JPS5832556A - Powder additive for continuous casting - Google Patents

Powder additive for continuous casting

Info

Publication number
JPS5832556A
JPS5832556A JP12960881A JP12960881A JPS5832556A JP S5832556 A JPS5832556 A JP S5832556A JP 12960881 A JP12960881 A JP 12960881A JP 12960881 A JP12960881 A JP 12960881A JP S5832556 A JPS5832556 A JP S5832556A
Authority
JP
Japan
Prior art keywords
slag
blast furnace
powder
powder additive
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12960881A
Other languages
Japanese (ja)
Inventor
Heiichiro Iso
磯 平一郎
Sadayoshi Inaba
稲葉 禎吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12960881A priority Critical patent/JPS5832556A/en
Publication of JPS5832556A publication Critical patent/JPS5832556A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders

Abstract

PURPOSE:To provide a powder additive for continuous casting which contains many amorphous components and is advantageous for operations by pulverizing the solidified slab obtained by quickly dry-cooling molten blast furnace slag to specific grain sizes and contg. specific contents of the fine powder slag. CONSTITUTION:Molten blast furnace slag 2 is held at about 1,400 deg.C in a ladle 1, and is dropped from a downflow spout 3, to which air from a blower 12 is blown through a nozzle 4 at about 50-200m/sec wind velocity to cool the slag and to force the slag to collide against the collision plate 6 in a cavity 5, whereby solidified slag 2a is obtained. The solidified slag is pulverized to 32-400 meshes to fine powder slag. Such slag is added at 45-70wt% to a powder additive, whereby the desired powder additive for continuous casting is obtained. A powder additive consisting essentially of Na2O-CaO-SiO2 is preferable for the powder additive which is a base material.

Description

【発明の詳細な説明】 本発明は高、中、低炭素鋼や硅素鋼およびステンレス鋼
の連続鋳造において鋳型内溶−表面に添加される粉末添
加剤(粉末鋳造助剤あるいは精錬剤もしくは被覆剤とも
云われる)忙関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to powder additives (powder casting aids, refining agents, or coating agents) that are added to the in-mold surface during continuous casting of high, medium, and low carbon steels, silicon steels, and stainless steels. (also called) busy-related.

周知の通シ鋼を連続鋳造する際に鋳型自溶鋼表面に易溶
触性の粉末添加剤゛を投入し、非金属介在物、脱酸生成
物の凝集溶解1行なわせると共に1鋳型内冷却の緩l1
li%溶鋼表面酸化防止、シェルとfIka!内壁との
潤滑等を行なわせ、連続鋳造;を円滑KiJ!−施する
と共にノロカミやプローホール、非−金属介在物等に起
因する表面−欠陥會防止する効朱tおさめてい′る。
When continuous casting of well-known through steel is carried out, an easily meltable powder additive is added to the surface of self-melting steel in the mold to cause non-metallic inclusions and deoxidation products to coagulate and dissolve, and at the same time to slow the cooling in the mold. l1
Li% molten steel surface oxidation prevention, shell and fIka! Performs lubrication with the inner wall to ensure smooth continuous casting! - It has the effect of preventing surface defects caused by roughness, plowholes, non-metallic inclusions, etc.

近時使用されている粉末添加剤としては810!−C!
10’ −’Nag Ot−主成分とし、それにBxO
s 、 ”弗化物、Fe1O1,に愈0等r適宜齢加し
、溶融1L浴融時の粘度や界面張力の調整を行なったも
のや、それにC,BNなどに加えることによって跡融速
&km整するものなどがある。
810 is a powder additive that has been used recently! -C!
10'−'Nag Ot- principal component, and BxO
s, ``Fluoride, Fe1O1, aged appropriately to 0 etc. and adjusted in viscosity and interfacial tension when melting in a 1L bath, and added to C, BN, etc. to adjust the residual melting speed and km. There are things to do.

これらはそれぞれ目的に応じて使□用されているが、−
最近□の連続鋳造が高生産性tめざしてよ′す^鋳造速
度を採用する方向にあり、従来の粉末ん5加剤では骸目
的に対し不適当で連続#に門一連化に適した粉末添加剤
が望まれるようになつ友。
Each of these is used according to its purpose, but -
Recently, there has been a trend towards continuous casting of □, which aims at high productivity and adopts casting speeds, and conventional powder additives are unsuitable for the metal purpose, and powders suitable for continuous casting are being used. Additives become desirable friends.

前記連続鋳造のよシ安定な操業と^速引抜きの課題解決
にとシ組んだ□本発明者等は、従来の粉末i加削が結晶
−物質を主体としており解融して非晶質化する際に吸熱
し溶融速度の調Vt−困難−1ていう。、、知っ7、非
晶質ツーが多くヵ、っ9公的□にも、操業も有利な粉末
添加剤め開発を行なった結果、本発明の粉末添加剤t−
h発すること[i功した。
The present inventors worked together to solve the problems of more stable operation and faster drawing of continuous casting, and found that conventional powder i-machining consists mainly of crystalline materials, which melt and become amorphous. When melting, it absorbs heat and is called Vt-difficulty-1 in controlling the melting rate. As a result of the development of a powder additive that is advantageous for public use and operation, the powder additive t-
To emit a message [I succeeded.

即ち、本発明の要旨は、溶融高炉スラグを乾式急冷して
なる固化スラグt−32〜400メツシユに微粉砕して
得られる微粉スラグを重量比で45〜7〇−含有せしめ
てなる粉末添加剤である。
That is, the gist of the present invention is to provide a powder additive containing pulverized slag obtained by dry-quenching molten blast furnace slag and pulverizing it into solidified slag T-32 to T-400 mesh in a weight ratio of 45 to 70. It is.

本発明は高炉スラグ會多く含むことを特徴とするもので
あるが、単に高炉スラグを粉末添加剤の福分とするもの
は既に知られており、たとえば特願昭45−70043
号、%願昭46−451197号K1g1示されている
が、これらはいずれも自然放冷屯しくけ水冷した結晶質
高炉スラグであって、本発明の目的とする高速連続鋳造
(たとえば引抜速[1,2m/分以上)用の粉末添加剤
ではない。
Although the present invention is characterized by containing a large amount of blast furnace slag, methods that simply use blast furnace slag as a powder additive are already known.
No. 46-451197 K1g1, all of which are crystalline blast furnace slags that have been water-cooled in natural cooling tunnels, and are suitable for high-speed continuous casting (e.g., drawing speed [ 1.2 m/min or more) is not a powder additive.

本発WA#i非晶質化率の非常に高い乾式急冷固化スラ
グを用いるもので、そのような同化スラグは、たとえば
本社出願人において発明され、先に出願された%公昭5
6−7982号合N&’載の発明に本方法は高炉粒滓O
製造方法であって詳しくは溶融した高炉スラグから各種
用途に用いられる利用度の高い級密な組織で、かつ一様
な品質の粒滓を効率的に製造する方法に関するものであ
る。
This method uses a dry quenched solidified slag with a very high amorphization rate.
According to the invention disclosed in No. 6-7982 No.
The present invention relates to a manufacturing method, and more particularly, to a method for efficiently manufacturing granule slag of uniform quality and a dense structure that is highly useful for various purposes from molten blast furnace slag.

高炉操業において多量に副生される高炉スラグを有効に
利用するための試みとして溶融した高炉スラグに空気あ
るいは水蒸気等の高圧気体を吹きつけて粒滓t−製造す
ることは既に周知である。
As an attempt to effectively utilize blast furnace slag, which is produced in large quantities as a by-product during blast furnace operation, it is already well known to produce granule slag by blowing high-pressure gas such as air or steam onto molten blast furnace slag.

しかしながら前配従米の方法では、溶融し7c Inn
ススラグ高圧の気体で吹き飛ばし、かつ吹き飛ばされた
高炉滓は直ちに水等の急冷媒体で急冷却されることが一
般的であったために粒滓とならず繊維状の鉱滓綿となる
割合が高く、さらに粒滓になっても気孔が多く、かつ表
面が角ばった膨張停となシ易いことから物理的な性質、
強度に問題が多く、而してその利用範囲も限られたもの
であった。
However, in the previous method, the melted 7c Inn
SlagThe blast furnace slag that has been blown away with high-pressure gas is generally rapidly cooled with a quenching medium such as water, so a high proportion of the blast furnace slag becomes fibrous slag rather than granule slag. Even if it becomes a grain slag, it has many pores and the surface is angular and tends to stop expanding.
There were many problems with strength, and its range of use was also limited.

そこで、前記本方法は前述の如き技術的銖題會解決した
もので、以下実施例に従ってその方法を説明する。
Therefore, the present method solves the technical problems mentioned above, and the method will be explained below according to the embodiments.

第1図は該方法の一5j!織例を示す粒滓製造装置の構
成断面図である。−において1tj溶融した高炉滓2を
貯留する取鍋であ〕、蚊取鍋10下部KFi流下樋3が
設けられている。流下@3の下方部に#i吹付ノズル4
が設置され、該吹付ノズル4よプ、流下413から流下
する高炉スラグ2に空気!吹付けることによって高炉ス
ラグ2け風洞5内で飛散せしめられて粒化され球形また
は球形に近い粒滓21となる。粒滓21は風洞5内!空
中飛行しながら冷却され、風洞50後端部に設けられた
アーチ形の衝突−6に衝突して導出管7に後述する搬送
気体と共に吸引される。既ち風洞5および導出管7内で
は誘引ファン8によって前記吹付空気および風洞5の開
放部5mよ)吸引される空気あるいは後述する風洞5に
強制的に供給される搬送用気体等が粒滓2暑を搬送する
ための搬送気体として矢印1方向Kll引される。搬送
気体と共に導出管7Klk引された粒滓2aは導出管7
内て前記搬送気体によってさらに冷却されながら分離器
9に*出され、該分離器9によって搬送気体と分離され
、分離され九粒滓2mは分離器90下部に設けられた切
出しグー)10よシ逼宜回収され、また搬送気体は誘引
管11t−介して誘引7アン8よ)大気中に放出される
Figure 1 shows one of the methods! FIG. 2 is a cross-sectional view of the structure of a slag manufacturing apparatus showing an example of weaving. - is a ladle for storing the molten blast furnace slag 2], and a KFi flow down trough 3 is provided below the mosquito ladle 10. #i spray nozzle 4 at the lower part of the flow @3
is installed, and air flows into the blast furnace slag 2 flowing down from the blowing nozzle 4 and downstream 413! By blowing, the blast furnace slag 2 is scattered in the wind tunnel 5 and granulated to become spherical or nearly spherical slag 21. Grain slag 21 is inside wind tunnel 5! It is cooled while flying in the air, collides with an arch-shaped collision 6 provided at the rear end of the wind tunnel 50, and is sucked into the outlet pipe 7 together with a carrier gas, which will be described later. In the wind tunnel 5 and the outlet pipe 7, the blown air by the induction fan 8 and the air sucked into the open part 5m of the wind tunnel 5, or the conveying gas, etc. that is forcibly supplied to the wind tunnel 5, which will be described later, are mixed into the particle slag 2. It is pulled in the direction of the arrow Kll as a carrier gas for transporting heat. The grain slag 2a drawn together with the carrier gas through the outlet pipe 7
The slag is further cooled by the carrier gas and taken out to the separator 9, where it is separated from the carrier gas, and the separated 9-grain slag (2 m) is passed through the cutting goose 10 provided at the bottom of the separator 90. The carrier gas is collected in a timely manner, and the carrier gas is discharged into the atmosphere via the induction pipe 11t.

ところて前記粒滓21の製造において、高品質の粒滓2
aKするKFi、吹付ノズル4がら吹付ける気体の種a
I、吹付は条件が重要な因子となる。
However, in the production of the grain slag 21, high quality grain slag 2
aKKFi, the type of gas to be sprayed from the spray nozzle 4 a
I. Conditions are an important factor in spraying.

従来吹付気体としては高圧が容易核、がり大量に得られ
ることから水蒸気を用いることが多く、その圧力も5に
4I/−以上の高圧であることが一般的てありた。しか
しながら#1水蒸気はコストが高く、そ0IIIL扱い
性もすζぶる悪−上に安全性にも問題が多く、さらに高
圧であると七から前述の如く粒滓とならず鉱滓綿となる
割合が高く実用的でなかった。
Conventionally, water vapor has often been used as a blowing gas because high pressure can be easily obtained in large quantities, and the pressure has generally been as high as 5 to 4 I/- or higher. However, #1 steam is expensive, its handling is extremely poor, and there are many safety problems.Furthermore, when the pressure is high, the proportion of water vapor that becomes slag rather than slag as mentioned above is high. It was expensive and impractical.

本方法は従来の問題点を解決するため取扱い性が良好て
低コストで得られる空気に着目し、骸空気を有効に活用
するために種々研究を重ねた結果得られたもので前記空
気を低流速で吹きつけるととkよって著しい効果が得ら
れるととtM、%4出した点に特徴を有する。
In order to solve the conventional problems, this method focuses on air that is easy to handle and can be obtained at low cost, and was obtained as a result of various studies to effectively utilize dead air. It is characterized by the fact that when it is sprayed at a flow rate, a significant effect can be obtained and tM is %4.

即ち吹付ノズル4がら高炉スラグ2 K、lK付妙る気
体として、第1図に示す如くノロワー12から供給され
る空気!使用し、吹付ノズル4から吹出される時O風速
を遍IFIK制御することによって画品質の粒滓2a會
得られることが確gされた。
That is, air is supplied from the blower 12 as shown in FIG. It was confirmed that by uniformly controlling the speed of the O air when it is blown out from the spray nozzle 4, a particle slag 2a of image quality can be obtained.

第2図は第1図に示す装置において、粒滓211製造し
た時の実線結果!示すもので風速の変化に伴う鉱滓ll
5O発生割合を表わしたものである。
Figure 2 shows the solid line results when grain slag 211 was produced using the apparatus shown in Figure 1! Mine slag due to changes in wind speed
This shows the 5O generation rate.

館2図で判明するように風速が低くなれは鉱滓綿の発生
率は少なく&為が、所定の風速以下となれば高炉スラグ
20飛散が効果的に行えなくなシ、高炉スラグ2が粒化
せず、風洞5の下部に落下する未処理滓が多くな)、効
率的な製造が困難となる。tた逆に風速が轟くなれけ未
処理滓の問題は解決されるが、鉱滓綿の発生が多くなシ
、粒滓2aの回収に当って、前配鉱滓綿を除去するため
の特別な手段が必要とな)、搬送気体の吸引抵抗も大き
くな)、誘引ファン80容量も大きなものが必要となる
。しかしながら該風速は高□速の方では粒滓2暑の製造
上の制約は比較的少ないが風速!一定速度以上とするた
めKはブロワ−120容量が非常に大きくなシ、極端な
場合にはコンプレッサが必要となシ、必要な風量の確保
が困難となり、さらに吹付けの際の騒音も大きくなる等
多くの問題!生ずるが製造された粒滓2mの品質には低
風速で得られたものとほとんど容差異が認められなかっ
た。
As can be seen in Figure 2, when the wind speed is low, the generation rate of slag is low and, however, when the wind speed is below a certain level, the blast furnace slag 20 cannot be effectively scattered and the blast furnace slag 2 becomes granulated. (Many untreated slags fall to the bottom of the wind tunnel 5), making efficient production difficult. On the other hand, the problem of unprocessed slag caused by roaring wind speeds can be solved, but a lot of slag wool is generated, and when collecting slag 2a, a special method is required to remove the slag wool beforehand. (required), suction resistance of the carrier gas is also large), and the capacity of the induction fan 80 is also required to be large. However, at high wind speeds, there are relatively few restrictions on the production of grain slag 2 heat, but the wind speed! In order to keep the speed above a certain level, K requires a blower 120 whose capacity is very large, and in extreme cases a compressor is required, making it difficult to secure the necessary air volume, and making more noise when blowing. And many more problems! There was almost no difference in the quality of the 2 m of granule slag produced from that obtained at low wind speeds.

前述の実線結果よシ、未処理滓の発生を防止し鉱滓綿の
発生を極力少なくするため種々検討7重ねた結果、吹付
空気の風速が50〜200m/ヵの範囲であれば、鉱滓
綿の発生率は15−以下に押えられ、該鉱滓線除去のた
めの特別な手段あるいは装置が必要でなく%また未処理
滓の発生もなく緻密な組織の粒滓21が効率的に得られ
ることが確藺でき、さらに風速が50〜140 m/s
ecの範囲であれは鉱滓綿の発生率は1l12−程度ま
でに低下でき、さら[50〜100 m /seの範囲
であれば鉱滓綿の発生はほとんどなく非常に効果的であ
った。尚この際における吹付ノズル4における風量は^
炉滓IT/H当シ、20〜50−/―であれば良いこと
も確留された。
Based on the results of the solid line mentioned above, we have conducted various studies to prevent the generation of untreated slag and minimize the generation of slag wool.As a result, we have found that if the wind speed of the blown air is in the range of 50 to 200 m/km, the slag wool The occurrence rate is suppressed to 15 or less, no special means or equipment is required for removing the slag, and the slag 21 with a dense structure can be efficiently obtained without the generation of untreated slag. It can be confirmed that the wind speed is 50 to 140 m/s.
When the ec was within the range, the generation rate of slag wool could be reduced to about 1l12-, and furthermore, when the ec was within the range of 50 to 100 m/sec, there was almost no slag generation and it was very effective. In addition, the air volume at the spray nozzle 4 at this time is ^
It has also been established that a value of 20 to 50 −/− is sufficient for the furnace slag IT/H.

さて流下樋3から流下する高炉スラグ2の温度FiM1
および流下IIj3円で凝固しない範囲でなければなら
ないことF1a然であるが、凝固は生じなくても温度が
低過ぎると高炉スラグ2の粘性が増加し前記低風速の吹
付空気では粒滓21の鉱層が大きくな〕過ぎたp、未処
−滓が多く発生する等の問題が生ずる。また高炉スラグ
2の温度が高過ぎると粘性が低下し、鉱滓綿の発生割合
が高くなる懸念がある。而して流下樋3から流下する高
炉滓2の1ifa1400℃程度であれば良いが高炉滓
2のatが低い場合はたとえば鍋1または流下樋3t−
周知のバーナーで保熱せしめる等の手段で1600℃以
上にコントロールする必要がある。
Now, the temperature FiM1 of the blast furnace slag 2 flowing down from the downflow gutter 3
F1a Naturally, it must be within a range where it does not solidify at the flow rate IIj 3 yen, but even if solidification does not occur, if the temperature is too low, the viscosity of the blast furnace slag 2 will increase, and the blown air at the low wind speed will cause the mineral layer of the granule slag 21 to increase. Problems such as excessive p and the generation of a large amount of unprocessed slag occur. Moreover, if the temperature of the blast furnace slag 2 is too high, the viscosity will decrease, and there is a concern that the generation rate of slag will increase. Therefore, it is sufficient if the 1ifa of the blast furnace slag 2 flowing down from the downflow gutter 3 is about 1400°C, but if the at of the blast furnace slag 2 is low, for example, the temperature of the pot 1 or the downflow gutter 3t-
It is necessary to control the temperature to 1600° C. or higher by using a well-known burner to retain heat.

吹付ノズル4かもの低風速の吹付空気で飛散せしめられ
て粒化した粒滓21は再融着を生ずることがないように
風洞5内【空中飛行する間に前記吹付空気および風洞5
の開放部5axシ吸引される空気等によって冷却される
The granulated slag 21 that has been blown off by the low-velocity blown air from the blowing nozzle 4 is stored in the wind tunnel 5 to prevent it from re-melting.
The open part 5ax is cooled by the air sucked in.

前記第1図に示す冥麹例の風洞5は開放部5a會有する
開放型であるが、該風洞5を図示はしないけれども密閉
構造とし、該密閉#1造の風洞5内に搬送用気体として
空気tXは不活性ガス等會供給し、咳搬送用気体および
前記吹付空気を誘引ファン8で吸引し、粒滓2at冷却
しつつ%搬送せしめることでも勿論差支えない。
Although the wind tunnel 5 of the Meikoji example shown in FIG. Of course, the air tX may be supplied as an inert gas or the like, and the cough conveying gas and the blown air may be suctioned by the induction fan 8, and the particle slag 2at may be cooled and conveyed.

ところで高炉滓2が吹飛ばされて、粒化された粒滓2a
が再融着を生じないで冷却される過程は粒滓2麿の品質
を決定する上で非常にIll’である。
By the way, the blast furnace slag 2 is blown away and granulated into granules 2a.
The process of cooling without causing re-fusion is very important in determining the quality of the grain slag.

即ち従来の方法では粒化された直後の高温状態にある粒
滓2Jlk直ちに水槽に落下さゼるか、または水膜岬の
急冷媒体によって冷却することが通常であった。このた
め粒滓2au冷却される際に東it吸収し、ポーラスな
組織の膨張スラグとなシ易かったものと考えられる。
That is, in the conventional method, the grain slag 2Jlk, which is in a high temperature state immediately after being granulated, is usually immediately dropped into a water tank or cooled by a quenching medium in a water film cape. For this reason, it is thought that when the grain slag 2au was cooled, it was easily absorbed and turned into expanded slag with a porous structure.

本発明Kかかる固化スラグの製造方法は粒化された直後
の粒滓2ak吹付空気の推進力および搬送気体の吸引力
で設定距離空中飛行せし、め、該空中飛行する関に粒滓
2mの表面11jfk凝固温度以下に降下せしめること
を一つの特徴とするものである。而して本方法tよシ効
果的に実施するためには、流下樋3を流下する高炉滓2
の飛散方向をコントルールし、しかも出来るだけ遠くま
で吹飛ばす必要がある。
The method of producing solidified slag according to the present invention is to fly the granulated slag 2m in the air for a set distance using the propulsive force of the blown air and the suction force of the carrier gas immediately after being granulated. One of the features is that the surface 11jfk is lowered to below the solidification temperature. Therefore, in order to effectively carry out this method, the blast furnace slag 2 flowing down the downflow gutter 3 must be
It is necessary to control the direction in which the particles are scattered and to blow them as far as possible.

第3図は吹付ノズル4の一冥織例と取付状態會示す側面
図であり、流下する高炉滓2に対して、吹付9気の吹出
口4mlの位置を段々にずらした多段式吹付ノズル4a
f示すものである。該多段式吹付ノズル4aの吹出口4
mlの横巾は高炉滓2の流下中よシ若干広い程度で該多
段式吹付ノズル4aの中心at水平IIIK対して10
〜45の範囲の傾斜角Iで上向き和装着すれば飛行距離
も長くなシ、拡散効果も非常に優れ、経験では前記条件
を満足するためKFi吹出口4が単数の場合よシ本実施
例の如く複数個の方が効果的であることが確鯵された。
FIG. 3 is a side view showing an example of the structure of the blowing nozzle 4 and its installed state, and is a multi-stage blowing nozzle 4a in which the position of the blowing outlet of 4 ml of 9 air is shifted in stages with respect to the flowing blast furnace slag 2.
f. Air outlet 4 of the multi-stage spray nozzle 4a
The width in ml is slightly wider than that of the flowing down blast furnace slag 2, and is 10 mm with respect to the center at horizontal IIIK of the multi-stage spray nozzle 4a.
If the inclination angle I is in the range of ~45 and it is mounted upward, the flight distance will be long and the diffusion effect will be very good.According to my experience, in order to satisfy the above conditions, it is better to use the present example when there is only one KFi outlet 4. It has been confirmed that multiple doses are more effective.

而して風洞5の構造および大きさも粒滓2aの飛散範囲
および冷却能力等を考慮して適宜決定すれば良い。
The structure and size of the wind tunnel 5 may be appropriately determined in consideration of the scattering range of the particle slag 2a, the cooling capacity, etc.

さて前述の如く、吹付空気で゛風洞5円に飛散せしめら
れた粒滓21は搬送気体と共に導出管7に集合されつつ
搬送されるが、本*施例では前記風洞5内に拡散された
粒滓2aYr効率的に集合させるために風洞5の端部に
表面研Staす力ゝ、あるいは水冷構造としたアーチ形
の衝突板61r設け、骸衝突板6に飛散した粒滓2a(
衝突させ落下させると共に搬送気体の流動抵抗tよシ少
なくして流速の速い導出管7に粒滓2aおよび振込気体
を吸引させた。即ち搬送気体を吸引することによって、
前述の如く風洞5内に広く拡散された粒滓2mも口径を
比較的小さくした導出管7に容易に集合させられるため
、一定の位置即ち分離器9で効率的な回収が可能となり
、設備全体tコンパクトにでき、さらに風洞51i完全
な密閉構造とせず、隙間の多いものでも効率的な粒滓2
1の製造が一1141f−である等数々の効果が認めら
れた。
Now, as mentioned above, the particle slag 21 that is scattered in the wind tunnel 5 by the blown air is collected and conveyed in the outlet pipe 7 together with the carrier gas. In order to collect the slag 2aYr efficiently, an arch-shaped collision plate 61r with a surface polishing force or a water-cooled structure is provided at the end of the wind tunnel 5, and the slag 2a scattered on the carcass collision plate 6 is collected.
The particle slag 2a and the transfer gas were caused to collide and fall, and the flow resistance t of the carrier gas was reduced to cause the particle slag 2a and the transfer gas to be sucked into the outlet pipe 7, which has a high flow rate. That is, by suctioning the carrier gas,
As mentioned above, the 2 m of particle slag that has been widely dispersed in the wind tunnel 5 can be easily collected in the outlet pipe 7, which has a relatively small diameter. It can be made compact, and the wind tunnel 51i does not have a completely sealed structure, making it efficient even when there are many gaps.
Numerous effects were recognized, such as the production of 11141f-.

粒滓2麿の飛行距離が衝突板6まで速せずに途中の風洞
5の底面に落下し、再融着音生じおよびもしくは回収不
能とりることt出来るだけ少なくするために第1図に破
・線で示すように供給ノズル13から風洞5の底面およ
び側面にそって空気またはN、等の不活性ガスを搬送用
気体として強制的に送り込むことや、第4図に示す如く
風洞50下部に゛振動フィーダー14[−設け、該振動
フィーダー14によって落下した粒滓2at導出管7の
入口部へ搬送する等の手段を講することが好ましく、ま
た場合によっては図示しないけれども風洞5の下部にホ
ッパー1設け、該ホッパー下部よシ別途回収することで
も支障はなく、効果的である。
In order to minimize the possibility that the flying distance of the two grain slags may not reach the impact plate 6 and fall to the bottom of the wind tunnel 5 on the way, causing re-fusion noise and/or being unable to be recovered, the damage shown in Fig. 1 is shown in Figure 1.・Forcibly feed air or an inert gas such as N as a carrier gas from the supply nozzle 13 along the bottom and side surfaces of the wind tunnel 5 as shown by the line, or to the lower part of the wind tunnel 50 as shown in FIG. It is preferable to provide a vibrating feeder 14 and convey the fallen grain slag 2at to the inlet of the outlet pipe 7 by the vibrating feeder 14.Also, in some cases, a hopper may be installed at the bottom of the wind tunnel 5, although not shown. There is no problem and it is effective to provide one and separately collect it from the bottom of the hopper.

前記搬送気体とは、前記吹付空気、風洞5の開放部5m
および隙間等から吸引される空気、風洞5内または風洞
50底面および@面にそって供給される搬送用気体等を
総称していうものである。
The carrier gas refers to the blown air, the open part 5m of the wind tunnel 5
This is a general term for air sucked from gaps, etc., and conveyance gas supplied inside the wind tunnel 5 or along the bottom and @ plane of the wind tunnel 50.

尚、第2図に示す実論例においては、吹付空気として常
温の空気を用い、搬送気体としては、前記常温の吹付空
気および風洞5の開放部5m並びKH間等から吸引され
る常温の空気のみとしたが風洞5の端末部、即ち衡突板
6に衝突して落下したときの粒滓21の表面温度は約1
100℃程度まで低下し、この時点において、 11と
んど完全な粒滓2mとなっていることが確認された。
In the practical example shown in FIG. 2, air at room temperature is used as the blown air, and as the carrier gas, the blown air at room temperature and the air at room temperature sucked from between the open section 5m of the wind tunnel 5 and KH, etc. However, the surface temperature of the grain slag 21 when it collides with the terminal part of the wind tunnel 5, that is, the balance plate 6 and falls, is about 1
The temperature dropped to about 100°C, and at this point, it was confirmed that 2 m of grain slag was almost completely formed.

尚、本実施例の風洞5の長さは13mであシ、導出管7
の長さij I Q mで、分離器9より取出された時
の粒滓2mの温度は約750〜800℃にまで低下して
いた。
Note that the length of the wind tunnel 5 in this embodiment is 13 m, and the lead-out pipe 7
When the grain slag was taken out from the separator 9, the temperature of the 2 m slag had decreased to about 750 to 800°C.

分離器9よ〕取出される粒滓21の取扱性ilt極めて
良好で作業性が良く、また高−状態にて回収された粒滓
2aは第5図に示す如く熱交換設備1st介して取出す
ことKよ〕、工業的な熱的1収が可能となる。
The handling of the granule slag 21 taken out from the separator 9 is extremely good and workability is good, and the granule slag 2a recovered in a high state can be taken out through the heat exchange equipment 1st as shown in Fig. 5. K], industrial thermal yield becomes possible.

風洞5の端末部での粒滓2mの表面温度が約1100℃
程度以下と・なれば、たとえば導出管7において粒滓2
mに散水會行い、その冷却効果を増した場合でも粒滓2
mの品質に影餐が生ずることはなく、導出管7の長さl
短かくでき、また大容量の処理においては特に効果的で
あることが他の実施例で明らかになった。
The surface temperature of 2 m of grain slag at the end of wind tunnel 5 is approximately 1100°C.
If the level is below that level, for example, the particle slag 2 may
Even if the cooling effect is increased by watering at m, the grain slag 2
There is no effect on the quality of m, and the length l of the outlet pipe 7
Other examples have shown that it can be shortened and is particularly effective in processing large volumes.

さて次の館1表〜第3表は本方法によって得られた粒滓
2暑の物理的性質i示すものであり、縞1表は、前記粒
滓21の粒度分布の一例と天然砂(香川室木島の海砂)
の粒度分布並びに土木学会の粒度標準とt対比させたも
のである。
Now, the following Tables 1 to 3 show the physical properties of the slag 21 obtained by this method, and Table 1 shows an example of the particle size distribution of the slag 21 and natural sand (Kagawa Sea sand of Muroki Island)
The particle size distribution is compared with the particle size standard of the Japan Society of Civil Engineers.

第   1   表 ることが判り、征米知られていない新規な累材であるこ
とが判り、さらに本発明にかかる粒滓は鞠却の一折の多
い塊状スラブに比して、より均質で粉末添加剤として通
している。
It was found that the slag of the present invention is a new composite material that is not known to be used as a material.Furthermore, the slag of the present invention is more homogeneous and powdery than a lumpy slab that is prone to breakage. It is passed as an additive.

第2表、第3表は本発明にがかる粒滓2 a CD物性
をより明確化するための天然砂、水滓等のvlJ理的注
質との対比、韮びに′1I4rs値あるいは基革餉およ
び土木に使用した絵の骨材に闇する対比六である。
Tables 2 and 3 show comparisons with vlJ physical properties of natural sand, water slag, etc., in order to clarify the physical properties of grain slag 2a CD according to the present invention, and the value of grain slag or base grain slag for grain slag. and six dark contrasts to the picture aggregates used for civil engineering.

第  2  表 第2表における標準値とは土木標準(砂としての)でJ
bる。
Table 2 The standard values in Table 2 are civil engineering standards (as sand).
bl.

次に第3表は水、セメント比を一定にしてフローfl!
Iを作業性をはかる管理値として、どこまで骨相、縛ち
本発明の収挿2mおよび海砂が使えるかをテストしたモ
ルタル試験の結果であり、本発明の粒滓2at使用する
とフロー値が大きくなるので単位セメント量当りの骨材
、抑ち粒滓2sの童か増やせ、逆にいうとセメントの節
約ができることか判る。
Next, Table 3 shows the flow fl! with the water and cement ratio constant!
These are the results of a mortar test that tested to what extent the 2m of bone facies, the 2m binding method of the present invention, and sea sand can be used, with I being a control value for measuring workability.The flow value increases when the 2at of granular slag of the present invention is used. Therefore, it can be seen that by increasing the amount of aggregate and suppressed slag by 2s per unit amount of cement, conversely, it is possible to save cement.

第3表の例は不発@に云う固化スラグが%異な性状tセ
しており、従来のいわゆる粒滓とは全く−なるものであ
ることを証するための実施例である。
The example in Table 3 is an example to prove that the solidified slag referred to as unexploded slag has % different properties and is completely different from the conventional so-called granule slag.

不発94に云う溶融高炉スラグ會気体で吹きとばして乾
式造粒してなる固化スラグは、緻密な組織で表E1[I
形状のなめらかな球形あるいは球形に近い形状で、しか
も粒の煽ったものであるため前述のような特典な性質が
みられる。
The solidified slag produced by dry granulation by blowing away the molten blast furnace slag gas referred to in Misexplosion 94 has a dense structure as shown in Table E1 [I
It has a smooth spherical shape or a shape close to a spherical shape, and because the grains are agitated, it has the above-mentioned special properties.

該固化スラグt200メツシュ以下に微粉砕したものに
つき、その成分分析結果(電型%)t−第4表に示す。
The results of component analysis (electrode type %) of the solidified slag finely pulverized to t200 mesh or less are shown in Table 4.

本発明では、この外に%不出1人の開発にかかる熱媒体
循環系路を内蔵した浅皿型の鋳型に溶1烏炉スラグをm
厚100■以下に泥しこみ、急冷させることによってガ
ラス化率即ち非晶質比率が70%以上の固化スラグを得
る方法も採用することが叫訃である。
In the present invention, 1 m of molten Ofuro slag is placed in a shallow dish mold with a built-in heat medium circulation system developed by one person.
It is recommended to adopt a method of obtaining solidified slag with a vitrification rate, that is, an amorphous ratio of 70% or more, by soaking the slag to a thickness of 100 mm or less and rapidly cooling it.

次に繭配本力法で製造した粒陥について粒区別に非晶債
化率(以下ガラス化率とも云う)を調査した結果を第5
表に示す。
Next, the results of investigating the amorphous bonding rate (hereinafter also referred to as vitrification rate) for each grain of the grain defects produced by the cylindrical grain method are shown in the fifth section.
Shown in the table.

第  5  表 いずれにしてもガラス化率は73%以上であって、粉床
添加剤として適した品質のものである。
Table 5 In any case, the vitrification rate was 73% or more, and the quality was suitable as a powder bed additive.

ここでガラス化率は、人工妙音88〜62/LVC粉砕
したものを偏光顕微鏡で見てガラスと結晶を区別しガラ
スv111合を百分率で示し7たものである。
Here, the vitrification rate is the glass v111 ratio expressed as a percentage by observing the pulverized artificial Mion 88-62/LVC under a polarizing microscope to distinguish glass from crystal.

V、に、本方法が得らnた粒滓!−1iI!d知の水陛
V)圧砕粉化率が著しく低いq)に対し、圧砕扮1ζ率
〃;讐、0以下であって、硬質で敏礎さn輪い物性を有
する0次の第6辰に圧砕粉化幕(%)の比較&) 1例
を示す。
V, the grain slag obtained by this method! -1iI! V) The crushing rate is extremely low.In contrast to q), the crushing rate is less than 0, and the 0th order 6th gen has hard and agile physical properties. Comparison of crushing powder (%) &) An example is shown below.

前配圧砕扮化率とは、150φ、150口のモー、ドに
ある粒度ll!曲の原試浩を軽装し、何血1tonをl
 5 s6C維持したのち試刺を堆9゛出し凡の粒敲範
囲より小さく粉砕されたものの東−1AJ合を百分率で
表わし、たものである。
The pre-distribution crushing rate is the particle size in the mode of 150φ and 150 mouths! The song's Nobuhiro Hara is dressed lightly, and a ton of blood is recorded.
After maintaining 5s6C, test pieces were taken out and crushed to a size smaller than the normal grain size range, expressed as a percentage.

第6表 第6表から明らかなように、本発明の人工砂は火熱の川
砂に勝る圧砕粉化率を有するもので、−dすると、川砂
以上に嫂く、緻脣な物性を有し、かかる粒滓が工業的規
模で供給さrtた実例はないさて、本号6&rcかかる
比重について、絶乾比重で比較し友ガを第7表に示す。
Table 6 As is clear from Table 6, the artificial sand of the present invention has a crushing rate superior to that of river sand heated by fire; There is no actual example of such granule slag being supplied on an industrial scale.The specific gravity of this issue 6&rc is shown in Table 7, comparing the absolute dry specific gravity.

第    7    表 本方法の粒#は着しく比1が高く、これに匹敵するのは
転炉外(FeOの含有率が−い)を踊加(この例では4
%添刀8)した高炉filを自然放置し破砕して得た細
粒のみであるが、皺細粒は第6表の圧砕粉化率の表から
明らかなように本方法の粒滓に比較して砕けやすい物性
を11する。
Table 7 The grain # of this method has a high ratio of 1, which is comparable to that of grains outside the converter (with a high FeO content) (in this example, 4
Although only the fine grains obtained by crushing the blast furnace filtrated with 8) % slag are allowed to stand naturally, the wrinkled fine grains are compared to the granule slag obtained by this method, as is clear from the crushing rate table in Table 6. and increase the brittle physical properties to 11.

次に単位体111k(1#/m’)の比軟を第8夕に、
吸水意(%)の比軟0■表に示す。
Next, the relative softness of the unit body 111k (1#/m') was determined on the 8th evening.
The ratio of water absorption (%) is shown in the table.

第8表 門9表 第8表、M9表から本方法の粒滓は吸水−が憤端に低く
、しかも単位体&1鴛が大きいことか判る。即ちこのよ
うな物性から明らかなように本り法の粒滓は表面が非常
に滑らかで、しかも気泡など表面疵がなく、水を吸収す
る率か非1;Aに低く、質が惨めで緻密である。
From Table 8 and Table M9, it can be seen that the grain slag produced by this method has extremely low water absorption and is large in unit size. In other words, as is clear from these physical properties, the surface of the grain slag produced by this method is very smooth, and there are no surface defects such as air bubbles, and the water absorption rate is as low as 1/A, and the quality is poor and dense. It is.

さらに本′yi法p#i滓は表面か平滑曲面状をなして
おり、殆んど球に近い形状を南するものが多く、その表
面はガラス細工の如!光沢を有しており、その表向は鋭
角や平圓あるいは一歯悼の凹凸なとは一切赫めらnない
In addition, the surface of the p#i slag of this 'yi method is smooth and curved, and many of them have a shape that is almost spherical, and the surface looks like glass work! It has a lustrous luster, and its surface does not have any sharp edges, flat circles, or single-toothed irregularities.

次に粒滓の土豪成分の分析鮎釆倉次の第lO#2に示す
Next, the analysis of the soil components of the grain slag is shown in No. 10 #2 below.

第  10  表 % 次に連続鋳造用の粉末a71Il剤について述べる。藺
述の如く粉木龜加削に景求されるII!I性は次の通り
である。
Table 10 % Next, powdered a71Il agent for continuous casting will be described. As mentioned above, the II is sought after for machining powdered wood! The characteristics are as follows.

(l−浴−表thlK添加さnた際に溶融スラグ層と初
木層に適宜に分かれ、溶−スラグ層は介在−、スカム等
の吸収溶解を行なうもめであり、初木層は#j@スラブ
層及び溶鋼を適度に保温しかつ適鼓に溶融して行くもの
であること。
(When adding thlK to the l-bath, it separates into a molten slag layer and a young wood layer, and the molten slag layer absorbs and dissolves intervening substances such as scum, etc., and the first wood layer has #j @It must be able to keep the slab layer and molten steel appropriately warm and melt them properly.

(2)  溶融スラグは鋳型と凝固シェルとの間隙に一
様な薄いフィルム層を形成し、鋳型のオンレーションに
よる鋳片の引抜きに対して適度な潤滑ケ行なう機能t−
有するものであること。
(2) The molten slag forms a uniform thin film layer in the gap between the mold and the solidified shell, and has the function of providing appropriate lubrication when the slab is pulled out due to mold onration.
Be something that you have.

(3)  鋳型、フェル間に存在するスラブフィルムは
シェルに対する鋳型よりの冷却の局部集中が防止でざる
もので必ること。
(3) The slab film that exists between the mold and the fell is necessary because it prevents local concentration of cooling from the mold on the shell.

粉床添加剤としては、極々の品債のものがあるか、嗣に
対する影智や環境上の向随があり1NalO−OaO−
S鑑Ox t’主成分とするものかより望1しく、本抛
v94はそれと基調を同じくするものである。
As powder bed additives, there are those with extremely low quality, or those with influence on heirs or environmental considerations, such as 1NalO-OaO-
It is more preferable to use the main component as the main component, and this v94 has the same basic tone.

間して、そO′ような成分の粉本i力ロ削は次のような
素材を生として用いて製造される。
Meanwhile, powder milling with ingredients such as O' is produced using the following raw materials.

8401  は妊石、ガラス、パーライト、珪滅土。8401 is pregnant stone, glass, perlite, and siliceous earth.

フラ(7ツシエ、ンリカフラワーから得G)n、。Hula (7 Tsushie, obtained from Nrika Flower) n,.

OaOは石灰、7ツ化カルシウム、炭酸カルンウム、ポ
ルトランドセメント、ダイカルシウムンリケート、ウオ
ラストナイト、硼酸カルンウムなどから、又Na1Oは
炭敏ンーダ、7ツ化ソーダ、硅フッ化ソーダ、テルオノ
フツ化ソーダ、ガラス、硅酸ソーダ、などから、さ6に
ムjmOst刀口える場合、入110mはムライト、フ
ルミノ メンか(アルイ酸ソーダ)ま−0は土壌、轡鉛、活性炭
、木炭、力−−ンブラック、オイルブラック、コークス
扮などから得られる。
OaO is obtained from lime, calcium heptadide, carunium carbonate, portland cement, dicalcium hydrate, wollastonite, carunum borate, etc., and Na1O is obtained from carbonite powder, sodium heptatide, sodium silicofluoride, sodium teluofluoride, etc. Glass, sodium silicate, etc. can be used for 110 m of mullite, fluminomen (sodium alkyl acid), soil, lead, activated carbon, charcoal, power black, oil. Obtained from black, coke, etc.

本尭明省等の開発にかかる初氷、添加削の実験例f:次
Omtt表に不す・ □ 第  11  表 而して、前述のように粉末添加剤に要求さルる機能を満
足せしめるに1儂、実験にょnば主として0.6 < 
OaO/84on < 120.15 < Na@O/
810 < 0.35であることが好ましいようである
。即ち粉末添加剤としての粘度、融点が前記範囲で好ま
しい物性勿呈する。
Experimental example of first ice and additive cutting related to the development of this company, etc. f: Not shown in the following Omtt table. 1, experimentally 0.6 <
OaO/84on < 120.15 < Na@O/
It seems preferable that 810 < 0.35. That is, when the viscosity and melting point of the powder additive are within the above range, it exhibits favorable physical properties.

而して入110g/810m%粘度、融点に補助的に利
いてくる。
Therefore, the viscosity of 110g/810m% and the melting point are supplemented.

又へ ンーダガラスは810.の−瞥剤として、パーラ
イト(硅藻土%同じ)も同様の目的で添〃口され、N”
* OOs b N a P s N 81ム1F−は
主として融点の#14m削として用いられ、0は溶@遅
延剤、焼結防止網として用いらnるtのである。
Also, Nuda glass is 810. Perlite (same percentage of diatomaceous earth) is also used as a coating agent for the same purpose.
*OOs b Na P s N 81mm 1F- is mainly used as #14m cutting of melting point, and 0 is used as melt @ retardant and sintering prevention net.

さて、本発明における粉末添加剤は非晶質化率が鳥いた
め粉末論加削自体がより高温になったときffj@シや
すく、あらかじめの−合によって非常に浴−速度が制御
しやすい。こnに対し従来の結晶化牟の高いものは粉末
状態におけるiI縦上昇は扱いが高温時の熱放散1が烈
しくなp又溶融時に吸熱反応をおこすのであらかじめの
溶@速度α鰺案の制(財)が極めて困灯である。 Ii
+1ち結晶1のものの熱伝導率は10 K Cal/h
r、m、deg  に比し非晶憤のもののそれは0.g
 K Oal/hr、rn、deg  である。
Now, since the powder additive in the present invention has a high amorphization rate, it is easy to ffj@ when the powder machining itself becomes higher temperature, and the bath speed can be controlled very easily by pre-coating. On the other hand, in the case of conventional materials with high crystallinity, the vertical rise in the powder state results in severe heat dissipation when handled at high temperatures, and an endothermic reaction occurs during melting, so it is necessary to control the melting rate in advance. (Foundation) is in extremely poor condition. Ii
+1, the thermal conductivity of crystal 1 is 10 K Cal/h
Compared to r, m, deg, that of amorphous indigo is 0. g
K Oal/hr, rn, deg.

さて本発明において微粉スラグt45〜75%(重量%
)とする埋出は% 45X以下であると粘度が調整でき
ず潤滑不良tel起すからでめり、75%以上では結晶
化をひきおこし、これまた潤滑不良となり鋳型とシェル
間の不均一冷却をおこし易くなシ鋳片に割れが発生する
ためである。
Now, in the present invention, fine powder slag t45 to 75% (weight%
) If the embedment is less than 45X, the viscosity cannot be adjusted and poor lubrication occurs, and if it is more than 75%, crystallization occurs, which also causes poor lubrication and uneven cooling between the mold and the shell. This is because cracks occur in the slab, which is easy to crack.

さらKN幻001  は5%以下の徐カムが好ましい。Sara KN Gen 001 preferably has a gradual cam of 5% or less.

つtり5%以上だと気泡生成による熱伝導のアンバラン
スを生じやすいためで夕・る。
This is because if the temperature exceeds 5%, it tends to cause an imbalance in heat conduction due to the formation of bubbles.

′ei:、に粒径132−400メツシユとする理由は
32メツシユより人きい粒径では粉末添加剤の熱伝4率
@! 0.5 koal/hr’、m、deg VCす
vkaH’jVcおいて溶−表面が鞭固しゃすくなり、
鋳造トラブルの原因となるためでめる。又4 (10メ
ツシユより小ざい粒径のものとするには製造コストが多
大なtのとなり、効果も飽和するからである0不発明省
等のM論では、より好ましくは200〜300メツシユ
であった。っ13)200メツシユ〜300メツシユで
は熱伝導率がたとえば0.1 KOIJ/hr。
'ei: The reason for choosing a particle size of 132-400 mesh is that if the particle size is larger than 32 mesh, the heat transfer rate of the powder additive is 4! 0.5 koal/hr', m, deg VCsuvkaH'jVc, the melt surface becomes hardened easily,
Do not use it as it may cause casting trouble. In addition, 4 (If the particle size is smaller than 10 meshes, the manufacturing cost will be large and the effect will be saturated.) According to the M theory of the Ministry of Non-Invention, etc., it is more preferable to use 200 to 300 meshes. 13) At 200 mesh to 300 mesh, the thermal conductivity is, for example, 0.1 KOIJ/hr.

m 、d e gとなり保温効果が貞好であった。m, d, e, g, and the heat retention effect was good.

曲して本発明Kかかる粉禾麟加削の効果については次の
通りであった。
The effects of powder machining according to the present invention K were as follows.

夾織例1 170 ton転炉で−を@錬し、水冷組立鋳型、を用
いて輻10100O厚さ250■のフルンキルド−を鋳
造mW L 4〜1.8 m / minとして150
0トン【鋳造したがトラブルは全く生じなかった。
Weaving Example 1 A 170 ton converter was used to smelt the material, and a water-cooled assembling mold was used to cast a 10,100 O thick 250 mm thick material at a rate of 150 mW L 4 to 1.8 m/min.
0 tons [I cast it, but no troubles occurred at all.

この時の松本#S加削は第11次klに示す組成の4(
1)l用いた。
Matsumoto #S machining at this time had a composition of 4(
1) l was used.

*1例2 170 ton転炉でfII4t−m錬し、水冷組立鋳
型を  :用イテ輻1G00mXJ!1iLさ250m
の低次flKa’k   l鋳造f8i L 6〜L 
8 m / minとして1200 )ン鋳造しX5が
、ブレークアウト中鋳片割れなどの発生は全く誌めらn
な力)つた、この時使用した粉木硝加削は篤11表ム2
に示す組成のものt用−た。
*1 Example 2 Melt fII4t-m in a 170 ton converter and make a water-cooled assembly mold. 1iL length 250m
Lower order flKa'k l casting f8i L 6~L
X5 was cast at 8 m/min (1200 m/min), but there was no occurrence of slab cracking during breakout.
(Na power) Ivy, the powdered wood and glass processing used at this time was Atsushi 11 Table 2
For use with the composition shown below.

結晶債高炉スラグを本発明と同じ割合でD加混会し、他
成分は同様とした粉末フ〃ロ剤を用いて連続鋳造し九除
は、鋳造引抜速度は最高でL Orn /τniaであ
り、そrL以上ではブレークアウト、υJTL発生で使
用できなし・つたが、本発明粉末h≦加削を用いfc場
合は前述の゛如く最高速#IIE1.8 m i ni
 nまで上ける、ことが−米た。
When crystalline blast furnace slag was continuously cast using a powdered floc agent mixed with D in the same proportion as in the present invention and other ingredients were the same, the maximum casting withdrawal speed was L Orn /τnia. , above rL, it cannot be used due to breakout and υJTL.However, if the powder of the present invention h≦machining and fc, the maximum speed is #IIE1.8 min as described above.
It was possible to raise it to n.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜#!5図は本発明に用いらt[る粒陣鯛逓の実
翔例を示すもので、m1区1は粒滓製造装置の隔成断面
図、#I2図は第1図の装置において粒滓を製造した腺
の風速の変化に伴う鉱滓綿の発生割合の一笑織結果を表
わす図表、第3図は吹付ノズルの一実施fFlft−示
すイQつ断lと重付状態を示す側面図、第4図は風洞の
−!lIi!施例を示す@面し1、第5図は粒滓の回収
装置の一夾軸例tボす部分檎蚕図である。 図中、 1:$鍋、     2:高炉滓。 2a:粒滓、     3:流下慟。 4*4a :吹付ノズル、4al:吹出口。 5:風洞      5a=開放部。 a:@突板、    7:導出管。 8:誘引7了ン、  9:分離器 lO:切出しグー)、11:誘引管。 】2ニブロワー、13:供給ノズル。 14:振動フィーダー、15:熱父候設備a:徴送気体
の退社方向。 #:吹付ノズルの取付畑斜角。 代理人 升坦士 秋 沢 収 光 他  2名 tt’ 毛2図
Figure 1~#! Figure 5 shows an actual example of the production of the grain slag used in the present invention. Figure 3 is a diagram showing the results of the ratio of slag generated as a result of changes in the wind speed of the gland in which the product was manufactured. Figure 4 shows the wind tunnel -! lIi! Figure 5, which shows an example, is a partial diagram of an example of a grain slag collection device. In the figure, 1: $pot, 2: blast furnace slag. 2a: Grain slag, 3: Drifting slag. 4*4a: Spray nozzle, 4al: Air outlet. 5: Wind tunnel 5a = open part. a: @ veneer, 7: outlet pipe. 8: Attraction 7 completed, 9: Separator lO: Cut out), 11: Attraction tube. ]2 Ni blower, 13: Supply nozzle. 14: Vibration feeder, 15: Thermal climate equipment a: Exit direction of conscripted gas. #: Installation angle of spray nozzle. Agent Masu Tanshi Aki Sawa Shu Mitsuru and 2 otherstt' Ke 2 figures

Claims (1)

【特許請求の範囲】[Claims] (1)  溶融^炉ス→グt−乾式急冷してなる固化ス
ラグt32〜400メツシュに微粉砕して得られる微粉
スラグ會重量比÷45〜70%含有せしめてなる仁とを
%徴とする連続鋳造用粉末添加剤。
(1) Solidified slag obtained by melting → furnace → dry quenching t The percentage value is the weight ratio of the fine powder slag obtained by pulverizing to 32 to 400 mesh ÷ the grain containing 45 to 70%. Powder additive for continuous casting.
JP12960881A 1981-08-19 1981-08-19 Powder additive for continuous casting Pending JPS5832556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12960881A JPS5832556A (en) 1981-08-19 1981-08-19 Powder additive for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12960881A JPS5832556A (en) 1981-08-19 1981-08-19 Powder additive for continuous casting

Publications (1)

Publication Number Publication Date
JPS5832556A true JPS5832556A (en) 1983-02-25

Family

ID=15013662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12960881A Pending JPS5832556A (en) 1981-08-19 1981-08-19 Powder additive for continuous casting

Country Status (1)

Country Link
JP (1) JPS5832556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724855A (en) * 1993-07-14 1995-01-27 Nippon Paper Ind Co Ltd Mold for molding pulp, manufacture thereof, pulp molded form and manufacture thereof
JP2007270247A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Method for manufacturing powder for continuous casting, and method for continuously casting steel
CN102527963A (en) * 2012-02-22 2012-07-04 河南省西保冶材集团有限公司 Continuous casting crystallizer protective material special for large round billet high-abrasion bearing steel
CN103154275A (en) * 2010-09-13 2013-06-12 保尔伍斯股份有限公司 Dry granulation of metallurgical slag
CN110560649A (en) * 2019-10-12 2019-12-13 中南大学 Novel high-aluminum steel casting powder and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724855A (en) * 1993-07-14 1995-01-27 Nippon Paper Ind Co Ltd Mold for molding pulp, manufacture thereof, pulp molded form and manufacture thereof
US5745971A (en) * 1993-07-14 1998-05-05 Nippon Paper Industries Co., Ltd. Method of manufacturing a pulp molding die
JP2007270247A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Method for manufacturing powder for continuous casting, and method for continuously casting steel
CN103154275A (en) * 2010-09-13 2013-06-12 保尔伍斯股份有限公司 Dry granulation of metallurgical slag
CN102527963A (en) * 2012-02-22 2012-07-04 河南省西保冶材集团有限公司 Continuous casting crystallizer protective material special for large round billet high-abrasion bearing steel
CN110560649A (en) * 2019-10-12 2019-12-13 中南大学 Novel high-aluminum steel casting powder and application thereof

Similar Documents

Publication Publication Date Title
US2439772A (en) Method and apparatus for forming solidified particles from molten material
CN104498668B (en) The molten steel scavenger of a kind of composite sphere form and production method
CN104388608B (en) Dry granulation waste heat recovery with grind processing system
CN201046415Y (en) Apparatus for separating and recycling granulating slag iron
HU187896B (en) Apparatus for determining and indicating the necessary quantity of gas in order to leave a dngerous place in safety, applicable to a basic apparatus with a tank containing gas /oxigen or air/ for people working in dangerous places and with gas feeding organs, applicable preferably to fleeing apparatuses of mining industry
US3888956A (en) Method of making granulate
JP2017081814A (en) Method for producing slag material
JP4932308B2 (en) Method and apparatus for processing molten blast furnace slag
JPS5832556A (en) Powder additive for continuous casting
CN103695580B (en) Blast furnace slag granulation device
CN202359129U (en) Recycling treatment and heat energy recovery device for high-temperature liquid steel slag
JP4418489B2 (en) High temperature slag treatment method
CN105154604A (en) Method and device for improving energy efficiency of iron-making technology
CN101486086B (en) Flat die casting method for silver bullion
JP4031070B2 (en) Heavy aggregate
JP4162704B2 (en) Foamed glass and manufacturing method thereof
CN106755662B (en) The resource recovery device and method of Copper converter smelting slag
JP4012344B2 (en) Method for producing blast furnace slag fine aggregate
JP3349525B2 (en) Method for producing rock wool by converting blast furnace slag from blast furnace into cotton
JPS5934143B2 (en) Slag cooling device
JPS595058B2 (en) Granular powder for continuous steel casting
CN208019427U (en) A kind of rapid hardening furnace
JP3630051B2 (en) Method and equipment for producing granulated slag
JPH11157888A (en) Production of rigid water-crushed granulated slag
FR2480621A1 (en) Dry granulation of molten steelworks slag - which is dispersed and cooled by streams of air contg. solid particles of sand, slag or other materials