JP2009006388A - Continuous casting method of steel - Google Patents
Continuous casting method of steel Download PDFInfo
- Publication number
- JP2009006388A JP2009006388A JP2007172419A JP2007172419A JP2009006388A JP 2009006388 A JP2009006388 A JP 2009006388A JP 2007172419 A JP2007172419 A JP 2007172419A JP 2007172419 A JP2007172419 A JP 2007172419A JP 2009006388 A JP2009006388 A JP 2009006388A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- steel
- continuous casting
- water vapor
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、鋼の連続鋳造方法に関するものであり、特にAl含有量が0.015質量%未満のSiキルド鋼の連続鋳造方法に関するものである。 The present invention relates to a continuous casting method of steel, and more particularly to a continuous casting method of Si killed steel having an Al content of less than 0.015% by mass.
鋼の連続鋳造において、鋳型内に連続鋳造用パウダーが添加される。連続鋳造用パウダーは鋳型内の溶鋼表面において溶融し、鋳型壁と凝固シェルとの間に潤滑膜を形成する。連続鋳造用パウダーはスラブおよび大断面ブルームにおいてはほとんどすべて採用されている。このパウダーは、鋳型内溶鋼表面の酸化防止、鋳型と鋳片の間の潤滑、浮上した介在物の捕捉、鋳型内溶鋼表面の保温といった役割を果たす。パウダーはその溶融速度、粘性、融点、アルミナ吸収能などの多くの管理要因があり、鋼種、鋳造速度、鋳片断面形状などによって最適パウダーは異なるため、その選択が極めて重要である。従来の連続鋳造用パウダーにおいては、塩基度(CaO/SiO2)が0.6〜1.1の範囲のものが使用されていた。 In continuous casting of steel, powder for continuous casting is added into the mold. The powder for continuous casting melts on the surface of the molten steel in the mold and forms a lubricating film between the mold wall and the solidified shell. Continuous casting powders are almost all used in slabs and large section blooms. This powder plays a role of preventing oxidation of the molten steel surface in the mold, lubrication between the mold and the slab, capturing the floating inclusions, and keeping the temperature of the molten steel surface in the mold. The powder has many management factors such as its melting rate, viscosity, melting point, and alumina absorption capacity, and the optimum powder differs depending on the steel type, casting speed, slab cross-sectional shape, etc., so the selection is extremely important. Conventional powders for continuous casting have used basicity (CaO / SiO 2 ) in the range of 0.6 to 1.1.
高速鋳造時あるいは中炭素鋼を鋳造する際には、鋳片表面に縦割れが発生しやすい。この縦割れの発生を防止するため、特許文献1においては、パウダーフィルムの伝熱抵抗を大きくして凝固殻を緩冷却するとき、凝固殻の厚みはより均一化され、鋳片表面が割れにくくなるとしている。そのためにパウダーの塩基度を増大し、結晶の析出量を増大させてパウダーフィルムの伝熱抵抗を大きくする主旨の発明が記載されている。しかしパウダー組成の塩基度を増大させると、凝固殻の緩冷却化が実現する一方、パウダーフィルムの流入性が低下し、鋳型と凝固殻の隙間への流入が不均一となり、特に高速鋳造の場合に拘束性ブレークアウトが発生しやすくなるという問題がある。そのため、中炭素鋼の連続鋳造のように鋳片の縦割れが問題とならない限り、連続鋳造用パウダーの塩基度としては1.3以下程度の値が採用されている。 When high-speed casting or medium carbon steel is cast, vertical cracks are likely to occur on the surface of the slab. In order to prevent the occurrence of this vertical crack, in Patent Document 1, when the heat transfer resistance of the powder film is increased to slowly cool the solidified shell, the thickness of the solidified shell is made more uniform and the surface of the slab is not easily cracked. It is going to be. For this purpose, an invention is described in which the basicity of the powder is increased and the amount of crystals deposited is increased to increase the heat transfer resistance of the powder film. However, when the basicity of the powder composition is increased, slow cooling of the solidified shell is realized, but the flowability of the powder film decreases, and the flow into the gap between the mold and the solidified shell becomes uneven, especially in the case of high-speed casting. However, there is a problem that constraining breakout is likely to occur. Therefore, unless the vertical crack of the slab becomes a problem as in the case of continuous casting of medium carbon steel, a value of about 1.3 or less is adopted as the basicity of the powder for continuous casting.
特許文献2においては、溶融したモールドパウダーが凝固する際に鋳型近傍の雰囲気中に水蒸気が存在すると、モールドパウダー中に結晶核生成の起点が増えて結晶が析出しやすくなるとし、鋳型近傍における雰囲気中の水蒸気分圧を0.05〜0.7atmに高めて連続鋳造を行う方法が記載されている。 In Patent Document 2, when water vapor is present in the atmosphere near the mold when the melted mold powder solidifies, the starting point of crystal nucleation increases in the mold powder and crystals are likely to precipitate. A method is described in which continuous water vapor partial pressure is increased to 0.05 to 0.7 atm.
連続鋳造で製造される鋼は通常はキルド鋼であり、主にAlを0.015質量%以上添加することによって脱酸が行われる。これに対し、Al含有量が0.015質量%未満であり、Si含有量を0.05質量%以上としてSi脱酸を用いた鋼を連続鋳造することがある。これはAl含有量を低減することでオーステナイト結晶粒径を大きくして、高温での粒界破壊を予防することが主な目的である。以下このような鋼をSiキルド鋼ということもある。 Steel produced by continuous casting is usually killed steel, and deoxidation is mainly performed by adding 0.015% by mass or more of Al. On the other hand, the steel may be continuously cast using Si deoxidation with an Al content of less than 0.015 mass% and an Si content of 0.05 mass% or more. The main purpose of this is to increase the austenite crystal grain size by reducing the Al content and prevent intergranular fracture at high temperatures. Hereinafter, such steel is sometimes referred to as Si killed steel.
拘束性ブレークアウトは、メニスカス近傍で凝固殻が鋳型壁に固着して破断し、凝固殻の破断部が鋳造の進行とともに下方に移動し、最終的に破断部が鋳型下端に達してブレークアウトに到るものである。鋳型壁に温度測定端を設置しておけば、凝固殻の破断部が鋳型の下方に移動するに際してこの温度測定部を通過するときに温度が非定常に上昇するので、ブレークアウトの発生を予知することができる。予知信号が発生したときに鋳造速度を急減速すれば、凝固殻の破断部を修復してブレークアウト発生を防止することができる。 In the constraining breakout, the solidified shell adheres to the mold wall and breaks in the vicinity of the meniscus, the fractured portion of the solidified shell moves downward as the casting progresses, and finally the broken portion reaches the lower end of the mold and breaks out. It is to arrive. If a temperature measurement end is installed on the mold wall, the temperature rises unsteadily when passing through the temperature measurement part when the fractured part of the solidified shell moves below the mold, so it is predicted that a breakout will occur can do. If the casting speed is rapidly reduced when the prediction signal is generated, the breakage portion of the solidified shell can be repaired to prevent the occurrence of breakout.
Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、拘束性ブレークアウトの予知信号が多発するという現象が見られた。Al含有量が0.010質量%以下となるとさらに発生頻度が増大する。ブレークアウトの発生には到らないものの、予知信号が発せられる度に鋳造速度を急減速する必要があるので、鋳造の生産性が低下すると同時に、鋳造速度急減速部は非定常部位となって品質が低下する原因にもなる。連続鋳造用パウダーの選定に当たっては、パウダーフィルムの流入性を優先して塩基度の高くないパウダー(塩基度Bが1.0〜1.2程度)を選定しているが、それでもブレークアウト予知信号の発生は頻発している。 In the continuous casting of Si killed steel having an Al content of less than 0.015% by mass, a phenomenon that a predictive signal for restrictive breakout frequently occurred was observed. When the Al content is 0.010% by mass or less, the frequency of occurrence further increases. Although breakout does not occur, it is necessary to rapidly reduce the casting speed each time a prediction signal is issued, so the casting productivity is reduced and the casting speed rapid reduction part becomes an unsteady part. It can also cause quality degradation. In selecting the powder for continuous casting, powder with a low basicity (basicity B is about 1.0 to 1.2) is selected in order to prioritize the inflow of the powder film. Occurrence is frequent.
メニスカス近傍における鋳型温度を測定したところ、Al含有量が0.015質量%以上のAlキルド鋼やAl−Siキルド鋼に比較し、Al含有量が0.015質量%未満のSiキルド鋼においては鋳型温度が低くなっていることが判明した。メニスカス近傍における凝固シェルから鋳型への抜熱量において、Siキルド鋼は抜熱量が低くなっていることを意味する。また、鋳型全体の抜熱量についても、Siキルド鋼はそれ以外の品種に比較して抜熱量が低くなっていることがわかった。抜熱を緩冷却化するような高塩基度パウダーを用いていないにもかかわらず抜熱が低く、それにより拘束性ブレークアウト予知信号の多発という結果を招いている。 When the mold temperature in the vicinity of the meniscus was measured, compared with Al killed steel and Al-Si killed steel having an Al content of 0.015% by mass or more, in Si killed steel having an Al content of less than 0.015% by mass, It was found that the mold temperature was low. In the amount of heat removed from the solidified shell to the mold in the vicinity of the meniscus, Si killed steel means that the amount of heat removed is low. In addition, regarding the heat removal amount of the entire mold, it was found that the heat removal amount of Si killed steel was lower than that of other varieties. Despite not using a high basicity powder that slowly cools the heat removal, the heat removal is low, which results in frequent occurrence of constraining breakout prediction signals.
本発明は、Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、拘束性ブレークアウトの予知信号発生を少なくすることのできる連続鋳造方法を提供することを目的とする。 An object of the present invention is to provide a continuous casting method capable of reducing the generation of a predictive signal of a constraining breakout when continuously casting Si killed steel having an Al content of less than 0.015% by mass.
上述のとおり、Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、メニスカス近傍における凝固シェルから鋳型への抜熱量が他の品種に比較して低くなっている。それが拘束性ブレークアウト予知信号多発の原因と推定される。 As described above, when continuously casting Si killed steel having an Al content of less than 0.015% by mass, the amount of heat removed from the solidified shell to the mold in the vicinity of the meniscus is lower than that of other varieties. This is presumed to be the cause of frequent occurrence of restrictive breakout prediction signals.
そこで、鋳造後に鋳型に付着したパウダーフィルム(メニスカスから50mm下の部位)を回収し、フィルムの断面観察を行った。その結果、Al含有量が少ない鋼を鋳造した際にはフィルム断面に気泡の発生が見られ、鋳造する品種のAl含有量が少なくなるほど気泡発生量が増大することが判明した。特に鋼中のAl含有量が0.010質量%以下の場合、気泡によるパウダーフィルムの空隙率が10%を超えることもある。このことから、Al含有量が少ないSiキルド鋼においては、鋳造中のパウダーフィルムに気泡が発生して断熱性が増大し、特にメニスカス近傍で凝固殻から鋳型壁への抜熱量が減少し、拘束性ブレークアウト予知信号多発につながっているものと考えられる。 Therefore, the powder film (part 50 mm below the meniscus) attached to the mold after casting was collected, and the cross section of the film was observed. As a result, it was found that when steel with a low Al content was cast, bubbles were generated in the cross section of the film, and the amount of generated bubbles increased as the Al content of the varieties to be cast decreased. In particular, when the Al content in the steel is 0.010% by mass or less, the porosity of the powder film due to air bubbles may exceed 10%. For this reason, in Si killed steel with a low Al content, bubbles are generated in the powder film being cast and heat insulation is increased. In particular, the amount of heat removed from the solidified shell to the mold wall is reduced in the vicinity of the meniscus. It is thought that it has led to frequent occurrence of sex breakout prediction signals.
パウダーフィルム中の気泡中に含まれる気体の種類を特定したところ、水素の含有量が多く、気泡成分には水素ガスあるいは水蒸気ガスが含まれることが判明した。溶融パウダーフィルム中に溶解しているOH-の濃度が飽和溶解度以上となったときに、パウダーフィルム中で水蒸気となって気泡が生成するものと考えられる。 When the type of gas contained in the bubbles in the powder film was specified, it was found that the hydrogen content was large and the bubble component contained hydrogen gas or water vapor gas. It is considered that when the concentration of OH − dissolved in the molten powder film becomes equal to or higher than the saturation solubility, bubbles are generated as water vapor in the powder film.
非特許文献1に記載のように、溶融スラグと気相との界面において、スラグ中の水酸イオンと気相中の水蒸気との間には、
2(OH-)←→H2O+(O2-) [1]
の関係がある。ここで(OH-)と(O2-)はそれぞれ溶融スラグ中の水酸イオンと酸素イオンを表す。
As described in Non-Patent Document 1, at the interface between the molten slag and the gas phase, between the hydroxide ions in the slag and the water vapor in the gas phase,
2 (OH − ) ← → H 2 O + (O 2− ) [1]
There is a relationship. Here, (OH − ) and (O 2− ) represent a hydroxide ion and an oxygen ion in the molten slag, respectively.
スラグが高温の溶融状態においては、大気中の水蒸気がスラグ中に溶け込んで上記[1]式の右辺から左辺への反応が進行し、スラグ中に水酸イオンが形成される。スラグ温度が低下すると、[1]式の左辺から右辺への反応が起こり、水蒸気が気相として生成する。非特許文献1はCaO−SiO2二元系のスラグでの知見であるが、さらにNa2O、Al2O3、F等を含むパウダーでも原理的に同様であると考えられる。 When the slag is in a high-temperature molten state, water vapor in the atmosphere dissolves in the slag, and the reaction from the right side to the left side of the formula [1] proceeds to form hydroxide ions in the slag. When the slag temperature decreases, a reaction occurs from the left side to the right side of the formula [1], and water vapor is generated as a gas phase. Non-Patent Document 1 is knowledge of CaO—SiO 2 binary slag, but it is considered that the same principle is applicable to powders containing Na 2 O, Al 2 O 3 , F, and the like.
そこで、連続鋳造時に鋳型表面を大気と遮断し、鋳型内の溶融パウダーと接する部分のガスを置換して水蒸気分圧を低減したところ、溶融パウダーフィルム中の気泡生成量が低減し、拘束性ブレークアウト予知信号の発生頻度が減少した。 Therefore, the mold surface was shut off from the atmosphere during continuous casting, and the gas partial pressure in contact with the molten powder in the mold was replaced to reduce the water vapor partial pressure. The frequency of out prediction signals has decreased.
本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)Al含有量が0.015質量%未満の鋼の連続鋳造方法であって、連続鋳造鋳型内のパウダー被覆面と接する雰囲気中の水蒸気分圧を大気中の水蒸気分圧よりも低減し、水蒸気分圧を0.02atm以下とすることを特徴とする鋼の連続鋳造方法。
(2)連続鋳造鋳型内のパウダー被覆面と大気との間に遮蔽板を設け、遮蔽板の内部に水蒸気分圧が0.02atm以下のガスを導入することを特徴とする上記(1)に記載の鋼の連続鋳造方法。
(3)導入するガスが乾燥空気であることを特徴とする上記(2)に記載の鋼の連続鋳造方法。
(4)鋼の連続鋳造がスラブ連続鋳造であることを特徴とする上記(1)乃至(3)のいずれかに記載の鋼の連続鋳造方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) A continuous casting method for steel with an Al content of less than 0.015% by mass, wherein the partial pressure of water vapor in the atmosphere in contact with the powder-coated surface in the continuous casting mold is reduced from the partial pressure of water vapor in the atmosphere. The continuous casting method of steel, wherein the water vapor partial pressure is 0.02 atm or less.
(2) In the above (1), a shielding plate is provided between the powder-coated surface in the continuous casting mold and the atmosphere, and a gas having a water vapor partial pressure of 0.02 atm or less is introduced into the shielding plate. The continuous casting method of the described steel.
(3) The continuous casting method for steel as described in (2) above, wherein the introduced gas is dry air.
(4) The continuous casting method for steel according to any one of (1) to (3) above, wherein the continuous casting of steel is slab continuous casting.
本発明は、Al含有量が0.015質量%未満のSiキルド鋼の連続鋳造に際し、連続鋳造鋳型内のパウダー被覆面と接する雰囲気中の水蒸気分圧を大気中の水蒸気分圧よりも低減し、水蒸気分圧を0.02atm以下とすることにより、鋳型と凝固シェルとの間に流入するパウダーフィルム中の気泡の発生を低減し、拘束性ブレークアウトの予知信号発生を少なくすることができる。 The present invention reduces the partial pressure of water vapor in the atmosphere in contact with the powder-coated surface in the continuous casting mold from the partial pressure of water vapor in the atmosphere when continuously casting Si killed steel having an Al content of less than 0.015% by mass. By setting the water vapor partial pressure to 0.02 atm or less, the generation of bubbles in the powder film flowing between the mold and the solidified shell can be reduced, and the generation of a predictive signal for restrictive breakout can be reduced.
本発明が対象とするのは、Al含有量が0.015質量%以下の鋼である。脱炭精錬によって溶鋼中に残存する溶存酸素を脱酸するためにSiを0.05質量%以上含有させるので、ここでは対象とする鋼をSiキルド鋼と呼ぶ。鋼の炭素濃度は特に規定しないが、0.01〜0.08質量%程度の低炭素鋼が主な対象となり、0.09〜0.40質量%程度の中炭素鋼についても鋳造される。また、鋳造する鋳片については特に限定しないが、スラブ連続鋳造が主要な対象となる。なお、本明細書において、鋼中Al含有量はトータルAlを意味する。 The present invention is intended for steel having an Al content of 0.015 mass% or less. In order to deoxidize the dissolved oxygen remaining in the molten steel by decarburization refining, Si is contained in an amount of 0.05 mass% or more. Therefore, the target steel is referred to as Si killed steel here. The carbon concentration of the steel is not particularly specified, but low carbon steel of about 0.01 to 0.08 mass% is the main target, and medium carbon steel of about 0.09 to 0.40 mass% is also cast. Moreover, although it does not specifically limit about the slab to cast, Slab continuous casting becomes a main object. In the present specification, the Al content in steel means total Al.
連続鋳造に際しては、拘束性ブレークアウト発生を防止するため、鋳型壁内に熱電対を埋め込み、ブレークアウト予知信号を発生させている。拘束性ブレークアウトの原因となる凝固殻の破断部が鋳型の下方に移動するに際し、破断部がこの熱電対設置部を通過するときに温度が非定常に上昇するので、ブレークアウトの発生を予知することができる。予知信号が発生したときに鋳造速度を急減速すれば、凝固殻の破断部を修復してブレークアウト発生を防止することができる。 In continuous casting, a thermocouple is embedded in the mold wall to generate a breakout prediction signal in order to prevent the occurrence of a constraining breakout. As the fractured part of the solidified shell, which causes a constraining breakout, moves below the mold, the temperature rises unsteadily when the fractured part passes through this thermocouple installation, so it is predicted that a breakout will occur can do. If the casting speed is rapidly reduced when the prediction signal is generated, the breakage portion of the solidified shell can be repaired to prevent the occurrence of breakout.
ブレークアウト予知信号の発生頻度を、鋼のAl含有量レベル毎に比較してみた。いずれも鋼のSi含有量は0.05質量%以上であり、Al含有量が0.015質量%以上についてはAl−Siキルド鋼と呼ぶことができ、Al含有量が0.015質量%未満についてはSiキルド鋼と呼ぶことができる。図1は、横軸をAl含有量、縦軸をブレークアウト予知信号発生頻度とした図である。図1から明らかなように、鋼中Al含有量が少なくなるほど、ブレークアウト予知信号の発生頻度が増大しており、Al含有量0.015質量%未満で特に顕著である。 The occurrence frequency of the breakout prediction signal was compared for each Al content level of steel. In any case, the Si content of the steel is 0.05% by mass or more, and the Al content of 0.015% by mass or more can be called Al-Si killed steel, and the Al content is less than 0.015% by mass. Can be called Si killed steel. FIG. 1 is a diagram in which the horizontal axis represents the Al content and the vertical axis represents the breakout prediction signal generation frequency. As is clear from FIG. 1, as the Al content in the steel decreases, the occurrence frequency of the breakout prediction signal increases, which is particularly remarkable when the Al content is less than 0.015% by mass.
ブレークアウト予知信号発生が頻発する品種においては、ブレークアウト発生を防止する対応が間に合わずにブレークアウトが発生してしまうこともある。Al含有量が0.015質量%以上のAl−Siキルド鋼ではブレークアウトが全く発生しないのに対し、Al含有量が0.010質量%以下の品種ではブレークアウト発生率が1.7%程度となっていた。 In a product that frequently generates a breakout prediction signal, a breakout may occur because the countermeasure for preventing the occurrence of the breakout is not in time. Breakout does not occur at all in Al-Si killed steel with an Al content of 0.015 mass% or more, whereas the breakout occurrence rate is about 1.7% for varieties with an Al content of 0.010 mass% or less. It was.
そこで、鋳型内での凝固殻と鋳型壁との間の熱伝達状況について、鋼のAl含有量毎に調査を行った。調査は2つの観点から行った。第1は、鋳型長辺面全体の冷却水温度上昇代を測定し、これから鋳型長辺面全体における抜熱量を比較した。第2は、鋳型内の鋳造方向複数箇所に埋め込まれた熱電対の温度を測定し、鋳造方向での温度分布について比較した。鋳造を行った品種は、Al含有量0.008質量%(低Al品種)、0.017質量%(中Al品種)、0.036質量%(高Al品種)であり、Si含有量は低Al品種では0.05質量%以上、中Al品種と高Al品種では0.006〜0.01質量%である。使用した連続鋳造用パウダーの塩基度は1.1〜1.2程度であった。 Therefore, the state of heat transfer between the solidified shell and the mold wall in the mold was investigated for each Al content of steel. The survey was conducted from two viewpoints. First, the cooling water temperature rise allowance of the entire mold long side surface was measured, and the amount of heat removed from the entire mold long side surface was compared. Second, the temperature of thermocouples embedded in a plurality of locations in the casting direction in the mold was measured, and the temperature distribution in the casting direction was compared. Casting varieties had an Al content of 0.008 mass% (low Al varieties), 0.017 mass% (medium Al varieties), and 0.036 mass% (high Al varieties), and the Si content was low. It is 0.05 mass% or more for Al varieties, and 0.006 to 0.01 mass% for medium Al varieties and high Al varieties. The basicity of the used powder for continuous casting was about 1.1 to 1.2.
鋳型長辺面の冷却水温度上昇代に基づいて長辺面全体の面平均熱流束を求めた。鋳造速度は1.5m/min程度とした。その結果、中Al品種、高Al品種では面平均熱流束が1500kW/m2・sec程度であったのに対し、低Al品種では1100kW/m2・sec程度と低い面平均熱流束を示した。 The surface average heat flux of the entire long side surface was determined based on the cooling water temperature rise margin on the long side surface of the mold. The casting speed was about 1.5 m / min. As a result, the surface average heat flux was about 1500 kW / m 2 · sec for medium Al and high Al varieties, while the surface average heat flux was about 1100 kW / m 2 · sec for low Al varieties. .
鋳型壁中には、鋳造方向に120mmピッチで4箇所に熱電対が埋め込まれている。最上段の熱電対はメニスカスから65mmの位置にある。鋳型壁表面から熱電対先端までの距離は5mm程度である。低Al品種と中Al品種について熱電対温度を測定したところ、図2に示す結果が得られた。鋳造方向2〜4段目の熱電対温度は品種によってあまり変化しないが、メニスカス近傍に設置した熱電対温度については、中Al品種が160℃程度であるのに対して低Al品種は110℃程度と大幅に低い温度が観察された。これより、低Al品種においては、特にメニスカス近傍において凝固殻から鋳型壁への抜熱が低下していることが明らかである。 In the mold wall, thermocouples are embedded at four locations at a pitch of 120 mm in the casting direction. The uppermost thermocouple is 65 mm from the meniscus. The distance from the mold wall surface to the thermocouple tip is about 5 mm. When the thermocouple temperature was measured for the low Al and medium Al varieties, the results shown in FIG. 2 were obtained. The thermocouple temperature in the 2nd to 4th stages in the casting direction does not change much depending on the type, but the temperature of the thermocouple installed near the meniscus is about 160 ° C for the medium Al type, and about 110 ° C for the low Al type. A significantly lower temperature was observed. From this, it is clear that in the low Al varieties, the heat removal from the solidified shell to the mold wall is reduced particularly in the vicinity of the meniscus.
以上の結果から、同じ連続鋳造用パウダーを用いて鋳造しているにもかかわらず、低Al品種においては、中Al品種・高Al品種と対比してメニスカス近傍における凝固殻から鋳型壁への抜熱量が大幅に低下していることが判明した。品種別に、凝固殻と鋳型壁との間に存在するパウダーフィルム厚が変化している傾向は見られなかったので、抜熱量の差はパウダーフィルム厚の差ではない。また、パウダーフィルムの結晶化率についても、品種毎に結晶化率が変化する傾向は見られなかったので、抜熱量の差は結晶化率の差でもない。 From the above results, in spite of casting using the same continuous casting powder, in the low Al varieties, the extraction from the solidified shell near the meniscus to the mold wall is different from the medium Al varieties and high Al varieties. It was found that the amount of heat was greatly reduced. Since there was no tendency for the thickness of the powder film existing between the solidified shell and the mold wall to vary by type, the difference in the amount of heat removal is not the difference in the thickness of the powder film. In addition, regarding the crystallization rate of the powder film, since there was no tendency for the crystallization rate to change for each type, the difference in the amount of heat removal is not the difference in the crystallization rate.
そこで、鋳造が完了した鋳型の壁面に残存しているパウダーフィルムを採取し、調査を行った。メニスカス近傍の抜熱挙動に大きな影響を与えるメニスカスから50mm程度の位置からパウダーフィルムを採取した。 Therefore, a powder film remaining on the wall of the mold after casting was collected and investigated. A powder film was sampled from a position about 50 mm from the meniscus, which has a large effect on the heat removal behavior near the meniscus.
図3に、低Al品種を鋳造した後に回収したパウダーフィルムの断面写真を示す。写真中に見られる黒い丸は空隙である。フィルム断面の空隙は、低Al品種鋳造後のフィルムで最も激しく、中Al品種の場合はより少なく、高Al品種鋳造後のフィルムではほとんど観察されなかった。断面写真に基づいてパウダーフィルムの空隙率を算出し、鋼中Al含有量と空隙率との関係をプロットしたのが図4である。図4からも明らかなように、低Al品種では格段に空隙率が高い値を示している。鋼中のAl含有量が低くなるほど、凝固殻と鋳型壁との間に存在するパウダーフィルム中に気泡が多量に存在していることが明らかである。 FIG. 3 shows a cross-sectional photograph of a powder film collected after casting a low Al variety. The black circles seen in the photos are voids. The voids in the film cross section were most severe in the film after casting the low Al type, less in the medium Al type, and hardly observed in the film after casting the high Al type. FIG. 4 shows the relationship between the Al content in the steel and the porosity, which was calculated based on the cross-sectional photograph. As is clear from FIG. 4, the low Al varieties have a remarkably high porosity. It is clear that the lower the Al content in the steel, the more air bubbles are present in the powder film existing between the solidified shell and the mold wall.
以上の結果から、低Al品種の連続鋳造でメニスカス近傍の抜熱量が低下する原因は、パウダーフィルム中に気泡が多発して空隙率が高くなることが原因であると推定されるに到った。 From the above results, it was estimated that the cause of the decrease in the amount of heat removal in the vicinity of the meniscus in the continuous casting of low Al varieties was caused by the frequent occurrence of bubbles in the powder film and the increased porosity. .
パウダーフィルム中の気泡に含まれる気体のガス分析は、質量数別スペクトル積算強度比率によって求めた。その結果、最も多く含まれるガスは窒素あるいは一酸化炭素であるものの、いずれのサンプルにも水素ガスが7〜16%の割合で含まれていることが特徴であった。水素ガスが検出されたことから、溶融スラグと水蒸気との間の相互作用が、パウダーフィルム中の気泡の発生と関係しているものと推定される。 The gas analysis of the gas contained in the bubbles in the powder film was obtained from the spectrum integrated intensity ratio by mass number. As a result, the most abundant gas was nitrogen or carbon monoxide, but each sample was characterized by containing hydrogen gas at a ratio of 7 to 16%. Since hydrogen gas was detected, it is presumed that the interaction between the molten slag and water vapor is related to the generation of bubbles in the powder film.
次に、パウダー中にOH-として存在する水素の定量化法について述べる。これまでスラグ中のOH-の分析は溶融Al還元法で行われていた。この方法でスラグ中のOH-をAlでH2ガスに還元し、H2ガス量をガス質量分析計で測定することでOH-を定量化する。しかしFやNa2Oを含む連鋳パウダーでは、加熱時にNaF、SiF4ガスが生成するため、この方法を用いることが出来ない。そこで、核磁気共鳴(固体NMR)を用いてOH-の分析を行った。鋳造前のパウダーおよび鋳造後採取したパウダーフィルムに対して、HのNMRスペクトルを測定した。また標準試料としてカオリナイトAl2Si2O5(OH)4を用いた。カオリナイトはOH-としてHを1.56質量%含むことが既知なので、パウダー試料のOH-に相当するNMRスペクトルの面積値と標準試料のOH-に相当するNMRスペクトルの面積値の比を知ることで、パウダー中にOH-として存在するHの重量を定量化した。 Next, OH in Powder - it describes a method for quantifying hydrogen present as. Until now, the analysis of OH − in slag has been performed by the molten Al reduction method. In this method, OH − in the slag is reduced to H 2 gas with Al, and OH − is quantified by measuring the amount of H 2 gas with a gas mass spectrometer. However, with continuous casting powder containing F or Na 2 O, this method cannot be used because NaF and SiF 4 gases are generated during heating. Therefore, OH - was analyzed using nuclear magnetic resonance (solid NMR). The NMR spectrum of H was measured for the powder before casting and the powder film collected after casting. Kaolinite Al 2 Si 2 O 5 (OH) 4 was used as a standard sample. Since it is known to contain 1.56% by weight of H as, powder samples OH - - kaolinite OH know the ratio of the area value of the NMR spectrum corresponding to the - OH of the area value and the standard samples of the NMR spectrum corresponding to Thus, the weight of H present as OH − in the powder was quantified.
鋳造前のパウダーのOH-として存在するHは80ppmであった。これに対して低Al品種鋳造後のパウダーフィルムでは、120−150ppmにまで増大した。一方、中・高Al品種鋳造後のパウダーフィルムでは40−80ppmと低位であった。この結果より、中・高Al品種においては、溶鋼中のAlが溶融プールのパウダーと反応してOH-イオン濃度を低下させるので気泡が発生しないのに対して、低Al品種では溶鋼中のAlが少ないので溶融パウダープールのOHイオン濃度を低下させる程度が低く、OH-イオンが高い濃度でパウダーフィルム中に残存する。その結果、低Al品種ではパウダーフィルム中のOH-イオン濃度が冷却過程で溶解濃度を超え、水蒸気気泡がパウダーフィルム中に発生することとなる。 The H present as OH − of the powder before casting was 80 ppm. On the other hand, the powder film after casting the low Al type increased to 120-150 ppm. On the other hand, the powder film after casting the medium / high Al type was as low as 40-80 ppm. From this result, in the medium and high Al varieties, Al in the molten steel reacts with powder melting pool OH - Since lowering the ion concentration relative to the air bubbles are not generated, Al in the molten steel at low Al varieties Therefore, the degree of lowering the OH ion concentration of the molten powder pool is low, and OH - ions remain in the powder film at a high concentration. As a result, in the low Al variety, the OH − ion concentration in the powder film exceeds the dissolution concentration during the cooling process, and water vapor bubbles are generated in the powder film.
非特許文献1に記載のように、溶融スラグと気相との界面において、スラグ中の水酸イオンと気相中の水蒸気との間には、
2(OH-)←→H2O+(O2-) [1]
の関係がある。ここで(OH-)と(O2-)はそれぞれ溶融スラグ中の水酸イオンと酸素イオンを表す。
As described in Non-Patent Document 1, at the interface between the molten slag and the gas phase, between the hydroxide ions in the slag and the water vapor in the gas phase,
2 (OH − ) ← → H 2 O + (O 2− ) [1]
There is a relationship. Here, (OH − ) and (O 2− ) represent a hydroxide ion and an oxygen ion in the molten slag, respectively.
連続鋳造に供する鋼がAlを含有するAlキルド鋼あるいはAl−Siキルド鋼である場合は、溶融パウダーと溶鋼との間で
3(OH-)+2[Al]→(Al2O3)+3[H]+3e- [2]
の反応が起こる。その結果、溶融パウダー中の水酸イオンが溶鋼中のAlで還元されて溶鋼中に水素として移動する。従って、大気中の水蒸気が溶融パウダー中に水酸イオンとして取り込まれても、Alによって還元されてしまうので、溶融パウダー中水酸イオン濃度が十分に上昇せず、溶融パウダーの温度が下がっても水蒸気気泡が発生するには至らない。
When the steel used for continuous casting is Al killed steel containing Al or Al—Si killed steel, 3 (OH − ) +2 [Al] → (Al 2 O 3 ) +3 [between the molten powder and the molten steel. H] + 3e - [2]
Reaction occurs. As a result, the hydroxide ions in the molten powder are reduced by Al in the molten steel and move as hydrogen into the molten steel. Therefore, even if water vapor in the atmosphere is taken into the molten powder as hydroxide ions, it is reduced by Al, so the hydroxide ion concentration in the molten powder does not rise sufficiently and the temperature of the molten powder decreases. Water vapor bubbles are not generated.
連続鋳造に供する鋼がAl含有量の少ないSiキルド鋼である場合には、上記[2]式の反応による水酸イオンの減少は起こらない。Al含有量の少ないSiキルド鋼において連続鋳造パウダーフィルム中に気泡生成が多い理由は、以上のように説明することができる。 In the case where the steel used for continuous casting is Si killed steel with a low Al content, there is no reduction of hydroxide ions due to the reaction of the above formula [2]. The reason why many bubbles are generated in the continuous cast powder film in the Si killed steel with a low Al content can be explained as described above.
以上の解析より、低Al品種であっても溶融パウダー中のOHイオン濃度の上昇を抑制できれば、気泡の発生は防ぐことができる可能性がある。 From the above analysis, it is possible that the generation of bubbles can be prevented if an increase in the OH ion concentration in the molten powder can be suppressed even in a low Al variety.
パウダーが高温の溶融状態においては、大気中の水蒸気が溶融パウダー中に溶け込んで上記[1]式の右辺から左辺への反応が進行し、溶融パウダー中に水酸イオンが形成される。溶融パウダー温度が低下すると、[1]式の右辺から左辺への反応が起こり、水蒸気が気相として生成する。非特許文献1はCaO−SiO2二元系のスラグでの知見であるが、さらにNa2O、Al2O3、F等を含むパウダーでも原理的に同様であると考えられる。 When the powder is in a high-temperature molten state, water vapor in the atmosphere dissolves in the molten powder, and the reaction from the right side to the left side of the formula [1] proceeds to form hydroxide ions in the molten powder. When the molten powder temperature decreases, a reaction occurs from the right side to the left side of the formula [1], and water vapor is generated as a gas phase. Non-Patent Document 1 is knowledge of CaO—SiO 2 binary slag, but it is considered that the same principle is applicable to powders containing Na 2 O, Al 2 O 3 , F, and the like.
即ち、溶融パウダーと接する気相中の水蒸気分圧を下げることにより、上記[1]式の右辺から左辺への反応の進行を抑え、溶融パウダー中の(OH-)濃度を低下できるはずである。 That is, by lowering the partial pressure of water vapor in the gas phase in contact with the molten powder to suppress the progress of the reaction to the left side from the right side of the above formula [1], in the molten powder - should be able to reduce the concentration (OH) .
大気中の水蒸気分圧は、気温が高い夏場は0.04atm程度に上昇し、気温が低い冬場は0.005atm程度まで低下する。そこで、Siキルド鋼を鋳造した際のパウダーフィルムを、年間の各季節に採取し、パウダーフィルム中の(OH-)濃度を比較した。その結果、図5に示すように、夏場に比較して冬場はパウダーフィルム中の(OH-)濃度が減少することが分かった。 The water vapor partial pressure in the atmosphere rises to about 0.04 atm in summer when the temperature is high, and falls to about 0.005 atm in winter when the temperature is low. Therefore, a powder film obtained by casting Si killed steel was sampled in each season of the year, and the (OH − ) concentration in the powder film was compared. As a result, as shown in FIG. 5, it was found that the (OH − ) concentration in the powder film decreased in the winter compared to the summer.
そこで、連続鋳造鋳型内のパウダー被覆面と大気との間に図6に示すような遮蔽板を設け、遮蔽板の内部に水蒸気分圧が0.010atmである乾燥空気を導入することにより鋳型内の溶融パウダーと接する部分の水蒸気分圧を低減することを試みた。季節が夏場であり、大気中の水蒸気分圧が0.04atmと高い場合であっても、鋳型内の溶融パウダーと接する部分の水蒸気分圧を0.015atmに低減することができた。 Therefore, a shielding plate as shown in FIG. 6 is provided between the powder-coated surface in the continuous casting mold and the atmosphere, and dry air having a partial pressure of water vapor of 0.010 atm is introduced into the shielding plate. An attempt was made to reduce the partial pressure of water vapor in the portion in contact with the molten powder. Even when the season was summer and the partial pressure of water vapor in the atmosphere was as high as 0.04 atm, the partial pressure of water vapor in the mold and in contact with the molten powder could be reduced to 0.015 atm.
次に、この遮蔽板とガス導入を用い、年間を通じてSiキルド鋼の鋳造を行ったところ、夏場を含め年間を通してパウダーフィルム中の(OH-)濃度が低位に保たれることが分かった。 Next, when this shield plate and gas introduction were used to cast Si killed steel throughout the year, it was found that the (OH − ) concentration in the powder film was kept low throughout the year including summer.
以上の結果に基づき、連続鋳造鋳型内のパウダー被覆面と接する部分の雰囲気中水蒸気分圧を種々変更して、Al含有量が0.015質量%未満のSiキルド鋼のスラブ連続鋳造を行い、パウダーフィルム中の(OH-)濃度、鋳型断面から採取したパウダーフィルム中の空隙率、ブレークアウト予知信号発生率のそれぞれと水蒸気分圧との関係を調査した。使用した連続鋳造用パウダーの塩基度は1.0〜1.2程度である。図7、図8、図9に示すように、連続鋳造鋳型内のパウダー被覆面と接する部分の雰囲気中水蒸気分圧が低くなるほど、パウダーフィルム中の(OH-)濃度、鋳型断面から採取したパウダーフィルム中の空隙率、ブレークアウト予知信号発生率のいずれも低減し、連続鋳造鋳型内のパウダー被覆面と接する部分の雰囲気中水蒸気分圧が0.02atm以下であれば、ブレークアウト予知信号の発生頻度を十分に低減できることが明らかになった。 Based on the above results, variously changing the partial pressure of water vapor in the atmosphere in contact with the powder-coated surface in the continuous casting mold, performing slab continuous casting of Si-killed steel having an Al content of less than 0.015% by mass, The relationship between the (OH − ) concentration in the powder film, the porosity in the powder film taken from the mold cross section, the breakout prediction signal generation rate, and the water vapor partial pressure was investigated. The basicity of the used continuous casting powder is about 1.0 to 1.2. As shown in FIG. 7, FIG. 8, and FIG. 9, the lower the water vapor partial pressure in the portion in contact with the powder coating surface in the continuous casting mold, the lower the (OH − ) concentration in the powder film, the powder collected from the mold cross section. Generates a breakout prediction signal if the void ratio in the film and the breakout prediction signal generation rate are both reduced, and the partial pressure of water vapor in the atmosphere in contact with the powder coating surface in the continuous casting mold is 0.02 atm or less. It became clear that the frequency could be reduced sufficiently.
Al含有量が0.015質量%未満の鋼の連続鋳造方法であって、連続鋳造鋳型内のパウダー被覆面と接する雰囲気中の水蒸気分圧を大気中の水蒸気分圧よりも低減し、水蒸気分圧を0.02atm以下とするにあたり、連続鋳造鋳型内のパウダー被覆面と大気との間に遮蔽板を設け、遮蔽板の内部に水蒸気分圧が0.02atm以下のガスを導入すると好ましい。遮蔽板としては、鋳型周りの雰囲気温度に耐え得る材質であれば何でも良く、ステンレス鋼板などでも良い。望ましくは、鋳型内の湯面の状況を観察可能なように透明な材質が良いが、部分的に窓を設けても良い。また、パウダー投入機を備えた鋳型ではもちろん、遮蔽板をパウダー投入機と干渉しない位置や構造とする必要がある。 A continuous casting method of steel having an Al content of less than 0.015% by mass, wherein the partial pressure of water vapor in the atmosphere in contact with the powder-coated surface in the continuous casting mold is reduced from the partial pressure of water vapor in the atmosphere, In order to make the pressure 0.02 atm or less, it is preferable to provide a shielding plate between the powder-coated surface in the continuous casting mold and the atmosphere, and introduce a gas having a water vapor partial pressure of 0.02 atm or less into the shielding plate. The shielding plate may be any material that can withstand the ambient temperature around the mold, and may be a stainless steel plate or the like. Desirably, a transparent material is preferable so that the condition of the molten metal surface in the mold can be observed, but a window may be provided partially. In addition, in the case of a mold equipped with a powder feeder, the shielding plate needs to be in a position and structure that does not interfere with the powder feeder.
また、遮蔽板の内部に導入するガスとして乾燥空気を用いると好ましい。安価に供給できるからである。 Moreover, it is preferable to use dry air as the gas introduced into the shielding plate. This is because it can be supplied at low cost.
本発明を適用する鋼の連続鋳造は、スラブ連続鋳造であると好ましい。Al含有量が0.015質量%未満のSiキルド鋼の連続鋳造に際して、パウダーフィルム中に生成する気泡に起因するブレークアウト予知信号の発生がスラブ連続鋳造に特有であり、本発明の効果が特に発揮されるからである。 The continuous casting of steel to which the present invention is applied is preferably slab continuous casting. In continuous casting of Si killed steel having an Al content of less than 0.015% by mass, generation of a breakout prediction signal due to bubbles generated in the powder film is unique to slab continuous casting, and the effect of the present invention is particularly It is because it is demonstrated.
なお、Al含有量が0.010質量%以下の鋼においては改善効果がより顕著となる。また、スラブ連続鋳造において効果が顕著に表れる。鋼中の炭素濃度によらず本発明の効果を得ることができるが、特にC含有量が0.08質量%以下の低炭素鋼については、従来鋳片の縦割れ発生が問題にならず常に低塩基度パウダーが用いられていた関係から、特に格別の効果を発揮するということができる。本発明は、Al含有量が低いSiキルド鋼のみ、あるいはSiキルド鋼を含む一部の品種のみに適用することとすると好ましい。 In addition, the improvement effect becomes more remarkable in the steel having an Al content of 0.010% by mass or less. In addition, the effect is remarkable in slab continuous casting. Although the effects of the present invention can be obtained regardless of the carbon concentration in the steel, the occurrence of vertical cracks in conventional slabs is always a problem, especially for low carbon steel having a C content of 0.08% by mass or less. It can be said that the special effect is exhibited especially from the relationship in which the low basicity powder was used. The present invention is preferably applied only to Si killed steel having a low Al content, or to only some varieties including Si killed steel.
垂直曲げ型のスラブ連続鋳造装置による連続鋳造において、鋳型内の溶融パウダーと接する雰囲気中水蒸気分圧を変化させ、ブレークアウト予知信号の発生頻度を、鋼のAl含有量レベル毎に比較してみた。いずれも鋼のSi含有量は0.05質量%以上である。使用した連続鋳造パウダー成分は表1に示すとおりである。 In continuous casting with a slab continuous casting machine of vertical bending type, the partial pressure of water vapor in the atmosphere in contact with the molten powder in the mold was changed, and the frequency of occurrence of breakout prediction signals was compared for each Al content level of steel. . In any case, the Si content of the steel is 0.05% by mass or more. The continuous casting powder components used are as shown in Table 1.
図10の○は、連続鋳造鋳型内のパウダー被覆面と接する雰囲気を大気雰囲気とし、夏場に鋳造した結果である。溶融パウダーと接する雰囲気中の水蒸気分圧は0.04atm程度であった。また、図6に示すような遮蔽板2を鋳型1の上部に設けた。遮蔽板2はステンレス鋼製であり、鋳型1の上面、両側面および背面を大気から遮断している。前面側はパウダー投入機5から湯面6にパウダーを投入する必要があるため、開口している。遮蔽板2の上面については、浸漬ノズル3を挿入する位置に切り欠き部を設けている。乾燥空気供給管4を通して遮蔽板2の内部に水蒸気分圧が0.010atmである乾燥空気を導入することにより、鋳型内の溶融パウダーと接する部分の水蒸気分圧を0.02atm以下とすることができた。遮蔽板2を設けて鋳造した場合について、図10の◎で示す。図10から明らかなように、Al含有量が0.015質量%未満のSiキルド鋼において、水蒸気分圧0.04atmではブレークアウト予知信号発生頻度が極めて高頻度であるのに対し、水蒸気分圧0.02atml以下の場合はブレークアウト予知信号発生頻度が激減していることがわかる。特に、Al含有量が0.010質量%以下の品種において効果が顕著である。 The circles in FIG. 10 are the results of casting in the summer with the atmosphere in contact with the powder-coated surface in the continuous casting mold being an atmospheric atmosphere. The water vapor partial pressure in the atmosphere in contact with the molten powder was about 0.04 atm. Further, a shielding plate 2 as shown in FIG. The shielding plate 2 is made of stainless steel, and shields the upper surface, both side surfaces, and the rear surface of the mold 1 from the atmosphere. The front side is open because it is necessary to feed powder from the powder feeder 5 to the hot water surface 6. About the upper surface of the shielding board 2, the notch part is provided in the position which inserts the immersion nozzle 3. As shown in FIG. By introducing dry air having a water vapor partial pressure of 0.010 atm into the shielding plate 2 through the dry air supply pipe 4, the water vapor partial pressure of the portion in contact with the molten powder in the mold may be 0.02 atm or less. did it. The case where the shielding plate 2 is provided and cast is indicated by ◎ in FIG. As is apparent from FIG. 10, in the Si killed steel having an Al content of less than 0.015% by mass, the breakout prediction signal is frequently generated at a water vapor partial pressure of 0.04 atm, whereas the water vapor partial pressure is high. In the case of 0.02 atm or less, it can be seen that the frequency of breakout prediction signal generation is drastically reduced. In particular, the effect is remarkable in varieties having an Al content of 0.010% by mass or less.
ブレークアウト発生頻度についても、Al含有量が0.010質量%以下の鋼を大気雰囲気で鋳造した場合には1.7%程度のブレークアウト発生頻度であったのに対し、溶融パウダーと接する雰囲気の水蒸気分圧を0.02atm以下とした場合には、どのAl含有量レベルであってもブレークアウトは一切発生しなかった。 The breakout frequency was about 1.7% when steel with an Al content of 0.010% by mass or less was cast in an air atmosphere, whereas the breakout frequency was in contact with the molten powder. When the water vapor partial pressure was 0.02 atm or less, no breakout occurred at any Al content level.
1 鋳型
2 遮蔽板
3 浸漬ノズル
4 乾燥空気供給管
5 パウダー投入機
6 湯面(パウダー面)
DESCRIPTION OF SYMBOLS 1 Mold 2 Shielding board 3 Immersion nozzle 4 Dry air supply pipe 5 Powder feeder 6 Hot water surface (powder surface)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007172419A JP4907453B2 (en) | 2007-06-29 | 2007-06-29 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007172419A JP4907453B2 (en) | 2007-06-29 | 2007-06-29 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009006388A true JP2009006388A (en) | 2009-01-15 |
JP4907453B2 JP4907453B2 (en) | 2012-03-28 |
Family
ID=40322023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007172419A Active JP4907453B2 (en) | 2007-06-29 | 2007-06-29 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4907453B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS606253A (en) * | 1983-06-24 | 1985-01-12 | Kawasaki Steel Corp | Air shielding device for continuous casting machine |
JP2001225152A (en) * | 2000-02-17 | 2001-08-21 | Nkk Corp | Continuous casting method for steel |
-
2007
- 2007-06-29 JP JP2007172419A patent/JP4907453B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS606253A (en) * | 1983-06-24 | 1985-01-12 | Kawasaki Steel Corp | Air shielding device for continuous casting machine |
JP2001225152A (en) * | 2000-02-17 | 2001-08-21 | Nkk Corp | Continuous casting method for steel |
Also Published As
Publication number | Publication date |
---|---|
JP4907453B2 (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4646849B2 (en) | Mold powder for continuous casting of high aluminum steel | |
BRPI0904814A2 (en) | METHOD OF MANUFACTURING A STEEL PRODUCT, MANUFACTURED STEEL PRODUCT AND WELDING STEEL PIPE | |
JP4462255B2 (en) | Continuous casting method for medium carbon steel | |
JP4430638B2 (en) | Mold powder for continuous casting of high aluminum steel | |
JP2017013082A (en) | Mold powder for continuous casting of steel, and continuous casting method for steel | |
JP2007290007A (en) | Method for continuous casting of high aluminum steel | |
JP4548483B2 (en) | Casting method for molten alloy | |
JP4907453B2 (en) | Steel continuous casting method | |
JP5835153B2 (en) | Mold flux for continuous casting of steel and continuous casting method | |
JP4751283B2 (en) | Continuous casting powder and steel continuous casting method | |
JP4527693B2 (en) | Continuous casting method of high Al steel slab | |
JP4451798B2 (en) | Continuous casting method | |
JP2006239716A (en) | Continuous casting method | |
JP4102323B2 (en) | Continuous casting method for molten steel | |
JP4345457B2 (en) | High Al steel high speed casting method | |
JP4571930B2 (en) | Continuous casting powder and steel continuous casting method | |
JP2007270247A (en) | Method for manufacturing powder for continuous casting, and method for continuously casting steel | |
JP7284397B2 (en) | Mold powder for continuous casting | |
Morov et al. | Improvement in manufacturing technology for coiled and sheet rolled product in a VMZ casting and rolling complex | |
JP4527832B2 (en) | Steel continuous casting method | |
TWI792485B (en) | continuous casting method for steel | |
JP5447234B2 (en) | Powder for continuous casting and method for continuous casting of steel using the same | |
JP2010240711A (en) | Continuous casting method of medium-carbon steel | |
Dutta et al. | Continuous casting (concast) | |
JP2005224852A (en) | Continuous casting method of high-titanium-contained steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4907453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |