフィ投影露光装置
JP2014165460A (ja) * 2013-02-27 2014-09-08 Toshiba Corp 半導体製造装置および半導体装置の製造方法
JP2021067734A (ja) * 2019-10-18 2021-04-30 キヤノン株式会社 露光装置、露光方法及び物品の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232217A (ja) * 2009-03-25 2010-10-14 Canon Inc 露光システム、露光装置のテスト方法及びデバイス製造方法
DE102011088740A1 (de) * 2011-12-15 2013-01-17 Carl Zeiss Smt Gmbh Optisches System, sowie Verfahren zum Manipulieren des thermischen Zustandes eines optischen Elementes in einer mikrolithographischen Projektionsbelichtungsanlage
CN109426088B (zh) * 2017-08-25 2021-03-09 上海微电子装备(集团)股份有限公司 一种照明系统、曝光装置和曝光方法
DE102022209455A1 (de) 2022-09-09 2024-03-14 Carl Zeiss Smt Gmbh Heizanordnung, sowie optisches System und Verfahren zum Heizen eines optischen Elements

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144069B2 (ja) 1992-06-12 2001-03-07 キヤノン株式会社 投影露光装置及びそれを用いた半導体素子の製造方法
JP3326902B2 (ja) * 1993-09-10 2002-09-24 株式会社日立製作所 パターン検出方法及びパターン検出装置及びそれを用いた投影露光装置
JP3368091B2 (ja) 1994-04-22 2003-01-20 キヤノン株式会社 投影露光装置及びデバイスの製造方法
JP3790833B2 (ja) 1996-08-07 2006-06-28 株式会社ニコン 投影露光方法及び装置
JP3646757B2 (ja) 1996-08-22 2005-05-11 株式会社ニコン 投影露光方法及び装置
US7031553B2 (en) 2000-09-22 2006-04-18 Sri International Method and apparatus for recognizing text in an image sequence of scene imagery
KR20060120629A (ko) * 2003-08-28 2006-11-27 가부시키가이샤 니콘 노광방법 및 장치, 그리고 디바이스 제조방법
JP2005311020A (ja) 2004-04-21 2005-11-04 Nikon Corp 露光方法及びデバイス製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074299A (ja) * 2011-09-27 2013-04-22 Carl Zeiss Smt Gmbh マイクロリソグラフィ投影露光装置
JP2014165460A (ja) * 2013-02-27 2014-09-08 Toshiba Corp 半導体製造装置および半導体装置の製造方法
JP2021067734A (ja) * 2019-10-18 2021-04-30 キヤノン株式会社 露光装置、露光方法及び物品の製造方法
JP7378265B2 (ja) 2019-10-18 2023-11-13 キヤノン株式会社 露光装置、露光方法及び物品の製造方法

Also Published As

Publication number Publication date
US8027025B2 (en) 2011-09-27
US20090002667A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP6343344B2 (ja) マイクロリソグラフィ投影露光装置の照明系
KR100588182B1 (ko) 노광장치와 노광방법
JP4497968B2 (ja) 照明装置、露光装置及びデバイス製造方法
US20050280796A1 (en) Illumination optical system and method, and exposure apparatus
US7126757B2 (en) Illumination apparatus, exposure apparatus using the same, and device fabricating method
US6762823B2 (en) Illumination system and scanning exposure apparatus using the same
JP2007221114A (ja) リソグラフィ投影装置およびデバイス製造方法
JP2009010131A (ja) 露光装置及びデバイス製造方法
JP2007311782A (ja) 放射ビームをパターニングする方法、放射ビームをパターニングするパターニングデバイス
KR20040050859A (ko) 리소그래피를 위한 파라미터를 판정하는 방법,컴퓨터시스템 및 이를 위한 컴퓨터 프로그램, 디바이스제조방법 및 그에 따라 제조된 디바이스
JP2018519535A (ja) マイクロリソグラフィ投影装置を作動させる方法
US20080143987A1 (en) Exposure apparatus and device fabrication method
US20100233598A1 (en) Pattern correcting apparatus, mask-pattern forming method, and method of manufacturing semiconductor device
TW200809919A (en) Exposure apparatus
US6868223B2 (en) Illumination apparatus, exposure apparatus using the same and device fabrication method
US20060197933A1 (en) Exposure apparatus
JP4684563B2 (ja) 露光装置及び方法
US20090040497A1 (en) Exposure apparatus, adjusting method, exposure method, and device fabrication method
US20040218164A1 (en) Exposure apparatus
JP2016503186A (ja) マイクロリソグラフィ投影露光装置の光学系
US7292316B2 (en) Illumination optical system and exposure apparatus having the same
JP2007189079A (ja) 照明光学系、当該照明光学系を有する露光装置及びデバイス製造方法
JP5539140B2 (ja) 決定方法、露光方法、プログラム及びコンピュータ
KR100550715B1 (ko) 투영광학계
JP4950795B2 (ja) 露光装置、デバイス製造方法及び補正方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907