JP2009007950A - 気体圧力機関及びエアーコンプレッサ - Google Patents

気体圧力機関及びエアーコンプレッサ Download PDF

Info

Publication number
JP2009007950A
JP2009007950A JP2007167657A JP2007167657A JP2009007950A JP 2009007950 A JP2009007950 A JP 2009007950A JP 2007167657 A JP2007167657 A JP 2007167657A JP 2007167657 A JP2007167657 A JP 2007167657A JP 2009007950 A JP2009007950 A JP 2009007950A
Authority
JP
Japan
Prior art keywords
gas
path
engagement pin
piston rod
rotation center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167657A
Other languages
English (en)
Inventor
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP2007167657A priority Critical patent/JP2009007950A/ja
Publication of JP2009007950A publication Critical patent/JP2009007950A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】小型化が容易な気体圧力機関を提供する。
【解決手段】出力回転部材4と、その周囲に平行に配置されたシリンダ装置6A,6B,6Cとを備える。シリンダ装置は、シリンダ体61と、ピストン体62と、ピストンロッド63とを有し、シリンダ体61の内部にはピストン体62により区画される第1及び第2のキャビティ64,65が形成される。出力回転部材4の外周面には、出力回転部材の回転中心4aと直交する面に対して傾きを持った経路の環状カム溝43が形成されている。シリンダ体61は回転中心4aの方向に関し出力回転部材4に対して固定されている。ピストンロッド63に対し保持部材66を介して固定された係合ピン67はカム溝43と係合している。係合ピン67が係合するカム溝43の位置に応じて、シリンダ装置の第1及び第2のキャビティ64,65に対する気体の導入出を制御する手段を備える。
【選択図】図1

Description

本発明は、蒸気機関等の気体圧力機関及びエアーコンプレッサに関するものであり、特に往復運動と回転運動との間での駆動力変換を伴う気体圧力機関及びエアーコンプレッサに関するものである。
蒸気機関はシリンダ装置を用いている。このシリンダ装置は、シリンダ体と、該シリンダ体に対して往復移動可能に収容されたピストン体と、該ピストン体に接続されたピストンロッドとを有し、シリンダ体の内部にピストン体により区画される第1及び第2のキャビティが形成される。このシリンダ装置の第1及び第2のキャビティ内へと交互に高圧蒸気(高圧水蒸気)を導入することで、シリンダ体内部でピストン体を往復移動させ、これにより得られる往復動エネルギーをピストンロッドに接続されたクランク機構を介して、出力回転軸へと伝達し、これにより往復動運動から回転運動への駆動力変換を行っている。
このような蒸気機関で使用される高圧蒸気の代わりに圧縮された高圧空気等の高圧気体を用いて同等な機関を構成することができる。このような蒸気機関その他の機関を総称して気体圧力機関という。このような気体圧力機関については、たとえば特開平7−217402号公報(特許文献1)に記載がある。
特開平7−217402号公報
しかるに、以上のような従来の気体圧力機関では、出力回転軸の方向とシリンダ装置のピストンの往復運動の方向とが大略直交するので、装置の小型化が困難であった。
本発明は、以上のような技術的課題に鑑みて、小型化が容易な気体圧力機関を提供することを目的とするものである。
また、本発明は、そのような気体圧力機関と同等な主要部構成を持ち且つ駆動力伝達経路を逆転させたエアーコンプレッサを提供することを目的とするものである。
本発明によれば、以上の如き目的を達成するものとして、
出力回転軸を含み該出力回転軸の回転中心の周りで回転可能に支持された出力回転部材と、該出力回転部材の周囲に前記回転中心と平行な方向性をもって配置された複数のシリンダ装置とを備えており、
該シリンダ装置は、シリンダ体と、該シリンダ体に対して相対的に往復移動可能に収容されたピストン体と、該ピストン体に接続されたピストンロッドとを有しており、前記シリンダ体の内部には前記ピストン体により区画される第1及び第2のキャビティが形成され、
前記出力回転部材の外周面には、前記回転中心と直交する面に対して傾きを持った経路の環状カム溝が形成されており、
前記シリンダ装置の前記シリンダ体及びピストンロッドのうちの一方は前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記回転中心の方向に関して前記シリンダ体及びピストンロッドのうちの他方に対し係合ピンが固定されており、該係合ピンは前記カム溝と係合しており、
前記係合ピンが係合する前記カム溝の位置に応じて、当該係合ピンに係る前記シリンダ装置の第1及び第2のキャビティに対する気体の導入及び排出を制御する気体導入出制御手段を備えることを特徴とする気体圧力機関、
が提供される。
本発明の一態様においては、前記出力回転部材は支持基材により支持されており、前記回転中心の方向に関し前記出力回転部材に対して固定された前記シリンダ体又はピストンロッドは前記支持基材により支持されている。
本発明の一態様においては、前記シリンダ体が前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記係合ピンは保持部材を介して前記ピストンロッドに取り付けられており、前記気体導入出制御手段は、前記支持基材に形成され高圧気体源に接続された気体導入路と、前記支持基材に形成された気体排出路と、前記出力回転部材に形成され前記気体導入路と連通する導入気体流通路と、前記出力回転部材に形成され前記気体排出路と連通する排出気体流通路と、前記支持基材に形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記導入気体流通路及び排出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とを含んでなる。
本発明の一態様においては、前記ピストンロッドが前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記係合ピンは前記シリンダ体に取り付けられており、前記気体導入出制御手段は、前記支持基材に形成され高圧気体源に接続された気体導入路と、前記支持基材に形成された気体排出路と、前記出力回転部材に形成され前記気体導入路と連通する導入気体流通路と、前記出力回転部材に形成され前記気体排出路と連通する排出気体流通路と、前記支持基材及びピストンロッドを通って形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記導入気体流通路及び排出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とを含んでなる。
また、本発明によれば、以上の如き目的を達成するものとして、
入力回転軸を含み該入力回転軸の回転中心の周りで回転可能に支持された入力回転部材と、該入力回転部材の周囲に前記回転中心と平行な方向性をもって配置された複数のシリンダ装置とを備えており、
該シリンダ装置は、シリンダ体と、該シリンダ体に対して相対的に往復移動可能に収容されたピストン体と、該ピストン体に接続されたピストンロッドとを有しており、前記シリンダ体の内部には前記ピストン体により区画される第1及び第2のキャビティが形成され、
前記入力回転部材の外周面には、前記回転中心と直交する面に対して傾きを持った経路の環状カム溝が形成されており、
前記シリンダ装置の前記シリンダ体及びピストンロッドのうちの一方は前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記回転中心の方向に関して前記シリンダ体及びピストンロッドのうちの他方に対し係合ピンが固定されており、該係合ピンは前記カム溝と係合しており、
前記入力回転軸には回転駆動手段が接続されており、
前記係合ピンが係合する前記カム溝の位置に応じて、当該係合ピンに係る前記シリンダ装置の第1及び第2のキャビティにつき気体の吸入及び吐出がなされることを特徴とするエアーコンプレッサ、
が提供される。
本発明の一態様においては、前記入力回転部材は支持基材により支持されており、前記回転中心の方向に関し前記入力回転部材に対して固定された前記シリンダ体又はピストンロッドは前記支持基材により支持されている。
本発明の一態様においては、前記シリンダ体が前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記係合ピンは保持部材を介して前記ピストンロッドに取り付けられており、前記支持基材に形成された気体吸入路及び気体吐出路と、前記入力回転部材に形成され前記気体吸入路及び気体吐出路とそれぞれ連通する吸入気体流通路及び吐出気体流通路と、前記支持基材に形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記吸入気体流通路及び吐出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とが設けられている。
本発明の一態様においては、前記ピストンロッドが前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記係合ピンは前記シリンダ体に取り付けられており、前記支持基材に形成された気体吸入路及び気体吐出路と、前記入力回転部材に形成され前記気体吸入路及び気体吐出路とそれぞれ連通する吸入気体流通路及び吐出気体流通路と、前記支持基材及びピストンロッドを通って形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記吸入気体流通路及び吐出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とが設けられている。
本発明によれば、小型化が容易な気体圧力機関またはエアーコンプレッサが提供される。
以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は本発明による気体圧力機関の一実施形態を示す分解斜視図であり、図2は本実施形態の部分分解斜視図であり、図3は本実施形態の斜視図であり、図4は本実施形態の平面図であり、図5は本実施形態の縦断面図である。
本実施形態の気体圧力機関は、作動高圧気体として高圧蒸気(高圧水蒸気)を使用する蒸気機関である。高圧蒸気は、常法により作成され、不図示のタンクに貯留されている。
本実施形態は、支持基材2により出力回転部材4及び複数(図では3つ)のシリンダ装置6A,6B,6Cが支持されている。尚、図1では支持基材は示されていない。
出力回転部材4は、支持基材2に対して回転中心4aの周りで回転可能に支持された出力回転軸41及び該出力回転軸41より大径の円筒形状カム部42を含む。カム部42の外周面には、環状カム溝43が形成されている。環状カム溝43は、特に図5に示されているように、出力回転軸41の回転中心即ち出力回転部材4の回転中心4aと直交する面に対して傾きθを持った経路を有する。
特に図2〜図4に示されているように、シリンダ装置6A,6B,6Cは、出力回転部材4の周囲に均等に配置されており、即ち平面視で出力回転部材4の周方向に関して互いに120度の角度位置にて回転中心4aから等距離の位置に配置されている。シリンダ装置6A,6B,6Cは、出力回転部材4の回転中心4aと平行な方向性をもって配列されている。
シリンダ装置6Aは、シリンダ体61と、該シリンダ体に対して相対的に上下方向に往復移動可能に収容されたピストン体62と、該ピストン体に接続されたピストンロッド63とを有しており、シリンダ体61の内部にはピストン体62により区画される第1キャビティ(上側のキャビティ)64及び第2キャビティ(下側のキャビティ)65が形成されている。他のシリンダ装置6B,6Cも同様な構成を有する。シリンダ装置6A,6B,6Cは、ダブルアクションタイプであり、後述のように各キャビティ64,65に対して高圧蒸気導入及び蒸気排出行うための経路が接続される。
各シリンダ装置のシリンダ体61は、出力回転部材4の回転中心4aの方向に関し出力回転部材4に対して固定されている。一方、各シリンダ装置のピストンロッド63には、保持部材66を介して係合ピン67が取り付けられている。これにより、出力回転部材4の回転中心4aの方向に関して、係合ピン67はピストンロッド63に対して固定されている。該係合ピン67は、カム部42の環状カム溝43と係合している。係合ピン67は、カム溝43に対する相対移動の際の摩擦力を低減するために、突出方向の回動中心の周りで保持部材67に対して回動可能となるようにベアリングを介して保持されている。
ここで、係合ピン67が係合するカム溝43の位置に応じて、当該係合ピンが取り付けられたピストンロッド63に係るシリンダ装置6A,6B,6Cの第1及び第2のキャビティ64,65に対する高圧蒸気の導入及び蒸気の排出が制御される。このような蒸気導入出の制御のための手段として、次のような構造が採用されている。即ち、支持基材2に形成され不図示の高圧蒸気源に接続された高圧蒸気導入路81と、支持基材2に形成された蒸気排出路82と、出力回転部材4に形成され高圧蒸気導入路81と連通する導入高圧蒸気流通路83と、出力回転部材4に形成され蒸気排出路82と連通する排出蒸気流通路84と、支持基材2に形成され且つ係合ピン67が係合するカム溝43の位置に応じて導入高圧蒸気流通路83及び排出蒸気流通路84を各シリンダ装置の第1キャビティ64又は第2キャビティ65と選択的に連通させる連通経路85とを含んでなる蒸気導入出制御手段が採用されている。
次に、本実施形態の動作を、図6を参照しながら説明する。
図6には、係合ピン67が係合するカム溝43の位置が異なる2つのシリンダ装置の状態が示されている(右側の状態のシリンダ装置を符号6Aで示し、左側の状態のシリンダ装置を符号6A’で示す)。図6のA断面では、支持基材2に形成され高圧蒸気源に接続された高圧蒸気導入路81が、出力回転部材4に形成された導入高圧蒸気流通路83と連通している。図6のB断面では、支持基材2に形成された蒸気排出路82が、出力回転部材4に形成された排出蒸気流通路84と連通している。図6のC断面では、支持基材2に形成された連通経路85により、左側に位置するシリンダ装置6A’の上側の第1キャビティ64と導入高圧蒸気流通路83とが連通せしめられ、右側に位置するシリンダ装置6Aの上側の第1キャビティ64と排出蒸気流通路84とが連通せしめられている。図6のD断面では、支持基材2に形成された連通経路85により、右側に位置するシリンダ装置6Aの下側の第2キャビティ65と導入高圧蒸気流通路83とが連通せしめられ、左側に位置するシリンダ装置6A’の下側の第2キャビティ65と排出蒸気流通路84とが連通せしめられている。
かくして、右側に位置するシリンダ装置6Aのピストン体62及びピストンロッド63並びに保持部材66及び係合ピン67は上向きに移動し、左側に位置するシリンダ装置6A’のピストン体62及びピストンロッド63並びに保持部材66及び係合ピン67は下向きに移動し、係合ピン67とカム溝43との係合により出力回転部材4が回転中心4aの周りで矢印の向きに回転せしめられる。カム溝43の最下位置及びその近傍並びに最上位置及びその近傍に係合ピン67が係合する時には、上記C断面及びD断面での高圧蒸気流通路83と連通経路85との連通並びに排出蒸気流通路84と連通経路85との連通が断たれ、死点となる(図5参照)。その後、出力回転部材4の回転に伴い、各シリンダ装置の各キャビティに対する高圧蒸気の導入及び蒸気の排出が逆転し、以下同様にして出力回転部材4が回転せしめられる。3つのシリンダ装置6A,6B,6Cが回転中心4aの周りで角度120度ずれて配置されているので、シリンダ装置6A,6B,6Cについての死点が同時に重なって現れることはなく、ピストンロッド63の往復運動から出力回転部材4の回転運動への駆動力の変換は継続してなされる。
このような駆動力変換を良好に行うためには、上記カム溝43の角度θの値は45度以上であるのが好ましい。また、回転中心4aの方向の装置寸法を過度に大きくしないためには、上記カム溝の角度θの値は70度以下とするのが好ましい。尚、本実施形態では環状カム溝43が出力回転部材4の回転中心4aと直交する面に対して傾きθを持った平面上にある経路を有するものとされているが、本発明は必ずしもこれに限定されるものではなく、ピストンロッド63の往復運動と出力回転部材4の回転運動との関係に要求される特性に応じて環状カム溝43の経路を曲面上または平面と曲面との複合面上にあるものとしてもよい。たとえば、上記実施形態では、回転中心4aの周りで角度0度の位置から角度180度の位置まででカム溝43が最下位置から最上位置へと至り且つ角度180度の位置から角度360度(0度)の位置まででカム溝43が最上位置から最下位置へと至っており、これによりピストンロッド63が1往復する間に出力回転部材4が1回転するが、本発明においては、たとえば、回転中心4aの周りで角度0度の位置から角度90度の位置まででカム溝43が最下位置から最上位置へと至り且つ角度90度の位置から角度180度の位置まででカム溝43が最上位置から最下位置へと至り、角度180度の位置から角度270度の位置まででカム溝43が最下位置から最上位置へと至り且つ角度270度の位置から角度360度(0度)の位置まででカム溝43が最上位置から最下位置へと至るようにし、ピストンロッド63が2往復する間に出力回転部材4が1回転するようにしてもよい。
また、本発明において、環状カム溝の経路が回転中心4aと直交する面に対して持つ傾きは、経路の全体についてである必要はなく、経路の一部についてであってもよい。
また、以上の実施形態では、気体導入出制御手段として支持基材2及び出力回転部材4に形成された経路の組み合わせからなものを使用しており、これによれば高圧気体源との接続配管等の外部との接続経路を簡素化することができ、装置構成が一層簡単化される。しかし、本発明は、必ずしもこれに限定されるものではなく、各シリンダ装置6A,6B,6Cにつき個別に高圧気体源との接続配管等の外部との接続経路を設けておき、出力回転部材4の回転位相を別途検出し、これに基づき各シリンダ装置6A,6B,6Cの動作を気体導入出制御手段で制御するようなものでもよい。
以上のような本実施形態の気体圧力機関によれば、シリンダ装置のシリンダ体61に対するピストン体62及びピストンロッド63の相対的往復移動の方向と出力回転部材4の回転中心4aとが互いに平行であるので、小型化が容易である。
図7は本発明による気体圧力機関の他の実施形態を示す分解斜視図であり、図8は本実施形態の部分斜視図であり、図9は本実施形態の斜視図であり、図10は本実施形態の平面図であり、図11は本実施形態の縦断面図である。これらの図において、図1〜図6におけると同様な機能を有する部材または部分には同一の符号が付されている。
本実施形態では、各シリンダ装置のピストンロッド63は、出力回転部材4の回転中心4aの方向に関し出力回転部材4に対して固定されている。一方、各シリンダ装置のシリンダ体61には、係合ピン67が取り付けられている。該係合ピン67は、カム部42の環状カム溝43と係合している。また、シリンダ体61には、係合ピン67とは反対側となる位置に、同様なガイドピン68が取り付けられている。このガイドピン68は、支持基材2に設けられた上下方向のガイド溝21と係合しており、該ガイド溝21に沿って往復移動可能である。
ここで、係合ピン67が係合するカム溝43の位置に応じて、当該係合ピンが取り付けられたシリンダ体61に係るシリンダ装置6A,6B,6Cの第1及び第2のキャビティ64,65に対する高圧蒸気の導入及び蒸気の排出が制御される。このような蒸気導入出の制御のための手段として、上記図1〜図6の実施形態に関して説明したものと同様な構造が採用されている。但し、本実施形態では、係合ピン66が係合するカム溝43の位置に応じて導入高圧蒸気流通路83及び排出蒸気流通路84を各シリンダ装置の第1キャビティ64又は第2キャビティ65と選択的に連通させる連通経路85は、支持基材2及びピストンロッド63に形成されている。
次に、本実施形態の動作を、図12を参照しながら説明する。本実施形態は、上記図1〜図6の実施形態とは、出力回転部材4に対し回転中心4aの方向に相対的に往復移動する部材がピストン体62、ピストンロッド63及び保持部材66からシリンダ体61へと変更されている点が異なるが、係合ピン67とカム溝43との係合による駆動力伝達の本質は同等である。
図12には、係合ピン67が係合するカム溝43の位置が異なる2つのシリンダ装置6Aの状態が示されている(右側の状態のシリンダ装置を符号6Aで示し、左側の状態のシリンダ装置を符号6A’で示す)。
右側のシリンダ装置6Aのシリンダ体61、係合ピン67及びガイドピン68は上向きに移動し最上位置の僅かに下に位置しており、第1キャビティ64の体積は最大値に近く第2キャビティ65の体積は最小値に近い。一方、左側のシリンダ装置6A’のシリンダ体61、係合ピン67及びガイドピン68は下向きに移動し最下位置の僅かに上に位置しており、第1キャビティ64の体積は最小値に近く第2キャビティ65の体積は最大値に近い。
係合ピン67とカム溝43との係合により出力回転部材4が回転中心4aの周りで回転せしめられる。カム溝43の最下位置及びその近傍並びに最上位置及びその近傍に係合ピン67が係合する時(図12の状態の僅かに後)には、高圧蒸気流通路83と連通経路85との連通並びに排出蒸気流通路84と連通経路85との連通が断たれ、死点となる。その後、出力回転部材4の回転に伴い、各シリンダ装置の各キャビティに対する高圧蒸気の導入及び蒸気の排出が逆転し、以下同様にして出力回転部材4が回転せしめられる。3つのシリンダ装置6A,6B,6Cが回転中心4aの周りで角度120度ずれて配置されているので、シリンダ装置6A,6B,6Cについての死点が重なって現れることはなく、シリンダ体61の往復運動から出力回転部材4の回転運動への駆動力の変換は継続してなされる。
本実施形態の作用効果は、本質的には、上記図1〜図6に関し説明した実施形態のものと同等である。
以上、気体圧力機関の実施形態を説明したが、これらの実施形態の基本構造において入力側と出力側とを逆にしてエアーコンプレッサを構成することができる。
即ち、出力回転部材4を入力回転部材(4)として使用し、出力回転軸41を入力回転軸(41)として使用し、該入力回転軸(41)に回転駆動手段たとえば電動モータの出力軸を接続し、高圧蒸気導入路81を気体吸入路(81)として使用し、蒸気排出路82を気体吐出路(82)として使用し、導入高圧蒸気流通路83を吸入気体流通路(83)として使用し、排出蒸気流通路84を吐出気体流通路(84)として使用する。連通経路85は、係合ピン67が係合するカム溝43の位置に応じて吸入気体流通路(83)及び吐出気体流通路(84)をシリンダ装置4A,4B,4Cの第1キャビティ64又は第2キャビティ65と選択的に連通させる。
電動モータなどの回転駆動手段により入力回転軸(41)を駆動回転させることで入力回転部材(4)を回転中心4aの周りで回転させる。これに伴い、係合ピン67とカム部42の環状カム溝43との係合に基づき、各シリンダ装置4A,4B,4Cにおいてシリンダ体61に対するピストン体62及びピストンロッド63の相対的往復運動が生ぜしめられる。これにより、各シリンダ装置4A,4B,4Cにおいて第1及び第2のキャビティ64,65の体積が交互に増加及び減少し、これを繰り返す。ここで、コンプレッサ作用を実現するために、各シリンダ装置の体積縮小過程にある第1及び第2のキャビティ64,65のそれぞれについては、吐出気体流通路(84)と連通経路85との連通が体積縮小過程の最終段階においてのみ実現するように、入力回転部材(4)のカム部42の外周面における吐出気体流通路(84)の開口の形状及び配置並びに該開口に対応する支持基材2の内周面における連通経路85の開口の形状及び配置を設定しておく。
カム溝43の最下位置及びその近傍並びに最上位置及びその近傍に係合ピン67が係合する時には、吸入気体流通路(83)と連通経路85との連通並びに吐出気体流通路(84)と連通経路85との連通が断たれ、死点となる。その後、入力回転部材(4)の回転に伴い、各シリンダ装置の各キャビティに対する体積減少過程及び体積増加過程が逆転し、以下同様にして気体吐出路(82)からの圧縮気体の吐出がなされる。
以上のようなエアーコンプレッサにおける入力回転部材(4)から各シリンダ装置への駆動力変換を良好に行うためには、カム溝43の角度θの値は45度以下であるのが好ましい。また、十分な圧縮比を得るためには、上記カム溝の角度θの値は20度以上とするのが好ましい。
以上のような本実施形態のエアーコンプレッサによれば、シリンダ装置のシリンダ体61に対するピストン体62及びピストンロッド63の相対的往復移動の方向と入力回転部材(4)の回転中心4aとが互いに平行であるので、小型化が容易である。
本発明による気体圧力機関の一実施形態を示す分解斜視図である。 図1の実施形態の部分分解斜視図である。 図1の実施形態の斜視図である。 図1の実施形態の平面図である。 図1の実施形態の縦断面図である。 図1の実施形態の動作説明図である。 本発明による気体圧力機関の他の実施形態を示す分解斜視図である。 図7の実施形態の部分斜視図である。 図7の実施形態の斜視図である。 図7の実施形態の平面図である。 図7の実施形態の縦断面図である。 図7の実施形態の動作説明図である。
符号の説明
2 支持基材
21 ガイド溝
4 出力回転部材
4a 回転中心
41 出力回転軸
42 カム部
43 環状カム溝
6A,6B,6C シリンダ装置
61 シリンダ体
62 ピストン体
63 ピストンロッド
64 第1のキャビティ
65 第2のキャビティ
66 保持部材
67 係合ピン
68 ガイドピン
81 高圧蒸気導入路
82 蒸気排出路
83 導入高圧蒸気流通路
84 排出蒸気流通路
85 連通経路

Claims (8)

  1. 出力回転軸を含み該出力回転軸の回転中心の周りで回転可能に支持された出力回転部材と、該出力回転部材の周囲に前記回転中心と平行な方向性をもって配置された複数のシリンダ装置とを備えており、
    該シリンダ装置は、シリンダ体と、該シリンダ体に対して相対的に往復移動可能に収容されたピストン体と、該ピストン体に接続されたピストンロッドとを有しており、前記シリンダ体の内部には前記ピストン体により区画される第1及び第2のキャビティが形成され、
    前記出力回転部材の外周面には、前記回転中心と直交する面に対して傾きを持った経路の環状カム溝が形成されており、
    前記シリンダ装置の前記シリンダ体及びピストンロッドのうちの一方は前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記回転中心の方向に関して前記シリンダ体及びピストンロッドのうちの他方に対し係合ピンが固定されており、該係合ピンは前記カム溝と係合しており、
    前記係合ピンが係合する前記カム溝の位置に応じて、当該係合ピンに係る前記シリンダ装置の第1及び第2のキャビティに対する気体の導入及び排出を制御する気体導入出制御手段を備えることを特徴とする気体圧力機関。
  2. 前記出力回転部材は支持基材により支持されており、前記回転中心の方向に関し前記出力回転部材に対して固定された前記シリンダ体又はピストンロッドは前記支持基材により支持されていることを特徴とする、請求項1に記載の気体圧力機関。
  3. 前記シリンダ体が前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記係合ピンは保持部材を介して前記ピストンロッドに取り付けられており、
    前記気体導入出制御手段は、前記支持基材に形成され高圧気体源に接続された気体導入路と、前記支持基材に形成された気体排出路と、前記出力回転部材に形成され前記気体導入路と連通する導入気体流通路と、前記出力回転部材に形成され前記気体排出路と連通する排出気体流通路と、前記支持基材に形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記導入気体流通路及び排出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とを含んでなることを特徴とする、請求項2に記載の気体圧力機関。
  4. 前記ピストンロッドが前記回転中心の方向に関し前記出力回転部材に対して固定されており、前記係合ピンは前記シリンダ体に取り付けられており、
    前記気体導入出制御手段は、前記支持基材に形成され高圧気体源に接続された気体導入路と、前記支持基材に形成された気体排出路と、前記出力回転部材に形成され前記気体導入路と連通する導入気体流通路と、前記出力回転部材に形成され前記気体排出路と連通する排出気体流通路と、前記支持基材及びピストンロッドを通って形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記導入気体流通路及び排出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とを含んでなることを特徴とする、請求項2に記載の気体圧力機関。
  5. 入力回転軸を含み該入力回転軸の回転中心の周りで回転可能に支持された入力回転部材と、該入力回転部材の周囲に前記回転中心と平行な方向性をもって配置された複数のシリンダ装置とを備えており、
    該シリンダ装置は、シリンダ体と、該シリンダ体に対して相対的に往復移動可能に収容されたピストン体と、該ピストン体に接続されたピストンロッドとを有しており、前記シリンダ体の内部には前記ピストン体により区画される第1及び第2のキャビティが形成され、
    前記入力回転部材の外周面には、前記回転中心と直交する面に対して傾きを持った経路の環状カム溝が形成されており、
    前記シリンダ装置の前記シリンダ体及びピストンロッドのうちの一方は前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記回転中心の方向に関して前記シリンダ体及びピストンロッドのうちの他方に対し係合ピンが固定されており、該係合ピンは前記カム溝と係合しており、
    前記入力回転軸には回転駆動手段が接続されており、
    前記係合ピンが係合する前記カム溝の位置に応じて、当該係合ピンに係る前記シリンダ装置の第1及び第2のキャビティにつき気体の吸入及び吐出がなされることを特徴とするエアーコンプレッサ。
  6. 前記入力回転部材は支持基材により支持されており、前記回転中心の方向に関し前記入力回転部材に対して固定された前記シリンダ体又はピストンロッドは前記支持基材により支持されていることを特徴とする、請求項5に記載のエアーコンプレッサ。
  7. 前記シリンダ体が前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記係合ピンは保持部材を介して前記ピストンロッドに取り付けられており、
    前記支持基材に形成された気体吸入路及び気体吐出路と、前記入力回転部材に形成され前記気体吸入路及び気体吐出路とそれぞれ連通する吸入気体流通路及び吐出気体流通路と、前記支持基材に形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記吸入気体流通路及び吐出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とが設けられていることを特徴とする、請求項6に記載のエアーコンプレッサ。
  8. 前記ピストンロッドが前記回転中心の方向に関し前記入力回転部材に対して固定されており、前記係合ピンは前記シリンダ体に取り付けられており、
    前記支持基材に形成された気体吸入路及び気体吐出路と、前記入力回転部材に形成され前記気体吸入路及び気体吐出路とそれぞれ連通する吸入気体流通路及び吐出気体流通路と、前記支持基材及びピストンロッドを通って形成され且つ前記係合ピンが係合する前記カム溝の位置に応じて前記吸入気体流通路及び吐出気体流通路を前記シリンダ装置の第1キャビティ又は第2キャビティと選択的に連通させる連通経路とが設けられていることを特徴とする、請求項6に記載のエアーコンプレッサ。
JP2007167657A 2007-06-26 2007-06-26 気体圧力機関及びエアーコンプレッサ Pending JP2009007950A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167657A JP2009007950A (ja) 2007-06-26 2007-06-26 気体圧力機関及びエアーコンプレッサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167657A JP2009007950A (ja) 2007-06-26 2007-06-26 気体圧力機関及びエアーコンプレッサ

Publications (1)

Publication Number Publication Date
JP2009007950A true JP2009007950A (ja) 2009-01-15

Family

ID=40323291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167657A Pending JP2009007950A (ja) 2007-06-26 2007-06-26 気体圧力機関及びエアーコンプレッサ

Country Status (1)

Country Link
JP (1) JP2009007950A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509954A (ja) * 2011-10-19 2014-04-24 ジーニアス アイピー リミテッド 回転運動と直線運動との間での変換、および切断装置
JP2017137868A (ja) * 2013-06-04 2017-08-10 ジーニアス ベロ リミテッドGenius Velo Limited 流体圧または気圧駆動システム、ならびに、そのためのモータおよびポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509954A (ja) * 2011-10-19 2014-04-24 ジーニアス アイピー リミテッド 回転運動と直線運動との間での変換、および切断装置
JP2017137868A (ja) * 2013-06-04 2017-08-10 ジーニアス ベロ リミテッドGenius Velo Limited 流体圧または気圧駆動システム、ならびに、そのためのモータおよびポンプ

Similar Documents

Publication Publication Date Title
JP2002531744A (ja) 往復回転式ピストンシステム及びこれを利用した圧力ポンプと内燃機関
JP2007009834A (ja) ストローク可変往復動シリンダ装置
JP2008281034A (ja) 揺動形ゲートバルブ
JP2009007950A (ja) 気体圧力機関及びエアーコンプレッサ
JP2016050526A (ja) 空気圧縮機
US6840151B1 (en) Motor
JP6562296B2 (ja) ピストンの往復運動機構、ポンプ、コンプレッサー、及び真空ポンプ
JP2006132534A (ja) ロータリ流体原動機
JP5010742B2 (ja) ピストン機械
JPH074487A (ja) クランク駆動機構
KR101830913B1 (ko) 회전속도 및 에너지효율이 개선된 피스톤타입 에어모터
JP6376634B1 (ja) 揺動直線運動機構を備えた駆動装置
CN100344871C (zh) 活塞式气体压缩装置以及活塞式气压驱动旋转装置
JP2014126001A (ja) コンプレッサ装置
JP2006283612A (ja) ラジアルピストンポンプ
JP2014095334A (ja) 流体吸排ポンプ機構及びこれを用いたエアコンプレッサ
JP4691031B2 (ja) ピストンポンプ及び該ピストンポンプの使用法
JP2008151152A (ja) レシプロ機関の直線・回転運動相互間の変換方法
US10968822B2 (en) Linear piston engine for operating external linear load
JP2005256793A (ja) 真空ポンプ
KR20080010950A (ko) 운동을 변환하는 기구 및 이를 포함하는 내연 기관
JP2008031908A (ja) 往復動ピストン機関における消音構造
JP5482764B2 (ja) 流体機械
JP6409392B2 (ja) 空気圧縮機
KR20070080183A (ko) 회전왕복피스톤 및 이를 이용한 펌프