JP2007270247A - Method for manufacturing powder for continuous casting, and method for continuously casting steel - Google Patents

Method for manufacturing powder for continuous casting, and method for continuously casting steel Download PDF

Info

Publication number
JP2007270247A
JP2007270247A JP2006096955A JP2006096955A JP2007270247A JP 2007270247 A JP2007270247 A JP 2007270247A JP 2006096955 A JP2006096955 A JP 2006096955A JP 2006096955 A JP2006096955 A JP 2006096955A JP 2007270247 A JP2007270247 A JP 2007270247A
Authority
JP
Japan
Prior art keywords
powder
steel
continuous casting
content
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006096955A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kajitani
敏之 梶谷
Yuichiro Kato
加藤  雄一郎
Koji Harada
浩次 原田
Kazumi Harashima
和海 原島
Wataru Yamada
亘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006096955A priority Critical patent/JP2007270247A/en
Publication of JP2007270247A publication Critical patent/JP2007270247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing powder for continuous casting with which in the case of continuously casting a Si-killed steel having <0.015 mass% Al content, the occurrence of a predict signal to the restrictive break-out can be lessened, and a method for continuously casting a steel by using this powder for continuous casting. <P>SOLUTION: The method for manufacturing the powder for continuous casting, is performed, with which in the case of melting and solidifying the raw material for powder, this raw material is cooled and pulverized by injecting the air without using the water. In the continuous casting by using the powder for continuous casting, manufactured with the method, the generation of bubble into the powder film is reduced in the continuous casting of the Si-killed steel having less Al content and the heat-conducting amount from the solidified shell to a mold wall, is increased and as the result, since the frequency of the occurrence of the predict signal to the restrictive break-out can be reduced, the frequency of the occurrence of a non-stationary part in the quality caused by the fluctuation of the casting speed, is reduced and also, the frequency of occurrence of the break-out can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼の連続鋳造において鋳型内に添加する連続鋳造用パウダーの製造方法及びその連続鋳造用パウダーを用いた鋼の連続鋳造方法に関するものである。   The present invention relates to a method for producing powder for continuous casting added to a mold in continuous casting of steel, and a method for continuously casting steel using the powder for continuous casting.

鋼の連続鋳造において、鋳型内に連続鋳造用パウダーが添加される。連続鋳造用パウダーは鋳型内の溶鋼表面において溶融し、鋳型壁と凝固シェルとの間に潤滑膜を形成する。連続鋳造用パウダーはスラブおよび大断面ブルームにおいてはほとんどすべて採用されている。このパウダーは、鋳型内溶鋼表面の酸化防止、鋳型と鋳片の間の潤滑、浮上した介在物の捕捉、鋳型内溶鋼表面の保温といった役割を果たす。パウダーはその溶融速度、粘性、融点、アルミナ吸収能などの多くの管理要因があり、鋼種、鋳造速度、鋳片断面形状などによって最適パウダーは異なるため、その選択が極めて重要である。   In continuous casting of steel, powder for continuous casting is added into the mold. The powder for continuous casting melts on the surface of the molten steel in the mold and forms a lubricating film between the mold wall and the solidified shell. Continuous casting powders are almost all used in slabs and large section blooms. This powder plays a role of preventing oxidation of the molten steel surface in the mold, lubrication between the mold and the slab, capturing the floating inclusions, and keeping the temperature of the molten steel surface in the mold. The powder has many management factors such as its melting rate, viscosity, melting point, and alumina absorption capacity, and the optimum powder differs depending on the steel type, casting speed, slab cross-sectional shape, etc., so the selection is extremely important.

パウダーの性状に関しては、従来の粉末状にかわる顆粒状のパウダーが開発され、これにより作業環境の改善はもとより、品質的にも縦割れ、のろかみの減少が可能となったといわれており、その採用も一般化してきている(非特許文献1)。また、鋳片の縦割れ対策等には、パウダーの均一溶融性が重要であり、原料混合物を予め電気炉やキュポラ等で溶融し、急冷ガラス化で均質化を図ったプリメルト基材を用いるパウダーも開発されている(特許文献1、非特許文献2)。   With regard to the properties of the powder, it has been said that a granular powder that replaces the conventional powder has been developed, which has improved the working environment as well as reducing the vertical cracking and curling in terms of quality. Its adoption has also become common (Non-Patent Document 1). In addition, uniform meltability of powder is important for measures against vertical cracks in slabs, etc. Powder using a premelt base material in which the raw material mixture is previously melted in an electric furnace or cupola and homogenized by rapid cooling glass Have also been developed (Patent Document 1, Non-Patent Document 2).

プリメルト基材を製造する際には、珪石、石灰石、蛍石などのモールドパウダー用基材の原料を溶融した後、これを固化させる必要がある。固化の方法として、高圧水を吹きつけ、飛散させて冷却すると共に粒状化する方法(水砕法)が一般的に用いられている。固化した基材の回収が容易であること、次工程の粉砕工程に適した粒度が得られること、CaO−SiO2系などの化合物を生成させず、均質なガラス化した基材が得られることなどの利点から、水砕法が最適だからである。 When producing a premelt base material, it is necessary to melt the raw material of the mold powder base material such as silica, limestone, and fluorite, and then solidify it. As a method of solidification, a method (hydropulverization method) in which high-pressure water is blown, scattered and cooled and granulated is generally used. It is easy to recover the solidified base material, a particle size suitable for the next pulverization step is obtained, and a homogeneous vitrified base material is obtained without generating a compound such as CaO-SiO 2 system. This is because the water granulation method is optimal because of such advantages.

顆粒状パウダーを製造するに際しては、粉末原料に水を加えてスラリーとし、噴霧乾燥装置を用いて噴霧造粒して中空顆粒を製造する方法や、粉末原料に水加えて混練し、押し出し造粒、攪拌造粒、または転動造粒した後乾燥して中実顆粒を製造する方法がある(特許文献2)。   When producing granular powder, water is added to the powder raw material to form a slurry, and spray granulation is performed using a spray dryer to produce hollow granules, or water is added to the powder raw material to knead and extrusion granulation. There is a method of producing solid granules by stirring granulation or rolling granulation and then drying (Patent Document 2).

連続鋳造で製造される鋼は通常はキルド鋼であり、主にAlを0.015質量%以上添加することによって脱酸が行われる。これに対し、Al含有量が0.015質量%未満であり、Si含有量を0.05質量%以上としてSi脱酸を用いた鋼を連続鋳造することがある。これはAl含有量を低減することでオーステナイト結晶粒径を大きくして、高温での粒界破壊を予防することが主な目的である。以下このような鋼をSiキルド鋼ということもある。   Steel produced by continuous casting is usually killed steel, and deoxidation is mainly performed by adding 0.015% by mass or more of Al. On the other hand, the steel may be continuously cast using Si deoxidation with an Al content of less than 0.015 mass% and an Si content of 0.05 mass% or more. The main purpose of this is to increase the austenite crystal grain size by reducing the Al content and prevent intergranular fracture at high temperatures. Hereinafter, such steel is sometimes referred to as Si killed steel.

拘束性ブレークアウトは、メニスカス近傍で凝固殻が鋳型壁に固着して破断し、凝固殻の破断部が鋳造の進行とともに下方に移動し、最終的に破断部が鋳型下端に達してブレークアウトに到るものである。鋳型壁に温度測定端を設置しておけば、凝固殻の破断部が鋳型の下方に移動するに際してこの温度測定部を通過するときに温度が非定常に上昇するので、ブレークアウトの発生を予知することができる。予知信号が発生したときに鋳造速度を急減速すれば、凝固殻の破断部を修復してブレークアウト発生を防止することができる。   In the restraint breakout, the solidified shell adheres to the mold wall and breaks in the vicinity of the meniscus. It is to arrive. If a temperature measurement end is installed on the mold wall, the temperature rises unsteadily when passing through the temperature measurement part when the fractured part of the solidified shell moves below the mold, so it is predicted that a breakout will occur can do. If the casting speed is rapidly reduced when the prediction signal is generated, the breakage portion of the solidified shell can be repaired to prevent the occurrence of breakout.

特開昭59−27753号公報JP 59-27753 A 特開平9−57407号公報JP-A-9-57407 第3版鉄鋼便覧II製銑・製鋼、昭和54年10月、丸善株式会社発行(12・4・2)Third Edition Steel Handbook II Steelmaking and Steelmaking, published by Maruzen Co., Ltd. (October 1979) (12.4-2) 第4版鉄鋼便覧、平成14年7月、社団法人日本鉄鋼協会発行(12・4・2+)4th Edition Handbook of Steel, July 2002, issued by the Japan Iron and Steel Institute (12.4.2+) 第3版鉄鋼便覧I基礎、昭和54年10月、丸善株式会社発行(第157〜158頁)3rd Edition Steel Handbook I Basics, published by Maruzen Co., Ltd. (October 1979) (pages 157-158) J.N.Pontorie et.al., Rev. de Metall. Janvier, (2000), p.35J.N.Pontorie et.al., Rev. de Metall. Janvier, (2000), p.35

Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、拘束性ブレークアウトの予知信号が多発するという現象が見られた。Al含有量が0.010質量%以下となるとさらに発生頻度が増大する。ブレークアウトの発生には到らないものの、予知信号が発せられる度に鋳造速度を急減速する必要があるので、鋳造の生産性が低下すると同時に、凝固速度急減速部は非定常部位となって品質が低下する原因にもなる。連続鋳造用パウダーの選定に当たっては、プリメルト基材を用いた顆粒状のパウダーを用い、さらにパウダーフィルムの流入性を優先して塩基度の高くないパウダー(塩基度Bが1.0〜1.2程度)を選定しているが、それでもブレークアウト予知信号の発生は頻発している。   In the continuous casting of Si killed steel having an Al content of less than 0.015% by mass, a phenomenon that a predictive signal for restrictive breakout frequently occurred was observed. When the Al content is 0.010% by mass or less, the frequency of occurrence further increases. Although breakout does not occur, it is necessary to rapidly reduce the casting speed each time a prediction signal is issued, so the casting productivity decreases and the solidification speed rapid deceleration part becomes an unsteady part. It can also cause quality degradation. In selecting the powder for continuous casting, a granular powder using a premelt base material is used, and a powder having a low basicity (basicity B is 1.0 to 1.2, giving priority to the inflow of the powder film). However, breakout prediction signals are still frequently generated.

メニスカス近傍における鋳型温度を測定したところ、Al含有量が0.015質量%以上のAlキルド鋼やAl−Siキルド鋼に比較し、Al含有量が0.015質量%未満のSiキルド鋼においては鋳型温度が低くなっていることが判明した。メニスカス近傍における凝固シェルから鋳型への抜熱量において、Siキルド鋼は抜熱量が低くなっていることを意味する。また、鋳型全体の抜熱量についても、Siキルド鋼はそれ以外の品種に比較して抜熱量が低くなっていることがわかった。抜熱を緩冷却化するような高塩基度パウダーを用いていないにもかかわらず抜熱が低く、結果として拘束性ブレークアウト予知信号の多発という結果を招いている。   When the mold temperature in the vicinity of the meniscus was measured, compared with Al killed steel and Al-Si killed steel having an Al content of 0.015% by mass or more, in Si killed steel having an Al content of less than 0.015% by mass, It was found that the mold temperature was low. In the amount of heat removed from the solidified shell to the mold in the vicinity of the meniscus, Si killed steel means that the amount of heat removed is low. In addition, regarding the heat removal amount of the entire mold, it was found that the heat removal amount of Si killed steel was lower than that of other varieties. Despite not using a high basicity powder that slowly cools the heat removal, the heat removal is low, resulting in frequent occurrence of constraining breakout prediction signals.

本発明は、Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、拘束性ブレークアウトの予知信号発生を少なくすることのできる連続鋳造用パウダー製造方法及びその連続鋳造用パウダーを用いた鋼の連続鋳造方法を提供することを目的とする。   The present invention relates to a method for producing a powder for continuous casting and a powder for continuous casting capable of reducing the occurrence of a predictive signal of a constraining breakout when continuously casting Si killed steel having an Al content of less than 0.015% by mass. An object of the present invention is to provide a method for continuous casting of steel using steel.

上述のとおり、Al含有量が0.015質量%未満のSiキルド鋼を連続鋳造するに際し、メニスカス近傍における凝固シェルから鋳型への抜熱量が他の品種に比較して低くなっている。それが拘束性ブレークアウト予知信号多発の原因と推定される。   As described above, when continuously casting Si killed steel having an Al content of less than 0.015% by mass, the amount of heat removed from the solidified shell to the mold in the vicinity of the meniscus is lower than that of other varieties. This is presumed to be the cause of frequent occurrence of restrictive breakout prediction signals.

そこで、鋳造後に鋳型に付着したパウダーフィルム(メニスカスから50mm下の部位)を回収し、フィルムの断面観察を行った。その結果、Al含有量が少ない鋼を鋳造した際にはフィルム断面に気泡の発生が見られ、鋳造する品種のAl含有量が少なくなるほど気泡発生量が増大することが判明した。特に鋼中のAl含有量が0.010質量%以下の場合、気泡によるパウダーフィルムの空隙率が10%を超えることもある。このことから、Siキルド鋼においては、鋳造中のパウダーフィルムに気泡が発生して断熱性が増大し、特にメニスカス近傍で凝固殻から鋳型壁への抜熱量が減少し、拘束性ブレークアウト予知信号多発につながっているものと考えられる。   Therefore, the powder film (part 50 mm below the meniscus) attached to the mold after casting was collected, and the cross section of the film was observed. As a result, it was found that when steel with a low Al content was cast, bubbles were generated in the cross section of the film, and the amount of generated bubbles increased as the Al content of the varieties to be cast decreased. In particular, when the Al content in the steel is 0.010% by mass or less, the porosity of the powder film due to air bubbles may exceed 10%. For this reason, in Si killed steel, air bubbles are generated in the powder film being cast and heat insulation is increased. In particular, the amount of heat removed from the solidified shell to the mold wall is reduced near the meniscus, and a constraining breakout prediction signal is generated. It is thought that it is connected to frequent occurrence.

パウダーフィルム中の気泡中に含まれる気体の種類を特定したところ、水素の含有量が多く、気泡成分には水素ガスあるいは水蒸気ガスが含まれることが判明した。溶融パウダーフィルム中に溶解している水素又は水分の濃度が飽和溶解度以上となったときに、パウダーフィルム中で水蒸気となって気泡が生成するものと考えられる。   When the type of gas contained in the bubbles in the powder film was specified, it was found that the hydrogen content was large and the bubble component contained hydrogen gas or water vapor gas. It is considered that bubbles are generated as water vapor in the powder film when the concentration of hydrogen or moisture dissolved in the molten powder film becomes equal to or higher than the saturation solubility.

塩基性パウダーにおいては、溶融パウダーに水蒸気が溶解するとOH-として存在する。パウダーフィルムと接する溶鋼中にAlが含有されていると、パウダー中のOH-と鋼中のAlが反応し、水素成分は鋼中に移動するので、パウダー中のOH-濃度が減少する。そのため、パウダーフィルム中への気泡発生が少ない。一方、Al含有量が少ないSiキルド鋼の場合には、パウダー中のOH-濃度が減少することがなく、高い濃度に維持される。そのため、パウダーフィルム中に多くの気泡が発生することとなる。 In basic powder, it exists as OH when water vapor is dissolved in the molten powder. When Al is contained in the molten steel in contact with the powder film, OH − in the powder reacts with Al in the steel, and the hydrogen component moves into the steel, so that the OH concentration in the powder decreases. Therefore, there are few bubble generation in a powder film. On the other hand, in the case of Si killed steel with a low Al content, the OH concentration in the powder does not decrease and is maintained at a high concentration. Therefore, many bubbles are generated in the powder film.

以上のような仮説が成り立つとすると、もしパウダーフィルム中の水蒸気溶解量を低減することができれば、たとえAl含有量の少ないSiキルド鋼を鋳造する場合においても、バウダーフィルムへの気泡発生を低減させられるはずである。   If the above hypothesis holds, if the amount of water vapor dissolved in the powder film can be reduced, even when casting Si killed steel with a low Al content, the generation of bubbles in the powder film is reduced. Should be.

そこで、Al含有量の少ないSiキルド鋼の連続鋳造において、パウダー製造工程において水分が混入するチャンスの少ない製造方法を用いてパウダー製造を行ったところ、パウダーフィルム中への気泡発生量が減少し、凝固殻から鋳型壁への抜熱量が増大し、結果としてブレークアウト予知信号発生頻度を低減できることが判明した。   Therefore, in continuous casting of Si killed steel with low Al content, when powder production was performed using a production method with less chance of moisture mixing in the powder production process, the amount of bubbles generated in the powder film decreased, It was found that the amount of heat removed from the solidified shell to the mold wall increased, and as a result, the frequency of breakout prediction signal generation could be reduced.

さらに、パウダーフィルムの水蒸気飽和溶解度を増大させることができたら、パウダーフィルムの気泡発生をより一層低減できるはずである。そして、塩基度が1以上の組成においては塩基度が高くなるほど、塩基度が1未満の組成においては塩基度が低くなるほど、パウダーフィルム中への水蒸気溶解度が高くなることが知られている。   Furthermore, if the water vapor saturation solubility of the powder film can be increased, the bubble generation of the powder film should be further reduced. It is known that the solubility of the water vapor in the powder film increases as the basicity increases in a composition having a basicity of 1 or more and as the basicity decreases in a composition having a basicity of less than 1.

そこで、Al含有量の少ないSiキルド鋼の連続鋳造において、従来よりも高い塩基度を有するパウダーを用いて鋳造を行ったところ、バウダーフィルム中への気泡発生量が減少し、凝固殻から鋳型壁への抜熱量が増大し、結果としてブレークアウト予知信号発生頻度を低減できることが判明した。   Therefore, in continuous casting of Si killed steel with a low Al content, when casting was performed using powder having a higher basicity than before, the amount of bubbles generated in the Bower film was reduced, and the solidified shell to the mold wall It has been found that the amount of heat extracted from the heat source increases, and as a result, the frequency of breakout prediction signals can be reduced.

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)Al含有量が0.015質量%未満の鋼の連続鋳造に用いるための連続鋳造用パウダーの製造方法であって、パウダー原料を溶融して凝固するに際し、水を使用することなく空気を吹き付けることによって冷却、破砕させることを特徴とする連続鋳造用パウダーの製造方法。
(2)下記(1)式で示す塩基度Bが1.4以上であることを特徴とする上記(1)に記載の連続鋳造用パウダーの製造方法。
B=T.CaO/SiO2 (1)
ここで、T.CaOはパウダー中のCaがすべてCaOであるとしたときのCaO含有量(質量%)、SiO2はパウダー中のSiO2含有量(質量%)を表す。
(3)Al含有量が0.015質量%未満の鋼を連続鋳造するに際し、上記(1)又は(2)に記載の方法で製造した連続鋳造用パウダーを用いることを特徴とする鋼の連続鋳造方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) A method for producing a powder for continuous casting for use in continuous casting of steel having an Al content of less than 0.015 mass%, wherein air is used without using water when the powder raw material is melted and solidified. A method for producing powder for continuous casting, characterized by cooling and crushing by spraying.
(2) The method for producing a powder for continuous casting as described in (1) above, wherein the basicity B represented by the following formula (1) is 1.4 or more.
B = T. CaO / SiO 2 (1)
Here, T.W. CaO represents the CaO content (% by mass) when Ca in the powder is all CaO, and SiO 2 represents the SiO 2 content (% by mass) in the powder.
(3) When continuously casting steel having an Al content of less than 0.015% by mass, the continuous casting powder produced by the method described in (1) or (2) above is used. Casting method.

本発明の方法で製造された連続鋳造用パウダーを用いた連続鋳造においては、Al含有量が少ないSiキルド鋼の連続鋳造においてパウダーフィルムへの気泡発生を低減し、凝固殻から鋳型壁への抜熱量を増大し、結果として拘束性ブレークアウトの予知信号発生頻度を低減できるので、鋳造速度変動による品質非定常部の発生頻度を低減し、ブレークアウト発生頻度をも低減することができる。   In the continuous casting using the powder for continuous casting produced by the method of the present invention, the generation of bubbles in the powder film is reduced in the continuous casting of Si-killed steel with low Al content, and the solid shell is removed from the mold wall. Since the amount of heat can be increased, and as a result, the frequency of occurrence of a predictive signal for constraining breakout can be reduced, the frequency of occurrence of quality unsteady parts due to fluctuations in casting speed can be reduced, and the frequency of occurrence of breakout can also be reduced.

本発明の連続鋳造用パウダーが対象とするのは、Al含有量が0.015質量%以下の鋼の連続鋳造である。脱炭精錬によって溶鋼中に残存する溶存酸素を脱酸するためにSiを0.05質量%以上含有させるので、ここでは対象とする鋼をSiキルド鋼と呼ぶ。鋼の炭素濃度は特に規定しないが、0.01〜0.08質量%程度の低炭素鋼が主な対象となり、0.09〜0.40質量%程度の中炭素鋼についても鋳造される。また、鋳造する鋳片については特に限定しないが、スラブ連続鋳造が主要な対象となる。なお、本明細書において、鋼中Al含有量はトータルAlを意味する。   The continuous casting powder of the present invention is intended for continuous casting of steel having an Al content of 0.015% by mass or less. In order to deoxidize the dissolved oxygen remaining in the molten steel by decarburization refining, Si is contained in an amount of 0.05 mass% or more. Therefore, the target steel is referred to as Si killed steel here. The carbon concentration of the steel is not particularly specified, but low carbon steel of about 0.01 to 0.08 mass% is the main target, and medium carbon steel of about 0.09 to 0.40 mass% is also cast. Moreover, although it does not specifically limit about the slab to cast, Slab continuous casting becomes a main object. In the present specification, the Al content in steel means total Al.

上記Siキルド鋼を連続鋳造するに際し、連続鋳造用パウダーとしては最も一般的なパウダーが用いられていた。溶融滓化速度を一定にし、均質な溶融スラグプールを得るため、プリメルト基材が用いられることが多く、また溶鋼表面の保温性を良くするため顆粒状パウダーが用いられていた。特に縦割れが発生しやすい品種でもないので、パウダーフィルムの流入性向上を主眼とし、塩基度1.0〜1.2程度のものが使用されていた。   When continuously casting the Si killed steel, the most common powder was used as the powder for continuous casting. In order to obtain a uniform molten slag pool with a constant melt hatching rate, a premelt base material is often used, and granular powder has been used to improve the heat retention of the molten steel surface. In particular, since it is not a variety in which vertical cracking is likely to occur, a powder having a basicity of about 1.0 to 1.2 has been used mainly for improving the inflowability of the powder film.

なお、本発明において、塩基度Bは下記(1)式のように定める。
B=T.CaO/SiO2 (1)
ここで、T.CaOはパウダー中のCaがすべてCaOであるとしたときのCaO含有量(質量%)、SiO2はパウダー中のSiO2含有量(質量%)を表す。
In the present invention, the basicity B is determined by the following formula (1).
B = T. CaO / SiO 2 (1)
Here, T.W. CaO represents the CaO content (% by mass) when Ca in the powder is all CaO, and SiO 2 represents the SiO 2 content (% by mass) in the powder.

連続鋳造に際しては、拘束性ブレークアウト発生を防止するため、鋳型壁内に熱電対を埋め込み、ブレークアウト予知信号を発生させている。拘束性ブレークアウトの原因となる凝固殻の破断部が鋳型の下方に移動するに際し、破断部がこの熱電対設置部を通過するときに温度が非定常に上昇するので、ブレークアウトの発生を予知することができる。予知信号が発生したときに鋳造速度を急減速すれば、凝固殻の破断部を修復してブレークアウト発生を防止することができる。   In continuous casting, a thermocouple is embedded in the mold wall to generate a breakout prediction signal in order to prevent the occurrence of a constraining breakout. As the fractured part of the solidified shell, which causes a constraining breakout, moves below the mold, the temperature rises unsteadily when the fractured part passes through this thermocouple installation, so it is predicted that a breakout will occur can do. If the casting speed is rapidly reduced when the prediction signal is generated, the breakage portion of the solidified shell can be repaired to prevent the occurrence of breakout.

ブレークアウト予知信号の発生頻度を、鋼のAl含有量レベル毎に比較してみた。いずれも鋼のSi含有量は0.05質量%以上であり、Al含有量が0.015質量%以上についてはAl−Siキルド鋼と呼ぶことができ、Al含有量が0.015質量%未満についてはSiキルド鋼と呼ぶことができる。図1は、横軸をAl含有量、縦軸をブレークアウト予知信号発生頻度とした図である。図1から明らかなように、鋼中Al含有量が少なくなるほど、ブレークアウト予知信号の発生頻度が増大しており、Al含有量0.015質量%未満で特に顕著である。   The occurrence frequency of the breakout prediction signal was compared for each Al content level of steel. In any case, the Si content of the steel is 0.05% by mass or more, and the Al content of 0.015% by mass or more can be called Al-Si killed steel, and the Al content is less than 0.015% by mass. Can be called Si killed steel. FIG. 1 is a diagram in which the horizontal axis represents the Al content and the vertical axis represents the breakout prediction signal generation frequency. As is clear from FIG. 1, as the Al content in the steel decreases, the occurrence frequency of the breakout prediction signal increases, which is particularly remarkable when the Al content is less than 0.015% by mass.

ブレークアウト予知信号発生が頻発する品種においては、ブレークアウト発生を防止する対応が間に合わずにブレークアウトが発生してしまうこともある。Al含有量が0.015質量%以上のAl−Siキルド鋼ではブレークアウトが全く発生しないのに対し、Al含有量が0.010質量%以下の品種ではブレークアウト発生率が1.7%程度となっていた。   In a product that frequently generates a breakout prediction signal, a breakout may occur because the countermeasure for preventing the occurrence of the breakout is not in time. Breakout does not occur at all in Al-Si killed steel with an Al content of 0.015 mass% or more, whereas the breakout occurrence rate is about 1.7% for varieties with an Al content of 0.010 mass% or less. It was.

そこで、鋳型内での凝固殻と鋳型壁との間の熱伝達状況について、鋼のAl含有量毎に調査を行った。調査は3つの観点から行った。第1は、鋳型長辺面全体の冷却水温度上昇代を測定し、これから鋳型長辺面全体における抜熱量を比較した。第2は、鋳型内の鋳造方向複数箇所に埋め込まれた熱電対の温度を測定し、鋳造方向での温度分布について比較した。第3は、鋳片断面の表面近傍における二次デンドライトアーム間隔に着目し、このアーム間隔から鋳造方向複数箇所における抜熱量の推定を行った。鋳造を行った品種は、Al含有量0.008質量%(低Al品種)、0.017質量%(中Al品種)、0.036質量%(高Al品種)であり、Si含有量は低Al品種では0.05質量%以上、中Al品種と高Al品種では0.006〜0.01質量%である。使用した連続鋳造用パウダーはプリメルト基材を用いた顆粒状パウダーであり、その塩基度は1.1〜1.2程度であった。   Therefore, the state of heat transfer between the solidified shell and the mold wall in the mold was investigated for each Al content of steel. The survey was conducted from three viewpoints. First, the cooling water temperature rise allowance of the entire mold long side surface was measured, and the amount of heat removed from the entire mold long side surface was compared. Second, the temperature of thermocouples embedded in a plurality of locations in the casting direction in the mold was measured, and the temperature distribution in the casting direction was compared. Third, paying attention to the secondary dendrite arm spacing in the vicinity of the surface of the slab cross section, the amount of heat removal at a plurality of locations in the casting direction was estimated from this arm spacing. Casting varieties had an Al content of 0.008 mass% (low Al varieties), 0.017 mass% (medium Al varieties), and 0.036 mass% (high Al varieties), and the Si content was low. It is 0.05 mass% or more for Al varieties, and 0.006 to 0.01 mass% for medium Al varieties and high Al varieties. The continuous casting powder used was a granular powder using a premelt base material, and its basicity was about 1.1 to 1.2.

鋳型長辺面の冷却水温度上昇代に基づいて長辺面全体の面平均熱流束を求めた。鋳造速度は1.5m/min程度とした。その結果、中Al品種、高Al品種では面平均熱流束が1500kW/m2・sec程度であったのに対し、低Al品種では1100kW/m2・sec程度と低い面平均熱流束を示した。 The surface average heat flux of the entire long side surface was determined based on the cooling water temperature rise margin on the long side surface of the mold. The casting speed was about 1.5 m / min. As a result, the surface average heat flux was about 1500 kW / m 2 · sec for the medium Al and high Al varieties, while the surface average heat flux was about 1100 kW / m 2 · sec for the low Al variety. .

鋳型壁中には、鋳造方向に120mmピッチで4箇所に熱電対が埋め込まれている。最上段の熱電対はメニスカスから65mmの位置にある。鋳型壁表面から熱電対先端までの距離は5mm程度である。低Al品種と中Al品種について熱電対温度を測定したところ、図2に示す結果が得られた。鋳造方向2〜4段目の熱電対温度は品種によってあまり変化しないが、メニスカス近傍に設置した熱電対温度については、中Al品種が160℃程度であるのに対して低Al品種は110℃程度と大幅に低い温度が観察された。これより、低Al品種においては、特にメニスカス近傍において凝固殻から鋳型壁への抜熱が低下していることが明らかである。   In the mold wall, thermocouples are embedded at four locations at a pitch of 120 mm in the casting direction. The uppermost thermocouple is 65 mm from the meniscus. The distance from the mold wall surface to the thermocouple tip is about 5 mm. When the thermocouple temperature was measured for the low Al and medium Al varieties, the results shown in FIG. 2 were obtained. The thermocouple temperature in the 2nd to 4th stages in the casting direction does not change much depending on the type, but the temperature of the thermocouple installed near the meniscus is about 160 ° C for the medium Al type, and about 110 ° C for the low Al type. A significantly lower temperature was observed. From this, it is clear that in the low Al varieties, the heat removal from the solidified shell to the mold wall is reduced particularly in the vicinity of the meniscus.

鋳片断面の表面近傍における二次デンドライトアーム間隔を測定し、これから鋳片各部位の冷却速度CR(℃/min)を計算した。冷却速度CRとは、液相線温度から固相線温度までの間の平均冷却速度を意味する。冷却速度CRの計算には下記(2)式を用いた。
CR=(λ2/770)(-1/0.41) (2)
λ2:二次デンドライトアーム間隔(mm)
The secondary dendrite arm interval in the vicinity of the surface of the slab cross section was measured, and the cooling rate CR (° C./min) of each part of the slab was calculated from this. The cooling rate CR means an average cooling rate between the liquidus temperature and the solidus temperature. The following formula (2) was used to calculate the cooling rate CR.
CR = (λ 2/770) (-1 / 0.41) (2)
λ 2 : Secondary dendrite arm spacing (mm)

結果を図3に示す。図3(a)において、表面から2mm深さでの二次デンドライトアーム間隔に基づいてメニスカス近傍における冷却速度を推定した。図3(b)において、表面から15mm深さでの二次デンドライトアーム間隔に基づいて鋳型中位から下部にかけての冷却速度を推定した。図から明らかなように、表面から15mm深さでの二次デンドライトアーム間隔から計算した冷却速度は鋼のAl含有量による差が見られないが、表面から2mm、即ちメニスカス近傍における計算した冷却速度は鋼のAl含有量の影響を受け、Al含有量が0.008質量%の品種は、それ以外の品種と比較して冷却速度が低下していることがわかる。   The results are shown in FIG. In FIG. 3A, the cooling rate in the vicinity of the meniscus was estimated based on the secondary dendrite arm interval at a depth of 2 mm from the surface. In FIG. 3B, the cooling rate from the middle of the mold to the lower part was estimated based on the secondary dendrite arm spacing at a depth of 15 mm from the surface. As is clear from the figure, the cooling rate calculated from the secondary dendrite arm spacing at a depth of 15 mm from the surface does not show a difference due to the Al content of the steel, but the calculated cooling rate at 2 mm from the surface, that is, near the meniscus. Is affected by the Al content of steel, and it can be seen that the cooling rate of the varieties having an Al content of 0.008% by mass is lower than that of other varieties.

以上の結果から、同じ連続鋳造用パウダーを用いて鋳造しているにもかかわらず、低Al品種においては、中Al品種・高Al品種と対比してメニスカス近傍における凝固殻から鋳型壁への抜熱量が大幅に低下していることが判明した。品種別に、凝固殻と鋳型壁との間に存在するパウダーフィルム厚が変化している傾向は見られなかったので、抜熱量の差はパウダーフィルム厚の差ではない。また、パウダーフィルムの結晶化率についても、品種毎に結晶化率が変化する傾向は見られなかったので、抜熱量の差は結晶化率の差でもない。   From the above results, in spite of casting using the same continuous casting powder, in the low Al varieties, the extraction from the solidified shell near the meniscus to the mold wall is different from the medium Al varieties and high Al varieties. It was found that the amount of heat was greatly reduced. Since there was no tendency for the thickness of the powder film existing between the solidified shell and the mold wall to vary by type, the difference in the amount of heat removal is not the difference in the thickness of the powder film. In addition, regarding the crystallization rate of the powder film, since there was no tendency for the crystallization rate to change for each type, the difference in the amount of heat removal is not the difference in the crystallization rate.

そこで、鋳造が完了した鋳型の壁面に残存しているパウダーフィルムを採取し、調査を行った。メニスカス近傍の抜熱挙動に大きな影響を与えるメニスカスから50mm程度の位置からパウダーフィルムを採取した。   Therefore, a powder film remaining on the wall of the mold after casting was collected and investigated. A powder film was sampled from a position about 50 mm from the meniscus, which has a large effect on the heat removal behavior near the meniscus.

図4に、低Al品種を鋳造した後に回収したパウダーフィルムの断面写真を示す。写真中に見られる黒い丸は空隙である。フィルム断面の空隙は、低Al品種鋳造後のフィルムで最も激しく、中Al品種の場合はより少なく、高Al品種鋳造後のフィルムではほとんど観察されなかった。断面写真に基づいてパウダーフィルムの空隙率を算出し、鋼中Al含有量と空隙率との関係をプロットしたのが図5である。図5からも明らかなように、低Al品種では格段に空隙率が高い値を示している。鋼中のAl含有量が低くなるほど、凝固殻と鋳型壁との間に存在するパウダーフィルム中に気泡が多量に存在していることが明らかである。   FIG. 4 shows a cross-sectional photograph of a powder film collected after casting a low Al variety. The black circles seen in the photos are voids. The voids in the film cross section were most severe in the film after casting the low Al type, less in the medium Al type, and hardly observed in the film after casting the high Al type. FIG. 5 is a graph in which the porosity of the powder film is calculated based on the cross-sectional photograph and the relationship between the Al content in the steel and the porosity is plotted. As is clear from FIG. 5, the low Al variety shows a remarkably high porosity. It is clear that the lower the Al content in the steel, the more air bubbles are present in the powder film existing between the solidified shell and the mold wall.

以上の結果から、低Al品種の連続鋳造でメニスカス近傍の抜熱量が低下する原因は、パウダーフィルム中に気泡が多発して空隙率が高くなることが原因であると推定されるに到った。   From the above results, it was estimated that the cause of the decrease in the amount of heat removal in the vicinity of the meniscus in the continuous casting of low Al varieties was caused by the frequent occurrence of bubbles in the powder film and the increased porosity. .

次に、パウダーフィルム中の気泡に含まれる気体のガス分析を行い、質量数別スペクトル積算強度比率によって求めた。その結果、最も多く含まれるガスは窒素あるいは一酸化炭素であるものの、いずれのサンプルにも水素ガスが7〜16%の割合で含まれていることが特徴であった。水素ガスが検出されたことから、溶融スラグと水蒸気との間の相互作用が、パウダーフィルム中の気泡の発生と関係しているものと推定される。   Next, gas analysis of the gas contained in the bubbles in the powder film was performed, and the spectrum integrated intensity ratio by mass number was obtained. As a result, the most abundant gas was nitrogen or carbon monoxide, but each sample was characterized by containing hydrogen gas at a ratio of 7 to 16%. Since hydrogen gas was detected, it is presumed that the interaction between the molten slag and water vapor is related to the generation of bubbles in the powder film.

非特許文献3によると、溶融スラグの水蒸気溶解度は、温度及びスラグ組成一定の条件下では水蒸気分圧の平方根に比例する。また、塩基度が1以上の塩基性スラグにおいては、水蒸気はスラグ中でOH-イオンの形で溶解すると考えられている。また、塩基度が1以上の領域において、塩基度が大きくなるほど溶融スラグ中への水蒸気溶解度が大きくなる。一方、塩基度が1以下の酸性スラグにおいては、スラグ中で水蒸気は酸素を放出してSi−O−Si結合を切断する形態で溶解すると考えられている。また、塩基度が1以下の領域において、塩基度が低くなるほど溶融スラグ中への水蒸気溶解度が大きくなる。 According to Non-Patent Document 3, the water vapor solubility of molten slag is proportional to the square root of the water vapor partial pressure under the condition of constant temperature and slag composition. Further, in basic slag having a basicity of 1 or more, it is considered that water vapor is dissolved in the form of OH - ions in the slag. Moreover, in the region where the basicity is 1 or more, the water solubility in the molten slag increases as the basicity increases. On the other hand, in acidic slag having a basicity of 1 or less, it is considered that water vapor dissolves in a form that releases oxygen and breaks Si—O—Si bonds in the slag. Further, in a region where the basicity is 1 or less, the lower the basicity, the higher the water vapor solubility in the molten slag.

非特許文献4によると、溶融スラグと溶鋼とが接触している界面において、溶鋼中のHがスラグ中に移行してOH-イオンとなる反応と、溶融スラグ中のOH-イオンが溶鋼中の含有Alと反応し溶鋼中にHとして移行する反応の2種類が考えられている。これから、低Al品種鋳造時には溶鋼との反応でパウダーフィルム中のOH-イオンが増大する傾向にあるのに対し、中・高Al品種鋳造時にはパウダーフィルム中のOH-イオンがそれほどは増大しないかあるいは減少する傾向にあることが推定される。 According to Non-Patent Document 4, at the interface of the molten slag and the molten steel is in contact, and H in the molten steel is transferred into the slag OH - reaction and as the ions, in the molten slag OH - ions in the molten steel Two types of reactions that react with contained Al and migrate as H in molten steel are considered. From this, OH - ions in the powder film tend to increase due to reaction with molten steel when casting low Al type, whereas OH - ions in powder film do not increase so much when casting medium and high Al type, or It is estimated that it tends to decrease.

パウダーフィルム中の気泡が、中・高Al品種では観察されずに低Al品種で観察される事実、気泡中には水素が観察される事実、及び上記非特許文献3、4に記載の事実を組み合わせると、以下のような推論を組み立てることができる。即ち、中・高Al品種においては、溶鋼中のAlが溶融プールのパウダーと反応してパウダー中のOH-イオン濃度を低下させるので気泡が発生しないのに対し、低Al品種においては溶鋼中のAlが少ないのでパウダー中のOH-イオン濃度を低下させる程度が低く、OH-イオンが高い濃度でパウダー中に残存する。その結果、低Al品種ではOH-イオン濃度がパウダーフィルムの溶解濃度を超え、多量の気泡としてパウダーフィルム中に取り込まれることとなる。 The fact that bubbles in the powder film are not observed in the medium and high Al varieties but is observed in the low Al varieties, the fact that hydrogen is observed in the bubbles, and the facts described in Non-Patent Documents 3 and 4 above. When combined, the following inferences can be assembled. That is, in the medium and high Al varieties, Al in the molten steel reacts with the powder in the molten pool to reduce the OH ion concentration in the powder, so no bubbles are generated. since Al is less in powder OH - low enough to reduce the ion concentration, OH - remaining in the powder ions at high concentrations. As a result, in the low Al variety, the OH ion concentration exceeds the dissolution concentration of the powder film and is taken into the powder film as a large amount of bubbles.

以上のような推論に立つと、パウダーフィルム中の水蒸気溶解量を低減することができれば、たとえ低Al品種であってもパウダーフィルムからの水蒸気の発生を防ぐことができ、気泡発生を抑えられる可能性がある。   Based on the above inferences, if the amount of water vapor dissolved in the powder film can be reduced, it is possible to prevent the generation of water vapor from the powder film, even if it is a low Al variety, and suppress the generation of bubbles. There is sex.

ところで、前述のとおり、プリメルトパウダーのプリメルト基材を製造する際には、原料を溶解した後、高圧水を吹きつけ、飛散させて冷却すると共に粒状化する水砕法が一般的に用いられている。この水砕に際して、プリメルト基材中に水蒸気が多く含まれる可能性がある。   By the way, as described above, when manufacturing a premelt base material of premelt powder, a water granulation method is generally used in which a raw material is dissolved and then sprayed with high-pressure water, sprayed, cooled and granulated. Yes. During the water granulation, there is a possibility that a large amount of water vapor is contained in the premelt base material.

そこで、プリメルト基材の製造に際し、溶融状体の基材に高圧空気を吹き付け、飛散させて冷却すると共に粒状化する方法(風砕法)による製造方法を適用した。   Therefore, in the production of the pre-melt base material, a production method by a method (air crushing method) in which high-pressure air is blown onto the base material of the molten body, is dispersed and cooled, and granulated is applied.

その上で、Al含有量が0.004〜0.010質量%であるSiキルド鋼を対象とし、風砕法(本発明法)と水砕法(従来法)で製造したパウダーを用いて連続鋳造を行い、結果について比較を行った。Al含有量が0.017質量%のAlキルド鋼の連続鋳造に水砕法で製造したパウダーを用いた連続鋳造も併せて行った。   On top of that, continuous casting is performed using powder produced by the air crushing method (the present invention method) and the water crushing method (conventional method) for Si killed steel having an Al content of 0.004 to 0.010 mass%. The results were compared. Continuous casting using powder produced by a water granulation method was also performed in addition to continuous casting of Al killed steel having an Al content of 0.017% by mass.

図6には、パウダー製造方法・鋳造品種とパウダーフィルム空隙率との関係を、図7にはパウダー製造方法・鋳造品種と鋳型熱電対温度との関係を示す。いずれも、横軸はパウダーの塩基度とした。図7の鋳型熱電対温度については、メニスカスから65mm位置にある1段目の熱電対温度と、さらに120mm下に位置する2段目熱電対温度との差を表示している。鋳造速度は1.5〜1.7m/minの範囲であった。   FIG. 6 shows the relationship between the powder manufacturing method / casting type and the powder film porosity, and FIG. 7 shows the relationship between the powder manufacturing method / casting type and the mold thermocouple temperature. In all cases, the horizontal axis represents the basicity of the powder. As for the mold thermocouple temperature in FIG. 7, the difference between the first-stage thermocouple temperature 65 mm from the meniscus and the second-stage thermocouple temperature 120 mm below is displayed. The casting speed was in the range of 1.5 to 1.7 m / min.

水砕法によって急冷、破砕されたプリメルト基材を用いて製造した顆粒状パウダーを使って鋳造したSiキルド鋼の場合(図中○)、パウダーフィルムに多数の空隙が観察されたのに対して、風砕法によって破砕したプリメルト基材を用いて製造した顆粒状パウダーを使って鋳造したSiキルド鋼の場合(図中□)、いずれのパウダー塩基度においても、パウダーフィルム内の空隙率が低かった(図6)。そのため前者では鋳型熱電対温度が特に湯面に相当する位置で低く、異常な緩冷却となったのに対し、後者では湯面位置での熱電対温度は高くなった(図7)。   In the case of Si killed steel cast using granular powder produced using a pre-melt base material that has been quenched and crushed by the water granulation method (○ in the figure), many voids were observed in the powder film, In the case of Si killed steel cast using granular powder produced using a premelt base material crushed by the air crushing method (□ in the figure), the porosity in the powder film was low at any powder basicity ( FIG. 6). Therefore, in the former, the mold thermocouple temperature was low particularly at the position corresponding to the molten metal surface, and abnormal slow cooling was achieved, whereas in the latter, the thermocouple temperature at the molten metal surface position was high (FIG. 7).

この結果として、後述の通り拘束性ブレークアウトの予知信号発生頻度を低減できるので、鋳造速度変動による品質非定常部の発生頻度を低減し、ブレークアウト発生頻度をも低減することができる。   As a result, as described later, the frequency of occurrence of a predictive signal for a constraining breakout can be reduced, so that the frequency of occurrence of a quality unsteady part due to fluctuations in casting speed can be reduced and the frequency of occurrence of breakout can also be reduced.

さらに、パウダーフィルムの水蒸気溶解度を増大させることができれば、たとえ低Al品種であってもパウダーフィルムからの水蒸気の発生を防ぐことができ、気泡発生を抑えられる可能性がある。そして、非特許文献3にも記載のとおり、塩基度が1以上のスラグであれば塩基度が高くなるほど、水蒸気溶解度が増大することが知られているので、パウダーの塩基度を高くすることにより、低Al品種であってもパウダーフィルム中への気泡発生を抑えられる可能性があることを見出した。   Furthermore, if the water vapor solubility of the powder film can be increased, the generation of water vapor from the powder film can be prevented even if it is a low Al variety, and the generation of bubbles may be suppressed. And, as described in Non-Patent Document 3, it is known that if the basicity is slag of 1 or more, the higher the basicity is, the more water vapor solubility is increased. By increasing the basicity of the powder, The present inventors have found that there is a possibility that the generation of bubbles in the powder film can be suppressed even in a low Al variety.

そこで前述の図6、7に示すように、本発明方法で製造した水分含有量の少ないパウダーを用い、Al含有量が0.004〜0.010質量%であるSiキルド鋼を対象とし、塩基度の値を1.0〜2.22の範囲で種々変更したパウダーを準備し、Siキルド鋼でのスラブ連続鋳造状況がパウダーの塩基度によってどのように変化するのかを評価した。   Therefore, as shown in FIGS. 6 and 7, the powder having a low water content produced by the method of the present invention is used, and Si killed steel having an Al content of 0.004 to 0.010% by mass is used as a base. The powder which changed variously the value of the degree in the range of 1.0-2.22 was prepared, and it was evaluated how the slab continuous casting situation in Si killed steel changes with the basicity of the powder.

塩基度の低いパウダーでは、パウダーフィルム中に空隙が多く、これにともなう抜熱の低下でメニスカス部の熱電対温度が低くなる。一方、塩基度の高いパウダーを用いると、パウダーフィル中の空隙は少なくなり、メニスカス部の熱電対温度も高く、Alキルド鋼と同様の安定鋳造ができる。   In the powder having low basicity, there are many voids in the powder film, and the thermocouple temperature in the meniscus portion is lowered due to the decrease in heat removal associated therewith. On the other hand, when a powder having a high basicity is used, voids in the powder fill are reduced, the thermocouple temperature of the meniscus portion is high, and stable casting similar to Al killed steel can be performed.

即ち、Al含有量が0.015質量%未満の鋼の連続鋳造に際しては、本発明方法で製造したパウダーであって、かつ上記(1)式で示す塩基度Bが1.4以上の連続鋳造用パウダーを用いることにより、パウダーフィルム中の気泡発生を抑え、凝固殻から鋳型壁への抜熱量を確保できることを明らかにした。この結果として、後述の通り拘束性ブレークアウトの予知信号発生頻度を低減できるので、鋳造速度変動による品質非定常部の発生頻度を低減し、ブレークアウト発生頻度をも低減することができる。パウダーの塩基度が1.8以上であればより好ましい。一方、パウダー塩基度が高すぎるとパウダーフィルム凝固温度が高くなり液体スラグによる鋳片潤滑機能を著しく損なうという問題が生じるが、パウダー塩基度が2.3以下であればそのような問題は生じないので好ましい。   That is, in the continuous casting of steel having an Al content of less than 0.015% by mass, the continuous casting is a powder produced by the method of the present invention, and the basicity B represented by the above formula (1) is 1.4 or more. It was clarified that the use of the powder for powder can suppress the generation of bubbles in the powder film and secure the amount of heat removed from the solidified shell to the mold wall. As a result, as described later, the frequency of occurrence of a predictive signal for a constraining breakout can be reduced, so that the frequency of occurrence of a quality unsteady part due to fluctuations in casting speed can be reduced and the frequency of occurrence of breakout can also be reduced. More preferably, the basicity of the powder is 1.8 or more. On the other hand, if the powder basicity is too high, the powder film coagulation temperature becomes high, and there is a problem that the slab lubricating function by the liquid slag is remarkably impaired. However, if the powder basicity is 2.3 or less, such a problem does not occur. Therefore, it is preferable.

なお、Al含有量が0.010質量%以下の鋼においては改善効果がより顕著となる。また、スラブ連続鋳造において効果が顕著に表れる。   In addition, the improvement effect becomes more remarkable in the steel having an Al content of 0.010% by mass or less. In addition, the effect is remarkable in slab continuous casting.

垂直曲げ型のスラブ連続鋳造装置による連続鋳造において、連続鋳造用パウダーとして本発明パウダー及び従来パウダーを用いて連続鋳造を行い、ブレークアウト予知信号の発生頻度を、鋼のAl含有量レベル毎に比較してみた。いずれも鋼のSi含有量は0.05質量%以上である。図8は、横軸をAl含有量、縦軸をブレークアウト予知信号発生頻度とした図である。   In continuous casting with a vertical bend type slab continuous casting machine, continuous casting is performed using the powder of the present invention and conventional powder as continuous casting powder, and the frequency of occurrence of breakout prediction signals is compared for each Al content level of steel. I tried to. In any case, the Si content of the steel is 0.05% by mass or more. FIG. 8 is a diagram in which the horizontal axis represents the Al content and the vertical axis represents the breakout prediction signal generation frequency.

本発明パウダー(パウダー2、3)は、パウダー製造工程にてパウダー原料をキュポラ炉にて溶融し、炉から出湯したスラグに高圧空気を吹き付け風砕したプリメルト基材をもとに製造した連続鋳造用パウダーである。また従来パウダー(パウダー1)は、炉から出湯したスラグに水を吹き付け水砕したプリメルト基材を使用したパウダーである。パウダー1、2は同一組成の基材を用い、塩基度がともに1.2である。パウダー3は塩基度が1.8である。   The present invention powder (powder 2, 3) is a continuous casting manufactured based on a premelt base material obtained by melting powder raw materials in a cupola furnace in a powder manufacturing process and blowing high pressure air onto slag discharged from the furnace and crushed. For powder. Conventional powder (powder 1) is a powder using a premelt base material obtained by spraying water on slag discharged from a furnace and granulating it. Powders 1 and 2 use base materials of the same composition and have a basicity of 1.2. Powder 3 has a basicity of 1.8.

図8から明らかなように、Al含有量が0.015質量%未満のSiキルド鋼において、パウダー1(●)を用いた場合はブレークアウト予知信号発生頻度が極めて高頻度であるのに対し、パウダー2(○)はパウダー1と同一成分であるにもかかわらずブレークアウト予知信号発生頻度が激減していることがわかる。特に、Al含有量が0.010質量%以下の品種において効果が顕著である。さらに塩基度の高いパウダー3(◎)ではより大きな改善が見られる。   As apparent from FIG. 8, in the Si killed steel having an Al content of less than 0.015% by mass, when the powder 1 (●) is used, the frequency of occurrence of breakout prediction signals is extremely high, It can be seen that the frequency of occurrence of the breakout prediction signal is drastically reduced even though the powder 2 (◯) is the same component as the powder 1. In particular, the effect is remarkable in varieties having an Al content of 0.010% by mass or less. Furthermore, the powder 3 (◎) having a higher basicity shows a greater improvement.

ブレークアウト発生頻度についても、Al含有量が0.010質量%以下でパウダー1を用いた場合には1.7%程度のブレークアウト発生頻度であったのに対し、パウダー2、3を用いた場合には、どのAl含有量レベルであってもブレークアウトは一切発生しなかった。   Regarding the breakout occurrence frequency, when the Al content was 0.010% by mass or less and the powder 1 was used, the breakout occurrence frequency was about 1.7%, whereas the powders 2 and 3 were used. In some cases, no breakout occurred at any Al content level.

鋼中Al含有量とブレークアウト予知信号発生率の関係を示す図である。It is a figure which shows the relationship between Al content in steel, and a breakout prediction signal generation rate. 鋼中Al含有量と鋳造方向別鋳型内熱電対温度との関係を示す図である。It is a figure which shows the relationship between Al content in steel, and the thermocouple temperature in a casting mold according to casting direction. 鋼中Al含有量と鋳片の冷却速度との関係を示す図であり、(a)は表面から2mm深さでの二次デンドライトアーム間隔による値、(b)は表面から15mm深さでの二次デンドライトアーム間隔による値である。It is a figure which shows the relationship between Al content in steel, and the cooling rate of a slab, (a) is a value by the secondary dendrite arm space | interval in the depth of 2 mm from the surface, (b) is in the depth of 15 mm from the surface. The value is based on the secondary dendrite arm spacing. 低Al品種鋳造後のパウダーフィルムの断面写真を示す図である。It is a figure which shows the cross-sectional photograph of the powder film after low Al kind casting. 鋼中Al含有量とパウダーフィルム中空隙率との関係を示す図である。It is a figure which shows the relationship between Al content in steel, and the porosity in a powder film. パウダー製造方法、鋳造品種、パウダー塩基度とパウダーフィルム空隙率との関係を示す図である。It is a figure which shows the relationship between a powder manufacturing method, a casting kind, powder basicity, and a powder film porosity. パウダー製造方法、鋳造品種、パウダー塩基度と鋳型熱電対温度との関係を示す図である。It is a figure which shows the relationship between powder manufacturing method, casting kind, powder basicity, and mold | type thermocouple temperature. 鋼中Al含有量別に、本発明によるブレークアウト予知信号発生率の改善状況を示す図である。It is a figure which shows the improvement condition of the breakout prediction signal generation rate by this invention according to Al content in steel.

Claims (3)

Al含有量が0.015質量%未満の鋼の連続鋳造に用いるための連続鋳造用パウダーの製造方法であって、パウダー原料を溶融して凝固するに際し、水を使用することなく空気を吹き付けることによって冷却、破砕させることを特徴とする連続鋳造用パウダーの製造方法。   A method for producing powder for continuous casting for use in continuous casting of steel having an Al content of less than 0.015% by mass, in which air is blown without using water when the powder raw material is melted and solidified. A method for producing a powder for continuous casting, characterized in that the powder is cooled and crushed by the method. 下記(1)式で示す塩基度Bが1.4以上であることを特徴とする請求項1に記載の連続鋳造用パウダーの製造方法。
B=T.CaO/SiO2 (1)
ここで、T.CaOはパウダー中のCaがすべてCaOであるとしたときのCaO含有量(質量%)、SiO2はパウダー中のSiO2含有量(質量%)を表す。
The basicity B shown by following formula (1) is 1.4 or more, The manufacturing method of the powder for continuous casting of Claim 1 characterized by the above-mentioned.
B = T. CaO / SiO 2 (1)
Here, T.W. CaO represents the CaO content (% by mass) when Ca in the powder is all CaO, and SiO 2 represents the SiO 2 content (% by mass) in the powder.
Al含有量が0.015質量%未満の鋼を連続鋳造するに際し、請求項1又は2に記載の方法で製造した連続鋳造用パウダーを用いることを特徴とする鋼の連続鋳造方法。   A continuous casting method for steel, characterized by using the powder for continuous casting produced by the method according to claim 1 or 2 when continuously casting a steel having an Al content of less than 0.015 mass%.
JP2006096955A 2006-03-31 2006-03-31 Method for manufacturing powder for continuous casting, and method for continuously casting steel Pending JP2007270247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096955A JP2007270247A (en) 2006-03-31 2006-03-31 Method for manufacturing powder for continuous casting, and method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096955A JP2007270247A (en) 2006-03-31 2006-03-31 Method for manufacturing powder for continuous casting, and method for continuously casting steel

Publications (1)

Publication Number Publication Date
JP2007270247A true JP2007270247A (en) 2007-10-18

Family

ID=38673346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096955A Pending JP2007270247A (en) 2006-03-31 2006-03-31 Method for manufacturing powder for continuous casting, and method for continuously casting steel

Country Status (1)

Country Link
JP (1) JP2007270247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030051A (en) * 2015-07-29 2017-02-09 Jfeスチール株式会社 Continuous casting method of steel
CN107541591A (en) * 2017-08-29 2018-01-05 西安汇丰精密合金制造有限公司 A kind of manufacture method of super electromagnetic pure iron DT4C bars

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832556A (en) * 1981-08-19 1983-02-25 Nippon Steel Corp Powder additive for continuous casting
JPH0557411A (en) * 1991-08-27 1993-03-09 Nippon Steel Corp Additive for continuous casting die for casting high cleanness molten steel
JP2002194497A (en) * 2000-12-21 2002-07-10 Sumitomo Metal Ind Ltd Si KILLED STEEL AND ITS PRODUCTION METHOD
JP2003112236A (en) * 2001-10-05 2003-04-15 Shinagawa Refract Co Ltd Mold powder for continuously casting steel
JP2005271069A (en) * 2004-03-26 2005-10-06 Nippon Steel Corp Continuous casting method for molten steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832556A (en) * 1981-08-19 1983-02-25 Nippon Steel Corp Powder additive for continuous casting
JPH0557411A (en) * 1991-08-27 1993-03-09 Nippon Steel Corp Additive for continuous casting die for casting high cleanness molten steel
JP2002194497A (en) * 2000-12-21 2002-07-10 Sumitomo Metal Ind Ltd Si KILLED STEEL AND ITS PRODUCTION METHOD
JP2003112236A (en) * 2001-10-05 2003-04-15 Shinagawa Refract Co Ltd Mold powder for continuously casting steel
JP2005271069A (en) * 2004-03-26 2005-10-06 Nippon Steel Corp Continuous casting method for molten steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030051A (en) * 2015-07-29 2017-02-09 Jfeスチール株式会社 Continuous casting method of steel
CN107541591A (en) * 2017-08-29 2018-01-05 西安汇丰精密合金制造有限公司 A kind of manufacture method of super electromagnetic pure iron DT4C bars
CN107541591B (en) * 2017-08-29 2019-11-15 西安汇丰精密合金制造有限公司 A kind of manufacturing method of super electromagnetic pure iron DT4C bar

Similar Documents

Publication Publication Date Title
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
CN101947644A (en) High-manganese high-nitrogen low-nickel stainless steel plate blank continuous casting crystallizer covering slag and preparation method thereof
CN106475536A (en) A kind of P91 jet chimney steel continuous crystallizer protecting slag and preparation method thereof
JP4337748B2 (en) Mold powder for continuous casting of steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
CN102009144B (en) Function protection material for special continuous casting mould of high-speed heavy rail steel with bloom
JP2007270247A (en) Method for manufacturing powder for continuous casting, and method for continuously casting steel
JP2008238221A (en) Powder for continuous casting
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
JP2008212972A (en) METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JPH1034301A (en) Mold powder at initial stage for continuous casting
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP4751283B2 (en) Continuous casting powder and steel continuous casting method
JP2005297001A (en) Continuous casting method for steel
JP7014335B2 (en) Mold powder for continuous casting of Al-containing subclave steel and continuous casting method
KR20140058145A (en) Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method
JP2004167527A (en) Mold powder for continuously casting steel
JPH11254109A (en) Continuous casting mold powder of high manganese round slab
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP2004001017A (en) Mold powder for continuous casting of steel
Kromhout et al. Development of mould flux for high speed thin slab casting
JP2007216243A (en) Mold powder for continuous casting of steel, and continuous casting method using the same
KR101834421B1 (en) Mold flux and casting method using thereof
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP4907453B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221