JP2009006012A - Lamination structure body for protective clothing, and protective clothing - Google Patents

Lamination structure body for protective clothing, and protective clothing Download PDF

Info

Publication number
JP2009006012A
JP2009006012A JP2007171551A JP2007171551A JP2009006012A JP 2009006012 A JP2009006012 A JP 2009006012A JP 2007171551 A JP2007171551 A JP 2007171551A JP 2007171551 A JP2007171551 A JP 2007171551A JP 2009006012 A JP2009006012 A JP 2009006012A
Authority
JP
Japan
Prior art keywords
layer
activated carbon
fabric
laminated structure
protective clothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007171551A
Other languages
Japanese (ja)
Inventor
Shinya Inada
真也 稲田
Kimiyasu Imai
公泰 今井
Hideki Kamata
英樹 鎌田
Shoichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007171551A priority Critical patent/JP2009006012A/en
Publication of JP2009006012A publication Critical patent/JP2009006012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a handleable, flexible, and lightweight material for protective clothing which is excellent in harmful gas absorbing performance, harmful microorganism shielding performance, air permeability, vapor permeability, and activated carbon fall preventing performance, and to provide protective clothing made of the material. <P>SOLUTION: A lamination structure body for the protective clothing is obtained by laminating an outer layer, a middle layer, and an inner layer in this order, where the outer layer is configured of fabric with water-repelling and oil-repelling finishing; the middle layer is an activated carbon-containing complex layer containing activated carbon with the specific surface of 600-5,000m<SP>2</SP>/g and protecting the activated carbon by a nano fiber layer which is composed of nano fiber with the average fiber diameter of 10-1,000 nm and has the air permeability of ≥0.1 cc/cm<SP>2</SP>/sec, and the inner layer is configured of fabric. The protective clothing is made of the lamination structure body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、防護衣類用の積層構造体およびそれからなる防護衣類に関する。より詳細には、本発明は、外層と内層との間にナノ繊維層によって活性炭層が保護された中間層を有し、有害な化学物質の防護性能および有害な微生物に対する遮蔽性能に優れ、空気透過性および水蒸気透過性に優れ、しかも活性炭の脱落がなく、更に取り扱い性、加工性、着用性、軽量性、柔軟性などの特性に優れる防護衣類用の積層構造体および当該積層構造体よりなる防護衣類に関する。   The present invention relates to a laminated structure for protective clothing and protective clothing comprising the same. More specifically, the present invention has an intermediate layer in which the activated carbon layer is protected by a nanofiber layer between the outer layer and the inner layer, and is excellent in protection performance against harmful chemical substances and shielding performance against harmful microorganisms. It is composed of a laminated structure for protective clothing and a laminated structure excellent in permeability and water vapor permeability, having no activated carbon removal, and having excellent characteristics such as handleability, processability, wearability, lightness, and flexibility. Related to protective clothing.

近年、例えばサリンやマスタードガスなどのような有害な化学物質や有害な微生物がテロや紛争で用いられる危険性が高まっており、それに伴って有害な化学物質や微生物から人体を保護することのできる防護衣類の開発が急務になっている。また、テロや紛争に限らず、細菌やウイルスなどの有害微生物によって引き起こされる各種の伝染病から人体を保護する防護衣類、有害な化学物質の取り扱い業務に関与する人々を有害な化学物質から保護する防護衣類などの必要性も高まっている。   In recent years, there has been an increased risk that harmful chemical substances such as sarin and mustard gas and harmful microorganisms will be used in terrorism and conflict, which can protect the human body from harmful chemical substances and microorganisms. There is an urgent need to develop protective clothing. In addition to terrorism and conflict, protective clothing that protects the human body from various infectious diseases caused by harmful microorganisms such as bacteria and viruses, and people involved in the handling of harmful chemical substances are protected from harmful chemical substances. There is a growing need for protective clothing.

有害な化学物質や微生物などから人体を保護する防護衣類としては、有害な化学物質や微生物を通さないゴム層を有する材料(例えばゴム引き布)から形成した防護衣類が知られている。しかしながら、ゴム層を有する材料は、有害な化学物質や微生物を通さないが同時に空気や水蒸気も全く通さないため、当該材料からなる衣服を着用して苛酷な条件下で作業を行うと、人体から発散した熱、水蒸気、炭酸ガスなどが衣服中に蓄積して外部に放出されず、着用感に著しく劣り、甚だしい場合には熱ストレス、熱中症などによる重篤な健康被害を引き起こす危険がある。   As protective clothing that protects the human body from harmful chemical substances and microorganisms, protective clothing formed from a material (for example, rubberized cloth) having a rubber layer that does not allow harmful chemical substances and microorganisms to pass through is known. However, a material having a rubber layer does not allow harmful chemical substances or microorganisms to pass through, but at the same time does not allow air or water vapor to pass through at all. Diffused heat, water vapor, carbon dioxide, etc. accumulate in clothes and are not released to the outside, so that the feeling of wearing is extremely inferior. In severe cases, there is a risk of causing serious health damage due to heat stress, heat stroke, etc.

上記の点から、有害な化学物質や微生物を遮蔽することができ、その一方で空気や水蒸気を透過させることのできる防護衣類または防護衣類用材料が従来から提案されている。
そのような従来技術としては、(1)液体不透過性層と、有害ガスを吸収、吸着または無毒化する固体粒子を保持した第二の層を有する保護材料(特許文献1を参照)、(2)活性炭繊維製布帛層とアラミド繊維製布帛層とを積層接着した防護服用の積層織物(特許文献2を参照)、(3)撥水・撥油性のカットパイル布帛よりなる液状有毒化学物質防護層、繊維状活性炭布帛よりなるガス状有毒化学物質吸着層および吸着材保護層が積層した積層構造物からなる防護衣用材(特許文献3を参照)、(4)ガス状有機化学物質に対して透過抑制能を有し湿分を透過する選択透過層と繊維状活性炭などからなるガス吸着層をホットメルト接着剤で接着すると共に選択透過層の非接着面側とガス吸着層の被接着面側に更に保護層を積層した防護材料(特許文献4を参照)、(5)シート状の第1キャリア層とシート状の第2キャリア層の間に活性炭繊維布帛よりなる吸着層を介在させ、前記吸着層を第1キャリア層と第2キャリア層に点接着によって接着積層した吸着フィルタ材料(特許文献5を参照)が知られている。
From the above points, protective clothing or materials for protective clothing that can shield harmful chemical substances and microorganisms while allowing air and water vapor to pass therethrough have been proposed.
As such prior art, (1) a protective material having a liquid impermeable layer and a second layer holding solid particles that absorb, adsorb or detoxify harmful gases (see Patent Document 1), ( 2) Laminated woven fabric for protective clothing in which activated carbon fiber fabric layer and aramid fiber fabric layer are laminated and bonded (refer to Patent Document 2), (3) Liquid toxic chemical substance protection consisting of water / oil repellency cut pile fabric Layer, a protective clothing material comprising a laminated structure in which a gaseous toxic chemical substance adsorbing layer and an adsorbent protective layer made of fibrous activated carbon fabric are laminated (see Patent Document 3), (4) against gaseous organic chemical substances The selective permeation layer having permeation suppression ability and the gas adsorption layer made of fibrous activated carbon and the like are bonded with a hot melt adhesive, and the non-adhesive side of the selective permeation layer and the adherent side of the gas adsorption layer Protective material with a protective layer on top (See Patent Document 4), (5) An adsorption layer made of activated carbon fiber fabric is interposed between the sheet-like first carrier layer and the sheet-like second carrier layer, and the adsorption layer is made to be the first carrier layer and the second carrier layer. An adsorption filter material (see Patent Document 5) in which a carrier layer is bonded and laminated by point bonding is known.

しかしながら、上記した(1)〜(3)の従来の保護材料または防護材料は、有害な微生物の遮蔽性能が十分であるとはいえず、人体を有害な微生物から十分に保護することが困難である。しかも上記(1)の保護材料は、有害ガスの吸収、吸着または無毒化用の固体粒子が保護材料から脱落し易く、また上記(2)の積層織物は、液状化学物質に対する防護機能が不十分で、その上有害な微生物の遮蔽性能が十分でない。
また、上記(4)および(5)の従来の防護材料は、通気性や水蒸気透過性が不足していて、当該防護材料から製造した衣服を着用したときの着用性が劣り、しかも熱ストレスや熱中症などを発症する恐れがある。
However, the conventional protective materials or protective materials of (1) to (3) described above cannot be said to have sufficient shielding performance against harmful microorganisms, and it is difficult to sufficiently protect the human body from harmful microorganisms. is there. In addition, the protective material (1) is easy to remove solid particles for absorbing, adsorbing or detoxifying harmful gases from the protective material, and the laminated fabric (2) has insufficient protection function against liquid chemical substances. In addition, the shielding performance of harmful microorganisms is not sufficient.
In addition, the conventional protective materials (4) and (5) are insufficient in breathability and water vapor permeability, have poor wearability when wearing clothes manufactured from the protective material, There is a risk of developing heat stroke.

特開平4−255342号公報JP-A-4-255342 特開平2−190328号公報JP-A-2-190328 特開平8−308945号公報JP-A-8-308945 特開2005−271222号公報JP 2005-271222 A 特開2005−324025号公報JP-A-2005-324025 特公平3−79467号公報Japanese Patent Publication No. 3-79467

本発明の目的は、有害ガスの吸着性に優れていて、有害ガスから人体などを安全に防護することができ、更に有害な微生物の遮蔽性に優れていて人体などを有害な微生物から安全に防護することができ、その上液状化学物質に対する防護性能にも優れ、さらに空気および水蒸気の透過性に優れていて着用感に優れ且つ熱ストレスや熱中症などを引き起こすことがなく、しかも有害ガスの吸収、吸着のために用いられる活性炭の脱落のない防護衣類用の材料およびそれからなる防護衣類を提供することである。   The object of the present invention is excellent in the adsorption of harmful gases, can safely protect the human body from harmful gases, and has excellent shielding properties against harmful microorganisms, and can safely protect the human body from harmful microorganisms. In addition to being able to protect, it also has excellent protection performance against liquid chemicals, and also has excellent air and water vapor permeability, so it feels comfortable to wear and does not cause heat stress or heat stroke. An object of the present invention is to provide a material for a protective garment which does not drop off activated carbon used for absorption and adsorption, and a protective garment comprising the material.

本発明者らが前記した目的を達成するために鋭意検討した結果、上記(1)〜(3)の従来の防護材料(積層材料)では、防護材料の形成に用いられている布帛などの材料では、当該材料中に形成されている空隙のサイズが大きく、そのためにバクテリアなどの有害な微生物の遮蔽能が低いことが判明した。また、上記(1)の防護材料では、有害ガスの吸収、吸着に用いられている固体粒子が布帛中のそのような大きな空隙を通ってしまうことにより脱落し易いことが判明した。さらに、上記(4)および(5)の従来の防護材料では、これらで用いられている選択透過膜やシート状材料の通気性および水蒸気透過性が不十分なために、防護材料の通気性能および水蒸気透過性能が不足していることが判明した。   As a result of intensive studies by the present inventors to achieve the above-described object, the conventional protective materials (laminated materials) described in (1) to (3) above are materials such as fabrics used for forming the protective material. Thus, it was found that the size of the voids formed in the material is large, and therefore the ability to shield harmful microorganisms such as bacteria is low. In addition, it has been found that the protective material (1) is easy to drop off because solid particles used for absorption and adsorption of harmful gases pass through such large gaps in the fabric. Furthermore, in the conventional protective materials of the above (4) and (5), the air permeability and the water vapor permeability of the permselective membrane and the sheet-like material used in these materials are insufficient. It was found that the water vapor transmission performance was insufficient.

そこで、上記した知見に基づいて本発明者らが更に検討を重ねたところ、撥水・撥油加工を施した布帛を外層として用い、また布帛を内層として用い、前記外層をなす布帛と内層をなす布帛の間に、繊維径の極めて小さなナノ繊維から形成した通気度の高いナノ繊維層によって保護した比表面積の大きな活性炭の層を中間層として存在させると、それにより得られる積層構造体は、有害ガスの吸着性能に優れるだけでなく、有害な微生物の遮蔽性能に優れること、空気および水蒸気の透過性に優れること、しかも液状化学物質に対する防護性に優れ、その上屈曲性、成形加工性にも優れ、更に積層構造体からの活性炭の脱落がないことを見出し、それらの種々の知見に基づいて本発明を完成した。   Therefore, as a result of further investigations by the present inventors based on the above-described knowledge, a fabric subjected to water / oil repellency processing is used as an outer layer, a fabric is used as an inner layer, and the fabric and the inner layer forming the outer layer are used. When a layer of activated carbon having a large specific surface area, which is protected by a nanofiber layer having a high air permeability formed from nanofibers having a very small fiber diameter, is present as an intermediate layer between the formed fabrics, a laminated structure obtained thereby has the following structure: It not only excels in the adsorption performance of harmful gases, but also has excellent shielding performance against harmful microorganisms, has excellent air and water vapor permeability, has excellent protection against liquid chemicals, and is flexible and moldable. Furthermore, the present inventors have found that activated carbon does not fall off from the laminated structure, and have completed the present invention based on these various findings.

すなわち、本発明は、
(1) 外層、中間層および内層が外層/中間層/内層の順で積層した防護衣類用の積層構造体であって;
・外層が撥水・撥油加工を施した布帛から構成され;
・中間層が、比表面積600〜3000m2/gの活性炭を含み、平均繊維径10〜1000nmのナノ繊維よりなる通気度0.1cc/cm2/sec以上のナノ繊維層によって前記活性炭が保護されている活性炭含有複合層であり;
・内層が布帛から構成されている;
ことを特徴とする防護衣類用の積層構造体である。
That is, the present invention
(1) A laminated structure for protective clothing in which an outer layer, an intermediate layer, and an inner layer are laminated in the order of outer layer / intermediate layer / inner layer;
-The outer layer is composed of a fabric with water and oil repellent finishes;
The intermediate layer includes activated carbon having a specific surface area of 600 to 3000 m 2 / g, and the activated carbon is protected by a nanofiber layer having an air permeability of 0.1 cc / cm 2 / sec or more made of nanofibers having an average fiber diameter of 10 to 1000 nm. Activated carbon-containing composite layer;
The inner layer is made of fabric;
It is the laminated structure for protective clothing characterized by the above-mentioned.

そして、本発明は、
(2) 外層を構成する布帛の撥水度が80以上および撥油度が4以上である前記(1)の防護衣類用の積層構造体;
(3) 外層を構成する布帛が、難燃性で且つ耐熱性の布帛である前記(1)または(2)の防護衣類用の積層構造体:
(4) 中間層におけるナノ繊維層が、有機重合体ナノ繊維よりなる不織シートから構成されている前記(1)〜(3)のいずれかの防護衣類用の積層構造体;および、
(5) 中間層が、ホットメルト接着剤による点接着または線接着によるか或いはホットメルト不織布によって外層を構成する布帛および内層を構成する布帛と接着している前記(1)〜(4)のいずれかの防護衣類用の積層構造体;
である。
さらに、本発明は、
(6) 前記(1)〜(5)のいずれかの積層構造体からなる防護衣類である。
And this invention,
(2) The laminated structure for protective clothing of (1) above, wherein the water repellency of the fabric constituting the outer layer is 80 or more and the oil repellency is 4 or more;
(3) The laminated structure for protective clothing of (1) or (2) above, wherein the fabric constituting the outer layer is a flame-retardant and heat-resistant fabric:
(4) The laminated structure for protective clothing according to any one of (1) to (3), wherein the nanofiber layer in the intermediate layer is composed of a nonwoven sheet made of organic polymer nanofibers;
(5) Any of the above (1) to (4), wherein the intermediate layer is bonded to the fabric constituting the outer layer and the fabric constituting the inner layer by point bonding or line bonding with a hot melt adhesive or by a hot melt nonwoven fabric Laminated structures for protective clothing;
It is.
Furthermore, the present invention provides
(6) A protective garment comprising the laminated structure according to any one of (1) to (5).

本発明の防護衣類用の積層構造体は、有害ガスの吸着性能に優れており、そのため本発明の積層構造体からなる防護衣類は、人体などを有害ガスから安全に防護することができる。
また、本発明の防護衣類用の積層構造体は、液状化学物質に対する防護性能にも優れている。
その上、本発明の防護衣類用の積層構造体は、中間層に含まれる活性炭を空隙サイズの小さなナノ繊維層によって保護しているため、積層構造体からの活性炭の脱落がなく耐久性に優れている。
The laminated structure for protective clothing of the present invention is excellent in harmful gas adsorption performance. Therefore, the protective clothing comprising the laminated structure of the present invention can safely protect human bodies and the like from harmful gases.
Moreover, the laminated structure for protective clothing of the present invention is excellent in protective performance against liquid chemical substances.
In addition, since the laminated structure for protective clothing of the present invention protects the activated carbon contained in the intermediate layer with a nanofiber layer having a small gap size, the activated carbon does not fall off from the laminated structure and has excellent durability. ing.

本発明の防護衣類用の積層構造体は、中間層に用いているナノ繊維層における空隙のサイズがウイルスなどの有害な微生物を十分に遮蔽できる小さなサイズであるために、有害な微生物の遮蔽性能に優れている。
さらに、本発明の防護衣類用の積層構造体は、軽量で屈曲性があり、しかも空気透過性および水蒸気透過性に優れているため、防護衣類にして着用した際の着用感に優れ、更に熱中症などの熱ストレスによる着用者の健康被害などを生じない。
また、本発明の防護衣類用の積層構造体は、屈曲性があり、成形加工性に優れているため、防護衣類を作製する際の作業性に優れている。
The laminated structure for protective clothing according to the present invention has a small size capable of sufficiently shielding harmful microorganisms such as viruses because the size of the voids in the nanofiber layer used in the intermediate layer is sufficient to shield harmful microorganisms. Is excellent.
Furthermore, the laminated structure for protective clothing of the present invention is lightweight and flexible, and also has excellent air permeability and water vapor permeability. It does not cause wearer's health damage due to heat stress such as sickness.
Moreover, since the laminated structure for protective clothing of the present invention is flexible and excellent in moldability, it is excellent in workability when producing protective clothing.

以下に本発明について詳細に説明する。
本発明は、防護衣類用の積層構造体および当該積層構造体よりなる防護衣類に関するものである。
ここで、本発明における「防護衣類」とは、有害なガス状物質、液状物質、微生物などからの防護を目的として、人および場合により動物(ペット用動物、災害救助犬、盲導犬、警察犬などの動物)が着用する衣類の総称であり、本発明の防護衣類には、衣服、手袋、靴下、帽子、マスク、襟巻き、合羽などが包含され、本発明の防護衣類用の積層構造体は、前記した防護衣類の製造に用いられる積層構造体である。
本発明の防護衣類用の積層構造体および防護衣類によって防護することを目的とする有害なガス状物質の代表例は、炭素原子を1個以上有する分子量が50以上の有害なガス状物質であって、活性炭などのガス吸着物質によって吸着され得るガス状物質である。そのような有害なガス状物質の具体例としては、農薬、殺虫剤、除草剤などに使用される有機リン系化合物、塗料、接着剤、その他の用途で汎用されているトルエン、塩化メチレン、クロロホルムなどの一般的な有機溶媒、塩素ガス、ホスゲン、マスタード、ルイサイト、クロルピクリン、青酸、砒素、V剤(VE、VG、VM、VX)、G剤(タブン、サリン、ソマン)などの軍事用ガス兵器などを挙げることができ、本発明の防護衣類用の積層構造体およびそれからなる防護衣類はこれらの有害なガスの防護に有効に用いることができる。
また、生物学的毒物および有害物としては、ウイルス、バクテリア、細菌、その他の有害微生物、炭疽菌、天然痘、エボラ、ペスト、マールブルクウイルスなどの軍事用生物兵器などを挙げることができ、本発明の防護衣類用の積層構造体およびそれからなる防護衣類は、これらの有害物からの防護に有効に用いることができる。
The present invention is described in detail below.
The present invention relates to a laminated structure for protective clothing and protective clothing comprising the laminated structure.
Here, the term “protective clothing” in the present invention refers to humans and sometimes animals (pet animals, disaster rescue dogs, guide dogs, police dogs, etc.) for the purpose of protection from harmful gaseous substances, liquid substances, microorganisms, and the like. The protective clothing of the present invention includes clothing, gloves, socks, a hat, a mask, a collar, a feather, etc., and the laminated structure for protective clothing of the present invention includes A laminated structure used for manufacturing the protective clothing described above.
Representative examples of the laminated structure for protective clothing of the present invention and harmful gaseous substances intended to be protected by protective clothing are harmful gaseous substances having one or more carbon atoms and a molecular weight of 50 or more. It is a gaseous substance that can be adsorbed by a gas adsorbing substance such as activated carbon. Specific examples of such harmful gaseous substances include organophosphorus compounds used in agricultural chemicals, insecticides, herbicides, paints, adhesives, and other commonly used toluene, methylene chloride, chloroform. General organic solvents such as chlorine gas, phosgene, mustard, leucite, chloropicrin, cyanide, arsenic, agent V (VE, VG, VM, VX), agent G (tabung, sarin, soman) and other military gases The laminated structure for protective clothing of the present invention and the protective clothing comprising the same can be effectively used for protecting these harmful gases.
Biological poisons and harmful substances include viruses, bacteria, bacteria, other harmful microorganisms, anthrax, smallpox, Ebola, plague, Marburg virus and other biological biological weapons. The laminated structure for protective clothing of the invention and the protective clothing comprising the same can be effectively used for protection from these harmful substances.

本発明の防護衣類用の積層構造体(以下単に「積層構造体」ということがある)は、布帛よりなる外層、活性炭を含む中間層および布帛よりなる内層が、外層/中間層/内層の順で積層している。   The laminated structure for protective clothing of the present invention (hereinafter sometimes simply referred to as “laminated structure”) includes an outer layer made of fabric, an intermediate layer containing activated carbon, and an inner layer made of fabric in the order of outer layer / intermediate layer / inner layer. Are stacked.

外層は、積層構造体から防護衣類を作製したときに、衣類の外側(表面)となる層である。外層は、撥水・撥油加工を施した布帛から構成されていることが必要である。外層が撥水・撥油加工を施した布帛から構成されていることによって、積層構造体に、水、液状の化学物質、油に対する防護機能が付与される。
外層を構成する布帛は、水、液状の化学物質、油に対する防護機能がより高くなる点から、撥水度が80以上、特に85以上であることが好ましく、また撥油度が4以上、特に5以上であることが好ましい。
本明細書における「撥水度」とは、JIS L 1092 5.2 スプレー試験に従って測定される撥水度をいい、また「撥油度」とはAATCC Test Method 118に従って測定される撥油度をいう。
The outer layer is a layer that becomes the outer side (surface) of the garment when the protective garment is produced from the laminated structure. The outer layer needs to be made of a fabric subjected to water / oil repellent finish. Since the outer layer is made of a fabric subjected to water / oil repellent finish, the laminated structure is provided with a protective function against water, liquid chemical substances, and oil.
The fabric constituting the outer layer preferably has a water repellency of 80 or more, particularly 85 or more, and an oil repellency of 4 or more, particularly from the viewpoint of higher protection against water, liquid chemicals and oil. It is preferably 5 or more.
In this specification, “water repellency” refers to the water repellency measured according to JIS L 1092 5.2 spray test, and “oil repellency” refers to the oil repellency measured according to AATCC Test Method 118. Say.

外層を構成する布帛(以下「外層布」ということがある)に対する撥水・撥油加工は、撥水および撥油の両性能を兼備する有機フッ素化合物を用いて行うことが好ましい。外層布の撥水・撥油加工に好ましく用いられる有機フッ素化合物系の撥水・撥油剤としては、例えば、ミネソタマイニング社製の「スコーチガード」(登録商標)などを挙げることができる。
外層布の撥水・撥油加工に当たっては、布帛の撥水・撥油加工において従来から採用されている処理方法(例えばスプレー塗布方法、浸漬方法、コーティング方法など)を採用することができる。
The water / oil repellency treatment for the fabric constituting the outer layer (hereinafter sometimes referred to as “outer layer fabric”) is preferably performed using an organic fluorine compound having both water repellency and oil repellency. Examples of the organic fluorine compound water / oil repellent preferably used for the water / oil repellent processing of the outer fabric include “Scorch Guard” (registered trademark) manufactured by Minnesota Mining.
For the water / oil repellent finish of the outer fabric, a treatment method conventionally employed in the water / oil repellent finish of the fabric (for example, spray coating method, dipping method, coating method, etc.) can be employed.

外層布としては、撥水・撥油加工が施されていて、活性炭含有複合層からなる中間層が有する有害ガスの吸着性能、有害微生物の遮蔽性能、空気および水蒸気の透過性能を阻害せず、且つ積層構造体の補強作用を有する布帛であればいずれでもよく、織布、編布、不織布のいずれであってもよく、そのうちでも織布であることが、強度、均一性などの点から好ましい。
また、外層布を形成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリエステル、全部芳香族ポリエステルなどのポリエステルからなるポリエステル繊維、ナイロン6、ナイロン66、ナイロン610、ナイロン11、アラミド(全芳香族ポリアミド)などのポリアミドからなるポリアミド繊維、ポリビニルアルコール繊維、アクリル繊維、ポリ塩化ビニリデン繊維、ポリプロピレン繊維、エチレン−ビニルアルコール系共重合体繊維などの合成繊維、レーヨン、キュプラ、アセテートなどの半合成繊維、綿、羊毛、麻などの天然繊維、前記繊維の2種以上の併用などのいずれであってもよい。また、外層布は、紡績糸、フィラメント糸、短繊維のいずれから製造されていてもよい。
As an outer layer fabric, water-repellent and oil-repellent processing has been applied, and it does not hinder the harmful gas adsorption performance, harmful microorganism shielding performance, air and water vapor transmission performance of the intermediate layer made of activated carbon-containing composite layer, Any fabric may be used as long as it has a reinforcing effect on the laminated structure, and any of a woven fabric, a knitted fabric, and a nonwoven fabric may be used. Among them, a woven fabric is preferable in terms of strength, uniformity, and the like. .
Further, as the fibers forming the outer layer cloth, polyethylene terephthalate, polybutylene terephthalate, aliphatic polyester, polyester fibers made of polyester such as aromatic polyester, nylon 6, nylon 66, nylon 610, nylon 11, aramid (totally fragrant) Polyamide fibers made of polyamide such as aromatic polyamides), synthetic fibers such as polyvinyl alcohol fibers, acrylic fibers, polyvinylidene chloride fibers, polypropylene fibers, ethylene-vinyl alcohol copolymer fibers, semi-synthetic fibers such as rayon, cupra and acetate Any of natural fibers such as cotton, wool and hemp, or a combination of two or more of the above fibers may be used. Moreover, the outer layer fabric may be manufactured from any of spun yarn, filament yarn, and short fiber.

特に、外層布として、難燃性の布帛(特に織布)を用いると、本発明の積層構造体に撥水・撥油性と共に難燃性が付与されて、火災が生じていたり、高温の現場で用いられることの多い防護衣類を製造したときに、着用者のより一層の安全を図ることができる。
外層布として有効な難燃素材としては、火傷防止の点からメルトドリップしないことが重要で、そのため、ビニロンやレーヨン、アクリル繊維やフェノール繊維のような炭化性重合体からなる難燃素材が好ましい。難燃性布帛の具体例としては、難燃性ビニロンと難燃性レーヨンを混紡した紡績糸を用いて製造した織布、難燃性ビニロンとアラミド繊維を混紡した紡績糸を用いて製造した織布などを挙げることができる。
In particular, if a flame retardant fabric (especially a woven fabric) is used as the outer layer fabric, the laminated structure of the present invention is imparted with water repellency and oil repellency as well as flame retardant, causing a fire or high temperature When a protective garment often used in is manufactured, it is possible to further improve the safety of the wearer.
As a flame retardant material effective as an outer layer fabric, it is important not to melt-drip from the viewpoint of preventing burns. Therefore, a flame retardant material made of a carbonized polymer such as vinylon, rayon, acrylic fiber, or phenol fiber is preferable. Specific examples of the flame retardant fabric include a woven fabric manufactured using a spun yarn obtained by mixing a flame retardant vinylon and a flame retardant rayon, and a woven fabric manufactured using a spun yarn obtained by mixing a flame retardant vinylon and an aramid fiber. Cloth etc. can be mentioned.

活性炭含有複合層からなる中間層が有する有害ガスの吸着性能、有害微生物の遮蔽性能、空気および水蒸気の透過性能などを阻害しないようにするために、外層布の通気度(空気透過度)は、8〜100cc/cm2/secであることが好ましく、10〜80cc/cm2/secであることがより好ましい。また、外層布の透湿度(水蒸気の透過度合)は、5000〜100000g/m2/24hrであることが好ましく、9000〜80000g/m2/24hrであることがより好ましい。
なお、本明細書でいう「通気度」(空気透過度)(外層布、活性炭ナノ繊維層、内層を構成する布帛、積層構造体の通気度)は、JIS L 1096(フラジール法)にしたがって測定した通気度である。
また、本明細書でいう「透湿度」(外層布、活性炭ナノ繊維層、内層を構成する布帛、積層構造体の透湿度)は、JIS L 1099 A−1法にしたがって測定した透湿度である。
In order not to impede the harmful gas adsorption performance, harmful microorganism shielding performance, air and water vapor transmission performance, etc. of the intermediate layer comprising the activated carbon-containing composite layer, the air permeability (air permeability) of the outer fabric is is preferably 8~100cc / cm 2 / sec, more preferably 10~80cc / cm 2 / sec. Further, the outer layer fabric moisture permeability (permeation degree of water vapor) is preferably 5000~100000g / m 2 / 24hr, more preferably 9000~80000g / m 2 / 24hr.
The “air permeability” (air permeability) (outer layer fabric, activated carbon nanofiber layer, fabric constituting the inner layer, and air permeability of the laminated structure) as used in this specification is measured in accordance with JIS L 1096 (Fragile method). Air permeability.
Further, “moisture permeability” (outer layer fabric, activated carbon nanofiber layer, fabric constituting the inner layer, moisture permeability of the laminated structure) referred to in the present specification is a moisture permeability measured according to the JIS L 1099 A-1 method. .

外層布の目付は、積層構造体の強度、柔軟性、取り扱い性、軽量性、遮蔽性などの点から、100〜500g/m2であることが好ましく、150〜300g/m2であることがより好ましい。
外層布の厚さは、積層構造体の強度、柔軟性、取り扱い性、遮蔽性などの点から、0.1〜1mmであることが好ましく、0.3〜0.8mmであることがより好ましい。
The basis weight of the outer layer fabric is preferably 100 to 500 g / m 2 and preferably 150 to 300 g / m 2 from the viewpoint of the strength, flexibility, handleability, lightness, shielding properties, etc. of the laminated structure. More preferred.
The thickness of the outer layer fabric is preferably 0.1 to 1 mm, more preferably 0.3 to 0.8 mm, from the viewpoint of the strength, flexibility, handleability, shielding properties, etc. of the laminated structure. .

本発明の防護衣類用の積層構造体における中間層は、活性炭を含み、当該活性炭をナノ繊維層が保護している活性炭含有複合層からなる。
中間層に用いる活性炭は、その比表面積が600〜3000m2/gの範囲内にあることが有害ガスの吸着性能、取り扱い性などの点から必要であり、比表面積が800〜2800m2/gの範囲内であることが好ましく、1000〜2500m2/gの範囲内であることがより好ましい。
活性炭の比表面積が前記範囲から外れて小さすぎると、積層構造体の有害ガス吸着性能が低下し、一方活性炭の比表面積が大きすぎると、活性炭が脆くなって取り扱い性が不良になる。
ここで、本明細書における活性炭の比表面積は、BET 1点法によって測定した比表面積をいう。
The intermediate layer in the laminated structure for protective clothing of the present invention comprises activated carbon-containing composite layer containing activated carbon, and the nanofiber layer protecting the activated carbon.
Activated carbon used for the intermediate layer, the adsorption performance of the toxic gases to a specific surface area in the range of 600 to 3000 m 2 / g, it is necessary in view of handling properties, the specific surface area is 800~2800m 2 / g It is preferably within the range, and more preferably within the range of 1000 to 2500 m 2 / g.
If the specific surface area of the activated carbon is too small outside the above range, the harmful gas adsorption performance of the laminated structure is lowered. On the other hand, if the specific surface area of the activated carbon is too large, the activated carbon becomes brittle and handling properties become poor.
Here, the specific surface area of the activated carbon in this specification refers to the specific surface area measured by the BET one-point method.

中間層に含有させる活性炭としては、前記した比表面積を有する限りはその形態や形状などは特に制限されず、粒状、粉状、繊維状(短繊維状、長繊維状)、それらの混合体などのいずれであってもよい。そのうちでも、繊維状(特に短繊維状)の活性炭が吸着速度の点から好ましく用いられる。活性炭のサイズは特に制限されないが、一般的には、0.1〜3mmのサイズのものが好ましく用いられる。   The activated carbon contained in the intermediate layer is not particularly limited in form and shape as long as it has the above-described specific surface area, and is granular, powdery, fibrous (short fiber, long fiber), a mixture thereof, etc. Any of these may be used. Among them, fibrous (particularly short fiber) activated carbon is preferably used from the viewpoint of adsorption rate. The size of the activated carbon is not particularly limited, but generally a size of 0.1 to 3 mm is preferably used.

中間層における活性炭の含有量は、中間層の単位面積(1m2)当たりにつき、20〜200g程度、特に40〜150gであることが、有害なガス等の吸着量の点から好ましい。中間層における活性炭の含有量が、前記範囲よりも少ないと、積層構造体の有害ガス吸着性能が低くなり易く、一方前記範囲よりも多いと、積層構造体の柔軟性、成形加工性、軽量性、通気性などが低下し、しかも粉漏れが起こり易くなる。
中間層では、活性炭が均一な厚さで中間層をなす面に存在するようにする。
一般的には、活性炭は、厚さが0.1〜2.5mm、特に0.15〜2mmの活性炭層の形態をなして中間層中に存在していることが、有害ガスの吸着性能、積層構造体の柔軟性や成形加工性などの点から好ましい。
The content of the activated carbon in the intermediate layer is preferably about 20 to 200 g, particularly 40 to 150 g per unit area (1 m 2 ) of the intermediate layer, from the viewpoint of the amount of adsorption of harmful gases and the like. If the content of the activated carbon in the intermediate layer is less than the above range, the harmful gas adsorption performance of the laminated structure tends to be low, while if it exceeds the above range, the flexibility, molding processability, and lightness of the laminated structure are low. , Air permeability and the like are reduced, and powder leakage is likely to occur.
In the intermediate layer, the activated carbon is present on the surface forming the intermediate layer with a uniform thickness.
In general, the activated carbon has a thickness of 0.1 to 2.5 mm, particularly 0.15 to 2 mm in the form of an activated carbon layer, and is present in the intermediate layer. This is preferable from the viewpoints of flexibility and moldability of the laminated structure.

中間層をなす活性炭含有複合層におけるナノ繊維層は、平均繊維径が10〜1000nmの範囲内のナノ繊維から形成されていることが必要であり、平均繊維径が20〜900nmのナノ繊維から形成されていることが好ましく、平均繊維径が40〜800nmのナノ繊維から形成されていることがより好ましい。
ナノ繊維層を形成するナノ繊維の平均繊維径が前記範囲から外れて小さすぎると通気性が悪くなり、一方大きすぎると、ナノ繊維層における空隙のサイズが大きくなって積層構造体に有害な微生物の遮蔽性能が付与されなくなり、しかも積層構造体から活性炭が脱落し易くなる。
ここで、本明細書におけるナノ繊維またはナノ繊維以外の繊維の平均繊維径とは、ナノ繊維またはナノ繊維以外の繊維の50本をランダムに採取し、採取した50本のナノ繊維またはナノ繊維以外の繊維のそれぞれについて、その長さ方向の中央部分の太さを走査型電子顕微鏡(例えば日立製作所製の走査型電子顕微鏡「S−510型」など)を用いて測定して、50本の平均値として求められる繊維径をいう。
The nanofiber layer in the activated carbon-containing composite layer forming the intermediate layer needs to be formed from nanofibers having an average fiber diameter in the range of 10 to 1000 nm, and is formed from nanofibers having an average fiber diameter of 20 to 900 nm. It is preferable that it is formed from nanofibers having an average fiber diameter of 40 to 800 nm.
If the average fiber diameter of the nanofibers forming the nanofiber layer is too small out of the above range, the air permeability is deteriorated. On the other hand, if the average fiber diameter is too large, the size of the voids in the nanofiber layer becomes large and harmful microorganisms to the laminated structure Thus, the activated carbon is easily removed from the laminated structure.
Here, the average fiber diameter of the nanofibers or non-nanofibers in this specification means that 50 fibers of the nanofibers or non-nanofibers are randomly sampled and other than the collected 50 nanofibers or nanofibers. For each of the fibers, the thickness of the central portion in the length direction was measured using a scanning electron microscope (for example, a scanning electron microscope “S-510 type” manufactured by Hitachi, Ltd.), and an average of 50 fibers was measured. The fiber diameter obtained as a value.

中間層におけるナノ繊維層は、ナノ繊維製のシート状物からなることが好ましく、特にナノ繊維製の不織シートからなることが、ナノ繊維製不織シートの製造の容易性、入手容易性、均一性、通気性などの点から好ましい。
本発明の積層構造体から製造した防護衣類を着用したときの着用感、熱ストレスの防止、遮蔽性などの点から、中間層を構成するナノ繊維層(特にナノ繊維層を構成するナノ繊維製不織シート)の通気度(空気の透過度)は、0.1〜50cc/cm2/secであることが好ましく、0.3〜30cc/cm2/secであることがより好ましい。また、ナノ繊維層(特にナノ繊維層を構成するナノ繊維製不織布シート)の透湿度(水蒸気の透過度合)は、4000〜20000g/m2/24hrであることが好ましく、6000〜18000g/m2/24hrであることがより好ましい。
The nanofiber layer in the intermediate layer is preferably composed of a nanofiber sheet-like material, and particularly composed of a nanofiber nonwoven sheet, the ease of manufacture of the nanofiber nonwoven sheet, the availability, It is preferable from the viewpoints of uniformity and air permeability.
The nanofiber layer constituting the intermediate layer (especially made of nanofibers constituting the nanofiber layer) from the viewpoint of wearing feeling when wearing the protective clothing manufactured from the laminated structure of the present invention, prevention of thermal stress, shielding properties, etc. air permeability of the nonwoven sheet) (permeability of air) is preferably 0.1~50cc / cm 2 / sec, more preferably 0.3~30cc / cm 2 / sec. Also, nanofiber layer moisture permeability (particularly nanofiber nonwoven fabric sheet constituting the nanofiber layer) (transmission degree of water vapor) is preferably 4000~20000g / m 2 / 24hr, 6000~18000g / m 2 / 24 hr is more preferable.

中間層におけるナノ繊維層(特にナノ繊維製不織シート)の目付は、有害微物の遮蔽性能、活性炭の脱落防止、空気および水蒸気透過性能、積層構造体の柔軟性、取り扱い性、軽量性、コストなどの点から、1〜10g/m2であることが好ましく、3〜8g/m2であることがより好ましい。
また、中間層におけるナノ繊維層の厚さは、有害ガスの吸着性能(有害ガスの吸着速度および吸着寿命)、有害微生物の遮蔽性能、空気および水蒸気の透過性能、柔軟性、取り扱い性、軽量性、コストなどの点から、0.01〜0.5mmであることが好ましく、0.05〜0.4mmであることがより好ましい。
The basis weight of the nanofiber layer (especially nanofiber non-woven sheet) in the intermediate layer is the shielding performance of harmful fines, prevention of falling off of activated carbon, air and water vapor permeation performance, flexibility of the laminated structure, handleability, light weight, From the viewpoint of cost and the like, 1 to 10 g / m 2 is preferable, and 3 to 8 g / m 2 is more preferable.
In addition, the thickness of the nanofiber layer in the intermediate layer is based on the adsorption performance of harmful gases (toxic gas adsorption rate and life), harmful microorganism shielding performance, air and water vapor transmission performance, flexibility, handleability, and lightness. From the viewpoint of cost and the like, the thickness is preferably 0.01 to 0.5 mm, more preferably 0.05 to 0.4 mm.

ナノ繊維層を形成するナノ繊維としては、ナノ繊維の形成容易性、積層構造体の柔軟性、成形加工性、軽量性、均一性、遮蔽性などの点から、繊維形成性の有機重合体よりなるナノ繊維が好ましく用いられる。本発明で用い得るナノ繊維としては、例えば、ポリウレタン、ポリアクリロニトリル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリエステルなどのポリエステル、ナイロン6、ナイロン66、ナイロン610、ナイロン11などのポリアミド、ジカルボン酸成分の60%以上が芳香族ジカルボン酸である半芳香族ポリアミド、ポリビニルアルコール、ポリ塩化ビニリデン、ポリプロピレン、エチレン−酢酸ビニル共重合体、ポリスチレン−ポリオレフィンブロック共重合体、レーヨン、キュプラ、アセテートなどからなるナノ繊維を挙げることができる。ナノ繊維層は、前記したナノ繊維の1種類から形成されていてもよいし、または2種類以上から形成されていてもよい。そのうちでも、中間層におけるナノ繊維層は、ポリウレタンからなるナノ繊維から形成されていることが、高伸度で衣類にしたときの追従性に優れる点から好ましい。   The nanofibers that form the nanofiber layer are better than the fiber-forming organic polymers in terms of the ease of nanofiber formation, the flexibility of the laminated structure, molding processability, lightness, uniformity, shielding properties, etc. The nanofiber is preferably used. Nanofibers that can be used in the present invention include, for example, polyesters such as polyurethane, polyacrylonitrile, polyethylene terephthalate, polybutylene terephthalate, aliphatic polyester, polyamides such as nylon 6, nylon 66, nylon 610, nylon 11, and dicarboxylic acid components. Nanofibers composed of semi-aromatic polyamide, polyvinyl alcohol, polyvinylidene chloride, polypropylene, ethylene-vinyl acetate copolymer, polystyrene-polyolefin block copolymer, rayon, cupra, acetate, etc. with 60% or more of aromatic dicarboxylic acid Can be mentioned. The nanofiber layer may be formed from one kind of the above-described nanofibers, or may be formed from two or more kinds. Among these, it is preferable that the nanofiber layer in the intermediate layer is formed of nanofibers made of polyurethane from the viewpoint of excellent followability when made into clothes with high elongation.

中間層をなす活性炭含有複合層におけるナノ繊維層による活性炭の保護形態としては、活性炭を層状にし、その活性炭層の両側(上面と下面)にナノ繊維層を配置した形態が好ましく採用される。
その際に、活性炭層とナノ繊維層とを層間剥離が生じないように接着しておくことが好ましい。活性炭層を上下のナノ繊維層の間に接着固定する方法としては、例えば、活性炭に接着剤を混合し、その混合物を一方のナノ繊維層の表面に塗布した後、その塗布面に他方のナノ繊維層を重ねて接着固定して、ナノ繊維層/活性炭層/ナノ繊維層の順で接着積層した活性炭含有複合層を形成させる方法、ホットメルト不織布をナノ繊維層と活性炭層の間に介在させた状態でカレンダーなどによって熱圧着させて接着する方法などを挙げることができる。
活性炭に混合する接着剤としては、活性炭が有する有害ガスの吸着性能を阻害しないものを使用する必要があり、活性炭の有害ガス吸着性能を阻害しない接着剤としては、例えば、ポリウレタン系またはアクリル酸エステル系重合体エマルジヨンなどを挙げることができる。
また、活性炭に対する接着剤の混合量は、接着剤の種類やナノ繊維層を形成するナノ繊維の種類などに応じて異なり得るが、活性炭が有する有害ガスの吸着性能を阻害しないようにしながら、活性炭層をナノ繊維層に良好に接着させるために、一般的には、活性炭100質量部に対して、接着剤(固形分で)を0.1〜10質量部、更には0.5〜5質量部、特に0.5〜3質量部程度とすることが好ましい。
As a form of protection of the activated carbon by the nanofiber layer in the activated carbon-containing composite layer forming the intermediate layer, a form in which the activated carbon is layered and the nanofiber layers are disposed on both sides (upper surface and lower surface) of the activated carbon layer is preferably employed.
In that case, it is preferable to adhere the activated carbon layer and the nanofiber layer so that delamination does not occur. As a method for adhering and fixing the activated carbon layer between the upper and lower nanofiber layers, for example, an adhesive is mixed with activated carbon, the mixture is applied to the surface of one nanofiber layer, and then the other nanofiber is applied to the application surface. A method of forming an activated carbon-containing composite layer by laminating and fixing the fiber layers and bonding and laminating in the order of nanofiber layer / activated carbon layer / nanofiber layer, and interposing a hot melt nonwoven fabric between the nanofiber layer and the activated carbon layer A method of bonding by thermocompression bonding with a calendar or the like in a state of being in contact.
As an adhesive mixed with activated carbon, it is necessary to use an adhesive that does not hinder the harmful gas adsorption performance of activated carbon. As an adhesive that does not inhibit the harmful gas adsorption performance of activated carbon, for example, polyurethane or acrylic ester And the like based on a polymer polymer emulsion.
In addition, the amount of adhesive mixed with activated carbon may vary depending on the type of adhesive and the type of nanofibers that form the nanofiber layer, but the activated carbon does not hinder the harmful gas adsorption performance of activated carbon. In order to make the layer adhere well to the nanofiber layer, generally 0.1 to 10 parts by mass, and further 0.5 to 5 parts by mass of the adhesive (in solid content) with respect to 100 parts by mass of the activated carbon. Part, particularly about 0.5 to 3 parts by mass.

本発明の積層構造体から製造した防護衣類を着用したときの着用感、熱ストレスの防止、遮蔽性などの点から、中間層をなす活性炭含有複合層の(空気の透過度)は、0.1〜50cc/cm2/secであることが好ましく、0.3〜30cc/cm2/secであることがより好ましく、また透湿度(水蒸気の透過度合)は、4000〜20000g/m2/24hrであることが好ましく、5500〜18000g/m2/24hrであることがより好ましい。
中間層をなす活性炭含有複合層の目付は、22〜220g/m2であることが好ましく、40〜150g/m2であることがより好ましい。
また、中間層をなす活性炭含有複合層の厚さは、0.1〜3mmであることが好ましく、0.2〜2mmであることがより好ましい。
From the viewpoints of wearing feeling when wearing protective clothing manufactured from the laminated structure of the present invention, prevention of thermal stress, shielding properties, and the like, the (air permeability) of the activated carbon-containing composite layer forming the intermediate layer is 0. is preferably 1~50cc / cm 2 / sec, more preferably 0.3~30cc / cm 2 / sec, also moisture permeability (permeation degree of water vapor) is, 4000~20000g / m 2 / 24hr It is preferable that it is 5500-18000 g / m < 2 > / 24hr.
Basis weight of the activated carbon-containing composite layer constituting the intermediate layer is preferably 22~220g / m 2, and more preferably 40~150g / m 2.
The thickness of the activated carbon-containing composite layer that forms the intermediate layer is preferably 0.1 to 3 mm, and more preferably 0.2 to 2 mm.

中間層に用いるナノ繊維、特にナノ繊維製不織シートの製法は特に制限されない。本発明の積層構造体で用いるナノ繊維製不織シートは、例えばいわゆるエレクトロスピニング法によって製造することができる。
具体的には、上記した繊維形成性の有機重合体の溶液を注射針のような細いノズルから高電圧領域にアース面に向けて噴出させて(スプレーして)アース面に有機重合体よりなるナノ繊維を不織シート状に堆積させることによって製造することができる。エレクトロスピニング法による有機重合体ナノ繊維の製造方法は既に知られている(例えば特許文献6を参照)。
エレクトロスピニング法によってナノ繊維を製造するに当たっては、有機重合体溶液の濃度、電圧、有機重合体の重合度、有機重合体溶液の表面張力などを調整することによって、ナノ繊維の繊維径を調整することができる。
The manufacturing method of the nanofiber used for an intermediate | middle layer, especially a nanofiber nonwoven sheet is not restrict | limited. The nanofiber nonwoven sheet used in the laminated structure of the present invention can be produced, for example, by a so-called electrospinning method.
Specifically, the fiber-forming organic polymer solution described above is sprayed (sprayed) from a thin nozzle such as an injection needle toward the ground surface in a high voltage region, and the ground surface is made of the organic polymer. It can be produced by depositing nanofibers in a non-woven sheet. The manufacturing method of the organic polymer nanofiber by the electrospinning method is already known (for example, refer patent document 6).
When producing nanofibers by electrospinning, the fiber diameter of the nanofibers is adjusted by adjusting the concentration, voltage, degree of polymerization of the organic polymer, surface tension of the organic polymer solution, etc. be able to.

内層は、積層構造体から防護衣類を作製したときに衣類の裏面(人体側に位置する面)となる層である。内層を構成する布帛(以下「内層布」ということがある)としては、空気および水蒸気を透過させ、更に人体が接触しても人体を傷つけたり、不快な感触を与えず、しかも補強作用、活性炭保護作用を有する布帛であればいずれでもよく、織布、編布、不織布のいずれであってもよく、そのうちでも編布または織布であることが、強度、均一性などの点から好ましい。また、内層布は、立毛布帛(パイル布帛)であっても、または非立毛布帛(パイルを有しない布帛)のいずれであってもよい。内層布として立毛布帛を用いると、風合、吸汗性などの点でメリットがある。
また、内層布を形成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリエステルなどのポリエステルからなるポリエステル繊維、ナイロン6、ナイロン66、ナイロン610、ナイロン11などのポリアミドからなるポリアミド繊維、ポリビニルアルコール繊維、アクリル繊維、ポリ塩化ビニリデン繊維、ポリプロピレン繊維、エチレン−酢酸ビニル共重合体などの合成繊維、レーヨン、キュプラ、アセテートなどの半合成繊維、綿、羊毛、麻などの天然繊維、前記繊維の2種以上の併用などのいずれであってもよい。また、内層布は、紡績糸、フィラメント糸、短繊維のいずれから製造されていてもよい。
The inner layer is a layer that becomes the back surface (the surface located on the human body side) of the clothing when the protective clothing is produced from the laminated structure. As the fabric constituting the inner layer (hereinafter sometimes referred to as “inner layer fabric”), air and water vapor are permeated, and even if the human body comes into contact with the human body, the human body is not damaged or uncomfortable, and the reinforcing action is activated carbon. Any fabric may be used as long as it has a protective action, and any of a woven fabric, a knitted fabric, and a non-woven fabric may be used. Among them, a knitted fabric or a woven fabric is preferable from the viewpoint of strength and uniformity. Further, the inner layer fabric may be a raised fabric (pile fabric) or a non-raised fabric (fabric having no pile). Using a raised fabric as the inner layer fabric is advantageous in terms of texture and sweat absorption.
Further, the fibers forming the inner layer fabric include polyester fibers made of polyester such as polyethylene terephthalate, polybutylene terephthalate, aliphatic polyester, polyamide fibers made of polyamide such as nylon 6, nylon 66, nylon 610, nylon 11, and polyvinyl alcohol. Fiber, acrylic fiber, polyvinylidene chloride fiber, polypropylene fiber, synthetic fiber such as ethylene-vinyl acetate copolymer, semi-synthetic fiber such as rayon, cupra, acetate, natural fiber such as cotton, wool, hemp, etc. Any of a combination of more than two species may be used. Further, the inner layer fabric may be manufactured from any of spun yarn, filament yarn, and short fiber.

内層布の通気度は、8〜100cc/cm2/secであることが好ましく、10〜80cc/cm2/secであることがより好ましい。また、内層布の透湿度(水蒸気の透過度合)は、5000〜100000g/m2/24hrであることが好ましく、10000〜80000g/m2/24hrであることがより好ましい。 Air permeability of the inner layer fabric is preferably 8~100cc / cm 2 / sec, more preferably 10~80cc / cm 2 / sec. Further, the inner fabric moisture permeability (permeation degree of water vapor) is preferably 5000~100000g / m 2 / 24hr, more preferably 10000~80000g / m 2 / 24hr.

内層布の目付は、積層構造体の強度、柔軟性、取り扱い性、軽量性、風合などの点から、30〜300g/m2であることが好ましく、50〜200g/m2であることがより好ましい。
内層布の厚さは、積層構造体の強度、柔軟性、取り扱い性、風合などの点から、0.1〜1mmであることが好ましく、0.2〜0.7mmであることがより好ましい。
The basis weight of the inner layer fabric is preferably 30 to 300 g / m 2 , and preferably 50 to 200 g / m 2 in terms of the strength, flexibility, handleability, lightness, texture, etc. of the laminated structure. More preferred.
The thickness of the inner layer fabric is preferably 0.1 to 1 mm, more preferably 0.2 to 0.7 mm, from the viewpoint of the strength, flexibility, handleability, texture, etc. of the laminated structure. .

本発明では、布帛からなる外層の下面と活性炭含有複合層からなる中間層の一方の面(上面)が接着し、活性炭含有複合層からなる中間層のもう一方の面(下面)と内層布の上面が接着して本発明の積層構造体を形成していてもよい。また場合によっては、外層布、活性炭含有複合層よりなる中間層および内層布を重ねた後、縫製によって前記3者を固定して本発明の積層構造体を形成してもよい。そのうちでも、接着剤を用いて外層、中間層および内層を接着積層することが、層間剥離のない丈夫な積層構造体を簡単に製造できるので好ましい。   In the present invention, the lower surface of the outer layer made of the fabric and one surface (upper surface) of the intermediate layer made of the activated carbon-containing composite layer are bonded together, and the other surface (lower surface) of the intermediate layer made of the activated carbon-containing composite layer and the inner layer fabric The upper surface may adhere to form the laminated structure of the present invention. Moreover, depending on the case, after laminating | stacking the outer layer cloth, the intermediate | middle layer which consists of activated carbon containing composite layers, and an inner layer cloth, the said 3 persons may be fixed by sewing and the laminated structure of this invention may be formed. Among them, it is preferable to bond and laminate the outer layer, the intermediate layer, and the inner layer using an adhesive because a strong laminated structure without delamination can be easily manufactured.

接着剤を用いて接着積層を行う場合は、外層と中間層との接着は、外層と中間層とが剥離することなく強固に接着され且つ活性炭含有複合層からなる中間層が有する有害ガスの吸着能、有害微生物の遮蔽能が阻害されず、外層および中間層が有する空気および水蒸気の透過能が阻害されないような接着方式を採用して行う。また、中間層と内層との接着も、中間層と内層が剥離することなく強固に接着され且つ中間層および内層が有する空気および水蒸気の透過能が阻害されないような接着方式が好ましく採用される。そのような接着方式としては、点接着、線接着、ホットメルト不織布による接着などを挙げることができる。外層と中間層の接着および中間層と内層の接着は、同じ接着剤を用いて同じ接着方式を採用して行ってもよいし、同じ接着剤を用いて別の接着方式を採用して行ってもよいし、異なる接着剤を用いて同じ接着方式又は異なる接着方式を採用して行ってもよい。   When adhesive lamination is performed using an adhesive, the adhesion between the outer layer and the intermediate layer is the adhesion of the harmful gas possessed by the intermediate layer made of the activated carbon-containing composite layer that is firmly adhered to the outer layer and the intermediate layer without peeling. Adhesion method is employed so that the ability to block harmful microorganisms is not hindered, and the air and water vapor permeability of the outer layer and the intermediate layer are not hindered. In addition, for the adhesion between the intermediate layer and the inner layer, an adhesion method is preferably employed in which the intermediate layer and the inner layer are firmly bonded without peeling and the air and water vapor permeability of the intermediate layer and the inner layer are not hindered. Examples of such an adhesion method include point adhesion, line adhesion, and adhesion using a hot melt nonwoven fabric. The adhesion between the outer layer and the intermediate layer and the adhesion between the intermediate layer and the inner layer may be performed by using the same adhesive and adopting the same adhesive method, or using the same adhesive and adopting another adhesive method. Alternatively, the same adhesion method or different adhesion methods may be employed using different adhesives.

点接着または線接着を行う際の接着剤としては、ホットメルト接着剤、熱可塑性重合体または熱硬化性重合体を有機溶媒に溶解した溶液型接着剤、熱可塑性重合体または熱硬化重合体を水に分散または溶解させた水性接着剤、反応性モノマー型接着剤などを挙げることができる。
そのうちでも、外層と中間層の接着および中間層と内層の接着は、外層を構成する布帛の材質、内層を構成する布帛の材質などに応じて、ポリエステル系、ポリアミド系、エチレン−酢酸ビニル共重合体系、ポリウレタン系のホットメルト接着剤を用いて点接着方式または線接着方式で行うか、或いはポリエステルホットメルト不織布、ポリアミドホットメルト不織布、ポリウレタンホットメルト不織布などのホットメルト不織布を接着剤として用いて接着することが、活性炭含有複合層からなる中間層の有害ガスの吸着能および有害微生物の遮蔽能が接着剤によって阻害されず、更に外層、中間層および内層の空気および水蒸気の透過能が接着剤によって阻害されず、しかも接着積層後に有機溶剤や水を除去するための乾燥処理などを行う必要がないので好ましい。
Examples of adhesives used for point bonding or line bonding include hot melt adhesives, solution type adhesives in which a thermoplastic polymer or a thermosetting polymer is dissolved in an organic solvent, thermoplastic polymers or thermosetting polymers. Examples thereof include an aqueous adhesive dispersed or dissolved in water, and a reactive monomer type adhesive.
Among them, the adhesion between the outer layer and the intermediate layer and the adhesion between the intermediate layer and the inner layer are polyester, polyamide, ethylene-vinyl acetate copolymer depending on the material of the fabric constituting the outer layer and the material of the fabric constituting the inner layer. System, polyurethane-based hot-melt adhesives are used for point bonding or wire-bonding, or polyester hot-melt nonwovens, polyamide hot-melt nonwovens, polyurethane hot-melt nonwovens and other hot-melt nonwovens are used as adhesives However, the adhesive ability of the intermediate layer composed of the activated carbon-containing composite layer is not hindered by the adhesive, and the ability of the outer layer, intermediate layer and inner layer to transmit air and water vapor is not affected by the adhesive. Performs a drying process to remove the organic solvent and water after adhesion lamination without being disturbed Since there is no necessity preferable.

特に、ホットメルト不織布を用いる場合は、外層布と中間層(活性炭含有複合層)の間にホットメルト不織布を介在させると共に、更に中間層(活性炭含有複合層)と内層布との間にもホットメルト不織布を介在させて、外層布/ホットメルト不織布/中間層(活性炭含有複合層)/ホットメルト不織布/内層布との順で重なった積層物をつくり、それをホットメルト不織布の溶融温度以上の温度で加熱加圧することによって、本発明の積層構造体を一度の接着工程で簡単に製造することができるので望ましい。   In particular, when a hot melt nonwoven fabric is used, the hot melt nonwoven fabric is interposed between the outer layer fabric and the intermediate layer (activated carbon-containing composite layer), and further hot between the intermediate layer (activated carbon-containing composite layer) and the inner layer fabric. Create a laminate with the outer layer fabric / hot melt nonwoven fabric / intermediate layer (activated charcoal-containing composite layer) / hot melt nonwoven fabric / inner layer fabric in order, with the melt nonwoven fabric intervening. By heating and pressurizing at a temperature, the laminated structure of the present invention can be easily produced in a single bonding step, which is desirable.

外層と中間層との接着および/または中間層と内層の接着を点接着または線接着によって行う場合は、接着剤よりなる点の大きさ、線の太さ、単位面積当たりの点または線の数(点または線の密度)などは、接着剤の種類、外層布および内層布の種類などに応じて決めることができる。
また、外層と中間層との接着および/または中間層と内層の接着をホットメルト不織布を用いて行う場合は、得られる積層構造体の空気および水蒸気の透過性、柔軟性、取り扱い性、接着性などの点から、通気度が10〜200cc/cm2/sec、特に15〜150cc/cm2/sec、目付が10〜50g/m2、特に15〜35g/m2、厚さが0.05〜1mm、特に0.1〜0.7mmのホットメルト不織布を用いることが好ましい。
When bonding the outer layer to the intermediate layer and / or the intermediate layer to the inner layer by point bonding or line bonding, the size of the point made of the adhesive, the thickness of the line, the number of points or lines per unit area The (density of dots or lines) and the like can be determined according to the type of adhesive, the type of outer layer cloth, the type of inner layer cloth, and the like.
In addition, when hot melt nonwoven fabric is used to bond the outer layer and the intermediate layer and / or the intermediate layer and the inner layer, the air and water vapor permeability, flexibility, handleability, and adhesiveness of the resulting laminated structure are obtained. The air permeability is 10 to 200 cc / cm 2 / sec, particularly 15 to 150 cc / cm 2 / sec, the basis weight is 10 to 50 g / m 2 , particularly 15 to 35 g / m 2 , and the thickness is 0.05 It is preferable to use a hot melt nonwoven fabric of ˜1 mm, particularly 0.1 to 0.7 mm.

外層、中間層および内層をホットメルト接着剤やホットメルト不織布を用いて接着積層する際の条件は、外層および内層を構成する布帛の種類、ホットメルト接着剤やホットメルト不織布の融点、各層の厚さなどに応じて調整することができる。一般的には、ホットメルト接着剤またはホットメルト不織布として、融点が180℃以下、好ましくは100〜160℃程度のものを使用して、ホットメルト接着剤(ホットメルト不織布)の融点以上の温度、好ましくは融点+10℃〜融点+40℃の範囲内の温度で10〜500Paのプレス圧、特に20〜200Paのプレス圧をかけて加熱加圧して接着積層することが好ましい。   The conditions when the outer layer, the intermediate layer and the inner layer are bonded and laminated using a hot melt adhesive or a hot melt nonwoven fabric are as follows: the type of fabric constituting the outer layer and the inner layer, the melting point of the hot melt adhesive or the hot melt nonwoven fabric, the thickness of each layer It can be adjusted according to the situation. In general, a hot melt adhesive or a hot melt nonwoven fabric having a melting point of 180 ° C. or lower, preferably about 100 to 160 ° C., is used at a temperature equal to or higher than the melting point of the hot melt adhesive (hot melt nonwoven fabric). It is preferable to perform adhesive lamination by applying heat and pressure at a temperature in the range of melting point + 10 ° C. to melting point + 40 ° C. and applying a pressing pressure of 10 to 500 Pa, particularly 20 to 200 Pa.

外層/中間層/内層の順で積層してなる本発明の積層構造体の全体の目付は、積層構造体の強度、柔軟性、取り扱い性、軽量性、通気性などの点から、200〜600g/m2であることが好ましく、300〜500g/m2であることがより好ましい。
本発明の積層構造体の全体の厚さは、積層構造体の強度、柔軟性、取り扱い性、通気性などの点から、0.3〜3mmであることが好ましく、0.6〜2mmであることがより好ましい。
The overall basis weight of the laminated structure of the present invention, which is laminated in the order of the outer layer / intermediate layer / inner layer, is 200 to 600 g in terms of the strength, flexibility, handleability, lightness, breathability, etc. of the laminated structure. preferably / a m 2, and more preferably a 300 to 500 g / m 2.
The total thickness of the laminated structure of the present invention is preferably 0.3 to 3 mm, and preferably 0.6 to 2 mm from the viewpoint of the strength, flexibility, handleability, air permeability, and the like of the laminated structure. It is more preferable.

上記した本発明の積層構造体を用いて、各種防護衣類、例えば、衣服、手袋、靴下、帽子、マスク、襟巻き、合羽などの防護衣類を作製することができる。本発明の積層構造体を用いての防護衣類の作製方法は特に制限されず、防護衣類の種類、構造、形状、使用形態などに応じて、従来から採用されている防護衣類や通常の衣類の作製方法などを採用して作製することができる。   Using the above-described laminated structure of the present invention, various types of protective clothing such as clothing, gloves, socks, hats, masks, wraps, and feathers can be produced. The production method of the protective clothing using the laminated structure of the present invention is not particularly limited, and depending on the type, structure, shape, usage pattern, etc. of the protective clothing, conventionally used protective clothing or ordinary clothing can be used. It can be manufactured by employing a manufacturing method or the like.

以下に実施例などにより本発明について具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
以下の実施例などにおいて、ナノ繊維およびナノ繊維以外の繊維の平均繊維径、活性炭の比表面積、積層構造体の有害ガス吸着性、バクテリアの遮蔽性、空気透過性および水蒸気透過性、積層構造体からの活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を次のようにして測定または評価した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In the following examples, etc., the average fiber diameter of nanofibers and non-nanofibers, the specific surface area of activated carbon, the adsorbability of harmful gases of laminated structures, the shielding properties of bacteria, the air permeability and water vapor permeability, the laminated structures The ability to prevent the activated carbon from falling off and the feeling of wearing the protective clothing made from the laminated structure were measured or evaluated as follows.

(1)ナノ繊維およびナノ繊維以外の繊維の平均繊維径:
ナノ繊維またはナノ繊維以外の繊維よりなる不織シートから50本の繊維をランダムに採取し、採取した50本の繊維のそれぞれについて、その長さ方向の中央部分の太さを走査型電子顕微鏡(日立製作所製の走査型電子顕微鏡「S−510型])を用いて測定し、50本の繊維の平均値を採って繊維の平均繊維径とした。
(1) Average fiber diameter of nanofibers and non-nanofibers:
50 fibers were randomly sampled from a non-woven sheet made of nanofibers or non-nanofibers, and the thickness of the central portion in the length direction of each of the collected 50 fibers was measured using a scanning electron microscope ( It was measured using a scanning electron microscope “S-510 type” manufactured by Hitachi, Ltd., and an average value of 50 fibers was taken as an average fiber diameter of the fibers.

(2)活性炭繊維の比表面積:
活性炭繊維よりなる不織シートから活性炭繊維0.05gを試料として採取し、当該試料を用いてBET 1点法にしたがってユアサアイオニクス(株)製の全自動表面積測定装置「モノソーブ」を使用して、比表面積を測定した。
(2) Specific surface area of activated carbon fiber:
Using a non-woven sheet made of activated carbon fiber as a sample, 0.05 g of activated carbon fiber was sampled, and using the sample, a fully automatic surface area measuring device “Monosorb” manufactured by Yuasa Ionics Co., Ltd. according to the BET 1-point method was used. The specific surface area was measured.

(3)積層構造体の有害ガス吸着性:
以下の実施例または比較例で得られた積層構造体を裁断して、縦×横=5cm×5cmの試験片を採取し、当該試験片を、有害ガス(酢酸3−メトキシブチル)の濃度を0.06mg/ccに予め調整しておいた内容積が350ccの容器の底部に積層構造体の外層を上に向けて配置[積層構造体の内層を容器の底に接触させて配置)して直ちに容器の蓋を閉めて密封し、その状態で60分間放置した後に当該容器内の気体を採取して、採取した気体中の有害ガスの濃度をガスクロマトグラフィーによって測定した。
そして採取した気体中の有害ガスの濃度が、当初の濃度(0.06mg/cc)の5%未満にまで低減していた場合を有害ガスの吸着性が良好(○)として評価し、当初の濃度の5%以上40%未満であった場合を有害ガスの吸着性がやや不良(△)として評価し、当初の濃度の40%以上であった場合を有害ガスの吸着性が不良(×)として評価した。
(3) Hazardous gas adsorptivity of laminated structure:
The laminated structure obtained in the following examples or comparative examples is cut, and a test piece of length × width = 5 cm × 5 cm is collected, and the concentration of harmful gas (3-methoxybutyl acetate) is measured on the test piece. Arrange the outer layer of the laminated structure facing up on the bottom of the 350 cc container whose internal volume has been adjusted to 0.06 mg / cc in advance (place the inner layer of the laminated structure in contact with the bottom of the container) The container was immediately closed and sealed, allowed to stand in that state for 60 minutes, and then the gas in the container was collected, and the concentration of harmful gas in the collected gas was measured by gas chromatography.
When the concentration of harmful gas in the collected gas is reduced to less than 5% of the initial concentration (0.06 mg / cc), the adsorptivity of harmful gas is evaluated as good (O), When the concentration is 5% or more and less than 40%, the harmful gas adsorptivity is evaluated as slightly poor (△), and when the concentration is 40% or more of the initial concentration, the harmful gas adsorptivity is poor (×). As evaluated.

(4)バクテリアの遮蔽性:
JIS L 1912の細菌濾過効率に従って、空気中の細菌が積層構造体を通して濾過される程度を試験した。
具体的には、黄色ブドウ球菌を使用し、総コロニー数が2,200±500個になるようにバクテリア懸濁液をつくり、そのバクテリア懸濁液を2.7〜3.3μmの大きさにエアロゾル化(気体化)し、そのエアロゾルを28.3L/分の速度で、以下の実施例または比較例で得られた積層構造体を裁断して得た試験片(縦×横=15cm×15cm)を通して1分間吸引濾過し、試験片を通過した空気(試験片で濾過された空気)を、トリプトソイ寒天培地を入れたシャーレがセットされたアンダーセンサンプラーに通じさせた後、シャーレを取り出して37±2℃で48時間培養した。
そして、下記の数式(1)から試験片の細菌捕集効率(BFE)(%)を求め、BFEが90%以上の場合をバクテリアの遮蔽性が良好(○)と評価し、BFEが50%以上90%未満である場合をバクテリアの遮蔽性がやや不良(△)と評価し、BFEが50%未満である場合をバクテリアの遮蔽性が不良(×)と評価した。

細菌捕集効率(BFE)(%)={(A−B)/A}×100 (1)
式中、A=コントロール(試験片をセットせずに同じ試験を実施)の総コロニー数
B=試験片をセットしたときの総コロニー数
(4) Bacterial shielding:
According to JIS L 1912 bacterial filtration efficiency, the degree to which bacteria in the air were filtered through the laminated structure was tested.
Specifically, using Staphylococcus aureus, a bacterial suspension is prepared so that the total number of colonies is 2,200 ± 500, and the bacterial suspension is 2.7 to 3.3 μm in size. A test piece (length × width = 15 cm × 15 cm) obtained by aerosolizing (gasifying) and cutting the aerosol at a rate of 28.3 L / min and cutting the laminated structure obtained in the following examples or comparative examples. ), The air that passed through the test piece (air filtered by the test piece) was passed through an under-sensor sampler in which a petri dish containing tryptosoy agar medium was set, and then the petri dish was taken out to 37 ± The cells were cultured at 2 ° C. for 48 hours.
Then, the bacterial collection efficiency (BFE) (%) of the test piece is obtained from the following mathematical formula (1), and when the BFE is 90% or more, the shielding property of the bacteria is evaluated as good (◯), and the BFE is 50%. The case where it was less than 90% was evaluated as slightly poor (Δ) for bacterial shielding, and the case where BFE was less than 50% was evaluated as poor (×) for bacterial shielding.

Bacteria collection efficiency (BFE) (%) = {(A−B) / A} × 100 (1)
In the formula, A = the total number of colonies of control (the same test is performed without setting a test piece)
B = Total number of colonies when the test piece is set

(5)積層構造体の空気透過性:
以下の実施例または比較例で得られた積層構造体を裁断して得た試験片(縦×横=10cm×10cm)を用いて、JIS L 1906(フラジール法)に準じて測定した。
(5) Air permeability of laminated structure:
It measured according to JISL1906 (fragile method) using the test piece (length × width = 10 cm × 10 cm) obtained by cutting the laminated structure obtained in the following examples or comparative examples.

(6)積層構造体の水蒸気透過性:
以下の実施例または比較例で得られた積層構造体を裁断して得た試験片(縦×横=10cm×10cm)を用いて、JIS L 1099 A−1法に準じて測定した。
(6) Water vapor permeability of laminated structure:
It measured according to JISL1099A-1 method using the test piece (length x width = 10cmx10cm) obtained by cutting the laminated structure obtained by the following example or the comparative example.

(7)積層構造体からの活性炭の脱落防止性能:
以下の実施例または比較例で得られた積層構造体を裁断して得た試験片(縦×横=10cm×10cm)を、試験片(積層構造体)の外層を上にして篩の網目上に載置し、篩を振動数=100回/分、振幅=50cmの条件下で20分間水平方向に振動させた後、篩から試験片を取出して、試験片(積層構造体)の外層側および内層側を目視により観察し、活性炭が外層よび内層の外に漏れ出ていない場合を脱落防止性が良好(○)、活性炭が外層および/または内層の外に少し漏れ出ている場合を脱落防止性がやや不良(△)、活性炭が外層および/または内層の外にかなり漏れ出ている場合を脱落防止性が不良(×)として評価した。
(7) Prevention of falling off of activated carbon from the laminated structure:
A test piece (length × width = 10 cm × 10 cm) obtained by cutting the laminated structure obtained in the following examples or comparative examples is placed on the mesh of the sieve with the outer layer of the test piece (laminated structure) facing up. And the screen is vibrated in the horizontal direction for 20 minutes under the conditions of frequency = 100 times / min and amplitude = 50 cm, and then the test piece is taken out from the sieve and the outer layer side of the test piece (laminated structure) When the activated carbon does not leak out of the outer layer and the inner layer, the drop-off prevention is good (○), and when the activated carbon leaks slightly out of the outer layer and / or the inner layer The case where the prevention property was slightly poor (Δ), and the case where the activated carbon was leaked considerably outside the outer layer and / or the inner layer was evaluated as the failure prevention property (x).

(8)積層構造体から作製した防護衣類の着用感:
以下の実施例または比較例で得られた積層構造体を用いて、頭から被る形式の外衣状物(頭を通す部分にのみ穴を開けた長さが150cmの筒状体)を作製し、その外衣状物を着用して、温度30℃の室内に30分間滞在し、そのときの着用感を以下の評価基準に従って評価した。
○:蒸した感じがせず、体温の上昇も殆どなく、着用感が良好である。
△:蒸した感じがややし、体温の上昇がややあり、着用感がやや不良である。
×:蒸した感じが強く、体温の上昇があり、着用感が不良である。
(8) Wearing feeling of protective clothing made from the laminated structure:
Using the laminated structure obtained in the following examples or comparative examples, an outer garment in the form of being worn from the head (a cylindrical body having a length of 150 cm with a hole formed only in a portion through which the head is passed), The outer garment was worn and stayed in a room at a temperature of 30 ° C. for 30 minutes, and the wearing feeling at that time was evaluated according to the following evaluation criteria.
○: It does not feel steamed, there is almost no increase in body temperature, and the wearing feeling is good.
Δ: Slightly steamed, slightly increased body temperature, and slightly worn.
X: The feeling of steaming is strong, there is a rise in body temperature, and the wearing feeling is poor.

《参考例1》[ポリウレタンナノ繊維からなる不織シートの作製]
(1) 熱可塑性ポリウレタン[(株)クラレ製「クラミロン1195」]を16質量%となるようにジメチルホルムアミドに投入後、90℃で撹拌溶解し、完全に溶解したものを常温まで冷却して紡糸原液を調製した。それにより得られた紡糸原液を用いて、静電紡糸を行った。静電紡糸に当たっては、口金として内径が0.9mmのニードルを使用し、また口金とナノ繊維の堆積面(コンベア)との間の距離を10cmとした。紡糸原液を口金から所定の供給量で紡出し、口金に23kV印加電圧を与えてコンベア上にポリウレタンナノ繊維を堆積させてポリウレタンナノ繊維からなる不織布シートを製造した。
(2) 上記(1)で得られたポリウレタンナノ繊維製不織シートの目付は4g/m2、厚さは0.1mm、通気度(空気の透過度)は1cc/cm2/secおよび水蒸気透過度は6500g/m2/24hrであった。
また、このポリウレタンナノ繊維製不織シートを構成しているポリウレタンナノ繊維の平均繊維径を上記した方法で測定したところ、平均繊維径は250nmであった。
<< Reference Example 1 >> [Production of non-woven sheet made of polyurethane nanofiber]
(1) Thermoplastic polyurethane [“Kuramylon 1195” manufactured by Kuraray Co., Ltd.] was added to dimethylformamide so as to be 16% by mass, stirred and dissolved at 90 ° C., and completely dissolved, cooled to room temperature, and spun. Stock solutions were prepared. Electrospinning was performed using the spinning dope thus obtained. In electrospinning, a needle having an inner diameter of 0.9 mm was used as a die, and the distance between the die and the nanofiber deposition surface (conveyor) was 10 cm. The spinning dope was spun from the die at a predetermined supply amount, a 23 kV applied voltage was applied to the die, and polyurethane nanofibers were deposited on the conveyor to produce a nonwoven fabric sheet made of polyurethane nanofibers.
(2) The polyurethane nanofiber nonwoven sheet obtained in (1) above has a basis weight of 4 g / m 2 , a thickness of 0.1 mm, an air permeability (air permeability) of 1 cc / cm 2 / sec and water vapor. permeability was 6500g / m 2 / 24hr.
Moreover, when the average fiber diameter of the polyurethane nanofiber which comprises this polyurethane nanofiber nonwoven sheet was measured by the above-mentioned method, the average fiber diameter was 250 nm.

《参考例2》[活性炭含有複合層(A)用材の製造]
活性炭(クラレケミカル社製「クラレコール」;比表面積=2000m2/g、平均粒径=100μm)50質量部に接着剤(日本ゼオン社製「Nipol LX」;アクリレート系ラテックス接着剤、固形分濃度45質量%)10質量部を混合して活性炭混合物を調製し、この活性炭混合物を、上記の参考例1で得られたポリウレタンナノ繊維製不織シートの表面に約1mmの厚さに塗布した後、140℃で10分間乾燥した。その後、塗布面に上記の参考例1で得られたもう一枚のポリウレタンナノ繊維製不織シートを重ねて、温度120℃、圧力100Paの条件下で加熱加圧して、ポリウレタンナノ繊維製不織シート層/活性炭層/ポリウレタンナノ繊維製不織シート層よりなる活性炭含有複合層材(中間層用の複合材)[以下これを「活性炭含有複合層(A)用材」という]を製造した。
これにより得られた活性炭含有複合層(A)用材の厚さは0.3mm、目付は、108g/m2、通気度(空気の透過度)は0.8cc/cm2/sec、および水蒸気透過度は6000g/m2/24hrであった。また、この活性炭含有複合層(A)用材では、活性炭が活性炭含有複合層(A)用材の面積1m2当たりにつき100gの量で、上下のポリウレタンナノ繊維製不織シート層の間に均一な厚さの層を形成していた。
<< Reference Example 2 >> [Production of material for activated carbon-containing composite layer (A)]
50 parts by mass of activated carbon (“Kuraray Coal” manufactured by Kuraray Chemical Co., Ltd .; specific surface area = 2000 m 2 / g, average particle size = 100 μm) adhesive (“Nipol LX” manufactured by Nippon Zeon Co., Ltd.); acrylate latex adhesive, solid content concentration 45 mass%) After mixing 10 parts by mass, an activated carbon mixture was prepared, and this activated carbon mixture was applied to the surface of the polyurethane nanofiber nonwoven sheet obtained in Reference Example 1 to a thickness of about 1 mm. And dried at 140 ° C. for 10 minutes. Then, another polyurethane nanofiber nonwoven sheet obtained in Reference Example 1 above was applied to the coated surface and heated and pressurized under the conditions of a temperature of 120 ° C. and a pressure of 100 Pa to obtain a polyurethane nanofiber nonwoven fabric. An activated carbon-containing composite layer material (composite material for an intermediate layer) composed of a sheet layer / activated carbon layer / polyurethane nanofiber nonwoven sheet layer (hereinafter referred to as “active carbon-containing composite layer (A) material”) was produced.
The thickness of the activated carbon-containing composite layer (A) thus obtained is 0.3 mm, the basis weight is 108 g / m 2 , the air permeability (air permeability) is 0.8 cc / cm 2 / sec, and the water vapor transmission rate time was 6000g / m 2 / 24hr. Further, in this activated carbon-containing composite layer (A) material, the activated carbon is 100 g per 1 m 2 of area of the activated carbon-containing composite layer (A) material and has a uniform thickness between the upper and lower polyurethane nanofiber nonwoven sheet layers. That layer was formed.

《参考例3》[活性炭含有複合層(B)用材の製造]
参考例2で使用したのと同じ活性炭50質量部に参考例2で使用したのと同じ接着剤10質量部を混合して活性炭混合物を調製し、この活性炭混合物を、ポリエステル製スパンボンド不織布[東洋紡製「エクーレ」;ポリエステル繊維の平均繊維径=1800nm、不織布の厚さ=0.15mm、目付=20g/m2、通気度(空気の透過度)=95cc/cm2/sec、水蒸気透過度=8500g/m2/24hr]の表面に約1mmの厚さに塗布した後、140℃で10分間乾燥した。その後、塗布面にもう一枚の同じ市販のポリウレタン繊維製不織シートを重ねて、温度120℃、圧力100Paの条件下で加熱加圧して、ポリウレタン繊維製不織シート層/活性炭層/ポリウレタン繊維製不織シート層よりなる活性炭含有複合層材(中間層用の複合材)[以下これを「活性炭含有複合層(B)用材」という]を製造した。
これにより得られた活性炭含有複合層(B)用材の厚さは0.4mm、目付は140g/m2、通気度(空気の透過度)は35cc/cm2/sec、および水蒸気透過度は7700g/m2/24hrであった。また、この活性炭含有複合層(B)用材では、活性炭が活性炭含有複合層(B)用材の面積1m2当たりにつき100gの量で、上下のポリウレタン繊維製不織シート層の間に均一な厚さの層を形成していた。
<< Reference Example 3 >> [Production of material for activated carbon-containing composite layer (B)]
An active carbon mixture was prepared by mixing 10 parts by mass of the same adhesive used in Reference Example 2 with 50 parts by mass of the same activated carbon used in Reference Example 2, and this activated carbon mixture was made into a polyester spunbond nonwoven fabric [Toyobo. “Ecule” manufactured; average fiber diameter of polyester fiber = 1800 nm, nonwoven fabric thickness = 0.15 mm, basis weight = 20 g / m 2 , air permeability (air permeability) = 95 cc / cm 2 / sec, water vapor permeability = after coating to a thickness of about 1mm to 8500g / m 2 / 24hr] surface, and dried for 10 minutes at 140 ° C.. Thereafter, another non-woven sheet made of the same polyurethane fiber on the coated surface is overlapped and heated and pressed under the conditions of a temperature of 120 ° C. and a pressure of 100 Pa to form a non-woven sheet layer made of polyurethane fiber / activated carbon layer / polyurethane fiber. An activated carbon-containing composite layer material (composite material for an intermediate layer) composed of a non-woven sheet layer (hereinafter referred to as “material for activated carbon-containing composite layer (B)”) was produced.
The thickness of the activated carbon-containing composite layer (B) thus obtained is 0.4 mm, the basis weight is 140 g / m 2 , the air permeability (air permeability) is 35 cc / cm 2 / sec, and the water vapor permeability is 7700 g. / m was 2 / 24hr. In this activated carbon-containing composite layer (B) material, the activated carbon is 100 g per 1 m 2 of the activated carbon-containing composite layer (B) material and has a uniform thickness between the upper and lower polyurethane fiber nonwoven sheet layers. Layer was formed.

《参考例4》[活性炭含有複合層(C)用材)の製造]
参考例2で使用したのと同じ活性炭50質量部に参考例2で使用したのと同じ接着剤10質量部を混合して活性炭混合物を調製し、この活性炭混合物を、市販の多孔質フィルム[オージーフイルム社製「フレクロン」;材質ポリエステル、多孔質フィルムの厚さ=30μm、孔径=0.5μm、通気度(空気の透過度)=測定不能、水蒸気透過度=3450g/m2/24hr]の表面に約1mmの厚さに塗布した後、140℃で10分間乾燥した。その後、塗布面にもう一枚の同じ市販の多孔質フィルムを重ねて、温度120℃、圧力100Paの条件下で加熱加圧して、多孔質フィルム/活性炭層/多孔質フィルムよりなる活性炭含有複合層材(中間層用の複合材)[以下これを「活性炭含有複合層(C)用材)」という]を製造した。
これにより得られた活性炭含有複合層(C)用材)の厚さは0.2mm、目付は、110g/m2、通気度(空気の透過度)は測定不能、および水蒸気透過度は3000g/m2/24hrであった。また、この活性炭含有複合層(C)用材では、活性炭が活性炭含有複合層(C)用材の面積1m2当たりにつき100gの量で、上下の多孔質フィルムの間に均一な厚さの層を形成していた。
<< Reference Example 4 >> [Production of activated carbon-containing composite layer (C) material]
An active carbon mixture was prepared by mixing 10 parts by mass of the same adhesive used in Reference Example 2 with 50 parts by mass of the same activated carbon used in Reference Example 2, and this activated carbon mixture was mixed with a commercially available porous film [Aussie film Corp. "Furekuron"; material polyester, the thickness of the porous film = 30 [mu] m, pore size = 0.5 [mu] m, (permeability of air) permeability = surface of unmeasurable, water vapor permeability = 3450g / m 2 / 24hr] After coating to a thickness of about 1 mm, it was dried at 140 ° C. for 10 minutes. Thereafter, another same commercially available porous film is stacked on the coated surface, and heated and pressurized under the conditions of a temperature of 120 ° C. and a pressure of 100 Pa, and an activated carbon-containing composite layer comprising a porous film / activated carbon layer / porous film. A material (composite material for the intermediate layer) [hereinafter referred to as “active carbon-containing composite layer (C) material”] was produced.
The activated carbon-containing composite layer (C) material) thus obtained has a thickness of 0.2 mm, a basis weight of 110 g / m 2 , an air permeability (air permeability) that cannot be measured, and a water vapor permeability of 3000 g / m. It was 2 / 24hr. Further, in this activated carbon-containing composite layer (C) material, the activated carbon forms a layer having a uniform thickness between the upper and lower porous films in an amount of 100 g per 1 m 2 area of the activated carbon-containing composite layer (C) material. Was.

《参考例5》[撥水・撥油加工を施した外層用の織布の製造]
(1) 難燃性ビニロン(株式会社クラレ製「バイナール」)とアラミド繊維を50:50の質量比で混紡してなる紡績糸(40番手)をつくり、当該紡績糸2本を合撚糸して双糸とし、当該双糸を用いて綾組織にて製織して外層用の織布[綾織布;厚さ=約0.3mm、目付=180g/m2、通気度(空気透過度)=18cc/cm2/sec、水蒸気透過度=9010g/m2/24hr]を製造した。
(2) 上記(1)で得られた織布に、撥水・撥油剤(ミネソタマイニング社製「スコッチガード」;フッ素系有機化合物)を5g/m2の量で噴霧して撥水・撥油加工を行って、撥水・撥油加工した難燃・耐熱性の外層用の織布(撥水度=100、撥油度=5)を製造した。
<< Reference Example 5 >> [Manufacture of woven fabric for outer layer with water / oil repellent finish]
(1) Create a spun yarn (40th) by blending flame retardant vinylon (Kuraray Co., Ltd. “Vinard”) and aramid fiber at a mass ratio of 50:50, and twist the two spun yarns together. It is set as a double thread, and it is woven in a twill structure using the double thread, and a woven cloth for an outer layer [twill cloth; thickness = about 0.3 mm, basis weight = 180 g / m 2 , air permeability (air permeability) = 18 cc / cm 2 / sec, to produce a water vapor transmission rate = 9010g / m 2 / 24hr] .
(2) The woven fabric obtained in (1) above is sprayed with a water / oil repellent (“Scotchguard” manufactured by Minnesota Mining Co., Ltd .; fluorine-based organic compound) in an amount of 5 g / m 2 to provide water / oil repellency. Oil processing was carried out to produce a flame retardant / heat resistant outer layer woven fabric (water repellency = 100, oil repellency = 5) subjected to water / oil repellency.

《実施例1》
(1) ポリエチレンテレフタレート100%のトリコット編布[厚さ=約0.3mm、目付=80g/m2、通気度(空気透過度)=80cc/cm2/sec]を内層用の布帛として用い、この内層用布帛の上に接着剤としてポリウレタンホットメルト不織布[KBセーレン社製「エスパシオーネFF」;厚さ=約0.1mm、目付=25g/m2、通気度(空気透過度)=80cc/cm2/sec]を重ね、その上に上記の参考例2で得られた活性炭含有複合層(A)用材を重ね、その上に前記と同じポリウレタンホットメルト不織布を接着剤として重ね、当該ポリウレタンホットメルト不織布の上に上記の参考例5で得られた撥水・撥油加工した難燃・耐熱性の外層用の織布を重ねて、図1に示すような、外層用の織布/ポリウレタンホットメルト不織布/活性炭含有複合層(A)用材/ポリウレタンホットメルト不織布/内層用のトリコット編布の順で重なった積層物にした。
図1において、1は外層用の織布、2aおよび2bはポリウレタンホットメルト不織布、3は活性炭含有複合層(A)用材、3aおよび3bはポリウレタンナノ繊維製不織シート、3cは活性炭層、4は内層用のトリコット編布を示す。
Example 1
(1) Tricot knitted fabric of 100% polyethylene terephthalate [thickness = about 0.3 mm, basis weight = 80 g / m 2 , air permeability (air permeability) = 80 cc / cm 2 / sec] is used as the fabric for the inner layer, A polyurethane hot melt nonwoven fabric [“Espassione FF” manufactured by KB Seiren Co., Ltd .; thickness = about 0.1 mm, basis weight = 25 g / m 2 , air permeability (air permeability) = 80 cc / cm 2 / sec], the material for the activated carbon-containing composite layer (A) obtained in Reference Example 2 above, and the same polyurethane hot-melt nonwoven fabric as above as an adhesive. The outer layer woven fabric / polyureta as shown in FIG. 1 is laminated on the melt nonwoven fabric with the water- and oil-repellent processed flame retardant / heat resistant outer layer woven fabric obtained in Reference Example 5 above. A laminate of the hot melt nonwoven fabric / active carbon-containing composite layer (A) / polyurethane hot melt nonwoven fabric / tricot knitted fabric for the inner layer in this order.
In FIG. 1, 1 is a woven fabric for the outer layer, 2a and 2b are polyurethane hot melt nonwoven fabrics, 3 is a material for the activated carbon-containing composite layer (A), 3a and 3b are polyurethane nanofiber nonwoven sheets, 3c is an activated carbon layer, 4 Indicates a tricot knitted fabric for the inner layer.

(2) 上記(1)で得られた積層物を、温度120℃、圧力100Paの条件下で12秒間加熱加圧してポリウレタンホットメルト不織布を溶融させて、外層用の織布と活性炭含有複合層(A)用材との接着、活性炭含有複合層(A)用材と内層用のトリコット編布との接着を行って、外層(撥水・撥油加工した難燃・耐熱性の織布)/中間層[活性炭含有複合層(A)]/内層(ポリエステルトリコット編布)の順で接着積層した防護衣類用の積層構造体(厚さ=1.0mm、目付=418g/m2)を製造した。
(3) 上記(2)で得られた防護衣類用の積層構造体の有害ガス吸着性能、バクテリア遮蔽性能、空気透過度および水蒸気透過度、活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。
(2) The laminate obtained in the above (1) is heated and pressurized for 12 seconds under the conditions of a temperature of 120 ° C. and a pressure of 100 Pa to melt the polyurethane hot-melt nonwoven fabric, and the woven fabric for the outer layer and the activated carbon-containing composite layer (A) Adhesion with material, activated carbon-containing composite layer (A) material and inner layer tricot knitted fabric, outer layer (water- and oil-repellent flame retardant and heat-resistant woven fabric) / intermediate A laminated structure for protective clothing (thickness = 1.0 mm, basis weight = 418 g / m 2 ) was produced by bonding layers in the order of layer [activated carbon-containing composite layer (A)] / inner layer (polyester tricot knitted fabric).
(3) Hazardous gas adsorption performance, bacteria shielding performance, air permeability and water vapor permeability, activated carbon fall-off prevention performance of the laminated structure for protective clothing obtained in (2) above, and protection produced from the laminated structure When the wear feeling of clothing was measured or evaluated by the method described above, it was as shown in Table 1 below.

《比較例1》
(1) 実施例1の(1)で用いたのと同じポリエチレンテレフタレート100%のトリコット編布(内層用の布帛)の上に、実施例1の(1)で用いたのと同じポリウレタンホットメルト不織布を重ね、その上に参考例5で得られた撥水・撥油加工した難燃性で耐熱性の外層用の織布を重ねた後、温度120℃、圧力100Paの条件下で12秒間加熱加圧してポリウレタンホットメルト不織布を溶融させて、外層用の織布(撥水・撥油加工した難燃・耐熱性の織布)と内層用の布帛(ポリエステルトリコット編布)がポリウレタンホットメルト不織布によって接着積層した外層/内層よりなる積層構造体(厚さ=0.6mm、目付=285g/m2)を製造した。
(2) 上記(1)で得られた防護衣類用の積層構造体の有害ガス吸着性能(有害ガスの吸着速度および有害ガスの吸着寿命)、バクテリア遮蔽性能、空気透過度および水蒸気透過度、活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。
<< Comparative Example 1 >>
(1) The same polyurethane hot melt as used in (1) of Example 1 on the same 100% polyethylene terephthalate tricot knitted fabric (inner layer fabric) as used in (1) of Example 1 After layering the nonwoven fabric, the water- and oil-repellent processed flame-retardant and heat-resistant outer layer woven fabric obtained in Reference Example 5 was layered thereon, and then at a temperature of 120 ° C. and a pressure of 100 Pa for 12 seconds. Polyurethane hot melt nonwoven fabric is melted by heating and pressurizing, and the outer layer woven fabric (water- and oil-repellent flame retardant and heat-resistant woven fabric) and the inner layer fabric (polyester tricot knitted fabric) are polyurethane hot melt. A laminated structure (thickness = 0.6 mm, basis weight = 285 g / m 2 ) composed of an outer layer / inner layer bonded and laminated with a nonwoven fabric was produced.
(2) Hazardous gas adsorption performance (hazardous gas adsorption rate and harmful gas adsorption life), bacteria shielding performance, air permeability and water vapor permeability, activated carbon of the laminated structure for protective clothing obtained in (1) above As shown in Table 1 below, the drop-off prevention performance and the wearing feeling of protective clothing made from the laminated structure were measured or evaluated by the methods described above.

《比較例2》
(1) 実施例1の(1)において、活性炭複合含有複合層(A)用材の代わりに、参考例3で製造した活性炭含有複合層(B)用材を使用し、それ以外は実施例1の(1)および(2)と同様に行って、外層(撥水・撥油加工した難燃・耐熱性の織布)/中間層[活性炭含有複合層(B)]/内層(ポリエステルトリコット編布)の順で接着積層した防護衣類用の積層構造体(厚さ=1.1mm、目付=450g/m2)を製造した。
(2) 上記(1)で得られた防護衣類用の積層構造体の有害ガス吸着性能、バクテリア遮蔽性能、空気透過度および水蒸気透過度、活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。
<< Comparative Example 2 >>
(1) In (1) of Example 1, the material for activated carbon-containing composite layer (B) produced in Reference Example 3 was used in place of the material for activated carbon composite-containing composite layer (A). Performed in the same manner as (1) and (2), outer layer (water- and oil-repellent flame-retardant and heat-resistant woven fabric) / intermediate layer [activated carbon-containing composite layer (B)] / inner layer (polyester tricot knitted fabric) ) Were laminated in the order of ( 1 )) to produce a laminated structure (thickness = 1.1 mm, basis weight = 450 g / m 2 ) for protective clothing.
(2) Hazardous gas adsorption performance, bacteria shielding performance, air permeability and water vapor permeability, activated carbon fall-off prevention performance of the laminated structure for protective clothing obtained in (1) above, and protection produced from the laminated structure When the wear feeling of clothing was measured or evaluated by the method described above, it was as shown in Table 1 below.

《比較例3》
(1) 実施例1の(1)において、活性炭複合含有複合層(A)用材の代わりに、参考例4で製造した活性炭含有複合層(C)用材を使用し、それ以外は実施例1の(1)および(2)と同様に行って、外層(撥水・撥油加工した難燃・耐熱性の織布)/中間層[活性炭含有複合層(C)]/内層(ポリエステルトリコット編布)の順で接着積層した防護衣類用の積層構造体(厚さ=0.9mm、目付=420g/m2)を製造した。
(2) 上記(1)で得られた防護衣類用の積層構造体の有害ガス吸着性能、バクテリア遮蔽性能、空気透過度および水蒸気透過度、活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。
<< Comparative Example 3 >>
(1) In (1) of Example 1, instead of the material for activated carbon composite-containing composite layer (A), the material for activated carbon-containing composite layer (C) produced in Reference Example 4 was used. Performed in the same manner as (1) and (2), outer layer (water- and oil-repellent flame-retardant and heat-resistant woven fabric) / intermediate layer [activated carbon-containing composite layer (C)] / inner layer (polyester tricot knitted fabric) ) To produce a laminated structure for protective clothing (thickness = 0.9 mm, basis weight = 420 g / m 2 ).
(2) Hazardous gas adsorption performance, bacteria shielding performance, air permeability and water vapor permeability, activated carbon fall-off prevention performance of the laminated structure for protective clothing obtained in (1) above, and protection produced from the laminated structure When the wear feeling of clothing was measured or evaluated by the method described above, it was as shown in Table 1 below.

《比較例4》
(1) 実施例1の(1)において、活性炭複合含有複合層(A)用材の代わりに、市販の活性炭繊維製織布[日本カイノール社製「カイノール」;織布を構成する活性炭繊維の平均繊維径=14000nm、比表面積=2500m2/g、織布の厚さ=0.44mm、目付=95g/m2、通気度(空気の透過度)=72cc/cm2/sec]を使用し、それ以外は実施例1の(1)および(2)と同様に行って、外層(撥水・撥油加工した難燃・耐熱性の織布)/中間層(活性炭繊維製不織シート)/内層(ポリエステルトリコット編布)の順で接着積層した防護衣類用の積層構造体(厚さ=1.1mm、目付=405g/m2)を製造した。
(2) 上記(1)で得られた防護衣類用の積層構造体の有害ガス吸着性能、バクテリア遮蔽性能、空気透過度および水蒸気透過度、活性炭の脱落防止性能、並びに積層構造体から作製した防護衣類の着用感を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。
<< Comparative Example 4 >>
(1) In Example 1 (1), instead of the activated carbon composite-containing composite layer (A) material, a commercially available activated carbon fiber woven fabric [“Kinol” manufactured by Nihon Kynol Co., Ltd .; average of activated carbon fibers constituting the woven fabric Fiber diameter = 14000 nm, specific surface area = 2500 m 2 / g, woven fabric thickness = 0.44 mm, basis weight = 95 g / m 2 , air permeability (air permeability) = 72 cc / cm 2 / sec] Otherwise, the same operation as in (1) and (2) of Example 1 was carried out, and the outer layer (water- and oil-repellent flame-retardant and heat-resistant woven fabric) / intermediate layer (non-woven sheet made of activated carbon fiber) / A laminated structure (thickness = 1.1 mm, basis weight = 405 g / m 2 ) for protective clothing, in which the inner layer (polyester tricot knitted fabric) was adhered and laminated in this order, was produced.
(2) Hazardous gas adsorption performance, bacteria shielding performance, air permeability and water vapor permeability, activated carbon fall-off prevention performance of the laminated structure for protective clothing obtained in (1) above, and protection produced from the laminated structure When the wear feeling of clothing was measured or evaluated by the method described above, it was as shown in Table 1 below.

Figure 2009006012
Figure 2009006012

上記の表1にみるように、実施例1の積層構造体は、撥水・撥油加工を施した布帛からなる外層を有し、中間層として、比表面積が600〜5000m2/gの範囲内の活性炭を含み、平均繊維径が10〜1000nmの範囲内のナノ繊維よりなる通気度0.1cc/cm2/sec以上のナノ繊維層によって前記活性炭を保護してなる活性炭含有複合層(A)を有し、内層が布帛からなり、且つ外層/中間層/内層の順で接着積層した構造を有していることにより、有害ガス吸着性およびバクテリア遮蔽性に優れ、しかも空気および水蒸気の透過度が高く、活性炭の脱落防止性能に優れ、その上防護衣類に作製したときに着用感に優れており、防護衣類用の積層構造体として極めて有用である。 As seen in Table 1 above, the laminated structure of Example 1 has an outer layer made of a fabric subjected to water / oil repellency, and has a specific surface area of 600 to 5000 m 2 / g as an intermediate layer. An activated carbon-containing composite layer (A) in which the activated carbon is protected by a nanofiber layer having an air permeability of 0.1 cc / cm 2 / sec or more comprising nanofibers having an average fiber diameter in the range of 10 to 1000 nm. ), The inner layer is made of fabric, and has a structure in which the outer layer / intermediate layer / inner layer are bonded and laminated in this order, so that it is excellent in harmful gas adsorption and bacteria shielding properties, and is permeable to air and water vapor. It has a high degree of strength, is excellent in the ability to prevent the activated carbon from falling off, and is excellent in a feeling of wearing when it is made into protective clothing, and is extremely useful as a laminated structure for protective clothing.

それに対して、比較例1の積層構造体は、活性炭含有複合層を持たないために、有害ガス吸着能およびバクテリア遮蔽能を有しておらず、防護衣類用として使用できない。
また、比較例2の積層構造体は、活性炭含有複合層よりなる中間層を有しているが、中間層における活性炭の保護層がナノ繊維層ではなく、平均繊維径が1000nmを超える通常の繊度の繊維からなる層であるために、バクテリア遮蔽性に劣り、しかも活性炭の脱落防止性能にも劣っている。
さらに、比較例3の積層構造体は、活性炭含有複合層よりなる中間層を有しているが、中間層における活性炭の保護層がナノ繊維層ではなく、多孔質フィルムであるために、積層構造体から作製した防護衣類を着用したときに、空気や水蒸気の透過がなく、衣類内に熱が蓄積してしまい、着用感に劣る。
また、比較例4の積層構造体は、中間層が通常の繊度の活性炭繊維製不織シートから構成されているため、バクテリア遮蔽能が低く、しかも活性炭の脱落防止性能にも劣っている。
On the other hand, since the laminated structure of Comparative Example 1 does not have the activated carbon-containing composite layer, it does not have harmful gas adsorption ability and bacteria shielding ability and cannot be used for protective clothing.
In addition, the laminated structure of Comparative Example 2 has an intermediate layer made of an activated carbon-containing composite layer, but the protective layer of activated carbon in the intermediate layer is not a nanofiber layer, but has a normal fineness with an average fiber diameter exceeding 1000 nm. Therefore, it is inferior in bacteria shielding property and inferior in the ability of activated carbon to fall off.
Furthermore, although the laminated structure of Comparative Example 3 has an intermediate layer composed of an activated carbon-containing composite layer, the activated carbon protective layer in the intermediate layer is not a nanofiber layer but a porous film, and thus has a laminated structure. When wearing protective clothing made from the body, there is no permeation of air or water vapor, heat is accumulated in the clothing, and the feeling of wearing is inferior.
In the laminated structure of Comparative Example 4, since the intermediate layer is composed of a non-woven sheet made of activated carbon fiber having a normal fineness, the bacteria shielding ability is low and the ability to prevent the activated carbon from falling off is also poor.

本発明の積層構造体は、有害ガスの吸着性能に優れていて人体などを有害ガスから安全に防護することができ、しかも有害な微生物の遮蔽性に優れていて人体などを有害な微生物から安全に防護することができ、その上液状化学物質に対する防護性能にも優れ、さらに空気や水蒸気の透過性に優れていて着用感に優れ且つ熱ストレスや熱中症などを引き起こさず、積層構造体からの活性炭の脱落がないので、防護衣類用として有効に使用することができる。   The laminated structure of the present invention is excellent in harmful gas adsorption performance and can safely protect the human body from harmful gases, and also has excellent shielding properties against harmful microorganisms, so that the human body is safe from harmful microorganisms. In addition, it has excellent protection performance against liquid chemicals, and also has excellent air and water vapor permeability, so that it is easy to wear and does not cause heat stress or heat stroke. Since activated carbon does not fall off, it can be used effectively for protective clothing.

実施例1の(1)で形成した、加熱加圧する前の「外層用の織布/ポリウレタンホットメルト不織布/活性炭含有複合層(A)用材/ポリウレタンホットメルト不織布/内層用のトリコット編布」の順で重なった積層物を示す図である。The “woven fabric for outer layer / polyurethane hot melt nonwoven fabric / active carbon-containing composite layer (A) / polyurethane hot melt nonwoven fabric / tricot knitted fabric for inner layer” formed in Example 1 (1) before being heated and pressed. It is a figure which shows the laminated body which overlapped in order.

符号の説明Explanation of symbols

1 外層用の織布
2a ポリウレタンホットメルト不織布
2b ポリウレタンホットメルト不織布
3 活性炭含有複合層(A)用材
3a ナノ繊維製不織シート
3b ナノ繊維製不織シート
3c 活性炭層
4 内層用のトリコット編布
DESCRIPTION OF SYMBOLS 1 Woven cloth for outer layers 2a Polyurethane hot melt nonwoven fabric 2b Polyurethane hot melt nonwoven fabric 3 Material for activated carbon containing composite layer (A) 3a Nonwoven sheet made of nanofiber 3b Nonwoven sheet made of nanofiber 3c Activated carbon layer 4 Tricot knitted fabric for inner layer

Claims (6)

外層、中間層および内層が外層/中間層/内層の順で積層した防護衣類用の積層構造体であって;
・外層が撥水・撥油加工を施した布帛から構成され;
・中間層が、比表面積600〜3000m2/gの活性炭を含み、平均繊維径10〜1000nmのナノ繊維よりなる通気度0.1cc/cm2/sec以上のナノ繊維層によって前記活性炭が保護されている活性炭含有複合層であり;
・内層が布帛から構成されている;
ことを特徴とする防護衣類用の積層構造体。
A laminated structure for protective clothing in which an outer layer, an intermediate layer and an inner layer are laminated in the order of outer layer / intermediate layer / inner layer;
-The outer layer is composed of a fabric with water and oil repellent finishes;
The intermediate layer includes activated carbon having a specific surface area of 600 to 3000 m 2 / g, and the activated carbon is protected by a nanofiber layer having an air permeability of 0.1 cc / cm 2 / sec or more made of nanofibers having an average fiber diameter of 10 to 1000 nm. Activated carbon-containing composite layer;
The inner layer is made of fabric;
A laminated structure for protective clothing characterized by the above.
外層を構成する布帛の撥水度が80以上および撥油度が4以上である請求項1に記載の防護衣類用の積層構造体。   The laminated structure for protective clothing according to claim 1, wherein the water repellency of the fabric constituting the outer layer is 80 or more and the oil repellency is 4 or more. 外層を構成する布帛が、難燃性の布帛である請求項1または2に記載の防護衣類用の積層構造体。   The laminated structure for protective clothing according to claim 1 or 2, wherein the fabric constituting the outer layer is a flame retardant fabric. 中間層におけるナノ繊維層が、有機重合体ナノ繊維よりなる不織シートから構成されている請求項1〜3のいずれか1項に記載の防護衣類用の積層構造体。   The laminated structure for protective clothing according to any one of claims 1 to 3, wherein the nanofiber layer in the intermediate layer is composed of a nonwoven sheet made of organic polymer nanofibers. 中間層が、ホットメルト接着剤による点接着または線接着によるか或いはホットメルト不織布によって外層を構成する布帛および内層を構成する布帛と接着している請求項1〜4のいずれか1項に記載の防護衣類用の積層構造体。   The intermediate layer is bonded to the fabric constituting the outer layer and the fabric constituting the inner layer by point bonding or line bonding with a hot melt adhesive or by a hot melt nonwoven fabric. Laminated structure for protective clothing. 請求項1〜5のいずれか1項に記載の積層構造体からなる防護衣類。   The protective clothing which consists of a laminated structure of any one of Claims 1-5.
JP2007171551A 2007-06-29 2007-06-29 Lamination structure body for protective clothing, and protective clothing Pending JP2009006012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171551A JP2009006012A (en) 2007-06-29 2007-06-29 Lamination structure body for protective clothing, and protective clothing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171551A JP2009006012A (en) 2007-06-29 2007-06-29 Lamination structure body for protective clothing, and protective clothing

Publications (1)

Publication Number Publication Date
JP2009006012A true JP2009006012A (en) 2009-01-15

Family

ID=40321734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171551A Pending JP2009006012A (en) 2007-06-29 2007-06-29 Lamination structure body for protective clothing, and protective clothing

Country Status (1)

Country Link
JP (1) JP2009006012A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241117A (en) * 2009-03-19 2010-10-28 Gunze Ltd Composite fabric, clothing including the composite fabric, and method for manufacturing the composite fabric
KR101041415B1 (en) * 2011-01-06 2011-06-15 삼양화학공업주식회사 Fabric with improved flexibility of chemical protecting cloth
JP2011130672A (en) * 2009-12-22 2011-07-07 Fujita Engineering Co Ltd Method for measuring disinfection rate, method for transplanting fungi, method for measuring transplanting and recovering rates of fungi, fungi-transplanting system and system for measuring disinfection rate
JP2012171211A (en) * 2011-02-22 2012-09-10 Toyobo Co Ltd Adsorbent sheet
JP2012171212A (en) * 2011-02-22 2012-09-10 Toyobo Co Ltd Adsorbent sheet
JP2012192623A (en) * 2011-03-16 2012-10-11 Toyobo Co Ltd Absorption sheet
KR101222694B1 (en) * 2012-08-02 2013-01-16 (주)성한코퍼레이션 The fabric for cbr defense and the cbr defense clothes using the same
JP2014024238A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014024237A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014024236A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective material
JP2014141770A (en) * 2012-12-27 2014-08-07 Toyobo Co Ltd Protective clothing
KR101478638B1 (en) * 2013-07-25 2015-01-02 국방과학연구소 Selectively permeable materials for chemical-biological protective cloth and Manufacturing method of the same
JP2017020100A (en) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 Bag for metal recovery, package boody for metal recovery and method for recovering metal
KR20170055442A (en) * 2015-11-11 2017-05-19 주식회사 산청 Composite with restrictive ventilating function for poisonous materials defense and fabric thereby, and manufacturing method therefor
KR20170055443A (en) * 2015-11-11 2017-05-19 주식회사 산청 Fabric structure of poisonous materials protective garment with restrictive ventilating function
KR101808561B1 (en) 2016-03-23 2017-12-13 주식회사 산청 Absorbent for cbrn-agent and adsorption filter for toxic agent thereby, and protective suit for toxic-agent and filter manufacturing method therefor
KR101887166B1 (en) * 2018-03-23 2018-08-10 주식회사 산청 Filterized textile for toxic agent protection, manufacturing method therefor and special clothes thereby
KR101887162B1 (en) * 2017-04-28 2018-08-10 주식회사 산청 Filterized textile for toxic agent protection, manufacturing method therefor and special clothes thereby
JP2020537605A (en) * 2017-10-17 2020-12-24 インテレクチュアル スポートゥ ギア エス.アール.エル. Structured knitted fabric and its manufacturing method
CN112754091A (en) * 2020-12-30 2021-05-07 河南省斯科赛斯科技发展有限公司 Multifunctional medical protective isolation clothes
WO2022129098A1 (en) * 2020-12-15 2022-06-23 Nonwovenn Ltd Filter material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241117A (en) * 2009-03-19 2010-10-28 Gunze Ltd Composite fabric, clothing including the composite fabric, and method for manufacturing the composite fabric
JP2011130672A (en) * 2009-12-22 2011-07-07 Fujita Engineering Co Ltd Method for measuring disinfection rate, method for transplanting fungi, method for measuring transplanting and recovering rates of fungi, fungi-transplanting system and system for measuring disinfection rate
KR101041415B1 (en) * 2011-01-06 2011-06-15 삼양화학공업주식회사 Fabric with improved flexibility of chemical protecting cloth
JP2012171211A (en) * 2011-02-22 2012-09-10 Toyobo Co Ltd Adsorbent sheet
JP2012171212A (en) * 2011-02-22 2012-09-10 Toyobo Co Ltd Adsorbent sheet
JP2012192623A (en) * 2011-03-16 2012-10-11 Toyobo Co Ltd Absorption sheet
JP2014024238A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014024237A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014024236A (en) * 2012-07-26 2014-02-06 Toyobo Co Ltd Protective material
KR101222694B1 (en) * 2012-08-02 2013-01-16 (주)성한코퍼레이션 The fabric for cbr defense and the cbr defense clothes using the same
JP2014141770A (en) * 2012-12-27 2014-08-07 Toyobo Co Ltd Protective clothing
KR101478638B1 (en) * 2013-07-25 2015-01-02 국방과학연구소 Selectively permeable materials for chemical-biological protective cloth and Manufacturing method of the same
JP2017020100A (en) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 Bag for metal recovery, package boody for metal recovery and method for recovering metal
KR20170055442A (en) * 2015-11-11 2017-05-19 주식회사 산청 Composite with restrictive ventilating function for poisonous materials defense and fabric thereby, and manufacturing method therefor
KR20170055443A (en) * 2015-11-11 2017-05-19 주식회사 산청 Fabric structure of poisonous materials protective garment with restrictive ventilating function
KR101864634B1 (en) * 2015-11-11 2018-06-05 주식회사 산청 Fabric structure of poisonous materials protective garment with restrictive ventilating function
KR101864633B1 (en) * 2015-11-11 2018-06-05 주식회사 산청 Composite with restrictive ventilating function for poisonous materials defense and fabric thereby, and manufacturing method therefor
KR101808561B1 (en) 2016-03-23 2017-12-13 주식회사 산청 Absorbent for cbrn-agent and adsorption filter for toxic agent thereby, and protective suit for toxic-agent and filter manufacturing method therefor
KR101887162B1 (en) * 2017-04-28 2018-08-10 주식회사 산청 Filterized textile for toxic agent protection, manufacturing method therefor and special clothes thereby
WO2018199405A1 (en) * 2017-04-28 2018-11-01 주식회사 산청 Filterized fabric for protecting against toxic substance, manufacturing method therefor, and special clothes made thereof
JP2020537605A (en) * 2017-10-17 2020-12-24 インテレクチュアル スポートゥ ギア エス.アール.エル. Structured knitted fabric and its manufacturing method
KR101887166B1 (en) * 2018-03-23 2018-08-10 주식회사 산청 Filterized textile for toxic agent protection, manufacturing method therefor and special clothes thereby
WO2022129098A1 (en) * 2020-12-15 2022-06-23 Nonwovenn Ltd Filter material
CN112754091A (en) * 2020-12-30 2021-05-07 河南省斯科赛斯科技发展有限公司 Multifunctional medical protective isolation clothes

Similar Documents

Publication Publication Date Title
JP2009006012A (en) Lamination structure body for protective clothing, and protective clothing
JP5126650B2 (en) Adsorbent filtration material with integrated particle and / or aerosol filtration function and use thereof
US8366816B2 (en) Adsorption filter material with integrated particle- and/or aerosolfiltering function and its use
JP2008188925A (en) Protective material and protective clothes
WO2010062823A2 (en) Chemical protective fabric
JP2009006622A (en) Laminated structure for protective clothing having active carbon nano fibrous layer and protective clothing
JP6047978B2 (en) Protective sheet
JP4048443B2 (en) Protective materials and protective clothing
JP2007152826A (en) Protective material and protective clothing
JP2007000181A (en) Protective material and protective clothing
JP5157063B2 (en) Protective materials and protective clothing
JPH08308945A (en) Material for protective wear
JP6047976B2 (en) Protective material
JP6047977B2 (en) Protective sheet
JP6119420B2 (en) Protective material
JP2008214768A (en) Protective glove
JP2006183197A (en) Protective material and protective clothes
JP2006327021A (en) Protective material and protective clothing
JP2008212162A (en) Foot part protective socks
JP2008214767A (en) Protective sock
JP2008214769A (en) Protective glove
JP4000530B2 (en) Protective materials and protective clothing
JP2007083584A (en) Protective material and protective clothing
JP2006181919A (en) Protective material and protective clothes
JP4006646B2 (en) Protective materials and protective clothing