JP2009003096A - Optical waveguide module and manufacturing method of the same - Google Patents

Optical waveguide module and manufacturing method of the same Download PDF

Info

Publication number
JP2009003096A
JP2009003096A JP2007162600A JP2007162600A JP2009003096A JP 2009003096 A JP2009003096 A JP 2009003096A JP 2007162600 A JP2007162600 A JP 2007162600A JP 2007162600 A JP2007162600 A JP 2007162600A JP 2009003096 A JP2009003096 A JP 2009003096A
Authority
JP
Japan
Prior art keywords
optical waveguide
recess
optical
optical element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007162600A
Other languages
Japanese (ja)
Inventor
Koji Nagaki
浩司 長木
Kenji Miyao
憲治 宮尾
Mutsuhiro Matsuyama
睦宏 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007162600A priority Critical patent/JP2009003096A/en
Publication of JP2009003096A publication Critical patent/JP2009003096A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a technique for simply materializing mounting of an optical device on a substrate having an optical waveguide. <P>SOLUTION: In an optical waveguide module, a recess 3 for positioning an optical device 4 is formed on a substrate 2 having an optical waveguide 5. The optical device 4 incorporated in the recess 3 is positioned by the inner face of the recess 3 in a manner that the light receiving/emitting part 41 of the optical device 4 is arranged oppositely to the core 51 of the optical waveguide 5, with the optical device 4 optically coupled with the optical waveguide 5. A manufacturing method of the optical waveguide module is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光導波路を有する基板に、受光素子又は発光素子である光素子を実装した光導波路モジュールと、その製造方法に関する。   The present invention relates to an optical waveguide module in which an optical element that is a light receiving element or a light emitting element is mounted on a substrate having an optical waveguide, and a manufacturing method thereof.

近年、例えば、電子機器内の信号伝送の高速化、伝送量増大の要求に鑑みて、光導波路が設けられた基板(以下、光導波路基板とも言う)を用いた光通信技術を機器内の信号伝送に応用することが普及しつつある(例えば特許文献1、2)。
光導波路基板は、電子回路(導体回路)と光導波路とを持つ複合構造としたものが多用されており、この光導波路基板に実装した受光素子と発光素子とを光導波路を介して光接続して、受光素子側と発光素子側との信号伝送を行えるようにしたモジュール(以下、光導波路モジュールともいう)としたものが広く用いられている。
In recent years, for example, in view of the demand for high-speed signal transmission in electronic devices and an increase in transmission amount, optical communication technology using a substrate provided with an optical waveguide (hereinafter also referred to as an optical waveguide substrate) Application to transmission is becoming widespread (for example, Patent Documents 1 and 2).
An optical waveguide substrate having a composite structure having an electronic circuit (conductor circuit) and an optical waveguide is often used, and a light receiving element and a light emitting element mounted on the optical waveguide substrate are optically connected via the optical waveguide. Thus, a module that can perform signal transmission between the light receiving element side and the light emitting element side (hereinafter also referred to as an optical waveguide module) is widely used.

従来の光導波路モジュールは、例えば、特許文献1の図1、特許文献2の図2(d)等を参照して判るように、光導波路の光路を直角に曲げるミラーを設けて、光導波路基板上に実装した光素子(受光素子、発光素子)と光導波路との光結合を実現した構成が一般的である。
特開2000−199827号公報 特開2002−182049号公報
The conventional optical waveguide module is provided with a mirror that bends the optical path of the optical waveguide at a right angle, as shown in FIG. 1 of Patent Document 1, FIG. 2D of Patent Document 2, and the like. A configuration in which optical coupling between an optical element (light receiving element or light emitting element) mounted above and an optical waveguide is realized is common.
JP 2000-199827 A JP 2002-182049 A

しかしながら、従来の光導波路モジュールは、光導波路基板上の光素子とミラーとの位置合わせに手間が掛かるといった問題があった。また、光素子を光導波路基板上の導体回路と電気的に接続する作業において、前記ミラーに対する光素子の位置決め精度が保たれる必要があることから、光素子の実装作業の手間を増大させる原因にもなっていた。
また、そもそも、ミラーの形成に、手間、コストを要するといった問題もある。
However, the conventional optical waveguide module has a problem that it takes time to align the optical element on the optical waveguide substrate and the mirror. In addition, in the work of electrically connecting the optical element to the conductor circuit on the optical waveguide substrate, it is necessary to maintain the positioning accuracy of the optical element with respect to the mirror, which increases the labor for mounting the optical element. It was also.
In the first place, there is a problem that it takes time and cost to form a mirror.

本発明は、前記課題に鑑みて、光素子の光導波路に対する位置決め、実装を、低コストで簡単に実現できる、光導波路モジュール、光導波路モジュールの製造方法の提供を目的としている。   In view of the above problems, an object of the present invention is to provide an optical waveguide module and a method for manufacturing the optical waveguide module, which can easily realize positioning and mounting of an optical element with respect to an optical waveguide at low cost.

上記課題を解決するために、本発明では以下の構成を提供する。
第1の発明は、光導波路を有する基板に形成された凹所に、受光素子又は発光素子である光素子が収納され、前記光素子は、前記基板の凹所内面に形成された位置決め用当接部に当接して、前記光導波路のコア部の前記凹所に露出する端面に受/発光部が対面するように位置決めされていることを特徴とする光導波路モジュールを提供する。
第2の発明は、前記基板の前記凹所の位置決め用当接部が、前記凹所において互いに対向する対をなし、前記基板の一方の面に開口する前記凹所の開口部から他方の面に向かって互いの離隔距離が次第に狭くなるように形成された内面であり、前記凹所は、前記光導波路の光軸の延長が、一対の位置決め用当接部の間に位置するように形成されていることを特徴とする第1の発明の光導波路モジュールを提供する。
第3の発明は、前記光素子が板状であり、表裏両面の内の一方に前記受/発光部が設けられている受/発光部設置領域を具備し、受/発光部設置領域を介して両側の側面に、前記凹所に前記開口部から挿入することで前記凹所の一対の位置決め用当接部に当接される当接面を具備していることを特徴とする第2の発明の光導波路モジュールを提供する。
第4の発明は、さらに、前記凹所内には、前記光素子が当接されることで、前記光素子を、前記受/発光部の受/発光の光軸が前記光導波路の前記凹所に露出するコア部端面における光軸に垂直の仮想垂直面に対して傾斜した向きに支持するための、傾斜支持用当接部が設けられていることを特徴とする第2又は第3の発明の光導波路モジュールを提供する。
第5の発明は、前記傾斜支持用当接部が、前記凹所の前記開口部が開口する前記基板の一方の面の側から他方の面の側に行くにしたがって、前記凹所に露出する前記光導波路のコア部の端面からの距離が次第に増大する傾斜面であることを特徴とする第4の発明の光導波路モジュールを提供する。
第6の発明は、前記凹所に露出する前記光導波路のコア部の端面が、該端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面、あるいは、前記端面における光軸に垂直の仮想垂直面に対して傾斜する仮想傾斜面上に膨出する湾曲面であることを特徴とする第1〜5のいずれかの発明の光導波路モジュールを提供する。
第7の発明は、前記光素子の両面に設けられている電極が、それぞれ、前記基板の前記凹所の開口部が開口されている側の面に設けられている電気回路と電気導通可能に接続されていることを特徴とする第1〜6のいずれかの発明の光導波路モジュールを提供する。
第8の発明は、前記光素子の電極と、前記基板の前記電気回路とが、半田ペーストによってボンディングされていることを特徴とする第7の発明の光導波路モジュールを提供する。
第9の発明は、光導波路を有する基板に形成された凹所に、受光素子又は発光素子である光素子を収納して、前記凹所内面に形成された位置決め用当接部に当接させることで、前記光導波路のコア部の前記凹所に露出する端面に受/発光部が対面するように位置決めして、実装することを特徴とする光導波路モジュールの製造方法を提供する。
第10の発明は、前記基板の前記凹所の位置決め用当接部が、前記凹所において互いに対向する対をなし、前記基板の一方の面に開口する前記凹所の開口部から他方の面に向かって互いの離隔距離が次第に狭くなるように形成された内面であり、前記凹所は、前記光導波路の光軸の延長が、一対の位置決め用当接部の間に位置するように形成されており、前記光素子を一対の位置決め用当接部の間に挿入して一対の位置決め用当接部に当接させることで、前記受/発光部を前記光導波路の光軸に対して位置決めすることを特徴とする第9の発明の光導波路モジュールの製造方法を提供する。
第11の発明は、前記光素子が板状であり、表裏両面の内の一方に前記受/発光部が設けられている受/発光部設置領域を具備し、前記凹所に前記開口部から前記凹所の互いに対向する位置に形成された一対の位置決め用当接部の間に挿入して、前記光素子において受/発光部設置領域を介して両側の側面に形成された当接面を、前記一対の位置決め用当接部に当接させることで、前記受/発光部を前記光導波路の光軸に対して位置決めすることを特徴とする第10の発明の光導波路モジュールの製造方法を提供する。
第12の発明は、さらに、前記凹所内には、前記光素子が当接されることで、前記光素子を、前記受/発光部の受/発光の光軸が前記光導波路の前記凹所に露出するコア部端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面に対して傾斜した向きに支持するための、傾斜支持用当接部が設けられていることを特徴とする第10又は第11の発明の光導波路モジュールの製造方法を提供する。
第13の発明は、前記傾斜支持用当接部が、前記凹所の前記開口部が開口する前記基板の一方の面の側から他方の面の側に行くにしたがって、前記凹所に露出する前記光導波路のコア部の端面からの距離が次第に増大する傾斜面であることを特徴とする第12の発明の光導波路モジュールの製造方法を提供する。
第14の発明は、前記凹所に露出する前記光導波路のコア部の端面が、該端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面、あるいは、前記端面における光軸に垂直の仮想垂直面に対して傾斜する仮想傾斜面上に膨出する湾曲面であることを特徴とする第9〜13のいずれかの発明の光導波路モジュールの製造方法を提供する。
第15の発明は、前記光素子を、前記基板の凹所に挿入して位置決めした後、前記光素子の両面に設けられている電極を、それぞれ、前記基板の前記凹所の開口部が開口されている側の面に設けられている電気回路と電気導通可能に接続することを特徴とする第9〜14のいずれかの発明の光導波路モジュールの製造方法を提供する。
第16の発明は、前記光素子の電極と、前記基板の前記電気回路との接続を、半田ペーストを用いたボンディングによって行うことを特徴とする第15の発明の光導波路モジュールの製造方法を提供する。
In order to solve the above problems, the present invention provides the following configuration.
According to a first aspect of the present invention, an optical element that is a light receiving element or a light emitting element is accommodated in a recess formed in a substrate having an optical waveguide, and the optical element is a positioning contact formed on an inner surface of the recess of the substrate. An optical waveguide module is provided, wherein the optical waveguide module is positioned so that the light receiving / emitting portion faces an end surface exposed to the recess of the core portion of the optical waveguide in contact with the contact portion.
According to a second aspect of the present invention, the positioning contact portion of the recess of the substrate forms a pair facing each other in the recess, and the other surface from the opening of the recess that opens on one surface of the substrate. And the recesses are formed so that the extension of the optical axis of the optical waveguide is positioned between a pair of positioning contact portions. An optical waveguide module according to a first aspect of the present invention is provided.
According to a third aspect of the present invention, the optical element is plate-shaped, and includes a light receiving / light emitting portion installation region in which the light receiving / light emitting portion is provided on one of the front and back surfaces. And a contact surface that is brought into contact with a pair of positioning contact portions of the recess by being inserted into the recess from the opening. An optical waveguide module of the invention is provided.
According to a fourth aspect of the present invention, the optical element is brought into contact with the recess so that the optical element receives the light receiving / emitting optical axis of the recess of the optical waveguide. 2nd or 3rd invention characterized in that an inclined support contact portion is provided for supporting in an inclined direction with respect to a virtual vertical plane perpendicular to the optical axis at the end surface of the core portion exposed to An optical waveguide module is provided.
According to a fifth aspect of the invention, the inclined support contact portion is exposed to the recess as it goes from the one surface side of the substrate where the opening of the recess opens to the other surface side. An optical waveguide module according to a fourth aspect of the present invention is an inclined surface in which the distance from the end surface of the core portion of the optical waveguide gradually increases.
According to a sixth aspect of the present invention, an end surface of the core portion of the optical waveguide exposed in the recess is inclined with respect to a virtual vertical plane perpendicular to the optical axis at the end surface, or perpendicular to the optical axis at the end surface. An optical waveguide module according to any one of the first to fifth aspects, wherein the optical waveguide module is a curved surface that bulges on a virtual inclined surface inclined with respect to the virtual vertical surface.
According to a seventh aspect of the present invention, the electrodes provided on both surfaces of the optical element can be electrically connected to an electric circuit provided on the surface of the substrate on the side where the opening of the recess is opened. Provided is an optical waveguide module according to any one of the first to sixth aspects, wherein the optical waveguide module is connected.
An eighth invention provides an optical waveguide module according to the seventh invention, characterized in that the electrode of the optical element and the electric circuit of the substrate are bonded by a solder paste.
According to a ninth aspect of the present invention, an optical element that is a light receiving element or a light emitting element is housed in a recess formed in a substrate having an optical waveguide, and is brought into contact with a positioning contact portion formed on the inner surface of the recess. Thus, a method of manufacturing an optical waveguide module is provided, wherein the optical waveguide module is positioned and mounted so that the light receiving / emitting portion faces the end surface exposed in the recess of the core portion of the optical waveguide.
According to a tenth aspect of the present invention, the positioning contact portion of the recess of the substrate forms a pair facing each other in the recess, and the other surface from the opening of the recess that opens on one surface of the substrate. And the recesses are formed so that the extension of the optical axis of the optical waveguide is positioned between a pair of positioning contact portions. The optical element is inserted between a pair of positioning contact portions and brought into contact with the pair of positioning contact portions, so that the light receiving / emitting portion is brought into contact with the optical axis of the optical waveguide. A method for manufacturing an optical waveguide module according to a ninth aspect of the invention is characterized by positioning.
In an eleventh aspect of the invention, the optical element is plate-shaped, and includes a light receiving / light emitting portion installation area in which the light receiving / light emitting portion is provided on one of the front and back surfaces, and the recess is provided with the opening. Inserting between a pair of positioning contact portions formed at positions facing each other of the recess, contact surfaces formed on both side surfaces of the optical element via the light receiving / light emitting portion installation region A method of manufacturing an optical waveguide module according to a tenth aspect of the invention is characterized in that the receiving / emitting portion is positioned with respect to the optical axis of the optical waveguide by abutting against the pair of positioning abutting portions. provide.
According to a twelfth aspect of the present invention, the optical element is in contact with the optical element so that the optical axis of the light receiving / emitting part is in the concave part of the optical waveguide. An inclined support abutting portion is provided for supporting in an inclined direction with respect to an inclined surface inclined with respect to a virtual vertical plane perpendicular to the optical axis in the end surface of the core portion exposed to the optical axis. A method for manufacturing an optical waveguide module according to the tenth or eleventh invention is provided.
In a thirteenth aspect of the invention, the inclined support contact portion is exposed to the recess as it goes from the one surface side of the substrate where the opening of the recess opens to the other surface side. A manufacturing method of an optical waveguide module according to a twelfth aspect of the invention is provided, wherein the optical waveguide module is an inclined surface in which the distance from the end surface of the core portion of the optical waveguide gradually increases.
In a fourteenth aspect of the present invention, the end surface of the core portion of the optical waveguide exposed in the recess is inclined with respect to a virtual vertical plane perpendicular to the optical axis at the end surface, or perpendicular to the optical axis at the end surface. A method of manufacturing an optical waveguide module according to any one of the ninth to thirteenth inventions, wherein the curved surface bulges on a virtual inclined surface inclined with respect to the virtual vertical surface.
In a fifteenth aspect of the present invention, after the optical element is inserted into the recess of the substrate and positioned, the electrodes provided on both surfaces of the optical element are opened in the recesses of the substrate, respectively. A method of manufacturing an optical waveguide module according to any one of the ninth to fourteenth aspects is provided, wherein the optical circuit module is connected to an electric circuit provided on a surface of the optical waveguide so as to be electrically conductive.
According to a sixteenth aspect of the invention, there is provided the method for manufacturing an optical waveguide module according to the fifteenth aspect, wherein the connection between the electrode of the optical element and the electric circuit of the substrate is performed by bonding using a solder paste. To do.

本発明によれば、凹所に挿入した光素子を、凹所内の位置決め用当接部に当接させるだけで、光導波路に対して光素子を光結合可能に位置決めする作業を非常に簡単に行える。このため、光導波路モジュールの製造を大幅に省力化することができる。
従来技術のように、光導波路と光素子との間の光結合をミラーを介して実現する構成に比べて、ミラーの形成の手間の省略、低コスト化を実現できる。
According to the present invention, it is very easy to position the optical element so that the optical element can be optically coupled to the optical waveguide only by bringing the optical element inserted into the recess into contact with the positioning contact portion in the recess. Yes. For this reason, the manufacturing of the optical waveguide module can be greatly saved.
Compared to a configuration in which the optical coupling between the optical waveguide and the optical element is realized via a mirror as in the prior art, it is possible to reduce the time and cost of forming the mirror.

以下、本発明を実施した光導波路モジュール、光導波路モジュールの製造方法について、図面を参照して説明する。
図1は光導波路モジュール1の構造を示す断面図、図2は光導波路モジュール1の基板2に形成された凹所3(レセプタ構造部)と光素子4との関係を示す図であって、(a)は基板2と光素子4とを分離して示した図、(b)は凹所3に光素子4を固定した状態を示す図、図3(a)、(b)は凹所3を貫通穴とした場合を示す図、図4は光導波路モジュールの基板2と光素子4とを分離して示した分解斜視図である。
Hereinafter, an optical waveguide module embodying the present invention and a method for manufacturing the optical waveguide module will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the structure of the optical waveguide module 1, and FIG. 2 is a diagram showing the relationship between the recess 3 (receptor structure portion) formed in the substrate 2 of the optical waveguide module 1 and the optical element 4. (A) is the figure which separated and showed the board | substrate 2 and the optical element 4, (b) is the figure which shows the state which fixed the optical element 4 to the recess 3, FIG. 3 (a), (b) is a recess. FIG. 4 is an exploded perspective view showing the substrate 2 of the optical waveguide module and the optical element 4 separated from each other.

図1、図2(a)、(b)に示すように、光導波路モジュール1は、光導波路を有する基板2と、この基板2に形成された凹所3に収納して前記基板2に実装された光素子4とを具備する概略構造になっている。
前記光素子4は、例えばLD(半導体レーザー)、LED等の発光素子、あるいは、PD(フォトダイオード)等の受光素子である。発光素子としては、VCSEL(面発光半導体レーザー)が好適である。
前記光素子4は板状であり、表裏両面の内の一方が、受/発光部41が設けられている受/発光部設置面42(受/発光部設置領域)となっている。前記光素子4は、前記基板2の凹所3に挿入して、凹所3内面に形成された位置決め用当接部31(後述)に当接させることで、光導波路5に対して光結合可能に位置決めされる。つまり、光素子4は、光導波路5のコア部51(後述)の前記凹所3に露出する端面51aに前記受/発光部41が対面するように位置決めされて、前記光導波路5に対して光結合される。
As shown in FIGS. 1, 2 (a) and 2 (b), the optical waveguide module 1 is housed in a substrate 2 having an optical waveguide and a recess 3 formed in the substrate 2 and mounted on the substrate 2. The optical device 4 has a schematic structure.
The optical element 4 is, for example, a light emitting element such as an LD (semiconductor laser) or an LED, or a light receiving element such as a PD (photodiode). As the light emitting element, a VCSEL (surface emitting semiconductor laser) is suitable.
The optical element 4 is plate-shaped, and one of the front and back surfaces is a light receiving / light emitting portion installation surface 42 (light receiving / light emitting portion installation region) on which the light receiving / light emitting portion 41 is provided. The optical element 4 is optically coupled to the optical waveguide 5 by being inserted into the recess 3 of the substrate 2 and brought into contact with a positioning contact portion 31 (described later) formed on the inner surface of the recess 3. Positioned as possible. That is, the optical element 4 is positioned so that the light receiving / emitting portion 41 faces the end face 51 a exposed in the recess 3 of the core portion 51 (described later) of the optical waveguide 5, Photocoupled.

(基板、光導波路)
図1等に例示した光導波路モジュール1の基板2は、プレート状の光導波路5の片面あるいは両面(図1では両面)に、銅あるいは銅合金等の導体金属によって形成された導体回路21が設けられた構成になっている。
前記光導波路5は、線状のコア部51の周囲がクラッド部52によって覆われた構成になっている。
また、前記基板2は、光導波路5の一方の面に導体回路21、他方の面にシート状あるいはプレート状の基材が設けられた構成であっても良い。前記基材は、例えば、後述の3層構造の光導波路形成体の個々の層を形成する樹脂材料を含むワニスの塗布によって順次形成する際に用いる基材であっても良い。
(Substrate, optical waveguide)
The substrate 2 of the optical waveguide module 1 illustrated in FIG. 1 and the like is provided with a conductor circuit 21 formed of a conductive metal such as copper or copper alloy on one or both surfaces (both surfaces in FIG. 1) of the plate-shaped optical waveguide 5. It has been configured.
The optical waveguide 5 has a configuration in which the periphery of a linear core portion 51 is covered with a clad portion 52.
The substrate 2 may have a configuration in which a conductor circuit 21 is provided on one surface of the optical waveguide 5 and a sheet-like or plate-like base material is provided on the other surface. The base material may be, for example, a base material used when sequentially forming by applying a varnish containing a resin material for forming individual layers of an optical waveguide forming body having a three-layer structure described later.

前記光導波路5の製造方法としては、例えば、以下の(a)、(b)を採り得る。
(a)コア部形成用の樹脂層であるコア層の両面に、クラッド層(クラッド部52の一部を形成するための樹脂層)が設けられた3層構造の光導波路形成体を作成し、この光導波路形成体に活性エネルギー線を照射してコア部51を形成する。図1(a)、(b)において、コア層に符号5a、クラッド層に符号5b、光導波路形成体に符号5cを付して示す。
活性エネルギー線の照射によって、コア層の一部がコア部51となり、コア層のコア部51以外の部分と、コア層の両側のクラッド層とが、クラッド部52を構成する。
コア層を形成する材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂、といった樹脂材料が挙げられる。ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂を主材料とする樹脂組成物が好適であり、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物が特に好ましい。
コア部51の形成のための活性エネルギー線としては、可視光、紫外光、赤外光、レーザー光等の活性エネルギー光線や、電子線、X線等が挙げられる。電子線は、例えば50〜200KGy程度の照射量で照射することができる。
クラッド層を構成する材料としては、コア層を構成する材料よりも屈折率が低いものであれば特に限定されない。具体的には、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ベンゾシクロブテン系樹脂、ノルボルネン系樹脂等の環状オレフィン系樹脂、といった樹脂材料が挙げられる。これらの中でも、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物が特に好ましい。
コア層、クラッド層の形成材料としてノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物を採用した場合は、透明性、絶縁性、柔軟性及び耐熱性が充分に得られる。また、他の樹脂を用いた場合との比較で、吸湿性を低くできる。また、ノルボルネン系樹脂の付加重合体を主材料とする樹脂組成物の場合、ノルボルネン系樹脂の付加重合体の側鎖の種類等によって、屈折率を調整することができる利点がある。
この製造方法の場合は、断面四角形(長方形。但し正方形を含む)のコア部51が得られる。
(b)予め形成しておいたコア部の周囲をクラッド材(クラッド部)で覆う。
この製造方法の場合は、コア部51の断面形状は自由となる。
As a manufacturing method of the optical waveguide 5, for example, the following (a) and (b) can be adopted.
(A) An optical waveguide forming body having a three-layer structure in which a clad layer (a resin layer for forming a part of the clad portion 52) is provided on both surfaces of the core layer, which is a resin layer for forming the core portion, is prepared. The core portion 51 is formed by irradiating the optical waveguide forming body with active energy rays. 1A and 1B, the core layer is denoted by reference numeral 5a, the cladding layer is denoted by reference numeral 5b, and the optical waveguide forming body is denoted by reference numeral 5c.
By irradiation with the active energy ray, a part of the core layer becomes the core part 51, and the part other than the core part 51 of the core layer and the clad layers on both sides of the core layer constitute the clad part 52.
Examples of the material for forming the core layer include resin materials such as cyclic olefin resins such as acrylic resins, epoxy resins, polyimide resins, benzocyclobutene resins, and norbornene resins. A resin composition mainly containing a cyclic olefin resin such as a benzocyclobutene resin or a norbornene resin is preferred, and a resin composition mainly containing an addition polymer of a norbornene resin is particularly preferred.
Examples of active energy rays for forming the core 51 include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays. An electron beam can be irradiated with an irradiation dose of, for example, about 50 to 200 KGy.
The material constituting the cladding layer is not particularly limited as long as the refractive index is lower than that of the material constituting the core layer. Specific examples include resin materials such as acrylic resins, epoxy resins, polyimide resins, benzocyclobutene resins, and cyclic olefin resins such as norbornene resins. Among these, a resin composition mainly comprising an addition polymer of norbornene resin is particularly preferable.
When a resin composition mainly composed of an addition polymer of norbornene-based resin is adopted as a material for forming the core layer and the clad layer, transparency, insulation, flexibility and heat resistance can be sufficiently obtained. In addition, the hygroscopicity can be reduced as compared with the case where other resins are used. In the case of a resin composition mainly composed of an addition polymer of norbornene resin, there is an advantage that the refractive index can be adjusted depending on the type of side chain of the addition polymer of norbornene resin.
In the case of this manufacturing method, a core part 51 having a quadrangular cross section (rectangular, but including a square) is obtained.
(B) The periphery of the core part formed in advance is covered with a clad material (clad part).
In the case of this manufacturing method, the cross-sectional shape of the core part 51 becomes free.

(凹所(レセプタ構造部))
基板2に設けられた凹所3は、光素子4を収納することで、該凹所3の内面構造によって、光素子4を、前記受/発光部41が、光導波路5のコア部51の前記凹所3に露出する端面51aに対面するように位置決めする、光素子搭載用のレセプタ構造部として機能するものである。
図1、図2(a)、(b)においては、前記凹所3が、基板2の両面(厚みの両側の主面2a、2b)の一方(主面2a)のみに開口し、他方の面には開口していない、非貫通穴になっている。但し、凹所3としては非貫通穴に限定されず、例えば図3(a)、(b)に示すように、基板2を厚み方向に貫通して両主面2a、2bに開口する貫通穴であっても良い。
なお、図4、図5(a)、(b)は、凹所3が貫通穴である場合を例示している。
(Recess (receptor structure))
The recess 3 provided in the substrate 2 accommodates the optical element 4, so that the optical element 4 is received by the light receiving / emitting part 41 of the core part 51 of the optical waveguide 5 by the inner surface structure of the recess 3. It functions as a receptor structure portion for mounting an optical element, which is positioned so as to face the end surface 51a exposed in the recess 3.
In FIG. 1, FIG. 2 (a), (b), the said recess 3 opens only to one side (main surface 2a) of both surfaces (main surface 2a, 2b of the both sides of thickness) of the board | substrate 2, and the other side It is a non-through hole that is not open on the surface. However, the recess 3 is not limited to a non-through hole. For example, as shown in FIGS. 3A and 3B, a through hole that penetrates the substrate 2 in the thickness direction and opens to both main surfaces 2a and 2b. It may be.
In addition, FIG. 4, FIG. 5 (a), (b) has illustrated the case where the recess 3 is a through-hole.

図1(a)、(b)〜図4に示すように、前記凹所3には、光導波路5のコア部51の端面51aが露出されている。コア部51の端面51aは、凹所3の内面付近(内面と面一、あるいは、内面から僅かにずれた位置)に位置する。
前記凹所3は、前記コア部51の端面51aにおける光導波路5の光軸に一致する仮想直線H(以下、光軸H、と称する場合がある)が、該凹所3内を貫通するように形成されている。
符号S1は、基板2(詳細には両主面2a、2b)に対して垂直、かつ、前記仮想直線Hに重なる仮想基準面(以下、仮想基準面)である。
前記凹所3は、前記仮想直線Hに沿った方向の両端の端面36a、36b(内壁面。以下、光軸方向端面とも言う)と、前記仮想基準面S1を介して両側の内面(内壁面)である一対の位置決め用当接部31(位置決め用当接面)とを具備して、第1主面2aから窪む穴状(貫通穴又は非貫通穴)に形成されている。前記コア部51の端面51aは、一対の光軸方向端面36a、36bの内、少なくとも一方(ここでは符号36aの光軸方向端面)に露出される。
As shown in FIGS. 1A and 1B to 4, the end surface 51 a of the core portion 51 of the optical waveguide 5 is exposed in the recess 3. The end surface 51a of the core part 51 is located in the vicinity of the inner surface of the recess 3 (position flush with the inner surface or slightly shifted from the inner surface).
In the recess 3, an imaginary straight line H (hereinafter sometimes referred to as an optical axis H) that coincides with the optical axis of the optical waveguide 5 in the end surface 51 a of the core portion 51 passes through the recess 3. Is formed.
Reference sign S1 is a virtual reference plane (hereinafter referred to as a virtual reference plane) that is perpendicular to the substrate 2 (specifically, both main surfaces 2a and 2b) and overlaps the virtual straight line H.
The recess 3 includes end surfaces 36a and 36b (inner wall surfaces; hereinafter referred to as end surfaces in the optical axis direction) at both ends in the direction along the imaginary straight line H, and inner surfaces (inner wall surfaces on both sides) through the virtual reference plane S1. ) And a pair of positioning contact portions 31 (positioning contact surfaces), and is formed in a hole shape (through hole or non-through hole) recessed from the first main surface 2a. The end surface 51a of the core portion 51 is exposed to at least one of the pair of optical axis direction end surfaces 36a and 36b (here, the end surface in the optical axis direction indicated by reference numeral 36a).

図示例の凹所3は、図4に示すように、平面視形状(第1主面2a側から見た形状)が、長方形(正方形)になっている。
図1(a)、(b)、図4に例示した凹所3の一対の光軸方向端面36a、36bは、前記仮想直線Hに垂直に形成されている。
As shown in FIG. 4, the recess 3 in the illustrated example has a rectangular shape (square shape) in a plan view shape (a shape viewed from the first main surface 2 a side).
A pair of optical axis direction end faces 36a and 36b of the recess 3 illustrated in FIGS. 1A, 1B, and 4 are formed perpendicular to the virtual straight line H.

図2(a)、(b)、図3(a)、(b)等に示すように、一対の位置決め用当接部31(位置決め用当接面)は、既述の通り、仮想基準面S1を介して両側に位置する凹所内面(内壁面)である。
この一対の位置決め用当接部31(位置決め用当接面)は、基板2の一方の主面(後述の第1主面2a)側から他方の主面(後述の第2主面2b)側に行くにしたがって互いの離隔距離が次第に狭くなるように形成されている。
As shown in FIGS. 2 (a), 2 (b), 3 (a), 3 (b), etc., the pair of positioning contact portions 31 (positioning contact surfaces) is a virtual reference plane as described above. It is a concave inner surface (inner wall surface) located on both sides via S1.
The pair of positioning contact portions 31 (positioning contact surfaces) is from one main surface (first main surface 2a described later) side to the other main surface (second main surface 2b described later) side. The separation distance is gradually narrowed as the distance goes to.

図2(a)、(b)、図3(a)、(b)等では、仮想基準面S1を介して両側の位置決め用当接部31(一対の内面)が、それぞれ、基板2の一方の主面(後述の第1主面2a)側から他方の主面(後述の第2主面2b)側に行くにしたがって、仮想基準面S1に接近するように形成されている構成を例示している。
但し、一対の位置決め用当接部31(位置決め用当接面)は、光素子4の形状に応じて、光素子4の位置決めを可能にするために、適宜、形状を変更できる。例えば、仮想基準面S1を介して両側の位置決め用当接部31の一方が、基板2の一方の主面(後述の第1主面2a)側から他方の主面(後述の第2主面2b)側に行くにしたがって仮想基準面S1に接近するように形成され(傾斜面)、他方の位置決め用当接部31が、仮想基準面S1に平行に延在する平坦面となっている構成であっても良い。
2 (a), 2 (b), 3 (a), 3 (b), etc., the positioning contact portions 31 (a pair of inner surfaces) on both sides are respectively connected to one side of the substrate 2 via the virtual reference plane S1. An example of a configuration that is formed so as to approach the virtual reference plane S1 from the main surface (first main surface 2a described later) side to the other main surface (second main surface 2b described later) side is illustrated. ing.
However, the shape of the pair of positioning contact portions 31 (positioning contact surfaces) can be changed as appropriate in order to enable positioning of the optical element 4 in accordance with the shape of the optical element 4. For example, one of the positioning contact portions 31 on both sides via the virtual reference plane S1 is changed from one main surface (first main surface 2a described later) side to the other main surface (second main surface described later). 2b) A structure that is formed so as to approach the virtual reference surface S1 as it goes to the side (inclined surface), and the other positioning contact portion 31 is a flat surface that extends parallel to the virtual reference surface S1. It may be.

凹所3は、既述のように、一対の位置決め用当接部31(一対の内面)が、それぞれ、基板2の一方の主面(後述の第1主面2a)側から他方の主面(後述の第2主面2b)側に行くにしたがって、仮想基準面S1に接近するように形成されていることにより、前記基板2の一方の面(主面2a)に開口する前記凹所3の開口部32aの側から他方の面(主面2b)の側に行くにしたがって次第に断面積が小さくなる(狭くなる)テーパ穴状に形成されている。
本明細書及び図面において、符号32aを付した開口部が、テーパ穴状の凹所3の軸方向両端の内、断面積が大きい側の端部の開口部である。
また、基板2の両面(主面2a,2b)の内、前記開口部32aが開口されている面(ここでは符号2aの主面)を、以下、第1主面、反対側の面(ここでは符号2bの主面)を、以下、第2主面と称して説明する場合がある。
なお、テーパ穴状の凹所3は、非貫通穴の場合は、軸方向(図2(a)、(b)、図3(a)、(b)の上下方向。換言すれば深さ方向。基板2の厚み方向と一致)両端の内、断面積が大きい側(第1主面2a側)のみが開口された構造となる。
As described above, the recess 3 has a pair of positioning contact portions 31 (a pair of inner surfaces) from the one main surface (first main surface 2a described later) side to the other main surface, respectively. The recess 3 is opened to one surface (main surface 2a) of the substrate 2 by being formed so as to approach the virtual reference surface S1 as it goes to the (second main surface 2b described later) side. It is formed in a tapered hole shape in which the cross-sectional area gradually decreases (becomes narrower) from the opening 32a side to the other surface (main surface 2b) side.
In the present specification and drawings, the opening portion denoted by reference numeral 32a is the opening portion at the end portion on the side having the larger cross-sectional area among the axial ends of the tapered hole-like recess 3.
Of the two surfaces (main surfaces 2a, 2b) of the substrate 2, the surface where the opening 32a is opened (here, the main surface denoted by reference numeral 2a) is hereinafter referred to as the first main surface and the opposite surface (here). In the following description, the main surface 2b is sometimes referred to as a second main surface.
In the case of a non-through hole, the tapered hole-shaped recess 3 is axial (the vertical direction in FIGS. 2A, 2B, 3A, 3B. In other words, the depth direction. (It coincides with the thickness direction of the substrate 2) Of the both ends, only the side having the larger cross-sectional area (the first main surface 2a side) is opened.

凹所3は、コア部51を介して第1主面2a側とは反対の第2主面2b側に位置するクラッド部52に達するように形成される。
また、図示例の凹所3は、光素子4の一部を収納する深さ(第1主面2aからの深さ)で形成しているが、光素子4の全体を収納可能な深さで形成しても良い。
The recess 3 is formed so as to reach the clad portion 52 located on the second main surface 2b side opposite to the first main surface 2a side via the core portion 51.
In addition, the recess 3 in the illustrated example is formed with a depth (a depth from the first main surface 2a) in which a part of the optical element 4 is accommodated, but a depth that allows the entire optical element 4 to be accommodated. May be formed.

凹所3(レセプタ構造部)は、該凹所3に収納した光素子4が、仮想基準面S1の両側の位置決め用当接部31に当接することで、受/発光部41が、凹所3の光導波路5の光軸に沿った方向の両端の光軸方向端面36a、36bの一方(ここでは、符号36aの光軸方向端面)に露出するコア部51の端面51aに向かい合って光導波路5に対して光結合可能となるように、光素子4を位置決めする機能を果たす。
光素子4は、受/発光部設置面42を介して両側に、該光素子4を凹所3に収納したときに仮想基準面S1の両側の位置決め用当接部31に当接される当接面43(側面)を具備する。凹所3に収納した光素子4は、両側の当接面43を、仮想基準面S1の両側の位置決め用当接部31に当接させることで、光導波路4に対して光結合可能な位置に位置決めされる。
The recess 3 (receptor structure) is configured such that the optical element 4 accommodated in the recess 3 contacts the positioning contact portions 31 on both sides of the virtual reference plane S1, so that the light receiving / emitting portion 41 is recessed. The optical waveguide faces the end surface 51a of the core portion 51 exposed at one of the optical axis direction end surfaces 36a and 36b at both ends in the direction along the optical axis of the third optical waveguide 5 (here, the end surface in the optical axis direction of reference numeral 36a). The optical element 4 is positioned so that it can be optically coupled to the optical element 5.
The optical element 4 is brought into contact with the positioning contact portions 31 on both sides of the virtual reference plane S1 when the optical element 4 is housed in the recess 3 on both sides via the light receiving / emitting portion installation surface 42. A contact surface 43 (side surface) is provided. The optical element 4 housed in the recess 3 is a position where optical contact with the optical waveguide 4 is possible by bringing the contact surfaces 43 on both sides into contact with the positioning contact portions 31 on both sides of the virtual reference surface S1. Is positioned.

図2(a)、(b)、図3(a)、(b)に例示した凹所3(レセプタ構造部)は、具体的には、V溝状に形成されている。この凹所3の、仮想基準面S1を介して両側に位置する一対の内面(位置決め用当接部31)は、それぞれ、基板2の第1主面2a側から第2主面2b側に行くにしたがって仮想基準面S1に接近し、互いの離隔距離が次第に狭くなる平坦面(仮想基準面S1に対して傾斜する傾斜面)となっている。また、各位置決め用当接部31(位置決め用当接面。傾斜面)は、光軸方向端面36aに露出するコア部51の端面51aに垂直の仮想垂直面(例えば、図6(a)の仮想垂直面S2等を参照)に対して垂直になっている。光素子4は、一対の当接面43を凹所3の一対の位置決め用当接部31(位置決め用当接面。傾斜面)に接合させるようにして当接させることで、光導波路5に対して光結合可能に位置決めされる。
本発明に係る凹所3(レセプタ構造部)としては、これに限定されず、例えば、図5(a)、(b)に例示した構成等、様々な構成を採用できる。
凹所3(レセプタ構造部)の構造(仮想基準面S1の両側の凹所内面の形状)としては、この凹所3に収納して位置決めする光素子4の形状に応じて、光素子4を位置決め可能なように、基板2の一方の主面(後述の第1主面2a)側から他方の主面(後述の第2主面2b)側に行くにしたがって、仮想基準面S1を介して両側の内面(位置決め用当接部31)の一方又は両方が仮想基準面S1に接近していき、両内面の互いの離隔距離が次第に狭くなっている構成であれば良く、適宜設計変更が可能である。
Specifically, the recess 3 (receptor structure portion) illustrated in FIGS. 2A, 2B, 3A, and 3B is formed in a V-groove shape. A pair of inner surfaces (positioning contact portions 31) located on both sides of the recess 3 via the virtual reference plane S1 go from the first main surface 2a side to the second main surface 2b side of the substrate 2, respectively. Accordingly, the flat surface (an inclined surface inclined with respect to the virtual reference surface S1) that approaches the virtual reference surface S1 and gradually becomes separated from each other is formed. Further, each positioning contact portion 31 (positioning contact surface, inclined surface) is a virtual vertical surface (for example, as shown in FIG. 6A) perpendicular to the end surface 51a of the core portion 51 exposed at the optical axis direction end surface 36a. Perpendicular to the virtual vertical plane S2). The optical element 4 is brought into contact with the optical waveguide 5 by bringing the pair of contact surfaces 43 into contact with the pair of positioning contact portions 31 (positioning contact surfaces, inclined surfaces) of the recess 3. It is positioned so that optical coupling is possible.
The recess 3 (receptor structure) according to the present invention is not limited to this, and various configurations such as the configuration illustrated in FIGS. 5A and 5B can be employed.
As the structure of the recess 3 (receptor structure portion) (the shape of the inner surface of the recess on both sides of the virtual reference plane S1), the optical element 4 is arranged according to the shape of the optical element 4 that is housed and positioned in the recess 3. In order to be able to be positioned, from one main surface (first main surface 2a described later) side of the substrate 2 to the other main surface (second main surface 2b described later) side, the virtual reference surface S1 is interposed. One or both of the inner surfaces (positioning contact portions 31) on both sides may approach the virtual reference plane S1, and the distance between the inner surfaces gradually decreases. The design can be changed as appropriate. It is.

図5(a)、(b)に例示した凹所3も、仮想基準面S1を介して両側に位置して互いに対向する対をなす内面を、位置決め用当接部31としている点は、図1、図2(a)、(b)の凹所3と共通する。
図5(a)の凹所3は、仮想基準面S1を介して両側に位置する一対の内面が、それぞれ、基板2の第1主面2a側から第2主面2b側に行くにしたがって仮想基準面S1に接近し、互いの離隔距離が次第に狭くなる湾曲面33になっている。この一対の湾曲面33が、それぞれ、位置決め用当接部31として機能する。
図5(b)の凹所3は、仮想基準面S1を介して両側に位置する一対の内面の一方が、基板2の第1主面2a側から第2主面2b側に行くにしたがって仮想基準面S1に接近する湾曲面34に形成されているが、対をなす内面の内の他方は基板2の第1主面2a側から第2主面2b側に行くにしたがって仮想基準面S1に接近する平坦面(傾斜面)になっている。湾曲面34と平坦面35とが、位置決め用当接部31として機能する。
凹所の位置決め用当接部31としては、上述の図5(a)、(b)に限定されず、例えば、仮想基準面S1を介して両側に位置する一対の内面の一方を、仮想基準面S1に平行な平坦面(基板2に対して垂直の面)とした構成も採用可能である。
The recess 3 illustrated in FIGS. 5A and 5B also has a positioning contact portion 31 on the inner surfaces that are located on both sides of the recess 3 and face each other via the virtual reference plane S1. 1. Common to the recess 3 in FIGS. 2 (a) and 2 (b).
The recesses 3 in FIG. 5A are virtual as the pair of inner surfaces located on both sides via the virtual reference plane S1 goes from the first main surface 2a side to the second main surface 2b side of the substrate 2, respectively. It is a curved surface 33 that approaches the reference surface S <b> 1 and whose separation distance gradually decreases. Each of the pair of curved surfaces 33 functions as the positioning contact portion 31.
The recess 3 in FIG. 5B is virtual as one of the pair of inner surfaces located on both sides via the virtual reference plane S1 goes from the first main surface 2a side of the substrate 2 to the second main surface 2b side. The curved surface 34 that is close to the reference surface S1 is formed, but the other of the paired inner surfaces becomes the virtual reference surface S1 as it goes from the first main surface 2a side to the second main surface 2b side of the substrate 2. It is an approaching flat surface (inclined surface). The curved surface 34 and the flat surface 35 function as the positioning contact portion 31.
The positioning contact portion 31 for the recess is not limited to the above-described FIGS. 5A and 5B. For example, one of the pair of inner surfaces located on both sides via the virtual reference surface S1 is used as the virtual reference surface. A configuration in which the surface is parallel to the surface S1 (a surface perpendicular to the substrate 2) can also be employed.

光素子4は、凹所3に第1主面2a側から挿入して組み込んで、基板2に実装される。
光素子4は、先細り形状(楔状)になっている挿入位置決め部46を有しており、この挿入位置決め部46の先端(挿入先端部44)側から凹所3に挿入して組み込まれる。
光素子4の受/発光部設置面42を介して両側に位置する当接面43は、挿入位置決め部46の両側の側面であり、光素子4において、前記挿入先端部44から該挿入先端部44とは反対側の後端部45(光素子4の後端部)の側に行くにしたがって、互いの離隔距離が次第に増大するように形成されている。一対の当接面43は、受/発光部設置面41に対して垂直に形成されている。
光素子4は、前記挿入位置決め部46を前記挿入先端部44から凹所3に挿入(凹所3の第1主面2a側の開口部32aから挿入)して、挿入位置決め部46の両側の当接面43を、凹所3の仮想基準面S1を介して両側の位置決め用当接部31に当接させることで、光導波路5に対して光結合可能に位置決めされる。
The optical element 4 is mounted on the substrate 2 by being inserted into the recess 3 from the first main surface 2a side.
The optical element 4 has an insertion positioning portion 46 having a tapered shape (wedge shape), and is inserted into the recess 3 from the distal end (insertion distal end portion 44) side of the insertion positioning portion 46 and incorporated.
The contact surfaces 43 located on both sides of the optical element 4 via the light receiving / emitting part installation surface 42 are side surfaces on both sides of the insertion positioning part 46, and in the optical element 4, the insertion tip part 44 extends from the insertion tip part 44. The separation distance is gradually increased toward the rear end 45 (the rear end of the optical element 4) on the side opposite to 44. The pair of contact surfaces 43 are formed perpendicular to the light receiving / light emitting unit installation surface 41.
The optical element 4 inserts the insertion positioning portion 46 into the recess 3 from the insertion distal end portion 44 (inserted from the opening 32a on the first main surface 2a side of the recess 3). The contact surface 43 is positioned so as to be optically coupled to the optical waveguide 5 by contacting the contact surfaces 43 with the positioning contact portions 31 on both sides via the virtual reference surface S <b> 1 of the recess 3.

図2(a)、(b)〜図5(a)、(b)に例示した光素子4は、具体的には、四角板状に形成されており、四角の4つの頂点の内の一つが、挿入先端部44として機能する。また、この挿入先端部44から延びる一対の側面(受/発光部設置面41に垂直の端面)が当接面43とされている。   The optical element 4 illustrated in FIGS. 2 (a), 2 (b) to 5 (a), (b) is specifically formed in a square plate shape, and is one of the four vertices of the square. One functions as the insertion tip 44. In addition, a pair of side surfaces (end surfaces perpendicular to the light receiving / light emitting unit installation surface 41) extending from the insertion distal end portion 44 serve as contact surfaces 43.

この実施形態においては、光素子4として、受/発光部41の受/発光の光軸(例えば、図11(b)の光軸H1を参照)が、受/発光部設置面42に対して垂直になっているものを採用する。
光素子4が発光素子の場合は、受/発光部設置面42に対して垂直の光軸の光を出射するものを採用する。VICSEL等の発光面(発光部)を有する光素子4の場合は、受/発光部設置面42に平行の向きの前記発光面から、発光面に垂直の方向に出力光を出射するものを採用する。受光素子の場合は、受/発光部設置面42に平行の向きの受光面(受光部)を具備するものを採用し、これを、受光の光軸が受/発光部設置面42に対して垂直になっている光素子(受光素子)として扱うこととする。
換言すれば、受/発光部41の受/発光の光軸H1が受/発光部設置面42に対して垂直になっている光素子4は、受/発光部設置面42に平行の向きの受/発光面を有する光素子である。
In this embodiment, as the optical element 4, the light receiving / emitting optical axis of the light receiving / emitting unit 41 (see, for example, the optical axis H <b> 1 in FIG. 11B) with respect to the light receiving / emitting unit installation surface 42. Use a vertical one.
In the case where the optical element 4 is a light emitting element, one that emits light having an optical axis perpendicular to the light receiving / emitting unit installation surface 42 is employed. In the case of the optical element 4 having a light emitting surface (light emitting portion) such as a VICSEL, one that emits output light in a direction perpendicular to the light emitting surface from the light emitting surface oriented parallel to the light receiving / light emitting portion installation surface 42 is adopted. To do. In the case of a light receiving element, one having a light receiving surface (light receiving portion) oriented in parallel to the light receiving / light emitting portion installation surface 42 is adopted, and this is used with respect to the light receiving / light emitting portion installation surface 42. It is assumed that it is treated as a vertical optical element (light receiving element).
In other words, the optical element 4 in which the receiving / emitting optical axis H1 of the receiving / emitting unit 41 is perpendicular to the receiving / emitting unit installation surface 42 is oriented in a direction parallel to the receiving / emitting unit installation surface 42. An optical element having a light receiving / emitting surface.

凹所3における光素子4の位置決めは、図2(a)、(b)、図3(a)、(b)に示すように、光素子4の挿入位置決め部46の両側の当接面43が、凹所3の仮想基準面S1を介して両側の内面である位置決め用当接部31に面接触する態様の他、図5(a)に示すように、凹所3の両側の位置決め用当接部31(湾曲面33)に対する局所的な当接によって位置決めする態様、図5(b)に示すように、仮想基準面S1を介して両側の位置決め用当接部31の片方(湾曲面34)に対する局所的な当接と他方の位置決め用当接部31(平坦面35)に対する面接触とによって位置決めする態様も採用可能である。
また、図5(a)、(b)の凹所3については、仮想基準面S1を介して両側の位置決め用当接部31に面接触可能な形状に形成された当接面43を両側に有する光素子4を採用することが可能である。
As shown in FIGS. 2A, 2B, 3A, and 3B, the positioning of the optical element 4 in the recess 3 is performed on the contact surfaces 43 on both sides of the insertion positioning portion 46 of the optical element 4. However, as shown in FIG. 5A, in addition to the surface contact with the positioning contact portions 31 which are the inner surfaces on both sides via the virtual reference plane S1 of the recess 3, A mode of positioning by local contact with the contact portion 31 (curved surface 33), as shown in FIG. 5B, one side (curved surface) of the positioning contact portions 31 on both sides via the virtual reference surface S1. It is also possible to adopt a mode of positioning by local contact with respect to 34) and surface contact with the other positioning contact portion 31 (flat surface 35).
5 (a) and 5 (b), on both sides, contact surfaces 43 formed in a shape capable of surface contact with the positioning contact portions 31 on both sides via the virtual reference surface S1 are provided on both sides. It is possible to employ the optical element 4 having the same.

また、凹所3においては、光導波路5の光軸H(仮想直線)に沿った方向の両端の光軸方向端面36a、36bの片方(ここでは、符号36bの光軸方向端面)に、光素子4の受/発光部設置面42とは反対側の背面48を当接させることで、光軸方向における光素子4の位置決めを行えるようになっている。これにより、受/発光部41の、光導波路5のコア部51の端面51aに対する光軸方向の位置決めが実現される。
光素子4は、受/発光部41が、凹所3において光素子4の背面48を当接させた光軸方向端面36bとは反対側の光軸方向端面36a(以下、コア部側端面とも言う)に露出されている光導波路5のコア部51の端面51aから微小な隙間を介して対面配置されるか、受/発光部41がコア部51の端面51aに対して接する(但し、圧接させず、軽い力で接触させるようにする)ように位置決めする。光軸方向端面36bは、光素子4を、光導波路5の光軸方向に位置決めするための位置決め部(光軸方向位置決め部)として機能する。
なお、光導波路5の光軸方向における光素子4の位置決めは、例えば、光軸方向端面36bと光素子4の間にスペーサを介挿して行うことも可能である。
In the recess 3, light is applied to one of the optical axis direction end faces 36 a and 36 b at both ends in the direction along the optical axis H (virtual straight line) of the optical waveguide 5 (here, the end face in the optical axis direction indicated by reference numeral 36 b). The optical element 4 can be positioned in the optical axis direction by bringing the back surface 48 of the element 4 opposite to the light receiving / emitting part installation surface 42 into contact. Thereby, the positioning of the light receiving / emitting part 41 in the optical axis direction with respect to the end surface 51a of the core part 51 of the optical waveguide 5 is realized.
The optical element 4 includes an optical axis end face 36a (hereinafter also referred to as a core side end face) opposite to the optical axis end face 36b in which the light receiving / emitting section 41 contacts the back face 48 of the optical element 4 in the recess 3. Or the light receiving / emitting portion 41 is in contact with the end surface 51a of the core portion 51 (however, pressure contact) Position it so that it makes contact with light force. The optical axis direction end face 36 b functions as a positioning part (optical axis direction positioning part) for positioning the optical element 4 in the optical axis direction of the optical waveguide 5.
The positioning of the optical element 4 in the optical axis direction of the optical waveguide 5 can be performed, for example, by inserting a spacer between the optical axis direction end face 36 b and the optical element 4.

光導波路5のコア部51の端面51a(以下、コア部端面51aと略称する場合がある)は、凹所3のコア部側内壁面36aと面一である場合の他、凹所3のコア部側内壁面36aから僅かにずれていても良い。
コア部51は、コア部側内壁面36aから僅かに突出されても良く(図6(a)、(b)、(c)参照)、また、先端位置が、コア部側内壁面36aから僅かに陥没した位置にあっても良い。
The end surface 51a of the core portion 51 of the optical waveguide 5 (hereinafter sometimes abbreviated as “core portion end surface 51a”) is flush with the core-side inner wall surface 36a of the recess 3, and also the core of the recess 3 It may be slightly displaced from the inner wall surface 36a.
The core portion 51 may slightly protrude from the core portion side inner wall surface 36a (see FIGS. 6A, 6B, and 6C), and the tip position is slightly from the core portion side inner wall surface 36a. It may be in a position that is depressed.

(コア部端面の形状)
コア部端面51aの形状は、該コア部端面51aにおける光導波路5の光軸Hに垂直の平坦面であっても良いが、光素子4の受/発光部41と光導波路5との間で発生する散乱光の光導波路5への入射を抑える点で、図6(a)〜(d)に例示した形状を採用することがより好ましい。
(Shape of core end face)
The shape of the core portion end surface 51 a may be a flat surface perpendicular to the optical axis H of the optical waveguide 5 in the core portion end surface 51 a, but between the light receiving / emitting portion 41 of the optical element 4 and the optical waveguide 5. It is more preferable to adopt the shapes illustrated in FIGS. 6A to 6D in that the generated scattered light is prevented from entering the optical waveguide 5.

図6(a)、(b)、(c)は、凹所3のコア部側内壁面36aから僅かに突出させたコア部51先端の端面51aの例を示す。
図6(a)は、コア部端面51aを、コア部51先端における光導波路5の光軸Hに垂直の仮想垂直面S2(図6(a)では、凹所3のコア部側内壁面36aが仮想垂直面S2と一致する)に対して傾斜する傾斜面51a1(コア部端面)とした構成を例示する。
なお、仮想垂直面S2に対する傾斜面51a1の傾斜角度θ1は、8度程度(7−9度)であることが好ましい。
FIGS. 6A, 6 </ b> B, and 6 </ b> C show examples of the end face 51 a at the tip of the core 51 that slightly protrudes from the core-side inner wall surface 36 a of the recess 3.
FIG. 6A shows a core portion end surface 51a that is a virtual vertical surface S2 perpendicular to the optical axis H of the optical waveguide 5 at the tip of the core portion 51 (in FIG. 6A, the core portion side inner wall surface 36a of the recess 3). Illustrates a configuration in which the inclined surface 51a1 (core portion end surface) is inclined with respect to the virtual vertical surface S2.
The inclination angle θ1 of the inclined surface 51a1 with respect to the virtual vertical plane S2 is preferably about 8 degrees (7-9 degrees).

図6(b)、(c)は、コア部端面51aを、コア部51先端における光導波路5の光軸Hに垂直の仮想垂直面S2(図6(b)、(c)では、凹所3のコア部側内壁面36aが仮想垂直面S2と一致する)に対して傾斜する仮想傾斜面S3上に膨出する形状の湾曲面とした例である。
なお、仮想垂直面S2に対する仮想傾斜面S3の傾斜角度θ2は、5〜11度、より好ましくは8度程度(7−9度)とする。
図6(b)のコア部端面51a(湾曲面51a2)は、断面四角形(正方形を含む長方形)のコア部51の互いに平行な一対の辺(但し、仮想傾斜面S3におけるコア部51断面の4辺の内、仮想垂直面S2に平行な一対の辺)の間を結ぶように仮想傾斜面S3上に膨出して円弧状に延在する一定幅の湾曲面となっている。断面四角形のコア部51の4側面の内、仮想傾斜面S3におけるコア部51断面の4辺の内の仮想垂直面S2に対して傾斜する一対の辺が位置する2側面は、湾曲面51a2に対して垂直になっている。図6(b)では、コア部51先端の仮想傾斜面S3上に位置する部分が、いわゆる蒲鉾形に近い外観になっている。
図6(c)では、コア部51先端が仮想傾斜面S3上に膨出する外観ドーム状に形成されている。コア部端面51a(湾曲面51a3)は、コア部51先端の仮想傾斜面S3上での突出が最大の頂点51bから、光導波路5の断面四角形(正方形を含む長方形)のコア部51の仮想傾斜面S3における断面の4辺を結ぶ湾曲面となっている。
このコア部端面51a3は、いわゆるAPC(Angled Physical Contact)研磨と同様の外観となっている。
6 (b) and 6 (c) show the core part end face 51a as a virtual vertical plane S2 perpendicular to the optical axis H of the optical waveguide 5 at the tip of the core part 51 (in FIG. 6 (b) and FIG. 3 is a curved surface having a shape that bulges on a virtual inclined surface S3 that is inclined with respect to the virtual vertical surface S2.
The inclination angle θ2 of the virtual inclined surface S3 with respect to the virtual vertical surface S2 is set to 5 to 11 degrees, more preferably about 8 degrees (7-9 degrees).
The core part end surface 51a (curved surface 51a2) in FIG. 6B is a pair of parallel sides of the core part 51 having a quadrangular cross section (a rectangle including a square) (provided that 4 of the cross section of the core part 51 in the virtual inclined surface S3) A curved surface having a constant width that bulges on the virtual inclined surface S3 and extends in an arc shape so as to connect a pair of sides parallel to the virtual vertical surface S2. Of the four side surfaces of the core portion 51 having a quadrangular cross section, two side surfaces on which a pair of sides inclined with respect to the virtual vertical surface S2 among the four sides of the cross section of the core portion 51 in the virtual inclined surface S3 are located on the curved surface 51a2. It is perpendicular to it. In FIG.6 (b), the part located on virtual inclined surface S3 of the core part 51 front-end | tip has the external appearance close to what is called a saddle shape.
In FIG.6 (c), the front-end | tip of the core part 51 is formed in the external appearance dome shape which swells on virtual inclined surface S3. The core part end surface 51a (curved surface 51a3) is a virtual inclination of the core part 51 having a quadrangular cross section (a rectangle including a square) of the optical waveguide 5 from the vertex 51b at which the tip of the core part 51 protrudes on the virtual inclined surface S3. It is a curved surface connecting the four sides of the cross section of the surface S3.
The core end surface 51a3 has the same appearance as so-called APC (Angled Physical Contact) polishing.

図7(a)、(b)は、コア部端面51aを、該コア部端面51aにおける光導波路5の光軸Hに垂直の仮想面(仮想垂直面)に対して傾斜する平坦面(以下、傾斜面51a1とも言う)とした例である。
但し、図7(a)、(b)では、凹所3のコア部側内壁面36aを、基板2の第1主面2a側から第2主面2b側へ行くに従って、光軸Hの方向においてコア部側内壁面36aと対向する光軸方向端面36bの側への張り出し量が増大(換言すれば、光軸Hに垂直かつ前記コア部側内壁面36aの第1主面2a側の端部を通る仮想垂直面S4から光軸方向端面36bの側への突出寸法が増大)するように形成された平坦面(傾斜面36a1)とし、コア部端面51aである傾斜面51a1を、凹所3のコア部側内壁面36aと面一に形成している。傾斜面51a1は、仮想垂直面S4に対して傾斜している。この構成であれば、例えば、光導波路5のレーザー加工、機械加工等によって凹所3を形成する際に、凹所3のコア部側内壁面36aの形成と同時に、コア部端面51aの加工(傾斜面51a1の形成)も完了するため、端面51aの加工を別途行う必要が無い等の利点がある。
この場合も、光素子4の受/発光部41と光導波路5との間で発生する散乱光の光導波路5への入射を抑える点では、仮想垂直面S4に対する傾斜面36a1の傾斜角度θ3が8度前後(7〜9度)であることが好ましい。
FIGS. 7A and 7B show a flat surface (hereinafter referred to as “virtual vertical surface”) in which the core portion end surface 51a is inclined with respect to a virtual surface (virtual vertical surface) perpendicular to the optical axis H of the optical waveguide 5 in the core portion end surface 51a. This is also an example of an inclined surface 51a1.
However, in FIGS. 7A and 7B, the direction of the optical axis H extends from the first main surface 2 a side of the substrate 2 toward the second main surface 2 b side of the core portion side inner wall surface 36 a of the recess 3. In the optical axis direction end surface 36b opposite to the core portion side inner wall surface 36a (in other words, the end on the first main surface 2a side of the core portion side inner wall surface 36a and perpendicular to the optical axis H). A flat surface (inclined surface 36a1) formed so as to increase from the virtual vertical surface S4 passing through the portion to the optical axis direction end surface 36b side, and the inclined surface 51a1 that is the core end surface 51a is recessed. 3 is formed flush with the core-part-side inner wall surface 36a. The inclined surface 51a1 is inclined with respect to the virtual vertical surface S4. With this configuration, for example, when the recess 3 is formed by laser processing, machining, or the like of the optical waveguide 5, the core portion end surface 51a is processed simultaneously with the formation of the core portion side inner wall surface 36a of the recess 3 ( Since the formation of the inclined surface 51a1 is also completed, there is an advantage that the end surface 51a need not be processed separately.
Also in this case, the inclination angle θ3 of the inclined surface 36a1 with respect to the virtual vertical plane S4 is set to suppress the incidence of scattered light generated between the light receiving / emitting section 41 of the optical element 4 and the optical waveguide 5 to the optical waveguide 5. It is preferably around 8 degrees (7 to 9 degrees).

(光素子の電極)
図2(a)、(b)、図3(a)、(b)に例示した板状の光素子4の両面には、図8等に示すように、前記光素子4を、基板2に設けられている導体回路21(電気回路)と電気導通可能に接続するための電極47a、47bが設けられている。光素子4の両側の電極47a、47bの内、一方はカソード、他方はアノードである。
一方の電極47aは、受/発光部設置面42にて、受/発光部41よりも後端部45側に設けられている。他方の電極47bは、光素子4において、受/発光部設置面42とは反対側の背面48側に設けられている。
電極47a、47bは光素子4の受/発光部設置面42あるいは背面48に沿って延在するように形成されている。光素子4を凹所3に挿入して位置決めしたとき、電極47a、47bは、基板2の第1主面2aの延長上に交差(電極47a、47bの一部のみが基板2上に露出)するか、あるいは、全体が、光素子4の凹所3内に収納されずに基板2上に突出した部分に存在して露出される。
光導波路モジュール1は、光素子4を凹所3に挿入した後、電極47a、47bを、基板2の第1主面2a側に設けられている導体回路21と電気的に接続して組み立てられる。
(Electrode of optical element)
2 (a), 2 (b), 3 (a), and 3 (b), the optical element 4 is placed on the substrate 2 as shown in FIG. Electrodes 47a and 47b are provided for connection with the provided conductor circuit 21 (electric circuit) so as to be electrically conductive. Of the electrodes 47a and 47b on both sides of the optical element 4, one is a cathode and the other is an anode.
One electrode 47 a is provided on the receiving / light emitting unit installation surface 42 on the rear end 45 side of the receiving / emitting unit 41. The other electrode 47 b is provided on the back surface 48 side of the optical element 4 opposite to the light receiving / emitting portion installation surface 42.
The electrodes 47 a and 47 b are formed so as to extend along the light receiving / emitting part installation surface 42 or the back surface 48 of the optical element 4. When the optical element 4 is inserted and positioned in the recess 3, the electrodes 47a and 47b intersect with the extension of the first main surface 2a of the substrate 2 (only a part of the electrodes 47a and 47b is exposed on the substrate 2). Alternatively, the entirety is not stored in the recess 3 of the optical element 4 but is exposed in a portion protruding on the substrate 2.
The optical waveguide module 1 is assembled by inserting the optical element 4 into the recess 3 and then electrically connecting the electrodes 47 a and 47 b to the conductor circuit 21 provided on the first main surface 2 a side of the substrate 2. .

凹所3に挿入した光素子4の電極47a、47bと、基板2の導体回路21との電気的な接続は、例えば、図8に例示したように、凹所3付近にて導体回路21に形成されている電極21a(ランド部)と、光素子4の電極47a、47bとの間を直接、半田ペースト6を用いてボンディングする。この場合は、半田ペースト6自体を、基板2に対して光素子4を固定するための固定部として機能させることも可能である。
導体回路21の電極21aと、光素子4の電極47a、47bとの間を直接、半田ペースト6を用いてボンディングする以外に、例えば、極細線を用いたワイヤボンディング等も採用可能である。
For example, the electrical connection between the electrodes 47a and 47b of the optical element 4 inserted into the recess 3 and the conductor circuit 21 of the substrate 2 is connected to the conductor circuit 21 near the recess 3 as illustrated in FIG. Bonding is performed directly using the solder paste 6 between the formed electrode 21a (land portion) and the electrodes 47a and 47b of the optical element 4. In this case, the solder paste 6 itself can function as a fixing portion for fixing the optical element 4 to the substrate 2.
In addition to directly bonding between the electrode 21a of the conductor circuit 21 and the electrodes 47a and 47b of the optical element 4 by using the solder paste 6, for example, wire bonding using an extra fine wire can be employed.

なお、光素子4の電極47a、47bと、導体回路21との電気的接続は、例えば、凹所3内に予め導体回路21の電極を形成しておき、凹所3に挿入した光素子4の光素子4の電極47a、47bが導体回路21の電極に接して実現されるようにすることも可能である。この場合は、例えば、光素子4の電極47a、47bの位置を当接面43に変更し、光素子4を凹所3に挿入したときに、前記電極47a、47bが、凹所3内の位置決め用当接部31に予め形成しておいた導体回路21の電極に当接されて、電気的接続が実現されるようにする構成等が採用可能である。   The electrical connection between the electrodes 47a and 47b of the optical element 4 and the conductor circuit 21 is performed by, for example, forming the electrode of the conductor circuit 21 in the recess 3 in advance and inserting the electrode into the recess 3. The electrodes 47 a and 47 b of the optical element 4 may be realized in contact with the electrodes of the conductor circuit 21. In this case, for example, when the positions of the electrodes 47 a and 47 b of the optical element 4 are changed to the contact surface 43 and the optical element 4 is inserted into the recess 3, the electrodes 47 a and 47 b are in the recess 3. It is possible to employ a configuration in which electrical connection is realized by contacting the electrode of the conductor circuit 21 formed in advance on the positioning contact portion 31.

(光導波路モジュールの製造方法)
次に、上述の光導波路モジュール1の組立方法(光導波路モジュールの製造方法)の一例を、図9(a)〜(d)を参照して説明する。
まず、基板2を用意し(図9(a)参照)、この基板2の凹所3内面に接着剤7を塗布する(図9(b))。次いで、図9(c)に示すように、凹所3に光素子4を挿入して、光素子4の両側の当接面43を凹所3内の位置決め用当接部31に当接させることで、光素子4を位置決めする。次に、光素子4の電極47a、47bを、基板2の導体回路21と電気導通可能に接続する(図9(d))。
(Method for manufacturing optical waveguide module)
Next, an example of an assembly method of the optical waveguide module 1 described above (an optical waveguide module manufacturing method) will be described with reference to FIGS.
First, the substrate 2 is prepared (see FIG. 9A), and the adhesive 7 is applied to the inner surface of the recess 3 of the substrate 2 (FIG. 9B). Next, as shown in FIG. 9C, the optical element 4 is inserted into the recess 3, and the contact surfaces 43 on both sides of the optical element 4 are brought into contact with the positioning contact portions 31 in the recess 3. Thus, the optical element 4 is positioned. Next, the electrodes 47a and 47b of the optical element 4 are connected to the conductor circuit 21 of the substrate 2 so as to be electrically conductive (FIG. 9D).

基板2については、例えば、プレート状の光導波路5を用意して、光導波路モジュール1を実装する電子機器内の回路との電気的接続、基板2の導体回路21の位置等に鑑みて、前記光導波路5の適宜位置に凹所3を加工して形成する。
ここで用いる光導波路5は、片面に導体回路21を具備するものであっても良い。
凹所3の形成は、例えば、レーザー加工、小型工具を用いた機械加工等により行うことができる。
レーザー加工の場合は、例えば、図10に示すように、レーザー照射装置8と光導波路5との間に配置したマスク81を移動しながら、凹所3形成位置にレーザー光82を照射する。マスク81の移動速度によって、光導波路5に対するレーザー照射時間を制御することで、一対の位置決め用当接部31を持つ凹所3を形成できる。光軸方向端面36a,36bも形成する。
前記レーザーとしては、例えば、炭酸ガスレーザー、エキシマレーザー、紫外線レーザー等が挙げられる。
導体回路21については、凹所3の形成が完了した光導波路5に、銅、銅合金などの金属板を貼り合わせ、これをエッチングして形成することも可能である。導体回路形成用の金属板(例えば、銅、あるいは、銅合金)を貼り合わせ済みの光導波路5に凹所3を形成した後に、金属板をエッチングして導体回路21を形成することも可能である。
For the substrate 2, for example, by preparing a plate-shaped optical waveguide 5 and taking into account the electrical connection with the circuit in the electronic device on which the optical waveguide module 1 is mounted, the position of the conductor circuit 21 of the substrate 2, etc. The recess 3 is processed and formed at an appropriate position of the optical waveguide 5.
The optical waveguide 5 used here may have a conductor circuit 21 on one side.
The formation of the recess 3 can be performed by, for example, laser processing, machining using a small tool, or the like.
In the case of laser processing, for example, as shown in FIG. 10, a laser beam 82 is irradiated to the recess 3 formation position while moving a mask 81 disposed between the laser irradiation device 8 and the optical waveguide 5. By controlling the laser irradiation time with respect to the optical waveguide 5 according to the moving speed of the mask 81, the recess 3 having the pair of positioning contact portions 31 can be formed. Optical axis direction end faces 36a and 36b are also formed.
Examples of the laser include a carbon dioxide laser, an excimer laser, and an ultraviolet laser.
The conductor circuit 21 may be formed by bonding a metal plate such as copper or copper alloy to the optical waveguide 5 in which the formation of the recess 3 is completed and etching the metal plate. It is also possible to form the conductor circuit 21 by etching the metal plate after forming the recess 3 in the optical waveguide 5 to which the metal plate for forming the conductor circuit (for example, copper or copper alloy) has been bonded. is there.

さらに、すでに述べた光導波路の製造方法の内、コア部形成用の樹脂層であるコア層の両面に、クラッド層(クラッド部52の一部を形成するための樹脂層)が設けられた3層構造の光導波路形成体を作成し、この光導波路形成体に活性エネルギー線を照射してコア部51を形成することで、光導波路5を得る場合は、例えば、3層構造の光導波路形成体を構成する各層を、個々の層を形成する樹脂材料を含むワニスの塗布によって順次形成(最初に形成する層は、塗布用の基材を用いる)する際に、凹所3を確保するためのスペーサを用いて、凹所3が形成済みの光導波路形成体を得るといったことも可能である。   Further, in the optical waveguide manufacturing method described above, a clad layer (resin layer for forming a part of the clad portion 52) is provided on both surfaces of the core layer, which is a resin layer for forming the core portion. In the case of obtaining an optical waveguide 5 by creating a layered optical waveguide forming body and irradiating the optical waveguide forming body with active energy rays to form the core portion 51, for example, forming an optical waveguide having a three-layer structure In order to secure the recess 3 when each layer constituting the body is sequentially formed by applying a varnish containing a resin material forming the individual layers (the first layer to be formed uses a substrate for application). It is also possible to obtain an optical waveguide forming body in which the recesses 3 are formed using the spacer.

(別態様1)
図11(a)、(b)は、凹所3内に、光素子4を、前記受/発光部41の受/発光の光軸H1が前記光導波路5のコア部端面51aにおける光軸Hに垂直の仮想垂直面S4に対して傾斜した向きに支持するための、傾斜支持用当接部37を設けた例を示す。
なお、この傾斜支持用当接部37を持つ凹所3について、区別のため、説明の便宜上、以下、符号3Aを付して説明する場合がある。
(Another aspect 1)
11A and 11B show the optical element 4 in the recess 3, and the optical axis H1 of the light receiving / emitting part 41 of the light receiving / emitting part 41 is the optical axis H of the core end face 51a of the optical waveguide 5. FIG. The example which provided the contact part 37 for inclination support for supporting in the direction inclined with respect to the perpendicular | vertical virtual vertical surface S4 is shown.
For the sake of distinction, the recess 3 having the inclined support contact portion 37 may be described below with reference numeral 3A for convenience of explanation.

図11(a)、(b)は、既述の図7(a)、(b)に例示した構成の傾斜面36a1(コア部側内壁面36a)自体を、傾斜支持用当接部37として用いた例を示す。
凹所3Aの傾斜支持用当接部37(傾斜支持用当接面)は、光導波路5の前記光軸Hに垂直の仮想垂直面S4に対して傾斜している。傾斜支持用当接部37(傾斜支持用当接面)も、凹所3Aの内面の一部である。コア部端面51aである傾斜面51a1は、凹所3のコア部側内壁面36aと面一に形成されている。
光素子4は、凹所3Aに挿入して、受/発光部設置面42を前記傾斜支持用当接部37(コア部側内壁面36a)に当接(面接触)させることで、受/発光部設置面42が前記傾斜支持用当接部37に沿う向きとなる。
なお、この凹所3Aは、光素子4が、凹所3A内の仮想基準面S1を介して両側の位置決め用当接部31及び傾斜支持用当接部37(傾斜支持用当接面)に当接することで位置決め可能に構成することができる。このため、凹所3Aにおいてコア部側内壁面36aに対向する光軸方向端面36bについては、必ずしも、光軸方向位置決め部として機能するように形成する必要は無い。
11A and 11B, the inclined surface 36a1 (core portion side inner wall surface 36a) itself having the configuration illustrated in FIGS. 7A and 7B is used as the inclined support contact portion 37. FIG. An example used is shown.
The inclined support contact portion 37 (inclined support contact surface) of the recess 3 </ b> A is inclined with respect to a virtual vertical plane S <b> 4 perpendicular to the optical axis H of the optical waveguide 5. The inclined support contact portion 37 (inclined support contact surface) is also a part of the inner surface of the recess 3A. The inclined surface 51a1 which is the core portion end surface 51a is formed flush with the core portion side inner wall surface 36a of the recess 3.
The optical element 4 is inserted into the recess 3A, and the receiving / light emitting portion installation surface 42 is brought into contact (surface contact) with the inclined support contact portion 37 (core side inner wall surface 36a). The light emitting portion installation surface 42 is oriented along the inclined support contact portion 37.
In this recess 3A, the optical element 4 is connected to the positioning contact portions 31 and the tilt support contact portions 37 (tilt support contact surfaces) on both sides via the virtual reference plane S1 in the recess 3A. It can comprise so that it can position by contact | abutting. For this reason, the optical axis direction end surface 36b facing the core portion side inner wall surface 36a in the recess 3A is not necessarily formed so as to function as an optical axis direction positioning portion.

上述のことから、凹所3Aに挿入した光素子4の受/発光部設置面42を前記傾斜支持用当接部37に当接させて光素子4を位置決めすると、受/発光部設置面42に対して垂直の、受/発光部41の受/発光の光軸H1が、光導波路5の前記凹所3に露出するコア部端面51aにおける光軸Hに垂直の仮想垂直面S4に対して傾斜した向きとなる。
前記仮想垂直面S4に対する受/発光部41の受/発光の光軸H1の傾斜角度θ4(換言すれば、仮想垂直面S4に対する仮想傾斜面S3の傾斜角度)は、光素子4の受/発光部41と光導波路5との間で発生する散乱光の光導波路5への入射を防ぐ点では、5〜11度、より好ましくは8度程度(7−9度)とすることが適切であるが、これに限定されるものではない。例えば、前記傾斜角度θ4が10〜60度程度であると、光素子4の凹所3A内に収納されずに基板2から突出状態となる後端部45側部分の基板2からの突出寸法の縮小等に有効に寄与する。
From the above, when the optical element 4 is positioned by bringing the light receiving / light emitting part installation surface 42 of the optical element 4 inserted into the recess 3A into contact with the inclined support contact part 37, the light receiving / light emitting part installation surface 42 is obtained. The optical axis H1 of light reception / light emission of the light reception / light emission unit 41 perpendicular to the virtual vertical surface S4 perpendicular to the optical axis H in the core end surface 51a exposed in the recess 3 of the optical waveguide 5 is Inclined direction.
The tilt angle θ4 of the light receiving / emitting optical axis H1 of the light receiving / emitting section 41 with respect to the virtual vertical plane S4 (in other words, the tilt angle of the virtual tilted surface S3 with respect to the virtual vertical plane S4) is the light receiving / emitting light of the optical element 4. From the viewpoint of preventing the scattered light generated between the portion 41 and the optical waveguide 5 from entering the optical waveguide 5, it is appropriate to set the angle to 5 to 11 degrees, more preferably about 8 degrees (7 to 9 degrees). However, the present invention is not limited to this. For example, when the tilt angle θ4 is about 10 to 60 degrees, the projecting dimension from the substrate 2 at the rear end 45 side portion that is not accommodated in the recess 3A of the optical element 4 and is projected from the substrate 2 Contributes effectively to reduction.

傾斜支持用当接部37(傾斜支持用当接面)が形成された凹所3Aを持つ光導波路モジュール1においても、図6(a)〜(c)に例示したように、コア部51先端をコア部側内壁面36aから僅かに突出させた構成を採用可能である。凹所3Aの場合は、コア部51先端を、傾斜支持用当接部37(傾斜面36a1、コア部側内壁面36a)から突出させた構成となる。
図12(a)、(b)〜図14(a)、(b)は、凹所3Aの傾斜支持用当接部37(傾斜支持用当接面)に当接される光素子4の受/発光部41が、コア部側内壁面36aから突出されたコア部51先端に圧接されることを回避するために、コア部51先端に対する光素子4の距離を適切に設定するための構成を例示する。
Also in the optical waveguide module 1 having the recess 3A in which the inclined support contact portion 37 (inclined support contact surface) is formed, as illustrated in FIGS. It is possible to adopt a configuration in which is slightly protruded from the core portion side inner wall surface 36a. In the case of the recess 3A, the tip of the core portion 51 is configured to protrude from the inclined support contact portion 37 (inclined surface 36a1, core side inner wall surface 36a).
12 (a), 12 (b) to 14 (a), 14 (b) show the receiving of the optical element 4 in contact with the inclined support contact portion 37 (inclined support contact surface) of the recess 3A. / A configuration for appropriately setting the distance of the optical element 4 with respect to the tip of the core 51 in order to avoid the light emitting portion 41 being pressed against the tip of the core 51 protruding from the core-side inner wall surface 36a. Illustrate.

図12(a)、(b)、図13(a)、(b)は、傾斜支持用当接部37(傾斜支持用当接面)に仮想基準面S1に沿って延在する凹溝37aを形成し、コア部51先端を前記凹溝37a内に突出させた構成を例示する。コア部51先端は、凹溝37aの底面37b(コア部側内壁面36aの一部)から凹溝37a内に突出しているが、傾斜支持用当接部37から、凹所3Aにおいてコア部側内壁面36aに対向する光軸方向端面36bの側に突出しない。これにより、傾斜支持用当接部37(傾斜支持用当接面)に当接させて位置決めして凹所3A内に組み込んで基板2に実装した光素子4の受/発光部41を、コア部51先端(端面51a)に対して微小な隙間を介して対面配置、あるいは、軽い力で接触するように配置することが可能であり、コア部端面51aに対して強い力で圧接しないように配置することができる。   12 (a), 12 (b), 13 (a), and 13 (b) show a concave groove 37a that extends along the virtual reference plane S1 in the inclined support contact portion 37 (inclined support contact surface). A configuration in which the tip of the core portion 51 protrudes into the concave groove 37a is illustrated. The tip of the core 51 protrudes from the bottom surface 37b of the concave groove 37a (a part of the inner wall surface 36a on the core part side) into the concave groove 37a. It does not protrude toward the end surface 36b in the optical axis direction facing the inner wall surface 36a. As a result, the light receiving / light emitting portion 41 of the optical element 4 mounted on the substrate 2 by being brought into contact with the inclined support contact portion 37 (inclined support contact surface) and positioned in the recess 3A is mounted on the core. It is possible to arrange it so as to face the tip (end surface 51a) of the portion 51 through a minute gap or to contact it with a light force so that it does not press against the core end surface 51a with a strong force. Can be arranged.

図14(a)、(b)は、傾斜支持用当接部37(傾斜支持用当接面)の中央部に突出するコア部51先端及び光素子4の受/発光部41との接触を回避するための切り欠き部38aを形成した板状スペーサ38を、光素子4と傾斜支持用当接部37との間に介挿して、板状スペーサ38の厚みによって、コア部51先端に対する光素子4の距離を設定できるようにした構成を例示する。
板状スペーサ38の具体的形状は、傾斜支持用当接部37の中央部に突出するコア部51先端及び光素子4の受/発光部41との接触を回避できるものであれば良く、図14(a)、(b)に例示したものに限定されない。また、2枚の板状スペーサをコア部51先端を介して両側に対向配置する構成等も採用可能である。
また、板状スペーサは、凹所3Aに光素子4を組み込む前に、接着剤等によって、予め、傾斜支持用当接部37あるいは光素子4の受/発光部設置面42に固定しておいても良い。
さらに、板状スペーサは、複数枚を重ね合わせて使用しても良い。
14A and 14B show the contact between the tip of the core 51 protruding to the center of the inclined support contact portion 37 (inclined support contact surface) and the light receiving / emitting portion 41 of the optical element 4. A plate-like spacer 38 having a notch 38a for avoidance is inserted between the optical element 4 and the inclined support contact portion 37, and the light with respect to the tip of the core portion 51 depends on the thickness of the plate-like spacer 38. A configuration in which the distance of the element 4 can be set is illustrated.
The specific shape of the plate-like spacer 38 may be any shape as long as it can avoid contact with the tip of the core portion 51 protruding at the center of the inclined support contact portion 37 and the light receiving / emitting portion 41 of the optical element 4. It is not limited to what was illustrated to 14 (a) and (b). In addition, a configuration in which two plate-like spacers are disposed opposite to each other via the tip of the core portion 51 can be employed.
In addition, the plate-like spacer is fixed to the inclined support contact portion 37 or the light receiving / light emitting portion installation surface 42 of the optical element 4 in advance with an adhesive or the like before the optical element 4 is incorporated into the recess 3A. May be.
Furthermore, a plurality of plate-like spacers may be used in an overlapping manner.

(別態様2)
図15(a)、(b)は、受/発光部41を複数有する光素子4(以下、この光素子に符号4Aを付す)を用いた光導波路モジュール1(以下、この光導波路モジュール1に符号1Aを付す)の構成を例示する。
図15(a)、(b)に示す光素子4Aは、受/発光部設置面42の両側の当接面43の間に、複数の受/発光部41が一列に配列設置されたものである。
図示例の光素子4Aは、全体が、挿入位置決め部46として機能するものであり、挿入先端部44から、該挿入先端部44とは反対側の後端部45の側に行くにしたがって、光素子4の受/発光部設置面42を介して両側の当接面43の間の離隔距離が次第に増大する形状になっている。また、前記後端部45は、光素子4において、複数の受/発光部41が配列されている配列仮想直線Lを介して、挿入先端部44とは反対の側に位置する。
また、各受/発光部41から、光素子4Aにおいて後端部45側にずれた位置には、個々の受/発光部41に対応する、複数の電極47a、47bが設置されている。
(Another aspect 2)
FIGS. 15A and 15B show an optical waveguide module 1 (hereinafter referred to as the optical waveguide module 1) using an optical element 4 having a plurality of light receiving / emitting portions 41 (hereinafter, this optical element is denoted by reference numeral 4A). A configuration of 1A) is exemplified.
The optical element 4A shown in FIGS. 15 (a) and 15 (b) has a plurality of light receiving / emitting portions 41 arranged in a line between the contact surfaces 43 on both sides of the light receiving / light emitting portion setting surface 42. is there.
The optical element 4A in the illustrated example as a whole functions as the insertion positioning portion 46. As the optical element 4A moves from the insertion tip portion 44 toward the rear end portion 45 on the side opposite to the insertion tip portion 44, the optical element 4A The separation distance between the contact surfaces 43 on both sides is gradually increased via the light receiving / emitting portion installation surface 42 of the element 4. In addition, the rear end portion 45 is located on the side opposite to the insertion tip portion 44 via an array virtual line L in which a plurality of light receiving / emitting portions 41 are arranged in the optical element 4.
In addition, a plurality of electrodes 47a and 47b corresponding to the individual light receiving / light emitting portions 41 are installed at positions shifted from the light receiving / light emitting portions 41 toward the rear end 45 in the optical element 4A.

前記光素子4Aが実装される基板2の凹所3(区別のため、説明の便宜上、以下、符号3Bを付して説明する場合がある)は、コア部側内壁面36aに、光導波路5の複数本のコア部51の先端が横並びに露出されている。コア部側内壁面36aに露出されている複数本のコア部51先端は、凹所3内の一対の位置決め用当接部31の間に、基板2の面方向に沿う配列仮想直線上に配列されている。
前記光素子4Aを凹所3Bに組み込んで、光素子4Aの両側の当接面43を、基板2の凹所3内の一対の位置決め用当接部31に当接することで、凹所3Bのコア部側内壁面36aに横並びに露出されている複数本のコア部51(詳細にはコア部51先端)に対して、光素子4Aの複数の受/発光部41が対面配置されて光結合可能に位置決めされる。
この光導波路モジュール1Aも、既述の光導波路モジュールの製造方法(組立方法)と同様の手順で組み立てることができる。
The concave portion 3 of the substrate 2 on which the optical element 4A is mounted (for the sake of distinction, for convenience of explanation, the following description may be given with reference numeral 3B) is provided on the core-side inner wall surface 36a with the optical waveguide 5 The tips of the plurality of core portions 51 are exposed side by side. The tips of the plurality of core portions 51 exposed at the core portion side inner wall surface 36a are arranged on an imaginary straight line along the surface direction of the substrate 2 between the pair of positioning contact portions 31 in the recess 3. Has been.
The optical element 4A is incorporated in the recess 3B, and the contact surfaces 43 on both sides of the optical element 4A are brought into contact with a pair of positioning contact portions 31 in the recess 3 of the substrate 2, so that the recess 3B A plurality of light receiving / emitting portions 41 of the optical element 4A are arranged facing each other and optically coupled to a plurality of core portions 51 (specifically, tips of the core portions 51) exposed side by side on the inner wall surface 36a on the core portion side. Positioned as possible.
This optical waveguide module 1A can also be assembled in the same procedure as the above-described optical waveguide module manufacturing method (assembly method).

以上説明したように、本発明によれば、凹所3に挿入した光素子4を、凹所3内の位置決め用当接部31、光軸方向位置決め部として機能する光軸方向端面36b(あるいは、光軸方向端面36bと光素子4との間にスペーサを介挿する)に当接させるだけで、光導波路5に対して光素子4を光結合可能に位置決めする作業を非常に簡単に行える。従来技術のように、光導波路と光素子との間の光結合をミラーを介して実現する構成に比べて、ミラーの形成の手間の省略、コスト低減も実現できる。これにより、光導波路モジュールの製造の大幅な省力化、低コスト化を実現できる。
また、光素子を光導波路に対して直接、光結合させる構成であるため、光導波路と光素子との間の光結合をミラーを介して実現する構成に比べて、低損失での光信号の伝送が可能になる。このため、高速、大量の信号伝送に有利である。
As described above, according to the present invention, the optical element 4 inserted into the recess 3 can be used as the positioning contact portion 31 in the recess 3 and the optical axis direction end face 36b (or the optical axis direction positioning surface). The optical element 4 can be positioned with respect to the optical waveguide 5 so as to be optically coupled to the optical waveguide 5 by simply contacting the spacer between the optical axis direction end face 36b and the optical element 4). . Compared to a configuration in which the optical coupling between the optical waveguide and the optical element is realized via a mirror as in the prior art, it is possible to reduce the labor for forming the mirror and reduce the cost. As a result, significant labor savings and cost reduction in the production of the optical waveguide module can be realized.
In addition, since the optical element is directly optically coupled to the optical waveguide, the optical signal can be transmitted with low loss compared to a configuration in which optical coupling between the optical waveguide and the optical element is realized via a mirror. Transmission is possible. For this reason, it is advantageous for high-speed, large-volume signal transmission.

なお、本発明は、上述の実施形態に限定されず、適宜、設計変更可能であることは言うまでも無い。
例えば、光素子の具体的形状等は、上述の実施形態に限定されず、適宜、変更可能である。
また、上述の実施形態では、凹所3に組み込んで基板2に実装した光素子4の後端部45側が、基板2上に突出する構成を例示したが、光素子全体が凹所内に収納されて、基板から突出する部分が存在しない構成も採用可能である。
また、本発明に係る光導波路モジュールは、基板に形成された凹所に嵌め込むようにして組み込んだ光素子4が、凹所内面形状によって、光導波路5に対して光結合可能に位置決めされる構成であれば良く、凹所の具体的形状には特には限定は無い。
Needless to say, the present invention is not limited to the above-described embodiment, and the design can be changed as appropriate.
For example, the specific shape or the like of the optical element is not limited to the above-described embodiment, and can be changed as appropriate.
Further, in the above-described embodiment, the configuration in which the rear end 45 side of the optical element 4 incorporated in the recess 3 and mounted on the substrate 2 is illustrated as protruding on the substrate 2, but the entire optical element is accommodated in the recess. In addition, a configuration in which there is no portion protruding from the substrate can be employed.
The optical waveguide module according to the present invention has a configuration in which the optical element 4 incorporated so as to be fitted in the recess formed in the substrate is positioned so as to be optically coupled to the optical waveguide 5 by the inner shape of the recess. There is no particular limitation on the specific shape of the recess.

本発明に係る光導波路モジュールの構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the optical waveguide module which concerns on this invention. 図1の光導波路モジュールの基板に形成された凹所(レセプタ構造部)と光素子との関係を示す図であって、(a)は基板と光素子とを分離して示した図、(b)は凹所に光素子を固定した状態を示す。It is a figure which shows the relationship between the recess (receptor structure part) formed in the board | substrate of the optical waveguide module of FIG. 1, and an optical element, Comprising: (a) is the figure which isolate | separated and showed the board | substrate and the optical element, b) shows a state in which the optical element is fixed in the recess. (a)、(b)は、凹所を貫通穴とした光導波路モジュールの構成を示す図である。(A), (b) is a figure which shows the structure of the optical waveguide module which used the recessed part as the through-hole. 図1の光導波路モジュールの基板と光素子とを分離して示した分解斜視図である。It is the disassembled perspective view which isolate | separated and showed the board | substrate and optical element of the optical waveguide module of FIG. (a)、(b)は、凹所の位置決め用当接部の変形例を示す図である。(A), (b) is a figure which shows the modification of the contact part for positioning of a recess. (a)〜(c)は、光導波路のコア部の、凹所のコア部側内壁面から突出させた先端の端面形状の例を示す図である。(A)-(c) is a figure which shows the example of the end surface shape of the front-end | tip protruded from the core part side inner wall surface of the recess of the core part of an optical waveguide. (a)、(b)は、コア部端面を、傾斜面としたコア部側内壁面と面一に形成した構成を示す図である。(A), (b) is a figure which shows the structure which formed the core part end surface flush with the core part side inner wall surface made into the inclined surface. 基板の凹所に挿入した光素子の電極と、基板の導体回路とを、半田ペーストによって電気的に接続した状態を示す平面図である。It is a top view which shows the state which connected the electrode of the optical element inserted in the recess of the board | substrate, and the conductor circuit of the board | substrate with the solder paste. (a)〜(d)は、本発明に係る光導波路モジュールの製造方法を、順番に説明する図である。(A)-(d) is a figure explaining the manufacturing method of the optical waveguide module concerning this invention in order. 光導波路に凹所を形成するための手法の一例を説明する図であって、マスクを移動しながらレーザー照射によって凹所を形成する手法を説明する図である。It is a figure explaining an example of the method for forming a recess in an optical waveguide, Comprising: It is a figure explaining the method of forming a recess by laser irradiation, moving a mask. (a)、(b)は、光素子の傾斜支持用の傾斜支持用当接部(傾斜支持用当接面)を持つ凹所を基板に形成した構成の光導波路モジュールの構造を示す図である。(A), (b) is a figure which shows the structure of the optical waveguide module of the structure which formed the recess with the inclination support contact part (inclination support contact surface) for the inclination support of an optical element in the board | substrate. is there. 図11の凹所に、光素子の受/発光部が、コア部側内壁面から突出されたコア部先端に圧接されることを回避するための凹溝を形成した例を示す斜視図である。FIG. 12 is a perspective view showing an example in which a recess / groove is formed in the recess of FIG. 11 to prevent the light receiving / emitting part of the optical element from being pressed against the tip of the core part protruding from the inner wall surface on the core part side. . (a)、(b)は、図12の凹溝を設けた凹所を持つ基板と光素子との関係を示す断面図である。(A), (b) is sectional drawing which shows the relationship between the board | substrate with a recess provided with the ditch | groove of FIG. 12, and an optical element. (a)は、図11の凹所に収納した光素子を傾斜支持用当接部(傾斜支持用当接面)に当接させる際に、受/発光部がコア部側内壁面から突出されたコア部先端に圧接されることを回避するために使用する板状スペーサを示す斜視図、(b)は図14(a)の板状スペーサを凹所の傾斜支持用当接部と光素子との間に介挿した状態を示す図である。(A) shows that when the optical element housed in the recess of FIG. 11 is brought into contact with the inclined support contact portion (inclined support contact surface), the light receiving / emitting portion is protruded from the inner wall surface on the core side. The perspective view which shows the plate-shaped spacer used in order to avoid being pressed on the front-end | tip of another core part, (b) is the plate-shaped spacer of FIG. It is a figure which shows the state inserted in between. (a)、(b)は、受/発光部を複数持つ光素子を、基板の複数本のコア部に対応させて、一括して位置決めできるようにした態様を示す図である。(A), (b) is a figure which shows the aspect which enabled it to position collectively the optical element which has two or more light receiving / light-emitting parts corresponding to the several core part of a board | substrate.

符号の説明Explanation of symbols

1、1A…光導波路モジュール、2…基板、2a…主面(第1主面)、2b…主面(第2主面)、21…導体回路、21a…電極、3、3A、3B…凹所(レセプタ構造部)、31…位置決め用当接部、32a、32b…開口部、33、34…湾曲面(位置決め用当接部)、35…平坦面(位置決め用当接部)、36a…光軸方向端面(コア部側内壁面)、36a1…傾斜面(光軸方向端面、コア部側内壁面)、36b…光軸方向端面、37…傾斜支持用当接部(傾斜支持用当接面)、37a…凹溝、38…板状スペーサ、38a…切り欠き部、4、4A…光素子、41…受/発光部、42…受/発光部設置領域(受/発光部設置面)、43…当接面、44…挿入先端部、45…後端部、46…挿入位置決め部、47a、47b…電極、48…背面、5…光導波路、51…コア部、51a…端面、51a1…傾斜面(コア部端面)、51a2…湾曲面(コア部端面)、51a3…湾曲面(コア部端面)、51b…頂部(頂点)、52…クラッド部、6…半田ペースト、7…接着剤、H…光軸と一致する仮想直線、光軸、H1…受/発光部の光軸、8…レーザー照射装置、81…マスク、82…レーザー光、S1…仮想基準面、S2…仮想垂直面、S3…仮想傾斜面、S4…仮想垂直面。   DESCRIPTION OF SYMBOLS 1, 1A ... Optical waveguide module, 2 ... Board | substrate, 2a ... Main surface (1st main surface), 2b ... Main surface (2nd main surface), 21 ... Conductor circuit, 21a ... Electrode 3, 3A, 3B ... Concave (Receptor structure part), 31 ... positioning contact part, 32a, 32b ... opening, 33, 34 ... curved surface (positioning contact part), 35 ... flat surface (positioning contact part), 36a ... Optical axis direction end face (core part side inner wall surface), 36a1 ... inclined face (optical axis direction end face, core part side inner wall face), 36b ... optical axis direction end face, 37 ... inclined support contact part (inclined support contact part) Surface), 37a ... concave groove, 38 ... plate spacer, 38a ... notch part, 4, 4A ... optical element, 41 ... light receiving / light emitting part, 42 ... light receiving / light emitting part installation area (light receiving / light emitting part installation surface) , 43 ... Abutting surface, 44 ... Insertion tip, 45 ... Rear end, 46 ... Insertion positioning part, 47a, 47b ... Electrode, 48 Back surface, 5 ... Optical waveguide, 51 ... Core part, 51a ... End face, 51a1 ... Inclined surface (core part end face), 51a2 ... Curved face (core part end face), 51a3 ... Curved face (core part end face), 51b ... Top part ( Apex), 52 ... cladding part, 6 ... solder paste, 7 ... adhesive, H ... virtual straight line coincident with optical axis, optical axis, H1 ... optical axis of light receiving / emitting part, 8 ... laser irradiation device, 81 ... mask , 82 ... laser light, S1 ... virtual reference plane, S2 ... virtual vertical plane, S3 ... virtual inclined plane, S4 ... virtual vertical plane.

Claims (16)

光導波路を有する基板に形成された凹所に、受光素子又は発光素子である光素子が収納され、
前記光素子は、前記基板の凹所内面に形成された位置決め用当接部に当接して、前記光導波路のコア部の前記凹所に露出する端面に受/発光部が対面するように位置決めされていることを特徴とする光導波路モジュール。
An optical element that is a light receiving element or a light emitting element is housed in a recess formed in a substrate having an optical waveguide,
The optical element contacts a positioning contact portion formed on the inner surface of the recess of the substrate, and is positioned so that the light receiving / emitting portion faces the end surface exposed to the recess of the core portion of the optical waveguide. An optical waveguide module characterized by being made.
前記基板の前記凹所の位置決め用当接部が、前記凹所において互いに対向する対をなし、前記基板の一方の面に開口する前記凹所の開口部から他方の面に向かって互いの離隔距離が次第に狭くなるように形成された内面であり、
前記凹所は、前記光導波路の光軸の延長が、一対の位置決め用当接部の間に位置するように形成されていることを特徴とする請求項1記載の光導波路モジュール。
The positioning contact portions of the recesses of the substrate form a pair facing each other in the recesses, and are spaced apart from each other toward the other surface from the opening portion of the recess opening in one surface of the substrate. It is an inner surface formed so that the distance is gradually narrowed,
2. The optical waveguide module according to claim 1, wherein the recess is formed such that an extension of the optical axis of the optical waveguide is positioned between a pair of positioning contact portions.
前記光素子が板状であり、表裏両面の内の一方に前記受/発光部が設けられている受/発光部設置領域を具備し、受/発光部設置領域を介して両側の側面に、前記凹所に前記開口部から挿入することで前記凹所の一対の位置決め用当接部に当接される当接面を具備していることを特徴とする請求項2記載の光導波路モジュール。   The optical element is plate-shaped, and has a light receiving / light emitting portion installation area in which the light receiving / light emitting section is provided on one of the front and back surfaces, and on both sides through the light receiving / light emitting section installation area, The optical waveguide module according to claim 2, further comprising a contact surface that comes into contact with a pair of positioning contact portions of the recess by being inserted into the recess from the opening. さらに、前記凹所内には、前記光素子が当接されることで、前記光素子を、前記受/発光部の受/発光の光軸が前記光導波路の前記凹所に露出するコア部端面における光軸に垂直の仮想垂直面に対して傾斜した向きに支持するための、傾斜支持用当接部が設けられていることを特徴とする請求項2又は3記載の光導波路モジュール。   Further, the optical element is brought into contact with the recess, so that the optical element is exposed to an end surface of the core portion where the receiving / emitting optical axis of the receiving / emitting portion is exposed to the recess of the optical waveguide. 4. The optical waveguide module according to claim 2, further comprising an inclined support contact portion for supporting in an inclined direction with respect to a virtual vertical plane perpendicular to the optical axis. 前記傾斜支持用当接部が、前記凹所の前記開口部が開口する前記基板の一方の面の側から他方の面の側に行くにしたがって、前記凹所に露出する前記光導波路のコア部の端面からの距離が次第に増大する傾斜面であることを特徴とする請求項4記載の光導波路モジュール。   The core portion of the optical waveguide that is exposed to the recess as the inclined support contact portion goes from the one surface side of the substrate where the opening of the recess opens to the other surface side. The optical waveguide module according to claim 4, wherein the optical waveguide module is an inclined surface with a gradually increasing distance from the end face. 前記凹所に露出する前記光導波路のコア部の端面が、該端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面、あるいは、前記端面における光軸に垂直の仮想垂直面に対して傾斜する仮想傾斜面上に膨出する湾曲面であることを特徴とする請求項1〜5のいずれかに記載の光導波路モジュール。   The end surface of the core portion of the optical waveguide exposed in the recess is inclined with respect to a virtual vertical surface perpendicular to the optical axis at the end surface, or to a virtual vertical surface perpendicular to the optical axis at the end surface. The optical waveguide module according to claim 1, wherein the optical waveguide module is a curved surface that bulges on a virtual inclined surface that is inclined. 前記光素子の両面に設けられている電極が、それぞれ、前記基板の前記凹所の開口部が開口されている側の面に設けられている電気回路と電気導通可能に接続されていることを特徴とする請求項1〜6のいずれかに記載の光導波路モジュール。   The electrodes provided on both surfaces of the optical element are respectively connected to an electric circuit provided on the surface of the substrate on the side where the opening of the recess is opened so as to be electrically conductive. The optical waveguide module according to claim 1, wherein the optical waveguide module is characterized in that: 前記光素子の電極と、前記基板の前記電気回路とが、半田ペーストによってボンディングされていることを特徴とする請求項7記載の光導波路モジュール。   8. The optical waveguide module according to claim 7, wherein the electrode of the optical element and the electric circuit of the substrate are bonded with a solder paste. 光導波路を有する基板に形成された凹所に、受光素子又は発光素子である光素子を収納して、前記凹所内面に形成された位置決め用当接部に当接させることで、前記光導波路のコア部の前記凹所に露出する端面に受/発光部が対面するように位置決めして、実装することを特徴とする光導波路モジュールの製造方法。   An optical element, which is a light receiving element or a light emitting element, is housed in a recess formed in a substrate having an optical waveguide, and is brought into contact with a positioning contact portion formed on the inner surface of the recess. A method of manufacturing an optical waveguide module, comprising: positioning and mounting an end face exposed in the recess of the core portion of the core portion so that the light receiving / emitting portion faces each other. 前記基板の前記凹所の位置決め用当接部が、前記凹所において互いに対向する対をなし、前記基板の一方の面に開口する前記凹所の開口部から他方の面に向かって互いの離隔距離が次第に狭くなるように形成された内面であり、
前記凹所は、前記光導波路の光軸の延長が、一対の位置決め用当接部の間に位置するように形成されており、
前記光素子を一対の位置決め用当接部の間に挿入して一対の位置決め用当接部に当接させることで、前記受/発光部を前記光導波路の光軸に対して位置決めすることを特徴とする請求項9記載の光導波路モジュールの製造方法。
The positioning contact portions of the recesses of the substrate form a pair facing each other in the recesses, and are spaced apart from each other toward the other surface from the opening portion of the recess opening in one surface of the substrate. It is an inner surface formed so that the distance is gradually narrowed,
The recess is formed such that the extension of the optical axis of the optical waveguide is positioned between a pair of positioning contact portions,
The optical element is inserted between a pair of positioning contact portions and brought into contact with the pair of positioning contact portions, thereby positioning the light receiving / emitting portion with respect to the optical axis of the optical waveguide. The method of manufacturing an optical waveguide module according to claim 9.
前記光素子が板状であり、表裏両面の内の一方に前記受/発光部が設けられている受/発光部設置領域を具備し、前記凹所に前記開口部から前記凹所の互いに対向する位置に形成された一対の位置決め用当接部の間に挿入して、前記光素子において受/発光部設置領域を介して両側の側面に形成された当接面を、前記一対の位置決め用当接部に当接させることで、前記受/発光部を前記光導波路の光軸に対して位置決めすることを特徴とする請求項10記載の光導波路モジュールの製造方法。   The optical element is plate-shaped, and includes a light receiving / light emitting portion installation region in which the light receiving / light emitting portion is provided on one of the front and back surfaces, and the recess is opposed to each other from the opening. The contact surfaces formed on the side surfaces on both sides of the optical element via the light receiving / emitting portion installation region are inserted between the pair of positioning contact portions formed at the positions where the pair of positioning contacts are formed. 11. The method of manufacturing an optical waveguide module according to claim 10, wherein the receiving / emitting portion is positioned with respect to the optical axis of the optical waveguide by being brought into contact with the contact portion. さらに、前記凹所内には、前記光素子が当接されることで、前記光素子を、前記受/発光部の受/発光の光軸が前記光導波路の前記凹所に露出するコア部端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面に対して傾斜した向きに支持するための、傾斜支持用当接部が設けられていることを特徴とする請求項10又は11記載の光導波路モジュールの製造方法。   Further, the optical element is brought into contact with the recess, so that the optical element is exposed to an end surface of the core portion where the receiving / emitting optical axis of the receiving / emitting portion is exposed to the recess of the optical waveguide. 12. An inclined support contact portion is provided for supporting in an inclined direction with respect to an inclined surface that is inclined with respect to a virtual vertical plane perpendicular to the optical axis. Manufacturing method of the optical waveguide module. 前記傾斜支持用当接部が、前記凹所の前記開口部が開口する前記基板の一方の面の側から他方の面の側に行くにしたがって、前記凹所に露出する前記光導波路のコア部の端面からの距離が次第に増大する傾斜面であることを特徴とする請求項12記載の光導波路モジュールの製造方法。   The core portion of the optical waveguide that is exposed to the recess as the inclined support contact portion goes from the one surface side of the substrate where the opening of the recess opens to the other surface side. 13. The method of manufacturing an optical waveguide module according to claim 12, wherein the distance from the end surface of the optical waveguide is an inclined surface that gradually increases. 前記凹所に露出する前記光導波路のコア部の端面が、該端面における光軸に垂直の仮想垂直面に対して傾斜する傾斜面、あるいは、前記端面における光軸に垂直の仮想垂直面に対して傾斜する仮想傾斜面上に膨出する湾曲面であることを特徴とする請求項9〜13のいずれかに記載の光導波路モジュールの製造方法。   The end surface of the core portion of the optical waveguide exposed in the recess is inclined with respect to a virtual vertical surface perpendicular to the optical axis at the end surface, or to a virtual vertical surface perpendicular to the optical axis at the end surface. The method for manufacturing an optical waveguide module according to claim 9, wherein the optical waveguide module is a curved surface that bulges on a virtual inclined surface that is inclined. 前記光素子を、前記基板の凹所に挿入して位置決めした後、前記光素子の両面に設けられている電極を、それぞれ、前記基板の前記凹所の開口部が開口されている側の面に設けられている電気回路と電気導通可能に接続することを特徴とする請求項9〜14のいずれかに記載の光導波路モジュールの製造方法。   After the optical element is inserted and positioned in the recess of the substrate, the electrodes provided on both surfaces of the optical element are respectively surfaces on the side where the opening of the recess of the substrate is opened. The method for manufacturing an optical waveguide module according to claim 9, wherein the optical waveguide module is connected to an electrical circuit provided in the circuit so as to be electrically conductive. 前記光素子の電極と、前記基板の前記電気回路との接続を、半田ペーストを用いたボンディングによって行うことを特徴とする請求項15記載の光導波路モジュールの製造方法。   16. The method of manufacturing an optical waveguide module according to claim 15, wherein the connection between the electrode of the optical element and the electric circuit of the substrate is performed by bonding using a solder paste.
JP2007162600A 2007-06-20 2007-06-20 Optical waveguide module and manufacturing method of the same Pending JP2009003096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162600A JP2009003096A (en) 2007-06-20 2007-06-20 Optical waveguide module and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162600A JP2009003096A (en) 2007-06-20 2007-06-20 Optical waveguide module and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2009003096A true JP2009003096A (en) 2009-01-08

Family

ID=40319569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162600A Pending JP2009003096A (en) 2007-06-20 2007-06-20 Optical waveguide module and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2009003096A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059353A (en) * 2009-09-09 2011-03-24 Sumitomo Bakelite Co Ltd Optical waveguide structure, photoelectric hybrid substrate, and electronic equipment
JP2011107196A (en) * 2009-11-12 2011-06-02 Sumitomo Bakelite Co Ltd Optical waveguide and method for manufacturing the same
JP2013539082A (en) * 2010-10-06 2013-10-17 エルジー イノテック カンパニー リミテッド Optical printed circuit board and manufacturing method thereof
JP2014504378A (en) * 2010-12-24 2014-02-20 エルジー イノテック カンパニー リミテッド Optical printed circuit board
WO2014157328A1 (en) * 2013-03-26 2014-10-02 日本電気株式会社 Light distribution mechanism and coherent mixer device provided with same
JP2014186263A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide element and manufacturing method of the same
WO2021065949A1 (en) * 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501385A (en) * 1985-10-16 1988-05-26 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Coupling device for optical device and optical waveguide
JPH0271203A (en) * 1988-03-03 1990-03-09 American Teleph & Telegr Co <Att> Device having optical guide body supported by substrate
JPH05167060A (en) * 1991-12-12 1993-07-02 Nec Corp Optical coupling circuit
JPH05175523A (en) * 1991-12-24 1993-07-13 Nec Corp Fixing structure of waveguide and photodetector
JPH0829644A (en) * 1994-07-20 1996-02-02 Japan Aviation Electron Ind Ltd Optical coupling parts
JP2000098156A (en) * 1998-09-25 2000-04-07 Oki Electric Ind Co Ltd Optical waveguide element, end face structure for optical fiber array, and its manufacture
JP2001154048A (en) * 1999-11-30 2001-06-08 Kyocera Corp Bidirectional optical module
JP2003140101A (en) * 2001-08-24 2003-05-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical element and its manufacturing method
JP2004109426A (en) * 2002-09-18 2004-04-08 Hitachi Chem Co Ltd Method of manufacturing polymer optical waveguide device having sloped core end face
JP2004333728A (en) * 2003-05-06 2004-11-25 Sony Corp Waveguide type optical integrated device and its manufacturing method
JP2005268326A (en) * 2004-03-16 2005-09-29 Sumitomo Electric Ind Ltd Optical power monitoring apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501385A (en) * 1985-10-16 1988-05-26 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Coupling device for optical device and optical waveguide
JPH0271203A (en) * 1988-03-03 1990-03-09 American Teleph & Telegr Co <Att> Device having optical guide body supported by substrate
JPH05167060A (en) * 1991-12-12 1993-07-02 Nec Corp Optical coupling circuit
JPH05175523A (en) * 1991-12-24 1993-07-13 Nec Corp Fixing structure of waveguide and photodetector
JPH0829644A (en) * 1994-07-20 1996-02-02 Japan Aviation Electron Ind Ltd Optical coupling parts
JP2000098156A (en) * 1998-09-25 2000-04-07 Oki Electric Ind Co Ltd Optical waveguide element, end face structure for optical fiber array, and its manufacture
JP2001154048A (en) * 1999-11-30 2001-06-08 Kyocera Corp Bidirectional optical module
JP2003140101A (en) * 2001-08-24 2003-05-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical element and its manufacturing method
JP2004109426A (en) * 2002-09-18 2004-04-08 Hitachi Chem Co Ltd Method of manufacturing polymer optical waveguide device having sloped core end face
JP2004333728A (en) * 2003-05-06 2004-11-25 Sony Corp Waveguide type optical integrated device and its manufacturing method
JP2005268326A (en) * 2004-03-16 2005-09-29 Sumitomo Electric Ind Ltd Optical power monitoring apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059353A (en) * 2009-09-09 2011-03-24 Sumitomo Bakelite Co Ltd Optical waveguide structure, photoelectric hybrid substrate, and electronic equipment
JP2011107196A (en) * 2009-11-12 2011-06-02 Sumitomo Bakelite Co Ltd Optical waveguide and method for manufacturing the same
JP2013539082A (en) * 2010-10-06 2013-10-17 エルジー イノテック カンパニー リミテッド Optical printed circuit board and manufacturing method thereof
US9459391B2 (en) 2010-10-06 2016-10-04 Lg Innotek Co., Ltd. Optical printed circuit board and method for manufacturing the same
JP2014504378A (en) * 2010-12-24 2014-02-20 エルジー イノテック カンパニー リミテッド Optical printed circuit board
JP2014186263A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide element and manufacturing method of the same
WO2014157328A1 (en) * 2013-03-26 2014-10-02 日本電気株式会社 Light distribution mechanism and coherent mixer device provided with same
WO2021065949A1 (en) * 2019-09-30 2021-04-08 京セラ株式会社 Optical waveguide package and light emitting device
JPWO2021065949A1 (en) * 2019-09-30 2021-04-08
CN114430809A (en) * 2019-09-30 2022-05-03 京瓷株式会社 Optical waveguide package and light emitting device
EP4040515A4 (en) * 2019-09-30 2023-10-25 Kyocera Corporation Optical waveguide package and light emitting device

Similar Documents

Publication Publication Date Title
JP2009003096A (en) Optical waveguide module and manufacturing method of the same
US6969204B2 (en) Optical package with an integrated lens and optical assemblies incorporating the package
JP4704126B2 (en) Optical module
JPH1082930A (en) Optical module and its production
JP2001203419A (en) Light-emitting device
JP2008500591A (en) Optoelectronic flip chip package with optical waveguide housed in the upper layer of the substrate
TWI483023B (en) Socket and optical transmission module
JP5130731B2 (en) OPTICAL MODULE, OPTICAL TRANSMISSION DEVICE, AND OPTICAL MODULE MANUFACTURING METHOD
JP2000105327A (en) Optical reception module
JP2010078806A (en) Optical module, optical transmission device, and surface optical device
CN112997105B (en) Optical connector
WO2019012607A1 (en) Optical module
US20070058910A1 (en) Light transmitting/receiving element, bidirectional light transmitting/receiving system having the light transmitting/receiving element, and optical sensor
JP2010186022A (en) Anisotropic electric conductive body and optical communication apparatus
JP2007189030A (en) Semiconductor laser device
TW201423185A (en) Receptacle and optical transmission module
JP2008139492A (en) Optical module
US20190011650A1 (en) Optical coupling member and optical module
JP2008134444A (en) Optical module and optical waveguide structure
JP2018026468A (en) Semiconductor optical element, optical module, and method for manufacturing semiconductor optical element
JP2010027650A (en) Cap, lens unit, optical module, and optical communication module
JP3945528B2 (en) Light emitting module
JP5764306B2 (en) Manufacturing method of optical connection part and manufacturing method of active connector
JP2010122308A (en) Optical transmission apparatus and optical waveguide
JPH0339706A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402