JP2009007233A - Porous ceramic body and its production method - Google Patents

Porous ceramic body and its production method Download PDF

Info

Publication number
JP2009007233A
JP2009007233A JP2007172753A JP2007172753A JP2009007233A JP 2009007233 A JP2009007233 A JP 2009007233A JP 2007172753 A JP2007172753 A JP 2007172753A JP 2007172753 A JP2007172753 A JP 2007172753A JP 2009007233 A JP2009007233 A JP 2009007233A
Authority
JP
Japan
Prior art keywords
ash
glass
materials
ceramic body
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007172753A
Other languages
Japanese (ja)
Inventor
Tetsuaki Nishida
哲明 西田
Takashi Miura
隆史 三浦
Masaaki Yasuhara
正晃 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2007172753A priority Critical patent/JP2009007233A/en
Publication of JP2009007233A publication Critical patent/JP2009007233A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous ceramic body prepared by using bottom ash as a part of a raw material, having no risk of toxic heavy metal leaching, and used for e.g., water-permeating and water-holding materials, filter materials, microbe-supporting water purifying materials, sound-absorbing materials, fireproof heat-insulation materials, or planting materials and to produce its production method. <P>SOLUTION: The porous ceramic body comprises a fired or sintered compact of, by wt.%, 1-70% fly ash, 4-60% glass, and 1-80% bottom ash. The method for producing the porous ceramic body comprises pulverizing a raw material comprising, by wt.%, 1-70% fly ash, 4-60% glass or waste glass, and 1-80% bottom ash into particles, mixing the pulverized raw material, firing the resultant mixture for 1-120 min in a temperature region of 600-1,100°C under the exclusion of air, and cooling the fired product under the exclusion of air. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭火力発電所等から排出されるボトムアッシュ(クリンカアッシュ)、フライアッシュ、および廃ガラスを原料とするセラミック多孔質体及びその製造方法に関する。   The present invention relates to a ceramic porous body made from bottom ash (clinker ash), fly ash, and waste glass discharged from a coal-fired power plant or the like, and a method for producing the same.

世界の石油需給の長期的展望から、電力供給において石炭火力発電が重視されてきており、今後その比率が増大することは必至である。これに対応して石炭灰の発生量も年間1080万トン(2002年、財団法人 石炭エネルギーセンター)であり、発生石炭灰のうち973万トン/年はセメント製造分野、土木分野、建築分野(軽量ボード等として)などで有効利用されているが、残る107万トン/年は埋立て処分されている。   From the long-term perspective of oil supply and demand in the world, coal-fired power generation has been emphasized in power supply, and the ratio will inevitably increase in the future. Correspondingly, the amount of coal ash generated is 10.8 million tons per year (2002, Coal Energy Center). Of the generated coal ash, 9.73 million tons / year is cement manufacturing, civil engineering, and construction (lightweight) The remaining 1.70 million tons / year is disposed of in landfills.

石炭火力発電所等で燃焼される石炭からの石炭灰の約90%がフライアッシュであり、10%がボトムアッシュ(クリンカアッシュ)である。フライアッシュは集塵装置で捕集された微粒状石炭灰であり、ボトムアッシュはボイラ底部で回収される塊状石炭灰でクリンカアッシュともいう。   About 90% of coal ash from coal burned at a coal-fired power plant or the like is fly ash, and 10% is bottom ash (clinker ash). Fly ash is fine coal ash collected by a dust collector, and bottom ash is massive coal ash collected at the bottom of the boiler and is also called clinker ash.

処で、ボトムアッシュ(クリンカアッシュ)は砒素、カドミウム、鉛といった有害重金属類を含んでおり、ボトムアッシュ(クリンカアッシュ)を埋立て処分するときは溶出の危険性がある処から、管理型処分(有害重金属が地下水等に溶出流入することがないよう、遮断施設を施して埋立て処分する)対象となっており、その処分には高いコストを伴っている。これは、表6および表7に示すように、ボトムアッシュからの溶出量がフライアッシュのそれよりもはるかに多いことに起因している。ボトムアッシュ(クリンカアッシュ)の低コスト無害化さらには資源化のための技術が強く望まれている処である。   However, bottom ash (clinker ash) contains hazardous heavy metals such as arsenic, cadmium, and lead. When landfilling bottom ash (clinker ash), there is a risk of elution, and management-type disposal ( In order to prevent harmful heavy metals from flowing into groundwater, etc., they are subject to landfill disposal with a shutoff facility, and the disposal involves high costs. As shown in Tables 6 and 7, this is because the amount of elution from the bottom ash is much larger than that of fly ash. The technology for making bottom ash (clinker ash) low-cost harmless and resource-recycling is strongly desired.

Figure 2009007233
Figure 2009007233

Figure 2009007233
Figure 2009007233

一方、廃ガラス(板ガラスを除く)は年間260万トン放出され、そのうちの165万トン/年は再利用されている。残りの95万トン/年が廃棄物として埋立て処分されている。廃ガラスの廃棄量は今後も増加の傾向にあり、その有効利用のための技術が望まれている。   On the other hand, waste glass (excluding plate glass) is released 2.6 million tons per year, of which 16.5 million tons / year is reused. The remaining 950,000 tons / year is landfilled as waste. The amount of waste glass discarded will continue to increase, and a technology for its effective use is desired.

他方、ボトムアッシュ(クリンカアッシュ)を骨材とし、その表面の少なくとも一部に被覆した、10μm〜100μmの通孔をもつ、ソーダ石灰ガラスと水硬性セメントからなる多孔質結晶化ガラスを介してクリンカアッシュを部分的に結合せしめるとともに、このクリンカアッシュの粒子間に100μm〜500μmの孔隙を有するセラミック焼結体が既知である(特許文献1参照)。そして、この先行技術にあっては、フライアッシュを20重量%以下の範囲で添加する態様もある。
特開平11−139886号公報
On the other hand, a clinker is formed through a porous crystallized glass made of soda-lime glass and hydraulic cement having bottom ash (clinker ash) as an aggregate and covering at least a part of its surface and having 10 to 100 μm through holes. A ceramic sintered body in which ash is partially bonded and pores of 100 μm to 500 μm are provided between the clinker ash particles is known (see Patent Document 1). And in this prior art, there also exists an aspect which adds fly ash in 20 weight% or less.
Japanese Patent Laid-Open No. 11-139886

前記特許文献1は、ボトムアッシュ(クリンカアッシュ)が含んでいる砒素、カドミウム、鉛といった有害重金属類溶出の問題を解決するという課題およびそれを解決するための技術的手段について教示する処がない。また、この先行技術にあって必須の多孔質結晶化ガラスは、ソーダ石灰ガラスと水硬性セメントからなる。而して、多孔質結晶化ガラスを製造するための別途のプロセスを必要とする。
本発明は、従来、専ら管理型埋立て処分対象とされてきたボトムアッシュ(クリンカアッシュ)を出発原料の一部として、有害重金属類溶出の危険性のない、透水・保水性材料、濾過材料、微生物を担持する水浄化材料、吸音材料、耐火断熱材料、植栽用材料等として用いられるセラミック多孔質体及びその製造方法を提供することを目的とする。
Patent Document 1 cannot teach the problem of solving the problem of elution of harmful heavy metals such as arsenic, cadmium, and lead contained in bottom ash (clinker ash) and technical means for solving the problem. The essential porous crystallized glass in this prior art is composed of soda-lime glass and hydraulic cement. Thus, a separate process for producing porous crystallized glass is required.
The present invention uses a bottom ash (clinker ash), which has heretofore been exclusively managed landfill disposal, as a part of the starting material, a water-permeable / water-retaining material, a filtering material, which has no risk of elution of harmful heavy metals, An object of the present invention is to provide a ceramic porous body used as a water purification material, a sound absorbing material, a fireproof heat insulating material, a planting material and the like carrying microorganisms, and a method for producing the same.

上記課題を解決するための請求項1に記載の発明は、重量で、フライアッシュ:1%〜70%、ガラス:4%〜60%、ボトムアッシュ:1%〜80%の焼成体又は焼結体からなるセラミック多孔質体である。   The invention according to claim 1 for solving the above-mentioned problems is a sintered body or sintered body of fly ash: 1% to 70%, glass: 4% to 60%, bottom ash: 1% to 80% by weight. It is a ceramic porous body consisting of a body.

請求項2に記載の発明は、重量で、フライアッシュ:1%〜70%、ガラス又は廃ガラス:4%〜60%、ボトムアッシュ:1%〜80%の原料を粒粉体とし、これら原料を混合して空気遮断状態下に、600℃〜1100℃の温度域で1分間〜120分間の焼成を行った後、空気遮断状態下に冷却するようにしたセラミック多孔質体の製造方法である。   The invention according to claim 2 is a raw material of fly ash: 1% to 70%, glass or waste glass: 4% to 60%, and bottom ash: 1% to 80% by weight. Is a method for producing a porous ceramic body that is cooled in an air-blocked state after firing for 1 minute to 120 minutes in a temperature range of 600 ° C. to 1100 ° C. in an air-blocked state. .

本発明によれば、配合原料中の廃ガラスがバインダとして機能するから別途バインダを加える必要はなく、強度に優れたセラミック多孔質体を得ることができる。また、ボムアッシュ(クリンカアッシュ)中に含まれるAs、Pb、Cdといった有害重金属類はガラス骨格内に閉じ込められ(ガラス固化され)、セラミック多孔質体からの溶出が殆どなくなる。   According to the present invention, since the waste glass in the blended raw material functions as a binder, it is not necessary to add a separate binder, and a ceramic porous body having excellent strength can be obtained. In addition, harmful heavy metals such as As, Pb, and Cd contained in bomb ash (clinker ash) are confined in the glass skeleton (glass solidified), and almost no elution from the ceramic porous body occurs.

また、フライアッシュに含まれている炭素、硫黄といった気体発生元素の燃焼によって溶融ガラス中で多数の独立気泡→連続気孔(細孔)が形成され、比表面積のきわめて大きな吸水性に優れたセラミック多孔質体を得ることができる。このセラミック多孔質体は、その細孔中に微生物を棲まわせ、水質を浄化する要素として利用することができるほか、透水・保水性材料、濾過材料、吸音材料、耐火断熱材料、植栽用材料等として用いることができる。   In addition, the combustion of gas-generating elements such as carbon and sulfur contained in fly ash results in the formation of many closed cells → continuous pores (pores) in the molten glass. A mass can be obtained. This ceramic porous body can be used as an element to purify microorganisms in the pores and purify the water quality, as well as water permeable and water retaining materials, filtration materials, sound absorbing materials, fireproof and heat insulating materials, planting materials Etc. can be used.

本発明のセラミック多孔質体は、フライアッシュ、廃ガラス、ボトムアッシュ(クリンカアッシュ)を出発原料とし、これら原料を特定の比率で配合し微粉砕、混合を行った後、空気遮断状態下に600℃〜1100℃の温度域で1分間以上、好ましくは10分間〜120分間の焼成を行うことによって得られる。
これら出発原料の化学的組成の一例を、表1乃至表3に示す。
The ceramic porous body of the present invention uses fly ash, waste glass, and bottom ash (clinker ash) as starting materials, and these materials are blended at a specific ratio, pulverized and mixed, and then in an air-blocked state, 600 It can be obtained by baking for 1 minute or more, preferably 10 minutes to 120 minutes in a temperature range of 1 ° C to 1100 ° C.
Examples of chemical compositions of these starting materials are shown in Tables 1 to 3.

Figure 2009007233
Figure 2009007233

Figure 2009007233
Figure 2009007233

Figure 2009007233
Figure 2009007233

また、石炭灰中に含まれる重金属の一例を、表4に示す。   Table 4 shows an example of heavy metals contained in coal ash.

Figure 2009007233
Figure 2009007233

出発原料の配合比率は、重量で、フライアッシュ:1%〜70%、廃ガラス:4%〜60%、ボトムアッシュ(クリンカアッシュ):1%〜80%である。
フライッシュは通常、重量で、数%の炭素や硫黄を含んでおり、焼成過程でこれらが燃焼、ガス化し溶融したガラス中で独立気泡→連続気孔(細孔)を形成し、最終的に無数の連続気孔(細孔)を形作る。而して、フライアッシュは少なくとも1%は必要であり、これに満たない配合比率では炭素、硫黄の燃焼、ガス化による連続気孔(細孔)の形成が不十分となる。一方、70%を超えるフライアッシュの配合は廃ガラスおよびボトムアッシュの配合比率を過少ならしめ、わけてもバインダとして機能する廃ガラスの量を過少ならしめて焼結を不十分なものとし、得られるセラミック多孔質体の強度不足を招く。
The blending ratio of the starting materials is, by weight, fly ash: 1% to 70%, waste glass: 4% to 60%, and bottom ash (clinker ash): 1% to 80%.
A flysh usually contains several percent of carbon and sulfur by weight, and these are burned, gasified and melted during the firing process to form closed cells → open pores, and finally countless Form continuous pores. Thus, at least 1% of fly ash is necessary. If the blending ratio is less than this, the formation of continuous pores (pores) due to carbon and sulfur combustion and gasification becomes insufficient. On the other hand, if fly ash content exceeds 70%, the mixing ratio of waste glass and bottom ash is made too small, especially if the amount of waste glass that functions as a binder is made too small to make sintering insufficient, and the resulting ceramic porous Insufficient strength of the material.

廃ガラスはバインダとして機能しその配合比率を増していくと、焼結性を良好ならしめて得られるセラミック多孔質体の強度を高める。而して、その配合比率が4%に満たないと、焼結を不十分なものとし、得られるセラミック多孔質体の強度不足を招く。一方、60%を超える配合比率では、フライアッシュおよびボトムアッシュ(クリンカアッシュ)の配合比率が過少となり、連続気孔(細孔)の形成が不十分となる。   Waste glass functions as a binder and increases the blending ratio thereof, thereby increasing the strength of the ceramic porous body obtained by improving the sinterability. Thus, if the blending ratio is less than 4%, the sintering is insufficient and the resulting ceramic porous body is insufficient in strength. On the other hand, when the blending ratio exceeds 60%, the blending ratio of fly ash and bottom ash (clinker ash) becomes too small, and the formation of continuous pores (pores) becomes insufficient.

フライアッシュ、廃ガラス、およびボトムアッシュ(クリンカアッシュ)の配合比率は、好ましくは、フライアッシュ:10%〜60%、廃ガラス:15%〜50%、ボトムアッシュ(クリンカアッシュ):10%〜70%である。   The blending ratio of fly ash, waste glass, and bottom ash (clinker ash) is preferably fly ash: 10% to 60%, waste glass: 15% to 50%, bottom ash (clinker ash): 10% to 70 %.

上記配合比率の出発原料を、好ましくは100μm以下の粒粉体とし、これらを混合して空気遮断状態下に600℃〜1100℃の温度域で1分間以上、好ましくは10分間〜120分間加熱して焼結させ、空気遮断状態下に自然冷却して数μm〜数mm直径の連続気孔(細孔)を有するセラミック多孔質体を得る。   The starting material having the above blending ratio is preferably granular powder of 100 μm or less, mixed and heated in a temperature range of 600 ° C. to 1100 ° C. for 1 minute or more, preferably 10 minutes to 120 minutes in an air-blocked state. The ceramic porous body having continuous pores (pores) having a diameter of several μm to several mm is obtained by natural cooling in an air-blocked state.

出発原料を100μm以下に粉砕し、この原料混合物に水を添加して混練したものを型に注入して成型物を得、自然乾燥した後、空気遮断状態下に600℃〜1100℃の温度域で1分間以上、好ましくは10分間〜120分間の焼成を行って、空気遮断状態下に自然冷却して数μm〜数mm直径の連続気孔(細孔)を有する所望形状のセラミック多孔質体を得ることもできる。   The starting material is pulverized to 100 μm or less, and the mixture obtained by adding water to the raw material mixture is poured into a mold to obtain a molded product, which is naturally dried, and then in a temperature range of 600 ° C. to 1100 ° C. in an air-blocked state. The ceramic porous body having a desired shape having continuous pores (pores) of several μm to several mm in diameter after being baked for 1 minute or longer, preferably 10 minutes to 120 minutes, and naturally cooled in an air-blocked state. It can also be obtained.

焼成過程における加熱温度が600℃未満では配合原料中の廃ガラスは溶融せず、フライアッシュ中の炭素や硫黄が燃焼してガス化しても細孔を形成することなく拡散してしまう。一方、1100℃を超える高温になると、ガラスはほぼ完全に溶けてしまい、気体もすべて追い出してしまう。而して、好ましくは、650℃〜1050℃の温度域で溶融したガラス中で炭素や硫黄が燃焼して発生したガスによって、独立気泡→連続気孔(細孔)を形成させてセラミック多孔質体とするのがよい。   When the heating temperature in the firing process is less than 600 ° C., the waste glass in the blended raw material does not melt and diffuses without forming pores even if carbon and sulfur in the fly ash burn and gasify. On the other hand, when the temperature exceeds 1100 ° C., the glass is almost completely melted, and all the gas is expelled. Thus, the ceramic porous body is preferably formed by forming closed cells → continuous pores (pores) with a gas generated by burning carbon or sulfur in a glass melted at a temperature range of 650 ° C. to 1050 ° C. It is good to do.

加熱時間が1分間未満では焼結体を得ることができない。好ましくは、少なくとも10分間である。また、120分間を超える加熱時間は、加熱コストの上昇を招く。   If the heating time is less than 1 minute, a sintered body cannot be obtained. Preferably, it is at least 10 minutes. Moreover, the heating time exceeding 120 minutes causes an increase in heating cost.

重量で、フライアッシュ:廃ガラス:ボトムアッシュ(クリンカアッシュ)=1:1:1の配合比率で出発原料とし、これらを100μm以下に微粉砕して混合した後、900℃×60分間、1000℃×60分間のプロセス条件で空気遮断状態下に坩堝内で電気ヒータによって加熱・焼成を行った。その後、空気遮断状態下に坩堝内で常温まで自然冷却して数μm〜数mm直径の連続気孔(細孔)有するセラミック多孔質体とした。   By weight, fly ash: waste glass: bottom ash (clinker ash) = 1: 1: 1 as a starting material, these were pulverized to 100 μm or less and mixed, then 900 ° C. × 60 minutes, 1000 ° C. X Heating and firing were carried out with an electric heater in a crucible in an air shut-off state under process conditions of 60 minutes. Then, it was naturally cooled to room temperature in a crucible in an air-blocked state to obtain a ceramic porous body having continuous pores (pores) having a diameter of several μm to several mm.

得られたセラミック多孔質体を用いて浸漬濾床法によって水質浄化試験を行った。その結果を、図1(COD値)に示す。また、BOD値の経時変化を図2に示す。図1および図2から明らかなように、当初(0日目)に、COD:400mg/L程度、BOD:800mg/L程度の値を示していたものが、3日目には、COD:30mg/L程度、BOD:30mg/L程度にまで急激に低下している。その後緩やかに値が下降し、15日目には、COD:10mg/L程度、BOD:7mg/Lにまで浄化された。   A water purification test was conducted by the soaking filter bed method using the obtained ceramic porous body. The result is shown in FIG. 1 (COD value). Moreover, the time-dependent change of a BOD value is shown in FIG. As apparent from FIG. 1 and FIG. 2, COD: about 400 mg / L and BOD: about 800 mg / L at the beginning (day 0) showed COD: 30 mg on the third day. / L and BOD: about 30 mg / L. Thereafter, the value gradually decreased, and on the 15th day, COD was purified to about 10 mg / L and BOD was purified to 7 mg / L.

重量で、フライアッシュ:廃ガラス:ボトムアッシュ(クリンカアッシュ)=5:2:1の配合比率で出発原料とし、これらを100μm以下に微粉砕して混合した後、900℃×60分間、1000℃×60分間のプロセス条件で空気遮断状態下に坩堝内で電気ヒータによって加熱・焼成を行った。その後、空気遮断状態下に坩堝内で常温まで自然冷却して数μm〜数mm直径の連続気孔(細孔)有するセラミック多孔質体とした。   By weight, fly ash: waste glass: bottom ash (clinker ash) = 5: 2: 1 as a starting material, pulverized to 100 μm or less and mixed, then 900 ° C. × 60 minutes, 1000 ° C. X Heating and firing were carried out with an electric heater in a crucible in an air shut-off state under process conditions of 60 minutes. Then, it was naturally cooled to room temperature in a crucible in an air-blocked state to obtain a ceramic porous body having continuous pores (pores) having a diameter of several μm to several mm.

得られたセラミック多孔質体を用いて浸漬濾床法によって水質浄化試験を行った。その結果を、図1(COD値)に実施例1のものと併せて示す。また、BOD値の経時変化を図2に実施例1のものと併せて示す。図1および図2から明らかなように、当初(0日目)に、COD:400mg/L程度、BOD:800mg/L程度の値を示していたものが、3日目には、COD:120mg/L程度、BOD:180mg/L程度にまで低下している。その後緩やかに値が下降し、15日目には、COD:10mg/L以下、BOD:2mg/Lにまで浄化された。   A water purification test was conducted by the soaking filter bed method using the obtained ceramic porous body. The results are shown in FIG. 1 (COD value) together with that of Example 1. Moreover, the time-dependent change of a BOD value is combined with the thing of Example 1 in FIG. As apparent from FIG. 1 and FIG. 2, COD: about 400 mg / L and BOD: about 800 mg / L at the beginning (day 0) showed COD: 120 mg on the third day. / L, BOD: about 180 mg / L. Thereafter, the value gradually decreased, and on the 15th day, COD was purified to 10 mg / L or less and BOD was purified to 2 mg / L.

実施例1および実施例2によって得られたセラミック多孔質体の溶出液の分析を下記手順によって行った。
1)プラスチック容器にセラミック多孔質体および超純水(セラミック多孔質体の重量の10倍量)を入れ、振盪恒温槽(30℃)に6時間装入した。
2)その後、セラミック多孔質体を取り出し、溶出液を吸引濾過した。
3)濾液を1リットル採取し、財団法人九州環境管理協会にて分析を行ってもらった。その結果を、表5に示す。
The eluate of the ceramic porous body obtained in Example 1 and Example 2 was analyzed according to the following procedure.
1) A ceramic porous body and ultrapure water (10 times the weight of the ceramic porous body) were placed in a plastic container, and charged in a shaking thermostat (30 ° C.) for 6 hours.
2) Thereafter, the ceramic porous body was taken out, and the eluate was suction filtered.
3) One liter of the filtrate was collected and analyzed by the Kyushu Environmental Management Association. The results are shown in Table 5.

Figure 2009007233
Figure 2009007233

表5から明らかなように、本発明のセラミック多孔質体は有害重金属の溶出量は排出基準値を大きく下回っており、環境基準値と同等或いはそれ以下ときわめて低い値となっている。よって微生物を棲まわせて水の浄化を行う安全な浄化要素等として利用することができる。   As is apparent from Table 5, in the ceramic porous body of the present invention, the leaching amount of harmful heavy metals is far below the emission standard value, which is a very low value equal to or less than the environmental standard value. Therefore, it can be used as a safe purification element that purifies water by sprinkling microorganisms.

本発明実施例に係るセラミック多孔質体を用いての浸漬濾床法による水質浄化試験(COD)の結果を示すグラフThe graph which shows the result of the water purification test (COD) by the immersion filter bed method using the ceramic porous body which concerns on this invention Example 本発明実施例に係るセラミック多孔質体を用いての浸漬濾床法による水質浄化試験(BOD)の結果を示すグラフThe graph which shows the result of the water purification test (BOD) by the immersion filter bed method using the ceramic porous body which concerns on an Example of this invention

Claims (2)

重量で、フライアッシュ:1%〜70%、ガラス:4%〜60%、ボトムアッシュ:1%〜80%の焼成体又は焼結体からなるセラミック多孔質体。   A ceramic porous body comprising a fired body or a sintered body of fly ash: 1% to 70%, glass: 4% to 60%, and bottom ash: 1% to 80% by weight. 重量で、フライアッシュ:1%〜70%、ガラス又はガラスカレット:4%〜60%、ボトムアッシュ:1%〜80%の原料を粒粉体とし、これら原料を混合して空気遮断状態下に、600℃〜1100℃の温度域で1分間〜120分間の焼成を行った後、空気遮断状態下に冷却するようにしたことを特徴とするセラミック多孔質体の製造方法。   By weight, fly ash: 1% -70%, glass or glass cullet: 4% -60%, bottom ash: 1% -80% A method for producing a ceramic porous body, characterized in that after firing in a temperature range of 600 ° C. to 1100 ° C. for 1 minute to 120 minutes, cooling is performed in an air-blocked state.
JP2007172753A 2007-06-29 2007-06-29 Porous ceramic body and its production method Pending JP2009007233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172753A JP2009007233A (en) 2007-06-29 2007-06-29 Porous ceramic body and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172753A JP2009007233A (en) 2007-06-29 2007-06-29 Porous ceramic body and its production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012014687A Division JP2012131702A (en) 2012-01-27 2012-01-27 Method of manufacturing ceramic porous body

Publications (1)

Publication Number Publication Date
JP2009007233A true JP2009007233A (en) 2009-01-15

Family

ID=40322694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172753A Pending JP2009007233A (en) 2007-06-29 2007-06-29 Porous ceramic body and its production method

Country Status (1)

Country Link
JP (1) JP2009007233A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070399A1 (en) * 2009-12-07 2011-06-16 Universidade De Aveiro Ceramics produced from solid waste incineration bottom ash
CN102838281A (en) * 2012-09-28 2012-12-26 刘立强 Method for preparing foam glass from fly ash and waste glass
KR101372517B1 (en) 2013-07-29 2014-03-07 한국세라믹기술원 Fire resistant curtain wall light weight board
CN104446626A (en) * 2014-11-28 2015-03-25 中国科学技术大学先进技术研究院 Preparation method of fly ash based porous thermal insulation material with low thermal conductivity
CN105948785A (en) * 2016-05-06 2016-09-21 陈昌 Porous ceramic composite thermal insulation material and preparation method thereof
JP2018524259A (en) * 2015-06-15 2018-08-30 ツァーク テヒノロジー ゲーエムベーハー Lightweight fine ceramic fine particles
JP2020044458A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash
JP2020044459A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107879A (en) * 1993-10-12 1995-04-25 Hashimoto Kogyo:Kk Production of porous burnt stone and multipurpose block using this porous burnt stone
JPH11139886A (en) * 1997-11-06 1999-05-25 Tetra:Kk Coarse particle sintered compact and its production
JP2001328859A (en) * 2000-05-18 2001-11-27 Tadashi Fukiya Indoor ceramic construction material having respirability
JP2002112759A (en) * 2000-10-03 2002-04-16 Shimaya:Kk Method for producing fermented food, ceramic for maturing fermented food and method for producing the same
JP2005058044A (en) * 2003-08-08 2005-03-10 Tetra Co Ltd Method for producing vegetation greening base material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107879A (en) * 1993-10-12 1995-04-25 Hashimoto Kogyo:Kk Production of porous burnt stone and multipurpose block using this porous burnt stone
JPH11139886A (en) * 1997-11-06 1999-05-25 Tetra:Kk Coarse particle sintered compact and its production
JP2001328859A (en) * 2000-05-18 2001-11-27 Tadashi Fukiya Indoor ceramic construction material having respirability
JP2002112759A (en) * 2000-10-03 2002-04-16 Shimaya:Kk Method for producing fermented food, ceramic for maturing fermented food and method for producing the same
JP2005058044A (en) * 2003-08-08 2005-03-10 Tetra Co Ltd Method for producing vegetation greening base material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070399A1 (en) * 2009-12-07 2011-06-16 Universidade De Aveiro Ceramics produced from solid waste incineration bottom ash
CN102838281A (en) * 2012-09-28 2012-12-26 刘立强 Method for preparing foam glass from fly ash and waste glass
KR101372517B1 (en) 2013-07-29 2014-03-07 한국세라믹기술원 Fire resistant curtain wall light weight board
CN104446626A (en) * 2014-11-28 2015-03-25 中国科学技术大学先进技术研究院 Preparation method of fly ash based porous thermal insulation material with low thermal conductivity
JP2018524259A (en) * 2015-06-15 2018-08-30 ツァーク テヒノロジー ゲーエムベーハー Lightweight fine ceramic fine particles
CN105948785A (en) * 2016-05-06 2016-09-21 陈昌 Porous ceramic composite thermal insulation material and preparation method thereof
JP2020044458A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash
JP2020044459A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash
JP7055944B2 (en) 2018-09-14 2022-04-19 株式会社神戸製鋼所 Detoxification method of coal ash
JP7055943B2 (en) 2018-09-14 2022-04-19 株式会社神戸製鋼所 Detoxification method of coal ash

Similar Documents

Publication Publication Date Title
JP2009007233A (en) Porous ceramic body and its production method
JP5658270B2 (en) Manufacturing method of lightweight construction materials using sludge waste
Liu et al. Effect of the ratio of components on the characteristics of lightweight aggregate made from sewage sludge and river sediment
WO2006074946A3 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
JP2012131702A (en) Method of manufacturing ceramic porous body
CN101580378B (en) Architectural pottery prepared by secondary waste flyash or bottom ash and method thereof
Yu et al. Structure evolution, properties and synthesis mechanism of ultra-lightweight eco-friendly ceramics prepared from kaolin clay and sewage sludge
Lu et al. The different properties of lightweight aggregates with the fly ashes of fluidized-bed and mechanical incinerators
Eliche-Quesada et al. Olive stone ash as secondary raw material for fired clay bricks
KR101066193B1 (en) Carbonized lightweight aggregate be made from organic sludge
JP2005320188A (en) Inorganic foamed, fired body and its production method
Yue et al. Preparation and bloating mechanism of porous ultra-lightweight ceramsite by dehydrated sewage sludge and Yellow River sediments
Abdulkarim et al. Thermal plasma treatment of municipal solid waste incineration residue: A review
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
JP2007269515A (en) Porous fire resistant heat insulating board and method of manufacturing the same
EP3140055B1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
Chiang et al. Novel lightweight building bricks manufactured from water treatment plant sludge and agricultural waste
CN106500106B (en) A method of detoxified using sintering technology leached-out chromium residue
TWI382005B (en) Building and construction materials and a method of manufacturing the same
JP2008127249A (en) Machinable ceramic using waste slag as essential raw material
KR20090067855A (en) Method for manufacturing artificial aggregate having lightweight and optimized blackcore formation
JP5959832B2 (en) Porous ceramic using volcanic ash as raw material and method for producing the same
JP7372215B2 (en) Composition for fired body and method for producing fired body using the same
Yue et al. Properties and effect of forming sewage sludge into lightweight ceramics
JP3431416B2 (en) Porous surface amorphous porous ceramics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120420